
Appia, a flexible protocol kernel supporting multiple

coordinated channels∗

Hugo Miranda Alexandre Pinto

Lúıs Rodrigues

Universidade de Lisboa†

{hmiranda,apinto,ler}@di.fc.ul.pt

Abstract

Distributed applications are becoming increasingly complex, often requiring

the simultaneous use of several communication channels with different qualities-

of-service. This paper presents the Appia system, a protocol kernel that supports

applications requiring multiple coordinated channels. Appia offers a clean and

elegant way for the application to express inter-channel constraints, such as,

for instance, that all channels should provide consistent information about the

failures of remote nodes. These constraints can be implemented as protocol layers

that can be dynamically combined with other protocol layers.

∗This work was partially supported by Praxis/ C/ EEI/ 12202/ 1998, TOPCOM.
†Postal Address: FCUL, Campo Grande 1749-016 Lisboa, Portugal Phone: +351

217500613 Fax: +351 217500084

1

1 Introduction

Distributed applications are becoming increasingly complex, offering rich and powerful

services to their users. In order to offer satisfactory performance, these applications

are also becoming increasingly demanding in terms of communication support. It is

easy to find applications that require the simultaneous use of several communication

channels, such as virtual environments, distributed simulation and computer supported

collaborative work (CSCW).

One particularity of these applications is the need to exchange and disseminate

several kinds of data, each with different quality-of-service requirements. Text mes-

sages or blocks in a file transfer, for example, are expected to be reliably delivered

in FIFO order while in video streams some packets can be lost. As a result, these

applications tend to rely on the use of multiple communication channels. It is easy to

find communication substrates that support the use of several independent channels.

However, in multi-channel applications there are often inter-channel constraints that

need to be preserved to simplify the application logic. For instance, one may need

to enforce FIFO, causal or total order constraints across channels, to cipher data in

different channels using the same session key, or to ensure that consistent failure de-

tection information is provided to all channels. If the protocol kernel does not provide

any support for coordination among channels, this burden is left to the application

designer.

A promising approach to tackle the complexity of these systems is to rely on config-

urable communication architectures that are able to support component re-utilization

and composition. Recent protocol kernels, such as Ensemble [6] and Coyote [1] offer an

environment where “off-the-shelf” micro-protocols can be combined to obtain different

QoSs. However, few systems provide support for the coordination of multiple chan-

2

nels. Maestro [3] and CCTL [10] support coordination only at a limited set of properties

such as membership or ordering. Inter-channels constraints that were not anticipated

by these kernels still have to be implemented at the application level.

This paper presents Appia 1, a protocol kernel that offers a clean and elegant way

for the application to express inter-channel constraints. This feature is obtained as an

extension to the functionality provided by current systems. Thus, Appia retains the

flexible and modular design that has previously proven to be advantageous, allowing

communication stacks to be composed and reconfigured in run-time.

The paper is organized as follows. Section 2 presents several examples that motivate

our work. Section 3 describes the innovative aspects of Appia. Section 4 describes

the Appia implementation and Section 5 presents early performance results from a

prototype written in Java. Our work is related with the current state of the art in

Section 6. Section 7 concludes the paper.

2 Motivation

A protocol kernel is a software package that supports the composition and execution

of micro-protocols. In terms of protocol design, the protocol kernel provides the tools

that allow the application designer to compose stacks of protocols according to the

application needs. In run-time the protocol kernel supports the exchange of data and

control information between layers and provides a number of auxiliary services such as

timer management and memory management for message buffers.

The x-Kernel [7] is an early and influential work on protocol composition. Pro-

tocols interact through generic push and pop primitives that allow layers to be im-

1Via Appia was one of the most important roads of the Roman Empire.

3

plemented with independence from each other. In run-time, x-Kernel supports the

thread-per-message model, where a thread is assigned to process each message. Thus,

the push/pop interaction between adjacent layers is implemented using function calls

that are executed in the context of the message’s thread. After x-Kernel, several sys-

tems have proposed different models of binding layers to stacks and of supporting event

propagation. In Ensemble [6] and Coyote [1] events are data structures that are routed

from one layer to the next by a specialized event scheduler.

