
Appia Protocol Development Manual
version 2.1

Hugo Miranda Alexandre Pinto Nuno Carvalho
Lu��s Rodrigues

Departamento de Inform�atica
Faculdade de Ciências
Universidade de Lisboa

fhmiranda,apinto,nunomrc,lerg@di.fc.ul.pt

December 2005



Abstract
This document describes the Protocol Programming Interface (PPI) of Ap-
pia for the construction of protocols. Appia is a layered communication
framework implemented in Java and providing extended con�guration and
programming possibilities. The conceptual model behind Appia is described
in several papers (e.g. [3]).

The PPI is presented in two di�erent ways. The former presents the
classes signature and details its usage and function. The later is \function-
oriented", grouping functions towards the accomplishment of one speci�c
task.



Contents

1 Overview 4
1.1 Appia concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Protocol de�nition . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Relation between sessions and channels . . . . . . . . . 6
1.3 Implementation classes . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Changes from previous versions . . . . . . . . . . . . . . . . . 8

1.5.1 From version 2.0 . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 From version 1.2 . . . . . . . . . . . . . . . . . . . . . 8
1.5.3 From version 1.1 . . . . . . . . . . . . . . . . . . . . . 9
1.5.4 From version 1.0 . . . . . . . . . . . . . . . . . . . . . 9

2 PPI description by class 12
2.1 Class QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Class Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Class ChannelCursor . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Class Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Class Session . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Class Direction . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Class Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7.1 Concurrency control . . . . . . . . . . . . . . . . . . . 18
2.8 Class EventQuali�er . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Class ChannelEvent . . . . . . . . . . . . . . . . . . . . . . . . 20
2.10 Class EchoEvent . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.11 Classes Timer and PeriodicTimer . . . . . . . . . . . . . . . . 20
2.12 Class SendableEvent . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 Class Message . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.14 Class MsgBu�er . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.15 Class MsgWalk . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.16 Class ExtendedMessage . . . . . . . . . . . . . . . . . . . . . . 27
2.17 Class MemoryManager . . . . . . . . . . . . . . . . . . . . . . 27

2



CONTENTS 3

2.17.1 Using the memory manager . . . . . . . . . . . . . . . 28
2.18 Class TimeProvider . . . . . . . . . . . . . . . . . . . . . . . . 28

3 PPI description by subject 30
3.1 QoS de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Channel de�nition . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Channel de�nition using XML . . . . . . . . . . . . . . 35
3.3 Channel disposal . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Event ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Ordering of events . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Multi-thread handling . . . . . . . . . . . . . . . . . . 39
3.4.3 Echo Events . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.4 Sendable events . . . . . . . . . . . . . . . . . . . . . . 40
3.4.5 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.6 Channel startup and shutdown . . . . . . . . . . . . . 42
3.4.7 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.8 Memory management . . . . . . . . . . . . . . . . . . . 43
3.4.9 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . 45

A Appia Universal Model Language Diagrams 46



Chapter 1

Overview

Networked inter-process communication requires that several distinguishable
properties be combined in order to provide the derived service. Some net-
working standards have been developed and are now widely used. This is
the case of the Internet Protocols such as IP, TCP, UDP [7, 8, 6] and the
OSI model [9]. Most of them assume a layering model, having each protocol
piled over another. Each protocol relies on the documented properties of
the protocols below to provide his service to the layers above. Transmission
Control Protocol (TCP), for instance, relies on routing capabilities of IP to
ensure that the sent packets will be delivered to the correct destination. As
IP does not ensure FIFO ordering, TCP provides this property.

Each combination of layers (protocols) on the stack provide a di�erent
set of properties1 and can be considered as the service provided by the stack.
The properties resulting from each combination and the protocols used in the
stack are used interchangeably in this document and referred as the Quality
of Service (QoS).

Appia is a layered communication support framework. Its mission is
to de�ne a standard interface to be respected by all layers and facilitate
communication among them. Appia is protocol independent. That is, the
framework layers any protocol as long as it respects the prede�ned interface,
making no provisions to validate the �nal composition result.2

1.1 Appia concepts

This section briey describes the concepts and terminology used in Appia.
1Di�erent ordering of protocols can also provide di�erent set of properties.2In fact, Appia provides a limited form of stack validation.

4



1.1 Appia concepts 5

Static and dynamic concepts Appia presents a clear distinction between
the declaration of something (either a protocol or a stack) and its implemen-
tation.

A Layer is de�ned by the properties that a protocol requires and those
it will provide. A Session is a running instance of a protocol. Sessions are
always created on behalf of a layer and its state is independent from other
instances.

AQoS is a static description of an ordered set of protocols. AChannel is
a dynamic instantiation of a QoS. Protocol instances (sessions) communicate
using a channel infrastructure.

All this concepts are illustrated on Figure 1.1 and Table 1.1.
As they are static, layers do not exchange information between them.

Instead, they declare the communication interface of their dynamic instanti-
ations: the sessions. Communication between sessions and with the channel
is made using Events. Appia provides a prede�ned set of events, each with
a di�erent meaning but programmers are encouraged to extend this set to
detail protocol speci�c occurrences. Starting from the session who generated
it, events ow through the stack on a prede�ned direction. The informa-
tion contained in any event extends a basic set of �elds that all events must
contain.

Reusability Reusability in Appia is based on inheritance. Since most of
the protocols depend (at least weakly) on the service provided by others, up-
grading some may produce incompatibilities. Appia uses inheritance to make
the upgrades transparent. When a new version of a protocol is released, it
is expected that the generated events will have richer information than the
previous version. Assuming that none of the previously provided informa-
tion format is changed, protocols may simply create new events extending
previous ones. This way, protocol backward compatibility is assured.

Optimization Inheritance is also used to improve performance. Timer
events, for instance, are generated by protocols (as requests) and handled by
the channel. Any session is free to extend the standard timer events, adding
information that otherwise would have to be kept in the session state. A reli-
able delivery layer for instance may include the message to be retransmitted
in the timeout request event. When the timeout occurs, the session simply
peeks the message from the event and resends it.

Event processing time is reduced by preventing protocol instances from
handling unwanted events. Each protocol registers its interest in receiving
events of some classes. Instances of classes of events not declared by some



6 Overview

layer are not delivered to the corresponding sessions.

Channel

gr
ou

ps

gr
ou

ps

Session Layer

QoS

created on behalf of

created on behalf of

Protocol Set

Protocol

Dynamic Static

Figure 1.1: Relation between sessions, layers, channels and QoS's

1.2 Protocol de�nition
Each protocol is de�ned by two di�erent classes: one extending the basic
Layer class and the other extending the Session class. By convention, the
former is usually named ProtocolLayer and the later ProtocolSession having
Protocol to be the name of the protocol.

The ProtocolLayer class is the one participating in QoS de�nitions. Its
purpose is to export the event sets3 and to create instances of the Proto-
colSession class.

The ProtocolSession class is the one participating on channels and exe-
cuting protocol instances. It has two main goals: to cooperate in channel
de�nitions and to handle and generate events, providing the properties ex-
pected from the protocol.

1.2.1 Relation between sessions and channels
In Appia, a session (i.e. a running instance of a protocol) may participate
in several channels simultaneously even if they have di�erent QoS's. This
means that a single protocol instance can participate in multiple protocol
combinations.

3See section 3.1 on page 30.



1.3 Implementation classes 7

Concept Type # Description
Layer Static 1 The static description of a protocol. Declares

the properties it requires and provides.
Session Dynamic n Execution instance of a protocol. Keeps the

protocol state and implements the properties
described in the corresponding layer.

QoS Static 1 An ordered set of layers. Describes the prop-
erties that a running instance of that combi-
nation of protocols would have.

Channel Dynamic n An ordered set of sessions, modeled by one
QoS. The entity providing the set of properties
speci�ed in the QoS.

# The expected number of instances per protocol/protocol set in an Appia
process.

Table 1.1: Relation between static and dynamic concepts in Appia.

This is one of the innovative aspects of Appia and o�ers a new perspective
in the way di�erent kinds of data are related. For instance, by having only
one single FIFO session on two channels, one with an appropriate QoS for
video transmission and another for audio, the receiver imposes the sending
order of messages across the two media without any additional programming
e�ort.

Whether sessions deal transparently with multiple channels or not is im-
plementation and protocol dependent. On event reception, sessions are free
to query the event's channel. Events can be forwarded without sessions
knowing the channel being used.

1.3 Implementation classes

There are eleven classes relevant for protocol implementation in Appia: QoS,
Channel, ChannelCursor, Layer, Session, Event, Message, MsgWalk, MsgBu�er,
Direction and Appia. Appendix A presents the UML model of the framework.
Remaining classes of Appia are not presented as they do not provide relevant
features to protocol development.



8 Overview

1.4 Notation
In the rest of the document, methods and classes are presented using usual
object-oriented languages notation. Method's classes are always pre�xed of
the class name. A dot is used as the separator between the class name and
the method name.

For example, the line
Channel QoS.createUnboundChannel(String channelID)

presents method createUnboundChannel from class QoS. The method takes
a String as the input and returns a reference to a Channel object.

Classes always have an upper-case �rst character while methods are iden-
ti�ed by a lower-case �rst character. The remaining characters will be lower
cases except when a new word is started.

The existence of optional arguments is signaled by the presentation, like
di�erent methods with the same name, of all possible combinations of argu-
ments.

1.5 Changes from previous versions

1.5.1 From version 2.0
Changed the description

Introduced the notion of priority on events. Changed the description of
Message and ExtendedMessage classes. ExtendedMessage became deprecated.
Changed the API of memory management.

The list of modi�ed interfaces, together with pointers for the sections
where they can be found are summarized on table 1.2.

1.5.2 From version 1.2
Introduced Section 3.2.1 that briey describes the usage of XML to con�gure
Appia channels. The class Timer has now a di�erent semantics. Introduced
class ExtendedMessage and TimeProvider. Updated UML diagrams on Ap-
pendix A.

The Appia PPI su�ered several changes since version 1.2. The list of
modi�ed interfaces, together with pointers for the sections where they can
be found are summarized on table 1.3. The name of this document was also
updated.



1.5 Changes from previous versions 9

Change Description Sections
Class Event Events now are introduced in the event

scheduler with some priority, that is
de�ned in the event.

2.7

Message and Extend-
edMessage

The methods of the class Extend-
edMessage were moved to the Mes-
sage class and ExtendedMessage be-
came deprecated.

2.16, 2.13

Memory Management Changed the MemoryManager API in
order to have di�erent thresholds for
UP and DOWN events.

2.17, 3.4.8

Table 1.2: Summary of di�erences from version 2.0

1.5.3 From version 1.1
Section 2 now presents a more detailed description of those classes relevant
for protocol implementation and channel de�nition.

The Appia PPI has su�ered minor and focused changes since version 1.1.
The list of modi�ed interfaces, together with pointers for the sections where
they can be found are summarized on table 1.4.

1.5.4 From version 1.0
This document has only su�ered minor changes from version 1.0. The list of
modi�ed interfaces, together with pointers for the sections where they can
be found are summarized on table 1.5.



10 Overview

Change Description Sections
Class Direction All methods of the class Direction are

now deprecated. This class is used
now just for constants de�nition. The
methods that used this class where
modi�ed to receive an integer.