Much emphasis has been put on the flexibility of protocol composition and on

the efficiency of the event propagation mechanisms. Horus [13] and Ensemble [6] are

protocol kernels designed to support group communication. They propose a strictly

vertical stack composition where events must cross all the layers from the stack. Both

frameworks predefine a fixed set of events whose semantics is well known. For effi-

ciency reasons, Horus and Ensemble define particular exceptions to the strictly vertical

model. For particular sets of events and stack configurations, Horus allows some lay-

ers to be bypassed using the fast protocol [12]. On the other hand, in Coyote [1]

micro-protocols are able to register the events they are interested in. This allows com-

posing protocols in a manner that is not strictly vertical and also prevents layers from

processing unnecessary events.

All these frameworks allow the application to define and use different commu-

nication channels, but they do not provide explicit support to enforce inter-channel

constraints. The need for coordination among different channels used by the same

application has been recognized in at least two existing frameworks: the Collabora-

tive Computing Transport Layer (CCTL) [10] and Maestro [3]. CCTL uses a control

channel where strong properties are enforced (total order, FIFO, Failure detection and

Name Service) to coordinate data channels that may have weaker reliability and order-

4

ing constraints. Maestro is a group manager for protocol stacks. The base of Maestro

is a core Ensemble stack that handles membership procedures for the data stacks.

Maestro’s data stacks can be created using a wide set of components, including UDP

sockets, and CCTL or other Ensemble stacks.

Both frameworks are tied to specific inter-channel constraints, such as membership

synchronization across several channels, and do not provide the appropriate interface

to allow programmers to express alternative forms of coordination. In the following

section we give several examples of coordination requirements that are not adequately

addressed by previous protocol kernels.

2.1 Examples

Synchronized streams with different QoS To support interaction, a multimedia

application opens different communication channels, one for each type of media (namely

audio, video and control). These streams require different transport protocols, thus

different communication stacks are used. However, all streams need to be synchronized.

To achieve this goal, an inter-stream synchronization layer can be used as proposed

in [4].

Another problem of using different stacks is that failures can be detected in a non-

consistent way by the protocols in each stack. The Maestro [3] system tackles this

issue by creating a “core” stack in charge of coordinating the others. The core stack

coordinates by sharing joins, leaves and failure detectors.

An elegant solution based on protocol composition could use the stack of Figure 1.

This approach consists of having a common failure detection layer at the bottom of

each stream and a synchronization layer in the upper layers. The combination of the

several “paths” creates a “diamond” structure.

5

Figure 1: A multimedia stack with diamond shape

When events are inserted in Appia, they are tagged with a channel reference,

defining the set of protocol instances they will traverse. From the event and proto-

col implementation view, this model becomes quite similar to strictly vertical layered

frameworks like Horus [13]. However, Appia does not enforce that a one-to-one relation

exists between protocol instances and stacks: one protocol instance may share its state

over several channels. Some protocols can even be oblivious to the number of channels

that traverse a session.

Light Weight Groups The second example is derived from the implementation of

Light Weight Groups [11], a micro-protocol that maps several user-level groups in a

single virtual synchrony group (Heavy Weight Group). When two or more groups have

similar membership, utilization of Light Weight Groups (LWGs) promotes resource

sharing and improves performance. The lwg layer hides the existence of user-level

groups from the layers bellow it and different micro-protocol combinations can be

multiplexed on the same Heavy Weight Group by the lwg layer. The model of LWGs

is presented in Figure 2. The mapping between user level groups and virtual synchrony

groups is dynamically established by the lwg protocol. This mapping may change in

6

run-time for performance reasons.

LWG

TOTAL

XFER STABLE

DEVICE

...

CAUSAL

Figure 2: Light Weight Groups model

Although the main goal of Appia is to provide the mechanisms that simplify the

task of expressing and implementing inter-channel constraints, the system retains the

flexibility and performance characteristics of systems such as Ensemble and Coyote. In

the following section we describe the Appia system.

3 The Appia System

Appia clearly separates the static and dynamic aspects of protocol compositions. Static

aspects are used to model Qualities of Service and dynamic aspects are related with

the implementation of these QoSs. Both aspects are present when new protocols are

created and when protocols are combined to implement communication channels. This

section explains how the above concepts interact to support inter-channel coordination.

We define a layer as the representative of a micro-protocol. Micro-protocols ex-

change information using events. All protocols implement the same event interface.

The format and semantics of these events will be presented latter in this paper.

We define a session as an instance of a micro-protocol [7]. The session maintains

7

state variables used to process events. A session implementing an ordering protocol

may maintain a sequence number or a vector clock as part of its state. In connection-

oriented protocols, the session also maintains information about the endpoints of the

connection.

Layers and sessions can be combined to satisfy inter-channel coordination require-

ments as follows. A QoS is defined as a stack of layers. The QoS specifies which

protocols must act on the messages and the order they must be traversed. A channel

is an instantiation of a QoS and is characterized by a stack of sessions of the corre-

sponding layers. Sessions may be shared by more than one channel. Events exchanged

between two sessions are delivered respecting FIFO order. A stack interfaces a given

communication media through a device protocol. This is just an abstraction of any

protocol outside the control of our communication kernel (for instance, TCP, UDP or

IP Multicast).

3.1 Model

The model honors the distinction between the properties of a stack, captured by the

QoS concept and each specific instance of a given QoS, the channel. Data flows through

specific channels. In many systems, message processing requires every layer to perform

a local demultiplexing operation to retrieve the appropriate session context. In Appia,

like in Ensemble, the demultiplexing is performed only once, when messages enter the

system and the target channel is retrieved. However, Ensemble uses kernel functions to

retrieve messages from the network and to find the appropriate channel. Appia makes

the model more flexible by delegating on protocols both operations.

Upon creation, a channel is as an array of “typed empty slots”. Each of these slots

must be filled with a session of the layer specified in the QoS for that position. Sessions

8

can be bound to the slots explicitly or implicitly by other sessions (automatic binding).

By default, new sessions will be bound to the remaining slots.

Using explicit binding it is possible to associate specific sessions to specific channels.

These sessions may either be already in use by other channels or may be intentionally

created for the new channel. Explicit binding enables the user to have fine control over

the channel configuration. For instance, on our Light Weight Groups example a single

session of the LWG layer should be explicitly bound to all channels.

Using automatic binding it is possible to delegate on already bound sessions the task

of specifying the remaining sessions for the channel. Typically, a mixture of explicit and

automatic binding is used. Again, in the Light Weight Group example, the application

should delegate on the LWG session the task of managing the remaining underlying

sessions.

In Appia, inter-channel coordination can be achieved by letting different channels

share one or more common sessions.

3.2 Configuration capabilities

A protocol is defined as channel-aware if its algorithm recognizes and acts differently

upon reception of events flowing on different channels. As noted before, it is desirable

to have the Failure Detector protocol to be channel-unaware, while Intermedia

Sync is, by definition, channel-aware (it selects the desired Quality of Service for

message sending). Protocol reusability would be limited in Appia if channel-awareness

was mandatory.

However, it is possible to create protocols that are oblivious to the number of

channels that traverse their sessions. A channel identifier cid is presented to sessions

9

on every event delivery. This value can be considered opaque by the session. If a

new event is generated in response to a given incoming event (for instance a reply),

the session should propagate the opaque cid value associated with the original event.

Many of the sessions that can be found in existing stacks are channel-unaware.

Channel-awareness allows greater configurability possibilities. Sessions can use the

channel information to learn the available QoSs and then choose which channel to use

for their own events.

3.3 Events

Some frameworks support only a pre-defined set of events. The knowledge of the

semantic of each event is then used to implement event-specific optimizations. We say

that these frameworks support a closed event model. Closed models are very difficult to

apply in different contexts since they only support a fixed set of interactions: the pre-

defined set of events may not be enough to express, in an efficient manner, interactions

required in other protocols. A framework that uses an open model, allows new events

to be defined. Naturally, it is harder to implement optimizations in event routing when

the set of events is unknown a priori. The model presented here tries to merge the

advantages of a closed model with the flexibility of an open model.

Events in Appia are object oriented data structures. The Event class has two fun-

damental attributes: channel and direction. channel is a reference to the channel

instance where the event will flow. direction can have only the UP or DOWN value to

indicate in which direction the event is flowing along the stack. Like in most commu-

nication architectures, the lower layer makes the interface with the network and the

upper layer makes the interface with the application. New events can be created by

deriving from a previously defined event class (in particular, directly from Event). In

10

order to allow future event refinement, tests on the event type are always performed

on the weakest class satisfying the desired requisites. The goal is to enforce event

specialization using inheritance. This way, legacy protocols, unaware of the new event

attributes, will continue to execute correctly.