2.6, 2.7, 2.12

Class EventQuali�er All methods of the class EventQual-
i�er are now deprecated. This class
is used now just for constants de�ni-
tion. The methods that used this class
where modi�ed to receive an integer.

2.8, 2.12

Class Timer Timers are created with a di�erent se-
mantics. In the previous versions of
the Timer class, the Timer was created
with an absolute time; now is created
with a relative time.

2.11

Class ExtendedMes-
sage

Introduced class ExtendedMessage.
This class provides a more clean API
to push, pop and peek basic types.

2.16

Memory Management Introduced the description of memory
management in Appia channels.

2.17, 3.4.8

Class TimeProvider Introduced class TimeProvider, used
by Sessions to get the system time.

2.18, 2.2

XML Introduced the API to con�gure Appia
channels using a XML con�guration.

3.2.1

Table 1.3: Summary of di�erences from version 1.2



1.5 Changes from previous versions 11

Change Description Sections
Insertion of asyn-
chronous events in
channels

The procedures for inserting asyn-
chronous events on channels was
changed. The previous model can be
used (is tagged as deprecated) but is
no longer referred in this document.
The Async event type was removed
from the model.

2.2, 2.7, 3.4.2

Enriched ChannelCur-
sor interface

Methods for jumping directly to a po-
sition are now available

2.3

Enriched Send-
ableEvent interface

A new set of constructors was added
to the SendableEvent class

2.12

Table 1.4: Summary of di�erences from version 1.1

Change Description Sections
Simpli�ed ChannelCur-
sor interface

Provides a more intuitive, easy to use
interface.

2.3, 3.2

Removed constructor
from Message class

The same functionality is now pro-
vided by a method.

2.13, 3.4.5

Table 1.5: Summary of di�erences from version 1.0



Chapter 2

PPI description by class

Protocols are implemented by the re�nement of three classes: Layer, Session
and Event. Layer and Session detail the desired protocols behavior and Event
its message passing requirements. Programmers should be aware that layers
and sessions are tightly coupled as the former presents the static behavior of
a protocol and the later its dynamic one.

2.1 Class QoS

A Quality of Service is a set of properties, each independently provided by
one protocol.

QoS mission is to glue protocols (presented as layers), partially validate
the resulting composition and de�ne the interaction rules between the pro-
tocols. At QoS de�nition time, layers declare the events they are interested
to receive. Using this knowledge, QoS builds for each event class an \event
path", including only the layers that are interested in receiving it. The in-
formation extracted can then be used to create more e�cient channels.

Class QoS de�nes the Qualities of Services that will be available to the
application. From the programmers point of view, a QoS instance is simply
an array of layers.

One optional argument of the createUnboundChannel method is the Event-
Scheduler. Appia con�guration options allow programmers to de�ne event
scheduling policies by rede�ning this class. The default implementation of
the EventScheduler class is single threaded and puts all events in a FIFO
queue. The internals of the EventScheduler class lie outside the scope of this
document and can be found elsewhere [2].

12



2.2 Class Channel 13

class QoS f
QoS(String qosID, Layer[] layers) throws AppiaInvalidQoS;
Channel createUnboundChannel(String channelID,

EventScheduler eventScheduler);
Channel createUnboundChannel(String channelID,

EventScheduler eventScheduler, MemoryManager mm);
Channel createUnboundChannel(String channelID);
Channel createUnboundChannel(String channelID,

MemoryManager mm);
Layer[] getLayers();
String getQoSID();

g

2.2 Class Channel
Channels are instantiations of QoS's. Channels glue sessions the same way
QoS's glue layers. A Channel is created on behalf of a QoS type. When
a channel is created, it inherits the knowledge captured from the layers in
the corresponding QoS, improving performance. On channel creation, event
paths are exported from the QoS. The channel maps the layers on the QoS
event paths into the binded session to route events.

Channels also provide the background run-time environment for session
execution. They are responsible, for instance, for providing timers. The
ChannelEvent sub-class of events is dedicated to these operations.

Channel de�nition Upon creation, a channel is as an array of \typed
empty slots". Each of these slots must be �lled with a session of the layer
speci�ed in the QoS for that position. Sessions can be bound to the slots
explicitly (by the user) or implicitly by other sessions (automatic binding).
New sessions will be bound by default to the remaining slots not explicitly
or implicitly bounded.

Using explicit binding it is possible to associate speci�c sessions to speci�c
channels. These sessions may either be already in use by other channels or
may be intentionally created for the new channel. Explicit binding enables
the user to have �ne control over the channel con�guration.

Using automatic binding it is possible to delegate on already bound ses-
sions the task of specifying the remaining sessions for the channel. A mixture
of explicit and automatic binding can be used, with the actions taken by the
former having precedence over these taken by the later.



14 PPI description by class

Both explicit and automatic binding are performed over a ChannelCursor
object, requested to the Channel. Explicit binding must be performed prior
to calling the start method of the channel. One of the tasks of this method is
to ensure that every slot is ful�lled with a valid position. The �rst step per-
formed by start is to invite sessions explicitly bounded to perform automatic
binding by calling their boundSessions method. For those slots not explicitly
or automatically bounded, the start method requests to the corresponding
layer the creation of a new session.

Channel initialization and termination A channel is instructed to start
and stop by its methods start and end. Besides the operations concerning
session instantiation performed by start, both methods introduce an event
in the channel. The ChannelInit event is supposed to be the �rst to ow
in a channel. Protocols should be aware that events created in response to
handling a ChannelInit event must be inserted after invoking the go method
on the ChannelInit event. Although this requirement is not mandatory and
does not produce inconsistencies to Appia, other protocols may rely on this
property.

The end method introduces a ChannelClose event in the channel. Ses-
sions receiving the ChannelClose event may not introduce more events in the
channel but must be prepared to receive others. Received events may be
propagated.

A stopped channel may latter be restarted by calling again the start
method. However, for temporary suspensions, protocols should consider to
use EchoEvents to obtain the same behavior.

class Channel f
String getChannelID();
QoS getQoS();
boolean equalQoS(Channel channel);
void start();
void end();
ChannelCursor getCursor();
TimeProvider getTimeProvider();
boolean isStarted();
void setMemoryManager(MemoryManager mm);
MemoryManager getMemoryManager();

g



2.3 Class ChannelCursor 15

2.3 Class ChannelCursor

Channel cursors are helpers to session bounding in channels. The class pro-
vides methods for iteration over the channel stack, retrieve references to
already de�ned sessions and set sessions for the empty slots. Methods of this
class raise AppiaCursorException exceptions to signal operations.

Initially, the cursor is not positioned over the channel. The initial position
must be de�ned by either the top or bottom methods. Scrolling below the
bottommost position of the channel or above the uppermost will also raise
the AppiaCursorException with an indication of the error occurred.

class ChannelCursor f
void top();
void bottom();
void jumpTo(int position) throws AppiaCursorException;
void down() throws AppiaCursorException;
void up() throws AppiaCursorException;
void jump(int o�set) throws AppiaCursorException;
boolean isPositioned();
Session getSession() throws AppiaCursorException;
void setSession(Session session) throws AppiaCursorException;
Layer getLayer() throws AppiaCursorException;

g

2.4 Class Layer

Layers are the static representative of micro-protocols. They describe the
behavior of micro-protocols. Layers are used on QoS de�nition to reserve
a speci�c position for a session implementing the protocol and to declare
the needed, accepted and generated events, respectively on the evRequire,
evAccept and evProvide attributes.

Layers are responsible for instantiating sessions (in response to calls to
method createSession) and are noti�ed by the channel whenever one session
is dismissed by a channel (by calls to the method channelDispose).



16 PPI description by class

class Layer f
Class[] getProvidedEvents();
Class[] getRequiredEvents();
Class[] getAcceptedEvents();
Session createSession();
void channelDispose(Session session, Channel channel);

g

2.5 Class Session

A session is the dynamic part of a micro-protocol. Sessions maintain state of
a micro-protocol instance and provide the code necessary for its execution.
Channels provide the connection between the di�erent sessions of a stack. A
session keeps a relation of \one-to-many" with channels: one single session
can be part of multiple channels. A session is de�ned as channel-aware if
its algorithm recognizes and acts di�erently upon reception of events owing
from di�erent channels. Many of the protocols that can be found in exist-
ing stacks are channel-unaware. When a channel is being de�ned, sessions
already bound to the channel may be invited to bound other sessions. The
invitation is made by a call to the boundSessions method.

Sessions communicate with their environment by events. Reception of
events is made on the handle method. A session can learn the channel that
is delivering an event to it by querying the channel attribute of the Event.

class Session f
Layer getLayer();
void boundSessions(Channel channel);
void handle(Event event);

g

2.6 Class Direction

Class Direction is an implementation support class of Appia events. It de�nes
values for the direction it is owing. The direction attribute of events accepts
two values Direction.UP and Direction.DOWN de�ned as static constants on
class Direction.



2.7 Class Event 17

class Direction f
int direction;
static �nal int UP=1;
static �nal int DOWN=-1;
static int invert(int direction);

g

2.7 Class Event

Sessions use events to communicate with other sessions and the Appia kernel.
This class contains the attributes necessary for the event routing. In Appia,
events can be freely de�ned by the protocol programmers as along as all
inherit from the main Event class. Programmers should be aware that sub-
classing should be done as deep as possible on the sub-classing tree, improving
event sharing and compatibility among di�erent micro-protocols.

The Event class has three attributes that must be de�ned prior to the
event insertion in the channel. For each, a pair of set and get methods is
de�ned. The attributes are:

direction Stating the direction of the movement (up or down).

channel Stating the channel where the event will ow.

source Stating the session that generated the event. This attribute is im-
portant to determine the event route.

The attributes can be de�ned either by the constructor or by the individ-
ual set methods. When methods are used, the method init must be invoked
after all attributes are de�ned and prior to the invocation of the go method.

The cloneEvent method uses the Java clone method of the Object class.
Rede�nitions of this method should always start by invoking the same method
on the parent classes.

Since version 2.1, Appia events have also an optional attribute { the
priority. The default value of this attribute is DEFAULT_PRIORITY, but this
value can be set between MIN_PRIORITY and MAX_PRIORITY. The priority of
the event is used to upon insertion of the event in the Channel and de�nes
its priority in the event queue.



18 PPI description by class

2.7.1 Concurrency control

Appia is not thread-safe in the sense that consistency is not ensured if pro-
tocols insert events in the channel while not owning the Appia main thread.
However, a thread-safe event method, with a particular semantic, is provided.

The asyncGomethod should be called only when an event is inserted asyn-
chronously (i.e. concurrently with the Appia main thread) in the channel.
If the direction de�ned at the event is UP, asyncGo will place the event at
the bottom of the channel. Otherwise, the event will be placed at the top
of the channel. The event will then present the same behavior as any other,
respecting the FIFO order while crossing the channel and only visiting the
sessions of the protocols that declared it in the accepted set. Events inserted
in a channel using the asyncGo method should not be initialized either by
the constructor or by the init method.

Asynchronous events are particularly useful for protocols using their own
thread, like those receiving information from outside the channel. Examples
of such protocols are those listening to a socket to retrieve incoming mes-
sages. When an incoming network message arrives, the session can use these
events to request the delivery of the Appia main thread or to insert incoming
messages in the channel.

Note: Protocol programmers should be aware that the asynchronous in-
sertion of events in the channel must be handled with particular care has it
subverts the event usual behavior. Events inserted asynchronously initiate
their route at one of the ends of the channel. This does not respect possible
causal dependencies between events. Furthermore, programmers should be
aware that the use of asynchronous events may subvert the ordering of the
stack. Consider the example of the previous paragraph. If some protocol
is below the protocol receiving messages from the network, it should not be
presented with incoming network messages, that are expected to be sent to-
ward the top of the stack. This problem is most likely to occur if the event
type used for the asynchronous event is the one used for sending the message
to the stack.



2.8 Class EventQuali�er 19

class Event f
static �nal int MINPRIORITY=0;
static �nal int DEFAULTPRIORITY=127;
static �nal int MAXPRIORITY=255;
Event(Channel channel,int dir,Session source) throws

AppiaEventException;
Event();
void init() throws AppiaEventException;
void setDir(int direction);
int getDir();
void setChannel(Channel channel);
Channel getChannel();
void setSource(Session source);
Session getSource();
void setPriority(int priority) throws InvalidParameterException;
int getPriority();
void go() throws AppiaEventException;
void asyncGo(Channel c, int d) throws AppiaEventException;
Event cloneEvent() throws CloneNotSupportedException;

g

2.8 Class EventQuali�er

The event quali�er class di�erentiates channel events with one of three values:
ON, OFF and NOTIFY. The precise interpretation of this values will depend
on the quali�ed event type. However, a common usage pattern is de�ned:

ON is used for setting requests or starting a mode or operation. OFF is
intended for abortion of requests or mode cancellation. NOTIFY is used for
noti�cations of occurrences.

class EventQuali�er f
static �nal int ON=0;
static �nal int OFF=1;
static �nal int NOTIFY=2;

g



20 PPI description by class

2.9 Class ChannelEvent
The ChannelEvent class is the topmost class grouping all channel related
events. That is, all events provided by the channel or containing requests of
services provided by the channel. This class inherits from the main Event class
and includes the attribute quali�er of type EventQuali�er, allowing to deter-
mine the type of operation to be performed. Instances of the ChannelEvent
class are never created. Its subclasses are used to detail the requested or
provided operation.

class ChannelEvent extends Event f
void setQuali�erMode(int quali�er);
int getQuali�erMode();

g

2.10 Class EchoEvent
EchoEvent events are event carriers. When a EchoEvent reaches one of the
sides of the channel, the event passed to the constructor is extracted and
inserted in the channel in the opposite direction. No copies are realized: the
inserted object instance is the same that was given to the EchoEvent.

EchoEvents allow protocols to, for example, perform composition intro-
spection, like learning the available maximum PDU size, or perform requests
to other protocols like temporarily suspending the channel activity.

The carried event will be initialized by Appia prior to being inserted
in the channel. The main Event class attributes will be set as if the event
has been launched by the channel. The protocol launching this event must
declare himself as the provider of the event.

class EchoEvent extends ChannelEvent f
EchoEvent(Event event, Channel channel, int dir,

Session source);
Event getEvent();

g

2.11 Classes Timer and PeriodicTimer
Appia o�ers periodic and aperiodic timer noti�cation services. The direction
the event ows and the EventQuali�er attribute of the event distinguish re-
quests from noti�cations. Table 2.1 presents the expected combinations. The



2.11 Classes Timer and PeriodicTimer 21

attributes declared by a Timer extend those available in the ChannelEvent
with a String and the time (after the current time), in milliseconds, that the
noti�cation should occur. When issuing a timer request, the eventQuali�er
attribute must be set to ON.

Operation Direction Quali�er
Request DOWN ON
Cancellation DOWN OFF
Noti�cation UP NOTIFY

Table 2.1: Expected combinations of Directions and Quali�ers on Timers
operations in an Appia execution

Programmers are encouraged to extend the basic Timer class. This will
impact performance at two di�erent levels. If the event type declared on
the provided and accepted events for the protocol matches the newly de-
�ned event type, noti�cations requested by other protocols will not consume
wasteful resources on this protocol. On the other hand, the new class may
encompass any information required by the protocol to handle the timeout.
This improves protocol execution time. When the timeout is delivered to the
protocol, it delivers the same object instance. The quali�er attribute will be
set to NOTIFY and the direction attribute will have a value inverse to the
one de�ned at timer request.

Cancellation of a timer is requested by creating a new timer event with
the same timer ID and a OFF quali�er. Note that event cancellation can not
be ensured by Appia: the noti�cation event may already be inserted in the
channel when the cancellation reaches the bottom of the channel.

class Timer extends ChannelEvent f
Timer(long interval, String timerID, Channel channel,

int direction, Session source, int quali�er) throws
AppiaException;

void setTimeout(long period);
long getTimeout();

g
The semantic associated with PeriodicTimer events is that a noti�cation

is due every \period" milliseconds. Appia only ensures that no more events
than periods expired will be raised.

The object delivered upon timer expiration will be a copy of the original
object. The copy is performed using the cloneEvent method. Specialization



22 PPI description by class

can also be used to rede�ne this method in order to provide a di�erent se-
mantic from that initially de�ned which is to perform a deep copy of all
attributes except the timerID (which has its reference copied). If rede�ned,
cloneEvent should start by calling its parent cloneEvent method. After issuing
a request to cancel a periodic timer, an unde�ned number of noti�cations,
those already inserted in the channel, can be received.

class PeriodicTimer extends ChannelEvent f
PeriodicTimer(String timerID, long period, Channel

channel, int direction, Session source, int quali�er)
throws AppiaException;

void setPeriod(long period);
Time getPeriod();

g

Note: Appia provides weak time delivery guarantees for noti�cation as
this may compromise the event FIFO ordering within the channel. The only
provided guarantee is that noti�cations will be raised by the timer manager
after the requested timeout period has expired.

2.12 Class SendableEvent
SendableEvents are one of the brunches of the event tree de�ned by Appia.
The semantic expected to be applied by protocols regarding SendableEvents
is that those are the events to be sent to the network. Non SendableEvents
are supposed to be local to the channel that created them.

SendableEvents extend the basic event class with three attributes: source,
dest and message. Due to their strong dependence on protocols, network and
implementation language, the former are of type java.lang.Object. Their
instantiation type is supposed to be agreed by the protocols composing the
channel and can even change while the event crosses the stack. It is expected
that most of the protocols use them transparently relying only in equality
operations. It is therefore advised that value based comparison operations
should be de�ned for the chosen class.

Appia it self does not provide any support sending or delivering events
to/from the network. This task must be done by some protocol that interfaces
a channel with a socket.1 When retrieving SendableEvents (or any of its
subclasses) from the network, protocols are expected to satisfy at least the

1Appia distributions already provide some protocols with these functionalities.



2.13 Class Message 23

following conditions on the event inserted in the channel of the receiving
endpoint:

� All attributes of the Event class should be correctly �lled; The source
session of the event is the session that retrieved the event from the
network and will insert it in the channel;

� The values of the source and dest attributes are equal to the ones
received by the session that sent the event to the network;

� The message attribute has the same sequence of bytes received by the
session that sent the event to the network;

� The event type should be the same;

Note that besides the event type, no special requirements are imposed for
sending subclasses of SendableEvents. In particular, attributes not inherited
from SendableEvent are not expected to be passed to the remote endpoint.
This is the behavior of the current protocols that interface the network,
namely UDPSimple, TCPSimple and TCPComplete.

Messages are set and retrieved by two speci�c operators. Class Message
is de�ned in section 2.13.

class SendableEvent extends Event f
Object dest;
Object source;
SendableEvent(Channel channel, int direction, Session

source) throws AppiaEventException;
SendableEvent(Message msg);
SendableEvent(Channel channel, int direction, Session

source, Message msg) throws
AppiaEventException;

Message getMessage();
void setMessage(Message m);

g

2.13 Class Message
The class Message abstracts an array of bytes with methods providing e�-
cient operations for adding and removing headers and trailers. The class was



24 PPI description by class

conceived as the principal method for inter-channel communication.2 Mes-
sage provides an interface for sessions to push and pop headers of byte arrays.
Message interface is mainly imported from the x-Kernel [5]. The use of mes-
sage was devised assuming that the layer responsible for sending messages to
the network has weak serialization capabilities.

The class has only an empty constructor. To initialize a message in-
stance with an array of bytes, one should call setByteArray, specifying the
�rst position in the source array and the number of bytes to be copied. Other
methods take a MsgBu�er as an argument.3 All push, peek and pop opera-
tions (which respectively add, query and extract an header) are called with
the len attribute of MsgBu�er de�ned. The remaining values are ignored and
overlapped by the method execution. When the call returns, the o� attribute
points to the �rst position in the data bu�er where the header is stored or
can be retrieved.

The sequence of actions performed to push an header is:

1. Prepare a MsgBu�er object with the length of the header;
2. Invoke the push method;
3. Copy the header to the data array, starting at the position indicated

by o�set;4

Popping an header requires the same sequence of actions to be performed,
retrieving the data in step 3.

For usability reasons, this class that was extended with methods that
provide automatic insertion and removal of all basic types. These methods
use the basic methods to push, pop and peek data and can provide the same
performance results, with a cleaner protocol code.

Note: The byte array presented to the protocol will typically be larger
than the required length. Most of the times, the remaining positions will
have headers of other protocols in the channel. Appia takes no provisions to
ensure that protocols respect their self de�ned boundaries.

2Inter-channel communication is de�ned as the mean by which channels on di�erent
processes exchange information. This is the opposite of intra-channel communication,
ideally performed by event attributes.3The goal of the MsgBu�er is to avoid memory copies. This class is described later in
this document.4The only restriction is that the header must be de�ned prior to calling the go method
on the event owning the message, so, to avoid memory copies, the header can be con-
structed directly in the bu�er.



2.13 Class Message 25

Iterating over an entire message (for checksumming or encryption) is made
with MsgWalk class.

class Message f
Message();
void setByteArray(byte[] data, int o�set, int length);
int length();
void peek(MsgBu�er mbuf);
void discard(int length);
void discardAll();
void push(MsgBu�er mbuf);
void pop(MsgBu�er mbuf);
void truncate(int newLength);
void frag(Message m,int length);
void join(Message m);
MsgWalk getMsgWalk();
byte[] toByteArray(); public void pushObject(Object obj);
public void pushLong(long l);
public void pushInt(int i);
public void pushShort(short s);
public void pushBoolean(boolean b);
public void pushDouble(double d);
public void pushFloat(oat f);
public void pushUnsignedInt(long ui);
public void pushUnsignedShort(int us);
public void pushByte(byte b);
public void pushUnsignedByte(int ub);
public void pushString(String str);
public Object popObject();
public long popLong();
public int popInt();
public short popShort();
public boolean popBoolean();
public double popDouble();
public oat popFloat();
public long popUnsignedInt();
public int popUnsignedShort();
public byte popByte();
public int popUnsignedByte();
public String popString();



26 PPI description by class

public Object peekObject();
public long peekLong();
public int peekInt();
public short peekShort();
public boolean peekBoolean();
public double peekDouble();
public oat peekFloat();
public long peekUnsignedInt();
public int peekUnsignedShort();
public byte peekByte();
public int peekUnsignedByte();
public String peekString();
public Object clone() throws CloneNotSupportedException;

g

2.14 Class MsgBu�er
The MsgBu�er class is used as an helper class for operations over messages.
The goal of this class is to improve performance by avoiding message copies.