As in Ensemble [6], sessions only interact with the environment by events. The basic

Event class is extended by the kernel in two different branches: events to be sent to

the network (class SendableEvent) and events containing requests to the kernel (class

ChannelEvent) such as timers and notifications of channel initialization. Conceptually,

the channel is positioned bellow the lowest session on the stack and above the upper

one.

3.4 Run-time compatibility check

At QoS definition time, layers are requested to declare three event-related sets: Ψl

containing the events that layer-l requires to provide a correct execution; Φl containing

the events that layer-l is willing to receive and Γl containing the events that layer-l will

generate.

A correct stack is one having every element of Ψ in Γ (Ψ and Γ are respectively

the union of all Ψl and Γl sets on the stack). QoS definitions not respecting the

above constraints will return an error and will not be created. Although this is not a

complete stack validation tool, the model improves previous frameworks in this respect.

For sanity, it is expected that for every set Φl,Ψl ⊆ Φl.

11

3.5 Efficient event routing

Under normal execution, only a few protocols add valuable information to messages [1,

13, 6]. For example, in a group communication stack not every protocol is interested

in receiving view change information. Horus’s fast protocol bypasses a predefined set

of layers under specific conditions. Our approach allows layers to explicitly state the

events their protocols are interested in.

The event sets specified at QoS definition time are used for optimizing execution

in run-time in the following way. For each event e ∈ Γ, an ordered set of layers will

be constructed containing those that mentioned event e in their Φ set. Upon channel

creation, this event routing tables will be ported to the channel. This operation will

map QoS layers on instantiated sessions.

Event routing is static for each channel. On event arrival, the event table defined

for its type at the target channel is associated with the event. Thus, an event is able

to find the next session to be visited by simply keeping a pointer to an array. In

Appia, most of event routing overhead is clearly pushed to QoS definition time, which

is expected to happen at application startup. Using this approach, the introduced

flexibility does not compromise run-time performance.

4 Architecture

Appia is being developed in Java.2 Thus, inheritance can be extensively used to refine

and specialize the main Appia components. The following classes represent the main

components of the framework.

2http://appia.di.fc.ul.pt

12

Events Events make extensive use of inheritance. Programmers are free to define

their own events, as long as they descend from the main Event class or one of its

descendants. As we have mentioned before, the Appia kernel already defines two

specializations of the Event class: ChannelEvent and SendableEvent.

Channel Events Every ChannelEvent is qualified with one of three values: NOTIFY,

ON or OFF. ON and OFF qualifiers are typically used to activate/de-activate specific

features such as the creation of debug logs. Notifications are triggered by the channel

in response to relevant events such as timer expiration or stack initialization. The exact

meaning of each qualifier may be refined for each event.

Timers Appia offers a timer management service. Sessions may start a timer with

a specific timeout value and be notified of timer expiration (periodic timers are also

available). Timer activation and notification is done through events of the class Timer,

a subclass of ChannelEvent. Qualifiers are used to optimize timer management. A

timer is started using an event with the qualifier ON; the same object instance is used to

provide the associated notification when the timer expires just by changing the event

qualifier and direction in the stack, saving unnecessary data copies. Additionally, using

inheritance, sessions can create specializations of Timer that include all the context

information for handling the timeout.3

Echo events A session may gather information about the remaining sessions in the

stack by using EchoEvents. EchoEvents carry another event inside them; when a

echo event reaches one side of the stack, the channel extracts the event being carried

and forwards it in the opposite direction. On its way back, the returning event may

3Appia’s implementation of FIFO includes in the timer request the message to be retransmitted.

13

gather information about the traversed layers. For instance, a protocol attempting to

temporarily prevent a stack from sending messages, may use this feature to receive the

approval from the remaining sessions.

Sendable events The SendableEvent class defines a common interface to all events

containing data to be sent or received from the network. Messages are expected to be

serialized over an array of bytes, represented by the Message class. SendableEvents

have a source and destination attribute that are untyped objects. It is up to the

protocols to agree on the appropriate data format for these attributes. Source and

destination can change while the event is traversing the stack: a Membership protocol,

for instance, may convert a group name to an IP Multicast address.