The MsgBu�er class is used to pass arguments to and receive arguments
from methods of the Message class. The �elds are used with the following
meaning:

data An array of bytes retrieved or to be included in the message;
o� The �rst position in the array data containing information relevant for

the operation. Respecting usual array representation, the �rst position
of an array has o�set 0;

len The number of bytes of the array data relevant for the operation;

Array data positions not between o� and o�+len-1 are reserved and
can not be used.

Instances of this class have always the same usage pattern: user �lls the
len attribute of one instance and invokes the method passing the instance as
the argument. When the method returns, the data, o� and len attributes
will be appropriately �lled. In peek, pop and next (from the MsgWalk class)
the array contains the data retrieved from the message. In push the array
contains the space to be �lled with the headers by the session.



2.15 Class MsgWalk 27

class MsgBu�er f
byte[] data;
int o�;
int len;
MsgBu�er();
MsgBu�er(byte[] data, int o�, int len);

g

2.15 Class MsgWalk
MsgWalk objects are iterators over messages. This class is intended to be used
by protocols operating over the entire message bu�er such has checksum
or cipher protocols. The array returned by the next method can be used
for reading and writing but no data can be appended or deleted from the
message. If there is no more bytes in the message, the call to the next method
of this class will put the data attribute to null.

class MsgWalk f
void next(MsgBu�er mbuf)

g

2.16 Class ExtendedMessage
This class is deprecated. The methods provided by this class were moved
to the Message class.

class ExtendedMessage extends Message f

g

2.17 Class MemoryManager
Memory managers limit the available memory for messages in a channel.

When a header is pushed into a message, the amount of bytes requested
is bound to the memory manager. When a Channel receives a SendableEvent,
the Message's size is also bounded to the corresponding memory manager.
Exceeding the memory manager's available memory raises the runtime ex-
ception AppiaOutOfMemory.



28 PPI description by class

When a header is popped from a message, the corresponding amount of
bytes is unbound from the memory manager. The amount of bytes used by a
Message in a SendableEvent are unbounded from the memory manager when
a SendableEvent leaves a Channel.

Headers not popped from a message during its life time are unbounded
from the memory manager when the garbage collector cleans the Message
object.

class MemoryManager f
MemoryManager(String id, int size, int upThreshold, int

downThreashold);
String getMemoryManagerID();
boolean aboveThreshold(int direction);
int getThreshold(int direction);
void setThreshold(int newThreashold, int direction); void

setMaxSize(int newSize) throws
AppiaWrongSizeException;

int getMaxSize();
int used();

g

2.17.1 Using the memory manager
Memory management is enabled by default in the Appia distributions, but
can be desabled if the user don't need it. Disabling this functionality will
improve the Appia performance. To deactivate it, edit the appia/AppiaCon-
�g.java �le and set the quotaOn boolean to false, then recompile the Appia
kernel and the protocols that will be used.

A memory manager is assigned by the programmer to one or more chan-
nels at channel de�nition time. Note that the available memory must be
shared by every channel using the same memory manager. Class Channel is
de�ned in section 2.13 and Class Message is de�ned in section 2.2.

2.18 Class TimeProvider
Protocols that need to read the system current time should use the interface
TimeProvider. An instance of the default implementation of this interface is
obtained by invoking the getTimeProvider method from the class Channel (see
section 2.13). This interface provides the system current time in milliseconds
or microseconds, as described below:



2.18 Class TimeProvider 29

interface TimeProvider f
public long currentTimeMillis();
public long currentTimeMicros();

g



Chapter 3

PPI description by subject

This chapter details the steps needed to perform:
1. QoS de�nition
2. Channel creation
3. Channel disposal
4. Event creation and handling
The same methods were presented, grouped by classes in Chapter 2.

3.1 QoS de�nition
The concept of QoS in Appia is de�ned in Section 1.1. QoS's are de�ned by
a name and an ordered enumeration of layers:

QoS.QoS(String qosID, Layer[] layers) throws AppiaInvalidQoS

In order to partially validate the newly formed QoS and improve the
performance of the channels created from it, layers export three event related
methods:

Class[] Layer.getProvidedEvents()

where each layer states the events it will generate,
Class[] Layer.getRequiredEvents()

30



3.2 Channel de�nition 31

having the events each layer requires to provided the expected service,
and

Class[] Layer.getAcceptedEvents()

for layers to state the events they are willing to receive. For sanity it is
expected the required events to be a subset of the accepted ones.

The default implementations of this methods return the contents of the
attributes evAccept, evRequire and evProvide which are also Class arrays.

Users can get instances of Class objects with the static Java API methods:
Class.forName(String className)

or
className.class

The QoS constructor will throw an AppiaInvalidQoS exception when at
least one event type belongs to any \required event" set but is not member
of any \provided event" set.1 In practice, this exception identi�es a partic-
ular case of invalid stacks: those containing protocols expecting services not
provided by the others. However, the nonexistence of an exception can not
be interpreted as a proof of correction: neither event direction nor semantical
interpretation are veri�ed on incompatibility analysis.

3.2 Channel de�nition
Channels are dynamic entities, composed of ordered sets of sessions. Sessions,
in turn, create, receive, handle and forward events. All channels are created
on behalf of a QoS. This is made by invoking one of the methods:

Channel QoS.createUnboundChannel(String channelID)
Channel QoS.createUnboundChannel(String channelID, EventScheduler

eventScheduler)
Channel QoS.createUnboundChannel(String channelID, MemoryManager

mm)
Channel QoS.createUnboundChannel(String channelID, EventScheduler

eventScheduler, MemoryManager mm)

1Channel generated events are implicitly provided.



32 PPI description by subject

The channelID uniquely identi�es the channel in the system and should
be equal across di�erent endpoints as it is used by protocols receiving events
from the network, to learn the destination channel of the event.

The eventScheduler argument allow programmers to specify an event schedul-
ing policy. A prede�ned event scheduler will be used by default.

A channel is a stack similar to the one of the QoS having layer positions
�lled by corresponding session instances. Prior to usage, all positions of a
channel must be �lled (binded) by a session. The sessions �lling each slot
must have been created by requests to the layer occupying the corresponding
position in the QoS. Figure 3.1 relates this concepts in a channel de�nition.

Appl Layer

FIFO Session

Device Session

FIFO Session

Device Session

Appl Session

FIFO Layer

Device Layer

Device Layer
Channel (filled)

Channel (empty)

SessionsLayers

createSession()

Appl Session

QoS

createUnboundChannel()
Appl Layer

FIFO Layer

Figure 3.1: Reliable point-to-point channel de�nition.

The binding of sessions to the corresponding layers is made, for each slot,
by the �rst of the following steps:

Explicitly having the user to explicitly bind a session to a certain position,
By peer sessions Sessions already binded to the channel may explicitly

bind others,
By default Positions not binded by any of the above, will be �lled by new

sessions.

New session instances are created by requests to the appropriate Layer:
Session Layer.createSession()



3.2 Channel de�nition 33

Browsing through slots is done by a \Channel Cursor", requested to the
appropriate channel with:

ChannelCursor Channel.getCursor()

After its creation, channel cursors should be positioned by one of the
following operations:

void ChannelCursor.top()
void ChannelCursor.bottom()
void ChannelCursor.jumpTo(int position) throws AppiaCursorException

Two methods are provided for channel iteration:
void ChannelCursor.down() throws AppiaCursorException
void ChannelCursor.up() throws AppiaCursorException

and one for jumping a relative o�set:
void ChannelCursor.jump(int o�set) throws AppiaCursorException

o�set takes a positive value for moving the cursor o�set positions up the
stack and a negative value for moving the cursor down.

Finally, the method
boolean ChannelCursor.isPositioned()

signals the user if the cursor was not previously positioned or if a down,
up, jump or jumpTo method calls have take the cursor out of the stack.

The method
Session ChannelCursor.getSession() throws AppiaCursorException

return the current session or a NULL value if the slot is empty.
Binding of a session to the cursor current position is made with:
void ChannelCursor.setSession(Session session) throws AppiaCursorException

The layer whose instance is expected to �ll the slot is obtained with
Layer ChannelCursor.getLayer() throws AppiaCursorException



34 PPI description by subject

AppiaCursorException is a class containing a public attribute type and a
set of constants, detailing the occurrence. The values can be:
CURSORNOTSET An operation was attempted prior to the invocation of

methods top, bottom, jump or jumpTo,
CURSORONBOTTOM An invalid operation was performed when the cur-

sor was positioned below the lowest position of the stack,
CURSORONTOP An invalid operation was performed when the cursor was

positioned above the uppermost position of the stack,
ALREADYSET An attempt to bind a session to an already occupied slot

was detected,
WRONGLAYER An attempt to set a session of a layer di�erent of the spec-

i�ed in the QoS for that position was detected.
To allow run-time validation, sessions will have to export its correspond-

ing layer and channels their QoS. The methods for these operations are:
Layer Session.getLayer()

and
QoS Channel.getQoS()

The method start of class Channel concludes the steps performed by the
user for channel initialization.

void Channel.start() throws AppiaDuplicatedSessionsInChannel

To allow \By peer sessions binding", those sessions already bound will
now be invited to �ll the remaining empty slots. Starting from the topmost,
every session will be invoked with

void Session.boundSessions(Channel channel)

it is up to sessions to decide whether some of the empty slots should or
should not be �lled. In order to �ll an empty slot, sessions should obtain
a ChannelCursor and perform the operations presented above. Some other
methods might also be valuable for this step:



3.2 Channel de�nition 35

Layer[] QoS.getLayers()
String QoS.getQoSID()
boolean Channel.equalQoS(Channel channel)
String Channel.getChannelID()

Note: The algorithm traverses the channel slots in a strict vertical way: if
a session is bound prior to its position be traversed by the algorithm it will
also be invited to contribute to it.

After the algorithm has visited all the binded sessions, remaining slots
will be automatically binded to new sessions of the matching layer. Finally,
a ChannelInit event will travel the channel in ascending direction.

3.2.1 Channel de�nition using XML
The process of Appia channel creation and initialization can be automated
using an Extensible Markup Language (XML) description. Using XML, the
programmer can describe templates for channels, channel instantiations and
sharing policies of the sessions that compose the channels. It can also ini-
tialize Sessions with properties de�ned in the XML description.

The following example shows how to build an Appia channel with TCP
as the bottom layer and an Ecco protocol2 as the top layer.
<template name=" e c c o t "><s e s s i o n name=" t cp s " shar ing=" g l oba l "><pro to co l>appia . p r o t o c o l s . tcpcomplete . TcpCompleteLayer</ p ro to co l></ s e s s i o n><s e s s i o n name=" e c c o s " shar ing=" pr i va t e "><pro to co l>appia . t e s t . xml . ecco . EccoLayer</ p ro to co l></ s e s s i o n></ template><channel name=" ecco c " template=" e c c o t " i n i t i a l i z e d="yes "><ch s e s s i on name=" e c c o s "><parameter name=" l o c a l p o r t ">4000</parameter><parameter name=" remotehost "> l o c a l h o s t</parameter><parameter name=" remoteport ">4001</parameter></ ch s e s s i on></ channel>

Listing 3.1: XML �le.
To load a XML con�guration and start Appia using the previously loaded

con�guration, the programmer can use the following static methods:
2This is an example protocol available on the Appia distribution since version 2.0.