The Message class The Message’s class interface has similarities with the message

interface supported by the x-Kernel [9]. Both interfaces have the same goal: avoid

unecessary memory copies (the difficulties of achieving this goal under the restricted

memory model of Java are discussed in Section 5.2). The class assumes that messages

are constructed using a stack model: headers are “pushed” by sessions on the sender

endpoint and “popped” on the receiver. Memory is allocated in chunks. Whenever a

push invocation exceeds the available memory in the first chunk of the stack, a new

one is appended in a linked list fashion. Prior to being sent to the network, messages

must be serialized in a flat array of bytes.

Event serialization Appia default behavior regarding event serialization follows the

classic approach of making each session responsible for explicitly packing (and unpack-

ing) the information to be sent to the network on the Message data structure. The

session that interface concrete networks, simply extract the source and destination

14

attributes from the base SendableEvent class and obtain the payload from the message

attribute. Given the use of the Java programming language, a different alternative

would be to rely on the language serialization mechanisms to send an event (and all

its attributes) to the network. There are however two advantages of Appia’s default

behavior:

Portability Java serializes objects in a language specific byte array. By having each

session to pack the message header in any desired format we ensure that it is pos-

sible to build a Java stack that interoperates with a corresponding stack written

in a different language.

Over serialization Java default serialization procedures places the object and all its

references in a stream. An event contains references to other Appia structures

such as the channel and the event scheduler. Serializing an event in a straightfor-

ward way would result in the transfer of irrelevant information to the recipients.

Note that the default behavior can be specialized by a family of protocols that agree

to use Java serialization as the standard message format. This can be easily obtained

by defining an extension to the Message class that allows arbitrary Java objects to be

pushed and popped.

QoS definition In Appia, QoSs are defined by passing one array of layers to the

QoS class constructor. At QoS definition time, a QoSEventRoute object is created for

each event e in the Γ sets of the QoS’ layers. Each QoSEventRoute lists the layers that

have declared e in their Φ set.

Channel definition Channels are created by issuing requests to the proper QoS.

Channels are expected to be created by the application programmer or by other ses-

15

sions. Upon creation, channels have no bound sessions, which have to be created issuing

request to the respective layers.

Channel cursors are provided to perform the configuration of the channel. Using a

channel cursor it is possible to assign sessions to the channel in a safe way, since the

cursor validates the session type against the layer type defined for the corresponding

position in the channel. As previously stated, sessions can be bound to channels

explicitly, automatically or by default. Binds occur in the following order:

1. Explicitly binding is performed immediately after the channel creation. When

finished, the channel creator handles the control to the new channel.

2. The channel will then perform the automatic binding by inviting the sessions

already bounded to fulfill the still empty positions. Whether the above sessions

where explicitly created for this channel or already participate on other channels

is completely transparent to Appia. This proves to be a powerful feature of

Appia as it gives the chance to advanced protocols requiring channel introspection

capabilities (like Light Weight Groups [11]) to tailor the channel in a optimal way.

3. Binding by default happens at the end of the process: the channel request to the

layers of the empty slots the creation of a session for each. The channel is then

initialized with a ChannelInit event.

At channel definition time, each QoSEventRoute is mapped into a ChannelEventRoute,

that lists the specific sessions that a given event type has to traverse.

Protocol execution Sessions are the execution unit of protocols in Appia. They

interact with the environment by sending and receiving events. Events are generated

16

by invoking the class constructor. The session creating the event is responsible for pro-

viding values for the main Event class attributes: channel, direction and generator

(the session responsible for the event instance creation). The values in these attributes

are used in the following way: the event’s type and the channel attribute are used to

retrieve the appropriate ChannelEventRoute; generator is used to locate the event

on the ChannelEventRoute list of sessions and direction is used to indicate the next

session to visit. Events are delivered to sessions through the invocation of the handle

method. Sessions have access to all event attributes. Events are forwarded by invok-

ing its go method. This method takes no arguments. Using the ChannelEventRoute

information, the direction attribute and local state, the event knows the next session

to visit.