36 PPI description by subject

AppiaXML.load(xml�le);
Appia.run();

More details on the usage of XML to con�gure Appia channels are de-
scribed in the AppiaXML Tutorial [4].

3.3 Channel disposal

Channel disposal is started by invoking:
void Channel.end()

The closing of a channel is signaled to sessions and layers.
Sessions are noti�ed by the introduction of a ChannelClose event at the top

of the channel. Sessions should perform any necessary clean-up procedures
upon reception of it (including sending messages) and forward the event only
when they are ready to be terminated.

Layers will be noti�ed to allow appropriate garbage collection in imple-
mentation languages where it is not automatic. Whether layers perform it or
not is layer implementation dependent and will require some kind of inter-
action between Session and Layer implementation. When the closing event
is returned to the channel,3 Appia signals all layers which have generated
sessions in the channel with

void Layer.channelDispose(Session session, Channel channel)

Note that the receipt of a ChannelClose event on a session or a channelD-
ispose call on a layer does not declare that a session is no longer in use as it
may still belong to other opened channels.

3.4 Event ow

Event ow is decomposed in two major components: creation and visit to
sessions.

An important attribute of an event is the direction it will ow. Class
Direction is de�ned simply as two static constant values (UP and DOWN).

3After it has been processed by every session.



3.4 Event ow 37

An event is created by invoking its constructor. A \do-it-all" constructor
is de�ned at the main Event class:

Event.Event(Channel channel, int direction, Session source) throws
AppiaEventException

In this constructor, channel is where the event is intended to ow and
source is a reference to the session creating it.

If this constructor is not used, the above arguments must be introduced
by separated calls:

Event.Event()
void Event.setDir(int direction)
void Event.setSource(Session source)
void Event.setChannel(Channel channel)

The individual setting of the above attributes is concluded by
void Event.init() throws AppiaEventException

An event is not inserted in the channel in any of the above ways. In order
to make it ow through sessions, method

void Event.go() throws AppiaEventException

should be invoked. This is also the method to be invoked by sessions who
�nish processing it and want it to continue its route through the channel.
Events are delivered to sessions by calls to

void Session.handle(Event event)

The main Event class attributes are queried by
int Event.getDir()
Channel Event.getChannel()
Session Event.getSource()

The getSource method will return null if the event was generated by the
channel.

The AppiaEventException groups all the event related exceptions. Like
AppiaCursorException it has a type attribute and a set of constants:



38 PPI description by subject

NOTINITIALIZED The event was not properly initialized. It was created
using the empty constructor but the init method was not called before
go invocation.

ATTRIBUTEMISSING The event was created using the empty constructor
and one of the fundamental attributes was not de�ned prior to calling
init.

UNKNOWNQUALIFIER The event quali�er was not properly de�ned (see
Section 2.8).

UNKNOWNSESSION The session that created the event does not belong
to the speci�ed channel.

UNWANTEDEVENT The event will not be consumed by any class in the
channel.4

CLOSEDCHANNEL Attempt to send an event in a session who has previ-
ously received a ChannelClose event for the channel speci�ed.

Event sub-classing is a crucial factor in Appia. Users are free to extend
event classes. Sub-classing improves performance and reusability. The former
by avoiding sessions to process events they are not interested in. The latter
by allowing old protocols to interact with new versions of those it depends
on.

The following sections provide an overview of the Appia prede�ned event
subclasses.

3.4.1 Ordering of events
The default event scheduler ensures \First In First Out" (FIFO) ordering of
events. It considers that events enter the queue each time the go method is
called on the event and leaves it each time the event is delivered to a session
by invoking the handle method. The FIFO ordering is also maintained across
events that are not presented to some sessions.

For example, consider two events E1 and E2 moving toward the top of the
channel. E1 was introduced on the channel prior to E2. E1 is scheduled to
visit a session S1 but E2 is not. All events generated and sent to the channel
by S1 while on the handle call of E1 will be presented to upper sessions prior
to E2.

4The absence of this exception does not prove the contrary because the direction of the
events is not taken in consideration.



3.4 Event ow 39

Users are free to extend the default EventScheduler class, implementing a
di�erent behavior. However, they should notice that the default behavior is
the one expected by most of the protocols and that changing it may produce
unpredictable results.

3.4.2 Multi-thread handling
Appia current implementation uses a single thread model. Protocols are free
to implement their own threads as long as there is no interference with the
Appia core.

The system provides one exception to this model: the Event's method
asyncGo has synchronization features and can be called outside the Appia
thread.

void Event.asyncGo(Channel c, int d) throws AppiaEventException

asyncGo should be called when a thread running concurrently with the
Appia's thread wants to insert an event in a channel. This method should
be called only once, when the event is to be inserted. Events inserted with
asyncGo need not to be initialized. The event will be inserted at the top of
the stack if its direction is DOWN or at the bottom of the stack otherwise.
After being inserted, the event presents a behavior that is similar to that of
any other event.

3.4.3 Echo Events
Sometimes a protocol will bene�t from receiving events it has generated.
This is important whenever a protocol can provide optimizations based on
information collected from other protocols.5 When an EchoEvent reaches one
of the sides of the channel, the channel extracts the event it contains and
sends it, in the opposite direction. The carried event can be of any type.

The constructor for EchoEvent is:
EchoEvent(Event event, Channel channel, int direction, Session source)

All arguments apply to the EchoEvent and not to the event being carried.
Note that the carried event will be initialized by the channel with appropriate
arguments: the source will be NULL to indicate this is a channel generated
event; the direction will be the opposite to the one the echo event was using

5A fragmentation protocol for instance should know exactly the maximum Protocol
Data Unit (PDU) size.



40 PPI description by subject

and the channel attribute will be copied. Remaining event attributes will not
be changed.

3.4.4 Sendable events
Although not mandatory, \sendable events" are those expected to be sent to
the network. This class extends the basic Event class with three attributes:
source, dest and message.

The source and the dest are two attributes of type Object. The implemen-
tation type is deferred to the layer responsible for their delivery and reception
from the network and can change while the event is traversing the stack.

3.4.5 Messages
The message attribute of SendableEvent has type Message. The Message
interface is designed for sessions to push and pop headers as events ow on
them. The Message interface was mainly imported from the similar work
realized at the x-Kernel [1, 5].

Messages are constructed by the method:
Message()

A message can be initialized with an array of length bytes starting at
o�set by:

void Message.setByteArray(byte[] data, int o�set, int length)

The SendableEvent's message is obtained by
Message SendableEvent.getMessage()

and set by
void SendableEvent.setMessage(Message m)

Current message length is obtained by:
int Message.length()

Message interface exports the following manipulation operations:



3.4 Event ow 41

void Message.truncate(int newLength)

Truncates existing message to the �rst newLength bytes. Truncate is used
to strip trailers from a message.

void Message.push(MsgBu�er mbuf)

Allocates a bu�er of mbuf.len bytes at the beginning of the message and
returns a byte array and an o�set into the array for the beginning of the
reserved space. Typically this operation is used for sessions to append their
headers.

void Message.pop(MsgBu�er mbuf)

Returns a byte array and a o�set to a contiguous bu�er of mbuf.len bytes
that contains the data previously at the front of the message and removes it.

void Message.peek(MsgBu�er mbuf)

Like pop but the message remains unchanged.
void Message.discard(int length)

Like pop but without returning the header.
void Message.frag(Message m, int length)

Removes all but the �rst length bytes from message and assigns them
to message m. Message fragmentation can also be done using event copy
constructors followed by pop and truncate operations but this operation is
faster.

void Message.join(Message m)

Appends the content of message m to the invoked message.

Message iteration The following set of methods allow sessions to iterate
over the entire message enabling full message operations such as encryption
or checksumming. The center concept is the MsgWalk class, who keeps the
information context necessary.



42 PPI description by subject

A MsgWalk instance for a message is obtained by:
MsgWalk Message.getMsgWalk()

The message bytes will be returned in bunches by invoking
void MsgWalk.next(MsgBu�er mbuf)

The size of each bunch can not be predicted prior to method invocation
and depends on the existing message structure. The returned array can be
used for data retrieval and change.

next signals end of message by returning a 0 value on the length argument
and the null value in the data array reference. Data appended to the end of
the bu�er while traversing it with MsgWalk is also returned. Data pushed on
the beginning of message after invocation of getMsgWalk will not be retrieved
with next.

3.4.6 Channel startup and shutdown
These operations are signaled by two events: ChannelInit and ChannelClose,
both descendent of the ChannelEvent class.

The ChannelInit event is the �rst to ow on a channel. Only one of this
events is expected to ow on each channel. The event has UP Direction.

The ChannelClose event is the last one to ow on a channel. After for-
warding this event, sessions can no longer send any event on the channel but
may still receive messages until this event reaches the bottom of the stack.
The event ows DOWN.

3.4.7 Timers
Appia expects two types of timers: periodic and aperiodic. One important
attribute of timers is the EventQuali�er, inherited from their parent class
ChannelEvent.

Event Quali�ers allow event instances reuse. They qualify events with
one of three public class constants values:

ON The event performs a request.
OFF The event cancels a request.
NOTIFY The previously requested event has happened.



3.4 Event ow 43

When a session requests a timer (periodic or not), it creates a corre-
sponding event instance and sets the event quali�er to ON and the direction
to DOWN.

Upon timeout, the TimerManager peeks the timer event and changes its
source, direction and quali�er attributes. The �rst to null (all channel gener-
ated events share this value), the second to UP and the later to NOTIFY. This
way, sessions receive the same event they forwarded. This is strictly true in
the case of aperiodic events. Due to its nature, periodic events can not be
reused. A clone is used instead. Appia uses Event's method cloneEvent for
this.

Event Event.cloneEvent()

cloneEvent can be rede�ned by sub-classing. Depending on implementa-
tion, it can make a shallow copy, a deep copy or a mix of both. All cloneEvent
rede�nitions should start by invoking its parent class method.

The modus operandi of timers was developed having e�ciency in mind:
upon reception of a timeout noti�cation, sessions need to retrieve informa-
tion related with the timeout.6 If the necessary information is passed with
the timeout request (by extending the Timer event), it will return with the
\happened" event, avoiding the delay of searching it.

Timer and PeriodicTimer classes have similar constructors. Only the sec-
ond argument di�ers:

Timer.Timer(long period, String timerID, Channel channel, int direction,
Session source, int quali�er)

PeriodicTimer.PeriodicTimer(String timerID, long period, Channel channel,
int direction, Session source, int quali�er)

3.4.8 Memory management
Memory managers limit the memory available for messages. Exceeding that
value raises the runtime exception AppiaOutOfMemory in the corresponding
push operation.

A memory manager is created using the following method:
6For instance, in a reliable protocol, missing an Acknowledgment will result in a time-

out. In order to re-send the message, the session has to �nd it among all the unacknowl-
edged ones.



44 PPI description by subject

MemoryManager.MemoryManager(String id, int size, int upThreshold, int
downThreashold)

id is the memory manager identi�cation and size is the maximum value
(in bytes) that messages in channels bound to that memory manager can
hold. The up and down threshold arguments should be de�ned between 0
and size and is used to verify if a channel that is using a memory manager,
is reaching its maximum capacity, in each ow direction.

String MemoryManager.getMemoryManagerID()

Gets the memory manager identi�cation.
boolean MemoryManager.aboveThreshold(int direction)

This method veri�es if the currently used amount of memory reached the
speci�ed threshold for the given direction.

int MemoryManager.getThreshold(int direction)

Gets the current threshold (int bytes) for the given direction.

void MemoryManager.setMaxSize(int newSize) throws
AppiaWrongSizeException

This method changes the maximum amount of bytes to newSize. If new-
Size is lower than 0 or lower than the amount currently used by messages, a
AppiaWrongSizeException is thown.

int MemoryManager.getMaxSize()

Gets the maximum size in bytes available for this memory manager.
int MemoryManager.used()

Returns the current amount of bytes used.
A memory manager is bounded to a Channel at channel de�nition time,

using one of the methods



3.4 Event ow 45

Channel QoS.createUnboundChannel(String channelID, EventScheduler
eventScheduler, MemoryManager mm)

Channel QoS.createUnboundChannel(String channelID, MemoryManager
mm)

Notes:
� Due to a bug in previous Java JRE versions, the memory manager only
work on Java JRE 1.3.1 or higher.

3.4.9 Debugging
A particular kind of event type is the Debug class. This class descends from
ChannelEvent, inheriting the EventQuali�er attribute.

The constructor for Debug events is:
Debug.Debug(Channel channel, int direction, Session source, OutputStream

output)

To get the destination of their debugging information, sessions should
invoke the method

OutputStream Debug.getOutput()

In debugging context, EventQuali�er constants have the following mean-
ing:
ON Session should switch to debugging mode
OFF Session should end debugging mode
NOTIFY Sessions should dump their current state

The state of an event can be obtained by invoking the method
void Event.debug(OutputStream output)



Appendix A

Appia Universal Model

Language Diagrams

46



0.
.n

se
ss

io
ns

 

0.
.n la

ye
rs

 

0.
.1

ch
an

ne
l

 

0.
.n

qu
eu

es
 

0.
.n ro

ut
e

 

0.
.1m

em
or

yM
an

ag
er

 

0.
.n

la
ye

rs
 

0.
.1

cu
rr

en
tC

ha
nn

el
 

0.
.n

m
od

el
s

 

0.
.1

la
ye

r
 

0.
.nev

en
ts

R
ou

te
s

 

0.
.1

tim
er

M
an

ag
er

 

0.
.nse

ss
io

ns
 

0.
.1

tim
er

M
an

ag
er

 

0.
.n

ev
en

tS
ch

ed
ul

er
s

 

0.
.1

qo
sR

ou
te

 

0.
.1

ch
an

ne
l

 

C
ha

nn
el

E
ve

nt
R

ou
te

 : )
C

ha
nn

el
:

ch
an

ne
l

 (
m

ak
eC

ha
nn

el
R

ou
teC
la

ss
 : )

 (
ge

tE
ve

nt
T

yp
e

)
C

la
ss

:
ev

en
tT

yp
e

, 
Q

oS
:

qo
s

 (
Q

oS
E

ve
nt

R
ou

te

Q
oS

 : 
qo

s
La

ye
r[

]
 : 

la
ye

rs

Q
o

S
E

ve
n

tR
o

u
te

V
oi

d
 : )

S
es

si
on

:
sr

c
 (

se
tS

ou
rc

e
V

oi
d

 : )
In

te
ge

r
:

pr
io

rit
y

 (
se

tP
rio

rit
y

V
oi

d
 : )

In
te

ge
r

:
di

r
 (

se
tD

ir
S

es
si

on
 : )

 (
po

pS
es

si
on

B
oo

le
an

 : )
 (

is
A

cc
ep

te
d

V
oi

d
 : )

 (
in

it
V

oi
d

 : )
 (

go
S

es
si

on
 : )

 (
ge

tS
ou

rc
e

In
te

ge
r

 : )
 (

ge
tP

rio
rit

yIn
te

ge
r

 : )
 (

ge
tD

ir
V

oi
d

 : )
 (

fin
al

iz
e

V
oi

d
 : )

P
rin

tS
tr

ea
m

:
ou

t
 (

de
bu

g
S

es
si

on
 : )

 (
cu

rr
en

tS
es

si
on

E
ve

nt
 : )

 (
cl

on
eE

ve
nt

V
oi

d
 : )

In
te

ge
r

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
 (

as
yn

cG
o

V
oi

d
 : )

D
ire

ct
io

n
:

di
re

ct
io

n
, 

C
ha

nn
el

:
ch

an
ne

l
 (

as
yn

cG
o

)
S

es
si

on
:

sr
c

, 
In

te
ge

r
:

di
r

, 
C

ha
nn

el
:

ch
an

ne
l

 (
E

ve
nt

)
S

es
si

on
:

sr
c

, 
D

ire
ct

io
n

:
di

re
ct

io
n

, 
C

ha
nn

el
:

ch
an

ne
l

 (
E

ve
nt

)
 (

E
ve

nt

 fa
ls

e
 =

 
B

oo
le

an
 : 

so
ur

ce
S

et
nu

ll
 =

 
S

es
si

on
[]

 : 
ro

ut
e

 fa
ls

e
 =

 
B

oo
le

an
 : 

is
In

iti
at

ed
nu

ll
 =

 
E

ve
nt

S
ch

ed
ul

er
 : 

ev
en

tS
ch

ed
ul

er
0

 =
 

In
te

ge
r

 : 
di

re
ct

io
n

nu
ll

 =
 

C
ha

nn
el

 : 
ch

an
ne

l
nu

ll
 =

 
T

hr
ea

d
 : 

ap
pi

aT
hr

ea
d

In
te

ge
r

 : 
M

IN
_P

R
IO

R
IT

Y
In

te
ge

r
 : 

M
A

X
_P

R
IO

R
IT

Y
In

te
ge

r
 : 

D
E

F
A

U
LT

_P
R

IO
R

IT
Y

E
ve

n
t

V
oi

d
 : )

E
ve

nt
:

ev
en

t
 (

ha
nd

le
V

oi
d

 : )
C

ha
nn

el
:

ch
an

ne
l

 (
bo

un
dS

es
si

on
s

)
La

ye
r

:
la

ye
r

 (
S

es
si

onLa
ye

r
 : 

la
ye

r

S
es

si
o

n

C
la

ss
[]

 : )
 (

ge
tR

eq
ui

re
dE

ve
nt

s
C

la
ss

[]
 : )

 (
ge

tP
ro

vi
de

dE
ve

nt
s

C
la

ss
[]

 : )
 (

ge
tA

cc
ep

te
dE

ve
nt

sS
es

si
on

 : )
 (

cr
ea

te
S

es
si

on
V

oi
d

 : )
C

ha
nn

el
:

ch
an

ne
l

, 
S

es
si

on
:

se
ss

io
n

 (
ch

an
ne

lD
is

po
se

C
la

ss
[]

 : 
ev

R
eq

ui
re

C
la

ss
[]

 : 
ev

P
ro

vi
de

C
la

ss
[]

 : 
ev

A
cc

ep
t

L
ay

er

V
oi

d
 : )

 (
va

lid
at

eQ
oS

V
oi

d
 : )

 (
m

ak
eE

ve
nt

sR
ou

te
s

B
oo

le
an

 : )
C

la
ss

:
re

qu
ire

d
 (

ha
sR

eq
ui

re
d

S
tr

in
g

 : )
 (

ge
tQ

oS
ID

B
oo

le
an

 : )
O

bj
ec

t
:

ob
j

 (
eq

ua
ls

C
ha

nn
el

 : )
M

em
or

yM
an

ag
er

:
m

m
, 

S
tr

in
g

:
ch

an
ne

lID
 (

cr
ea

te
U

nb
ou

nd
C

ha
nn

el
C

ha
nn

el
 : )

M
em

or
yM

an
ag

er
:

m
m

, 
E

ve
nt

S
ch

ed
ul

er
:

ev
en

tS
ch

ed
ul

er
, 

S
tr

in
g

:
ch

an
ne

lID
 (

cr
ea

te
U

nb
ou

nd
C

ha
nn

el
C

ha
nn

el
 : )

E
ve

nt
S

ch
ed

ul
er

:
ev

en
tS

ch
ed

ul
er

, 
S

tr
in

g
:

ch
an

ne
lID

 (
cr

ea
te

U
nb

ou
nd

C
ha

nn
el

C
ha

nn
el

 : )
S

tr
in

g
:

ch
an

ne
lID

 (
cr

ea
te

U
nb

ou
nd

C
ha

nn
el

)
La

ye
r[

]
:

la
ye

rs
, 

S
tr

in
g

:
ID

 (
Q

oS

C
ha

nn
el

[]
 : 

m
od

el
s

La
ye

r[
]

 : 
la

ye
rs

Q
oS

E
ve

nt
R

ou
te

[]
 : 

ev
en

ts
R

ou
te

s
nu

ll
 =

 
C

la
ss

[]
 : 

ev
en

ts
P

ro
vi

de
d

nu
ll

 =
 

C
la

ss
[][

]
 : 

ev
en

ts
A

cc
ep

te
d

S
tr

in
g

 : 
ID

Q
o

S

)
Q

oS
E

ve
nt

R
ou

te
:

qo
sR

ou
te

, 
C

ha
nn

el
:

ch
an

ne
l

 (
C

ha
nn

el
E

ve
nt

R
ou

te

S
es

si
on

[]
 : 

ro
ut

e
Q

oS
E

ve
nt

R
ou

te
 : 

qo
sR

ou
te

C
la

ss
 : 

ev
en

tT
yp

eC
ha

nn
el

 : 
ch

an
ne

l

C
h

an
n

el
E

ve
n

tR
o

u
te

V
oi

d
 : )

 (
ru

n
V

oi
d

 : )
E

xt
er

na
lE

ve
nt

:
de

sc
rip

to
r

 (
re

m
ov

eL
is

te
nR

eq
ue

st
V

oi
d

 : )
E

ve
nt

S
ch

ed
ul

er
:

ev
en

tS
ch

ed
ul

er
 (

re
m

ov
eE

ve
nt

S
ch

ed
ul

er
V

oi
d

 : )
T

im
er

M
an

ag
er

:
tim

er
M

an
ag

er
 (

in
st

an
ce

S
et

T
im

er
M

an
ag

er
V

oi
d

 : )
 (

in
st

an
ce

R
un

V
oi

d
 : )

E
xt

er
na

lE
ve

nt
:

de
sc

rip
to

r
 (

in
st

an
ce

R
em

ov
eL

is
te

nR
eq

ue
st

V
oi

d
 : )

E
ve

nt
S

ch
ed

ul
er

:
ev

en
tS

ch
ed

ul
er

 (
in

st
an

ce
R

em
ov

eE
ve

nt
S

ch
ed

ul
er

V
oi

d
 : )

 (
in

st
an

ce
In

se
rt

ed
E

ve
nt

V
oi

d
 : )

E
xt

er
na

lE
ve

nt
:

de
sc

rip
to

r
 (

in
st

an
ce

In
se

rt
Li

st
en

R
eq

ue
st

V
oi

d
 : )

E
ve

nt
S

ch
ed

ul
er

:
ev

en
tS

ch
ed

ul
er

 (
in

st
an

ce
In

se
rt

E
ve

nt
S

ch
ed

ul
er

T
im

er
M

an
ag

er
 : )