Event scheduling EventScheduler is the class responsible for queueing and deliv-

ering events to sessions. Currently, Appia provides a default implementation of the

EventScheduler. However, the architecture allows the scheduler to be specialized to

fit specific classes of applications. By default, each new channel instantiates a pri-

vate event scheduler, establishing a relation of one-to-one between channels and event

schedulers. Programmers are free to establish relations of one event scheduler to many

channels. The event scheduler interface was conceived to allow different scheduling

models, possibly concurrent on the same Appia process. The default event scheduler is

passive and schedules events in response to an invocation to a consumeEvent method.

One of the tasks of the Appia class is to multiplex event schedulers. In the first

prototype, we have opted for a single threaded execution of all event schedulers (Sec-

tion 3 discusses this option). Thus, the Appia class is a static class that executes an

infinite loop in the run method, and cyclicly calls the consumeEvent method of the

registered event schedulers. The Appia class does not need to be aware of internal

17

scheduling policies of the registered event schedulers.

Threads Three reasons have been reported in the literature against the use of multi-

threading scheduling of events in protocol kernels: performance, programming complex-

ity and portability [8, 2]. However, the “thread per message” model was successfully

used in at least two frameworks: x-Kernel [7] and Horus [13].

Java threads do not suffer from the portability problem of threads mentioned in [8].

Nevertheless, to avoid the context switching and synchronization overhead we have

opted to assume that event scheduling is single-threaded. Sessions handle and pop

events in the conxtext of the Appia scheduler thread. This does not prevent the Appia

kernel from using additional threads for other tasks. For instance, a dedicated thread

manages timers.

On the other hand, implementing a strict event-driven model in Appia is not pos-

sible because Java API does not provide a system call capable of blocking on several

descriptors for a certain time period.4 Thus, Appia uses a non-strict event driven

model, close to the one implemented by Ensemble [6]: sessions are free to use in-

ternal threads to implement their own functionality. To allow concurrent threads to

spontaneously generate events (outside the context of the handle invocation), chan-

nels provide a thread-safe async method. When this method is invoked, the channel

introduces an Async event in the event scheduler.

The asynchronous call is particularly usefull for sessions handling external events:

those that need internal threads. Two protocols were implemented using this model:

a protocol that interfaces an UDP socket and a protocol that interface the user. Both

have a internal blocking thread that, when unblocked (on datagram arrival or user

4That is, no equivalent to the C’s select system call is available.

18

input,) calls the async method of the channel.

5 Evaluation

This section evaluates the Java implementation in two separated aspects. Firstly,

the multi-channel coordination support is illustrated. Secondly, performance figures

obtained with the current prototype are given.

5.1 Example of multi-channel coordination

The code in figure 3 shows the steps executed in the QoS and channel definition for the

implementation of the multimedia synchronization example in section 2.1. For brevity

only fragments of the code are presented.

The first step in the definition of Appia stacks is layer instantiation (line 2). Layers

will be passed as arguments to the QoS constructor (line 10) and (if necessary) used to

instantiate sessions (line 17). Lines 5 to 11 show the steps necessary for the creation

of a QoS: first the definition of an array with references to the layers and finally the

instantiation of a QoS object having the layers array as the argument to the class

constructor. Line 14 shows that a channel is created with the createUnboundChannel

method of the QoS. Forcing the same session instance to be present in several channels

is performed in lines 20 to 29: after the session creation, channel cursors are used to

bind the session to the desired channels. On this particular case the procedure should

be repeated for sessions of the Application, Intermedia Sync and Device protocols. The

binding of the remaining sessions on the channels (FIFO and the media protocols) will

be performed by default. Line 30 deliveries the remaining channel configuration to the

channel. Automatic and default binding is performed on the start method.

19

1 // Layer instantiation
Layer fdLayer=new FDLayer();
// ...

5 // QoS definitions
Layer[] audioLayers=new Layer[6];
audioLayers[0]=deviceLayer;
audioLayers[1]=fdLayer;
// ...

10 dataQoS=new QoS(dataLayers);
// ...

// Channel instantiation
Channel dataChannel=dataQoS.createUnboundChannel();

15
// Retrieve sessions from layers
FailureDetectorSession fdSession=FailureDetectorLayer.createSession();
// ..