 (
in

st
an

ce
G

et
T

im
er

M
an

ag
er

T
hr

ea
d

 : )
 (

in
st

an
ce

G
et

A
pp

ia
T

hr
ea

d
V

oi
d

 : )
 (

in
se

rt
ed

E
ve

nt
V

oi
d

 : )
E

xt
er

na
lE

ve
nt

:
de

sc
rip

to
r

 (
in

se
rt

Li
st

en
R

eq
ue

st
V

oi
d

 : )
E

ve
nt

S
ch

ed
ul

er
:

ev
en

tS
ch

ed
ul

er
 (

in
se

rt
E

ve
nt

S
ch

ed
ul

erT
hr

ea
d

 : )
 (

ge
tA

pp
ia

T
hr

ea
d

)
 (

A
pp

ia

nu
ll

 =
 

T
im

er
M

an
ag

er
 : 

tim
er

M
an

ag
er

ne
w

 V
ec

to
r(

)
 =

 
V

ec
to

r
 : 

ev
en

tS
ch

ed
ul

er
s

A
p

p
ia

In
te

ge
r

 : )
In

te
ge

r
:

di
r

 (
in

ve
rt

 +
1

 =
 

In
te

ge
r

 : 
U

P
 -

1
 =

 
In

te
ge

r
 : 

D
O

W
N

D
ir

ec
ti

o
n

V
oi

d
 : )

 (
st

ar
t

V
oi

d
 : )

 (
m

ak
eE

ve
nt

sR
ou

te
s

V
oi

d
 : )

E
ve

nt
:

ev
en

t
 (

in
se

rt
E

ve
nt

V
oi

d
 : )

E
ve

nt
:

ev
en

t
 (

ha
nd

le
T

im
eP

ro
vi

de
r

 : )
 (

ge
tT

im
eP

ro
vi

de
r

In
te

ge
r

 : )
S

es
si

on
:

so
ur

ce
, 

In
te

ge
r

:
di

r
, 

C
ha

nn
el

E
ve

nt
R

ou
te

:
ch

an
ne

lR
ou

te
 (

ge
tF

irs
tS

es
si

on
C

ha
nn

el
E

ve
nt

R
ou

te
 : )

E
ve

nt
:

ev
en

t
 (

ge
tE

ve
nt

R
ou

teC
ha

nn
el

C
ur

so
r

 : )
 (

ge
tC

ur
so

r
B

oo
le

an
 : )

C
ha

nn
el

:
ch

an
ne

l
 (

eq
ua

lQ
oSV

oi
d

 : )
 (

en
d

V
oi

d
 : )

 (
cr

ea
te

U
nb

ou
nd

ed
S

es
si

on
s

)
M

em
or

yM
an

ag
er

:
m

em
or

yM
an

ag
er

, 
E

ve
nt

S
ch

ed
ul

er
:

ev
en

tS
ch

ed
ul

er
, 

Q
oS

:
qo

s
, 

S
tr

in
g

:
ch

an
ne

lID
 (

C
ha

nn
el

)
E

ve
nt

S
ch

ed
ul

er
:

ev
en

tS
ch

ed
ul

er
, 

Q
oS

:
qo

s
, 

S
tr

in
g

:
ch

an
ne

lID
 (

C
ha

nn
el

T
im

er
M

an
ag

er
 : 

tim
er

M
an

ag
er

B
oo

le
an

 : 
st

ar
te

d
nu

ll
 =

 
S

es
si

on
[]

 : 
se

ss
io

nsQ
oS

 : 
qo

s
nu

ll
 =

 
M

em
or

yM
an

ag
er

 : 
m

em
or

yM
an

ag
er

nu
ll

 =
 

H
as

ht
ab

le
 : 

ev
en

ts
R

ou
te

s
E

ve
nt

S
ch

ed
ul

er
 : 

ev
en

tS
ch

ed
ul

er
S

tr
in

g
 : 

ch
an

ne
lID

fa
ls

e
 =

 
B

oo
le

an
 : 

al
iv

e

C
h

an
n

el

V
oi

d
 : )

 (
st

op
V

oi
d

 : )
 (

st
ar

t
V

oi
d

 : )
E

ve
nt

:
ev

en
t

 (
in

se
rt

S
es

si
on

 : )
 (

ge
tH

an
de

lin
gS

es
si

on
A

pp
ia

 : )
 (

ge
tA

pp
ia

In
st

an
ce

B
oo

le
an

 : )
 (

co
ns

um
eE

ve
nt

)
A

pp
ia

:
ap

pi
a

 (
E

ve
nt

S
ch

ed
ul

er
)

 (
E

ve
nt

S
ch

ed
ul

er

E
ve

nt
[]

 : 
qu

eu
es

nu
ll

 =
 

S
es

si
on

 : 
cu

rr
en

tS
es

si
on

0
 =

 
In

te
ge

r
 : 

cu
rr

en
tD

ire
ct

io
n

nu
ll

 =
 

C
ha

nn
el

 : 
cu

rr
en

tC
ha

nn
el

A
pp

ia
 : 

ap
pi

a

E
ve

n
tS

ch
ed

u
le

r

V
oi

d
 : )

 (
up

V
oi

d
 : )

 (
to

p
V

oi
d

 : )
S

es
si

on
:

se
ss

io
n

 (
se

tS
es

si
on

V
oi

d
 : )

In
te

ge
r

:
po

si
tio

n
 (

ju
m

pT
o

V
oi

d
 : )

In
te

ge
r

:
of

fs
et

 (
ju

m
p

B
oo

le
an

 : )
 (

is
P

os
iti

on
ed

S
es

si
on

 : )
 (

ge
tS

es
si

on
La

ye
r

 : )
 (

ge
tL

ay
er

V
oi

d
 : )

 (
do

w
n

V
oi

d
 : )

 (
bo

tto
m

)
C

ha
nn

el
:

ch
an

ne
l

 (
C

ha
nn

el
C

ur
so

r

S
es

si
on

[]
 : 

se
ss

io
ns

N
O

T
S

E
T

 =
 

In
te

ge
r

 : 
po

s
La

ye
r[

]
 : 

la
ye

rs
C

ha
nn

el
 : 

ch
an

ne
l

-2
 =

 
In

te
ge

r
 : 

N
O

T
S

E
T

C
h

an
n

el
C

u
rs

o
r

0
 =

 
In

te
ge

r
 : 

O
N

1
 =

 
In

te
ge

r
 : 

O
F

F
2

 =
 

In
te

ge
r

 : 
N

O
T

IF
Y

E
ve

n
tQ

u
al

if
ie

r

Lo
ng

In
te

ge
r

 : )
 (

cu
rr

en
tT

im
eM

ill
is

Lo
ng

In
te

ge
r

 : )
 (

cu
rr

en
tT

im
eM

ic
ro

s

T
im

eP
ro

vi
d

er

«i
nt

er
fa

ce
»

co
lla

ps
ed

T
im

er
M

an
ag

er

In
te

ge
r

 : )
 (

us
ed

B
oo

le
an

 : )
In

te
ge

r
:

nB
yt

es
 (

m
al

lo
c

S
tr

in
g

 : )
 (

ge
tM

em
or

yM
an

ag
er

ID
V

oi
d

 : )
In

te
ge

r
:

nB
yt

es
 (

fr
ee

B
oo

le
an

 : )
In

te
ge

r
:

di
r

 (
ab

ov
eT

hr
es

ho
ld

)
In

te
ge

r
:

up
th

, 
In

te
ge

r
:

do
w

nt
h

, 
In

te
ge

r
:

si
ze

, 
S

tr
in

g
:

id
 (

M
em

or
yM

an
ag

er

co
lla

ps
ed

M
em

o
ry

M
an

ag
er

Figure A.1: Appia main UML
47



V
oi

d
 : )

C
ha

nn
el

:
ch

an
ne

l
 (

se
tC

ha
nn

el
V

oi
d

 : )
 (

de
ta

ch
F

ro
m

M
em

or
y

E
ve

nt
 : )

 (
cl

on
eE

ve
nt

V
oi

d
 : )

 (
at

ta
ch

T
oM

em
or

y
)

M
es

sa
ge

:
m

sg
 (

S
en

da
bl

eE
ve

nt
)

M
es

sa
ge

:
m

sg
, 

S
es

si
on

:
so

ur
ce

, 
In

te
ge

r
:

di
r

, 
C

ha
nn

el
:

ch
an

ne
l

 (
S

en
da

bl
eE

ve
nt

)
S

es
si

on
:

so
ur

ce
, 

In
te

ge
r

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
 (

S
en

da
bl

eE
ve

nt
)

M
es

sa
ge

:
m

sg
, 

S
es

si
on

:
so

ur
ce

, 
D

ire
ct

io
n

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
 (

S
en

da
bl

eE
ve

nt
)

S
es

si
on

:
so

ur
ce

, 
D

ire
ct

io
n

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
 (

S
en

da
bl

eE
ve

nt
)

 (
S

en
da

bl
eE

ve
nt

B
oo

le
an

 : 
de

ta
ch

ed

S
en

d
ab

le
E

ve
n

t

0.
.1

ev
en

t
 

)
S

es
si

on
:

so
ur

ce
, 

In
te

ge
r

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
, 

E
ve

nt
:

ev
en

t
 (

E
ch

oE
ve

nt
)

S
es

si
on

:
so

ur
ce

, 
D

ire
ct

io
n

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
, 

E
ve

nt
:

ev
en

t
 (

E
ch

oE
ve

nt

co
lla

ps
ed

E
ch

o
E

ve
n

t

)
C

ha
nn

el
:

ch
an

ne
l

 (
C

ha
nn

el
C

lo
se

)
 (

C
ha

nn
el

C
lo

se

C
h

an
n

el
C

lo
se

V
oi

d
 : )

Lo
ng

In
te

ge
r

:
w

he
n

 (
se

tT
im

eo
ut

Lo
ng

In
te

ge
r

 : )
 (

ge
tT

im
eo

ut
E

ve
nt

 : )
 (

cl
on

eE
ve

nt

)
In

te
ge

r
:

qu
al

ifi
er

, 
S

es
si

on
:

so
ur

ce
, 

In
te

ge
r

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
, 

Lo
ng

In
te

ge
r

:
w

he
n

, 
S

tr
in

g
:

tim
er

ID
 (

T
im

er
)

E
ve

nt
Q

ua
lif

ie
r

:
qu

al
ifi

er
, 

S
es

si
on

:
so

ur
ce

, 
D

ire
ct

io
n

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
, 

Lo
ng

In
te

ge
r

:
w

he
n

, 
S

tr
in

g
:

tim
er

ID
 (

T
im

er

)
In

te
ge

r
:

qu
al

ifi
er

, 
S

es
si

on
:

so
ur

ce
, 

In
te

ge
r

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
, 

S
tr

in
g

:
tim

er
ID

, 
Lo

ng
In

te
ge

r
:

w
he

n
 (

T
im

er

)
 (

T
im

er

Lo
ng

In
te

ge
r

 : 
w

he
n

S
tr

in
g

 : 
tim

er
ID

T
im

er

)
S

es
si

on
:

sr
c

, 
C

ha
nn

el
:

ch
an

ne
l

 (
C

ha
nn

el
In

it
)

C
ha

nn
el

:
ch

an
ne

l
 (

C
ha

nn
el

In
it

)
 (

C
ha

nn
el

In
it

C
h

an
n

el
In

it

E
ve

n
t

«r
ef

er
en

ce
»