20 // Binding one single failure detector session for the three
// channels (channel cursor handling ommited)
dataCCursor.setSession(fdSession);
videoCCursor.setSession(fdSession);
audioCCursor.setSession(fdSession);

25
// The same procedure should be done for Application, Intermedia
// Sync and Device sessions. Remaining session can be left empty.

// Start the channels
30 dataChannel.start();

// ...

Figure 3: Implementation of the intermedia sync example

The above example assumes that the Intermedia Sync session was not designed

to query QoSs and perform automatic bindings. An alternative implementation could

rely on this protocol to bind the shared sessions when requested by the channel. In

this case, the only bounded session would be the Intermedia Sync.

20

5.2 Performance

In this section we present the overall performance of Appia on a network composed

of Pentium processors running Windows NT. The framework was running over a Java

1.2.2 virtual machine. The workstations were connected with a lightly loaded 10Mbps

Ethernet.

Message class The Message class design mainly concern was to optimize the most

expected usage patterns. Our initial work tried to apply to Java the approach followed

by x-Kernel [9] (that was written in the C programming language). The results were

disappointing. We believe that the reason for the low performance was the impossibility

to directly access memory addresses in Java. Keeping in mind the goal of minimizing

data copies, we performed a number of adaptations to the x-Kernel model.

Table 1 present the average results of the pushing and popping tests.

The push tests take a initially empty message and executes the number of oper-

ations necessary to achieve a 10000 bytes message. The Message class is configured

to allocate 1000 bytes per message list node; so 10 memory allocations are always

performed.

The pop test takes a message with 10000 bytes and empties it by performing the

necessary number of operations. The message is in a contiguous array of bytes. This

is the expected behavior in normal execution: the byte arrays received from sockets

are passed to the message constructor and no message list nodes are generated at the

receiver.

Overall performance A simple stack was defined to measure the overall perfor-

mance of the prototype. The stack was composed of four layers providing UDP sockets

21

Test Result (µs)

10 bytes 100 bytes 1000 bytes

Push 2.864 4.278 14.683

Pop 2.599 2.605 2.802

Table 1: Message performance results

access, FIFO reliable delivery, fragmentation and user interface. Messages exchanged

over the network have a length of 90 bytes. Table 2 shows the round trip delay of

Appia using the above stack.

Round trip (ms) 2.962

Table 2: Performance measures of Appia

Message processing avoidance One of the interesting features of Appia is that

session only process the events they have subscribed. To measure the impact of this

facility, the transparent and the ghost protocols were created. The transparent

protocol does not accept any events. The ghost protocol handles all events but simply

forwards every event to the next session. Channels with different number of these

protocols were created. Each channel had a test protocol on top. The test protocol

sent sequences of EchoEvents and measured the time until receiving the echoed event.

Table 3 shows that the transparent protocol doesn’t affect the kernel execution

maintaining the event round trip delay on the 19µs. The first column is the control

value: the result of the execution having only the test protocol on the channel. The

differences in the results between 0 and 10 transparent protocol sessions result from

events on the workstation hosting the tests and can be ignored. The results of the

22

Event round trip delay (µs)

sessions 0 1 2 3 10

transparent 19.61 19.63 19.51 19.64 19.54

ghost 19.61 29.75 39.95 52.13 140.38

Table 3: Round trip delay of EchoEvents with ghost and transparent protocols

ghost protocol however, shows that presenting unwanted events to protocols can be

an adverse factor on performance. Each ghost protocol session adds between 101µs

and 120µs (depending on the number of instances) to the round-trip of the EchoEvent.

6 Related Work

x-Kernel [7] was pioneer on the separation of protocols from sessions, which is the base

model for our work. However, x-Kernel provides no support for flexible event exchange;

this has been perceived has a constraining factor in the design of micro-protocols [1, 13].

Furthermore, in x-Kernel, message routing within the stack is determined on a per-

layer basis. Each layer has to demultiplex each message explicitly and to keep state to

ensure that the message is forwarded to the appropriate next layer.

Coyote [1] offers no hierarchical composition of layers. Events on this framework

are intended to be handled in parallel by all layers and have no syntactic or semantic

restriction. Concepts as “session” and “channel” have no representation. While Appia

allows generic protocol to process classes of events, in Coyote each protocol only accepts

a set of concrete event types.