E
ve

nt
 : )

 (
cl

on
eE

ve
nt

)
In

te
ge

r
:

qu
al

ifi
er

, 
S

es
si

on
:

so
ur

ce
, 

In
te

ge
r

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
, 

Lo
ng

In
te

ge
r

:
pe

rio
d

, 
S

tr
in

g
:

tim
er

ID
 (

P
er

io
di

cT
im

er
)

E
ve

nt
Q

ua
lif

ie
r

:
qu

al
ifi

er
, 

S
es

si
on

:
so

ur
ce

, 
D

ire
ct

io
n

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
, 

Lo
ng

In
te

ge
r

:
pe

rio
d

, 
S

tr
in

g
:

tim
er

ID
 (

P
er

io
di

cT
im

er
)

 (
P

er
io

di
cT

im
er

S
tr

in
g

 : 
tim

er
ID

0
 =

 
Lo

ng
In

te
ge

r
 : 

pe
rio

d

P
er

io
d

ic
T

im
er

V
oi

d
 : )

In
te

ge
r

:
m

od
e

 (
se

tQ
ua

lif
ie

rM
od

e
In

te
ge

r
 : )

 (
ge

tQ
ua

lif
ie

rM
od

eE
ve

nt
 : )

 (
cl

on
eE

ve
nt

)
In

te
ge

r
:

qu
al

ifi
er

, 
S

es
si

on
:

so
ur

ce
, 

In
te

ge
r

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
 (

C
ha

nn
el

E
ve

nt
)

E
ve

nt
Q

ua
lif

ie
r

:
qu

al
ifi

er
, 

S
es

si
on

:
so

ur
ce

, 
D

ire
ct

io
n

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
 (

C
ha

nn
el

E
ve

nt
)

 (
C

ha
nn

el
E

ve
nt

nu
ll

 =
 

E
ve

nt
Q

ua
lif

ie
r

 : 
qu

al
ifi

er
In

te
ge

r
 : 

m
od

e

C
h

an
n

el
E

ve
n

t

O
ut

pu
tS

tr
ea

m
 : )

 (
ge

tO
ut

pu
t

)
In

te
ge

r
:

qu
al

ifi
er

, 
S

es
si

on
:

so
ur

ce
, 

In
te

ge
r

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
, 

O
ut

pu
tS

tr
ea

m
:

st
re

am
 (

D
eb

ug
)

E
ve

nt
Q

ua
lif

ie
r

:
qu

al
ifi

er
, 

S
es

si
on

:
so

ur
ce

, 
D

ire
ct

io
n

:
di

r
, 

C
ha

nn
el

:
ch

an
ne

l
, 

O
ut

pu
tS

tr
ea

m
:

st
re

am
 (

D
eb

ug
)

O
ut

pu
tS

tr
ea

m
:

st
re

am
 (

D
eb

ug

co
lla

ps
ed

D
eb

u
g

Figure A.2: Appia prede�ned events UML
48



Exception

«reference»

Error

«reference»

)String:s, Integer:type (AppiaCursorException
)Integer:type (AppiaCursorException

Integer : type
5 = Integer : WRONGLAYER

6 = Integer : INVALIDPOSITION
3 = Integer : CURSORONTOP

2 = Integer : CURSORONBOTTOM
1 = Integer : CURSORNOTSET

4 = Integer : ALREADYSET

AppiaCursorException

)String:s, Integer:type (AppiaEventException
)Integer:type (AppiaEventException

Integer : type
 8 = Integer : WRONGTHREAD

5 = Integer : UNWANTEDEVENT
4 = Integer : UNKNOWNSESSION

3 = Integer : UNKNOWNQUALIFIER
1 = Integer : NOTINITIALIZED

 7 = Integer : COULDNOTBLOCK
6 = Integer : CLOSEDCHANNEL
2 = Integer : ATTRIBUTEMISSING

AppiaEventException

) (AppiaDuplicatedSessionsException

AppiaDuplicatedSessionsException

)String:s (AppiaException
) (AppiaException

AppiaException

)String:s (AppiaInvalidQoSException
) (AppiaInvalidQoSException

AppiaInvalidQoSException

)String:s (AppiaError

AppiaError

Figure A.3: Appia framework exceptions UML

49



50 Appia Universal Model Language Diagrams



Index

ALREADYSET, 34
Appia, 7
appia/AppiaCon�g.java, 28
AppiaCursorException, 15, 34, 37
AppiaEventException, 37
AppiaInvalidQoS, 31
AppiaOutOfMemory, 27, 43
AppiaWrongSizeException, 44
asyncGo, 18, 39
ATTRIBUTEMISSING, 38
bottom, 15, 34
boundSessions, 14, 16
Channel, 7, 8, 13, 14, 27, 28, 34, 44
channel, 5, 6, 12, 16, 17, 31{34, 36,

37, 40
cursor, 15, 33

ChannelClose, 14, 36, 38, 42
ChannelCursor, 7, 11, 14, 15, 34
channelDispose, 15, 36
ChannelEvent, 13, 20, 21, 42, 45
channelID, 32
ChannelInit, 14, 35, 42
checksumming, 27, 41
Class, 31
Classes

notation, 8
clone, 17
cloneEvent, 17, 21, 22, 43
CLOSEDCHANNEL, 38
createSession, 15
createUnboundChannel, 8, 12
CURSORNOTSET, 34

CURSORONBOTTOM, 34
CURSORONTOP, 34
data, 24, 26, 27, 42
Debug, 45
deep copy, 43
dest, 22, 40
Direction, 7, 16, 17, 36, 42
direction, 16, 17, 39
Direction.DOWN, 16
Direction.UP, 16
DOWN, 36, 39, 42, 43
down, 33
EchoEvent, 20, 39
EchoEvents, 14
encryption, 27, 41
end, 14
evAccept, 15, 31
Event, 7, 12, 16, 17, 19, 20, 37, 40,

43
event, 5, 7, 15{17, 30, 31, 36, 42

clone, 43
debug, 45
direction, 31
provided, 31
required, 31
scheduling, 32
order, 38

sendable, 40
sub-classing, 17, 20, 38

event path, 12
EventScheduler, 12
EventScheduler, 12

51



52 INDEX

EventQuali�er, 19, 20, 42, 45
EventScheduler, 12, 39
eventScheduler, 32
evProvide, 15, 31
evRequire, 15, 31
ExtendedMessage, 8, 27
false, 28
FIFO, 38
getMsgWalk, 42
getSource, 37
getTimeProvider, 28
go, 14, 17, 24, 38
handle, 16, 38
id, 44
inheritance, 5
init, 17, 18, 38
jump, 33, 34
jumpTo, 33, 34
Layer, 6, 7, 12, 16, 32, 36
layer, 5, 12, 13, 30{34, 36
len, 24, 26
MemoryManager, 28
Message, 7, 8, 23{28, 40
message, 22, 40
Methods

notation, 8
MsgBu�er, 7, 24, 26, 27
MsgWalk, 7, 25{27, 41, 42
newSize, 44
next, 26, 27, 42
NOTIFY, 19, 42, 43, 45
NOTINITIALIZED, 38
NULL, 39
null, 27, 37, 42, 43
Object, 17, 40

OFF, 19, 42, 45
o�, 24, 26
o�set, 33
ON, 19, 42, 43, 45
peek, 26
PeriodicTimer, 21, 22, 43
pop, 26, 41
priority, 17
push, 26
QoS, 4{8, 12, 13, 15, 30{32, 34
Quality of Service, see QoS
quotaOn, 28
SendableEvent, 11, 23, 27, 28, 40
SendableEvents, 22
Session, 6, 7, 12, 16, 36
session, 5, 6, 13, 15{17, 32, 34, 36,

43
binding, 32

setByteArray, 24
shallow copy, 43
size, 44
source, 17, 22, 39, 40
start, 14, 34
String, 8
thread, 39
threshold, 44
TimeProvider, 28, 29
Timer, 21, 43
timer, 5

aperiodic, 43
periodic, 42, 43

TimerManager, 43
top, 15, 34
truncate, 41
type, 34, 37
UNKNOWNQUALIFIER, 38
UNKNOWNSESSION, 38



INDEX 53

UNWANTEDEVENT, 38
UP, 18, 36, 42, 43
up, 33
WRONGLAYER, 34



54 INDEX



Bibliography

[1] N. Hutchinson and L. Peterson. The x-Kernel: An architecture for imple-
menting network protocols. IEEE Transactions on Software Engineering,
17(1):64{76, January 1991.

[2] Hugo Miranda. Plataforma de suporte ao desenvolvimento e composi�c~ao
de malhas de protocolos. Master's thesis, Departamento de Inform�atica
- Universidade de Lisboa, May 2001.

[3] Hugo Miranda, Alexandre Pinto, and Lu��s Rodrigues. Appia, a exible
protocol kernel supporting multiple coordinated channels. In Proceedings
of The 21st International Conference on Distributed Computing Systems
(ICDCS-21), pages 707{710, Phoenix, Arizona, USA, April 2001. IEEE
Computer Society.

[4] Jos�e Mocito, Liliana Rosa, Nuno Almeida, and Lu��s Rodrigues. Ap-
piaXML: A Brief Tutorial. Faculdade de Ciências da Universidade de
Lisboa, sep 2004. http://appia.di.fc.ul.pt/documentation.html.

[5] Network Systems Research Group. x-kernel Programmer's Manual (Ver-
sion 3.3), June 1997.

[6] J. Postel. User Datagram Protocol. Request for Comments 768, USc Inf.
S. Inst., August 1980.

[7] J. Postel. Internet Protocol. Request for Comments 791, USc Inf. S. Inst.,
September 1981.

[8] J. Postel. Transmission Control Protocol. Request for Comments 793,
USc Inf. S. Inst., September 1981.

[9] H. Zimmermann. OSI Reference model - The ISOModel of Architectur for
Open Systems Interconnection. IEEE Transactions on Communications,
COM-28(4):425{432, April 1980.

55



56 BIBLIOGRAPHY



Acknowledgments

Thanks to Bruno Sim~oes, Daniel Barradas, Fernando Vicente, Jo~ao Martins,
Jos�e Mocito, Liliana Rosa, Maria Jo~ao Monteiro, Paulo Sousa, Pedro Vicente,
Sandra Teixeira, S�ergio Formigo and Susana Guedes for their valuable help
in the development of this project.

57


	Overview
	Appia concepts
	Protocol definition
	Relation between sessions and channels

	Implementation classes
	Notation
	Changes from previous versions
	From version 2.0
	From version 1.2
	From version 1.1
	From version 1.0


	PPI description by class
	Class QoS
	Class Channel
	Class ChannelCursor
	Class Layer
	Class Session
	Class Direction
	Class Event
	Concurrency control

	Class EventQualifier
	Class ChannelEvent
	Class EchoEvent
	Classes Timer and PeriodicTimer
	Class SendableEvent
	Class Message
	Class MsgBuffer
	Class MsgWalk
	Class ExtendedMessage
	Class MemoryManager
	Using the memory manager

	Class TimeProvider

	PPI description by subject
	QoS definition
	Channel definition
	Channel definition using XML

	Channel disposal
	Event flow
	Ordering of events
	Multi-thread handling
	Echo Events
	Sendable events
	Messages
	Channel startup and shutdown
	Timers
	Memory management
	Debugging


	Appia Universal Model Language Diagrams