In Bast [5] the same layer may be implemented by different strategies. It is possible

to adapt the strategies in run-time but QoSs are statically defined at coding time.

23

Efficient event handling was studied in the context of the Horus [13] system, but

with strong restrictions. The fast (Protocol Accelerator) layer [12] allows optimiza-

tions that are not currently supported by the Appia model: events are processed by

layers depending on the session state. On the other hand fast is not generic and

can only be used in a very limited fashion: the set of protocols to be bypassed is well

defined. Coordination of channels was implemented on some specific layers (such as

the Light Weight Group Layer) [11], but no systematic support was given to allow the

designer to express which sessions should be shared by different channels. Ensemble [6]

was strongly focused on formal protocol validation. In order to accomplish stack cor-

rection guarantees, strong restrictions were made. Although it is a follow up from

Horus, Ensemble can’t handle in an efficient manner the coordination of concurrent

channels.

7 Conclusions

This paper introduces Appia, a protocol kernel that tries to balance the flexibility in

protocol composition with run-time efficiency. With Appia, protocol stack designers

specify the events produced and subscribed by each layer. In run time, the application

may construct the sequence of protocols layers that is needed to enforce the desired

semantics. Specialized event dispatchers for each QoS ensure the efficient routing of

events in the kernel. Instances of QoS, called channels, may share sessions. This

allows the construction of complex stacks, where different channels may share common

properties.

24

References

[1] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu. Coyote: A system for constructing
fine-grain configurable communication services. ACM Trans. on Computer Systems,
16(4):321–366, November 1998.

[2] K. Birman. Building secure and reliable network applications. Number ISBN 1-884777-
29-5. Manning Publications Co., 1996.

[3] K. Birman, R. Friedman, and M. Hayden. The maestro group manager: A structuring
tool for applications with multiple quality of service requirements. Technical report,
Cornell University, Ithaca, USA, February 1997.

[4] M. Correia and P. Pinto. Low-level multimedia synchronization algorithms on broadband
networks. In The Third ACM Intl. Multimedia Conference and Exhibition (MULTIME-
DIA ’95), pages 423–434, San Francisco, November 1995. ACM Press.

[5] B. Garbinato and R. Guerraoui. Flexible protocol composition in Bast. In Proc. of
the 18th Intl. Conference on Distributed Computing Systems (ICDCS-18), pages 22–29,
Amsterdam, The Netherlands, May 1998. IEEE Computer Society Press.

[6] M. Hayden. The Ensemble System. PhD thesis, Cornell University, Computer Science
Department, 1998.

[7] N. Hutchinson and L. Peterson. The x-Kernel: An architecture for implementing network
protocols. IEEE Trans. on Software Engineering, 17(1):64–76, January 1991.

[8] S. Mishra and R. Yang. Thread-based vs. event-based implementation of a group com-
munication service. In Proc. of the 1st Merged Intl. Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing (IPPS/SPDP-98), pages 398–402,
Orlando, Florida, USA, March 1998. IEEE Computer Society.

[9] D. Mosberger. Message Library Design Notes, January 1996.

[10] I. Rhee, S. Cheung, P. Hutto, and V. Sunderam. Group communication support for dis-
tributed collaboration systems. In Proc. of the 17th Intl. Conf. on Distributed Computing
Systems, pages 43–50, Balitmore, Maryland, USA, May 1997. IEEE.

[11] L. Rodrigues, K. Guo, A. Sargento, R. van Renesse, B. Glade, P. Veŕıssimo, and K. Bir-
man. A transparent light-weight group service. In Proceedings of the 15th IEEE Sym-
posium on Reliable Distributed Systems, pages 130–139, Niagara-on-the-Lake, Canada,
October 1996.

[12] R. van Renesse. Masking the overhead of protocol layering. In Proceedings of the 1996
ACM Conference on Applications, technologies, architectures, and protocols for computer
communications, pages 96–104, Palo Alto, CA USA, August 28–30 1996.

[13] R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible group communications
system. Communications of the ACM, 39(4):76–83, April 1996.

25

	Introduction
	Motivation
	Examples

	The Appia System
	Model
	Configuration capabilities
	Events
	Run-time compatibility check
	Efficient event routing

	Architecture
	Evaluation
	Example of multi-channel coordination
	Performance

	Related Work
	Conclusions

