ocoskE EUR: TV

IIIIIIIIIIII

Boosting STM replication
via speculation

Paolo Romano, R. Palmieri, F. Quaglia, L. Rodrigues

A SAPIENZA

UNIVERSITA DI ROMA

Replication and STMs

 STMs are being employed in new scenarios:
— database caches in three-tier web apps (FenixEDU)
— HPC programming languages (X10)
— in-memory cloud data grids (Coherence, Infinispan)

e ...and faced with new challenges:

— scalability |

-

— fault-tolerance

Critical issue for STM replication

10000 [T T T T
I STBench7 (write transactions) : :
TPC-W (write transactions)
1000 — """""""""""""""""""" """""""""""""""""""" """""""""""""""""""""" """"""""""""""""" :
of S o | -

Execution Time (millisec)

0 0.2 0.4 0.6 0.8 1

Cumulative Distribution Function

* >70% of transactions are 10-100 times in STMs than in DBMSs:
=> amplification of replica sync. cost when using DB replication schemes!

Active replication of transactional systems

1. Agreement on request execution order

— encapsulated by Total Order broadcast (TOB):
+ deadlock freedom
- TOB is an expensive communication primitive

2. Deterministic request processing

— concurrency is one of the possible sources of non-
determinism:

 concurrent execution of transactions needs to be
equivalent to sequential exec. according to TOB order

How to minimize
replica synchronization costs?

* Overlapping communication and processing:

— optimistic deliveries: replicas receive messages long
before their total order is established:

* in LANs optimistic and final delivery order normally match

— speculatively process transactions as soon as they are

optimistically delivered

Conventional

(Active) Replication Scheme

AB (xact req)

Processing

Speculative
(Active) Replication Scheme

AB (xact req)

Processing

Easier said than done....

Problem 1:
Deterministic transaction scheduling

Existing deterministic schedulers have significant limitations:

* a-priori knowledge of readsets/writesets:
— may lead to large conflict over-estimation

 acquire ALL locks as xact begins, release when it’s final-del.
— way more pessimistic than classic 2PL

time

— |

T,

Opt—deI(TB‘L Opt-del(T,) FinaI-deI(TB)‘L ‘llFinaI-deI(TA)
: I
I
: blocked on T locks
l

Tg: l holds locks till final order

ﬁ_.ggon

Problem 2: mismatches between
optimistic and final delivery orders

Opt-del(Tp) _
time

Opt-del(T,) FinaI-deI(TA)ll ¢lFinaI-deI(TB)

blocked on T, locks
: v
Tg: ‘ | holds locks till final order

i L

Ty

v

~+=00 o

o

\‘l/

@" Don’t be pessimistic...be speculative!

Opt-del(T,) Final-del(T,)
Opt-deI(TB)‘[lFinaI-deI(TB)
v v time .

i abort(T’,)
T.: : : : abort(Tp)
A : commit(T,)

T
1

Speculatively explore multiple Serialization Orders (SO)

+ take maximum benefit from modern multi-core architectures
+ shelter from network reordering
+ avoid lock convoying

\/,

@ Don’t be pessimistic...be speculative!

Opt-del(T,) Final-del(T,)
opt-de|(TB)‘l lFinaI-deI(TB)
v v time X

i abort(T’,)
T - | abort(Tp)
A : commit(T,)

T
|

o R R [

Speculatively explore multiple Serialization Orders (SO)

— #S0s can grow factorially with #msgs not yet finally delivered
* true in worst case: every xact conflicts with every other, hardly the case in practice
+ #SOs in which a xact observes distinct snapshots depends on actual conflict graph

THE SPECULATIVE TRANSACTIONAL
REPLICATION (STR) PROBLEM [SPAA10]

STR Problem: Model

Each replica holds a full copy of the STM

Application generates a transactional request (or
simply transaction), T,, and propagates it via TOB
TOB delivers two events:

— opt-delivery(T.): early guess of final order

— final-delivery(T.): agreed total order

For each T,, one or more speculative transactions,
denoted as TJ, are locally executed by each replica

STR Problem: Specification Overview

In addition to classic 1-copy serializability, the
STR problem is specified by the following
three properties:

1. consistency

2. non-redundancy

3. completeness

STR problem - Consistency
Consistency: opacity.

Prevents transactions from observing inconsistent
(non-serializable) snapshots

* important for safety in non-sandboxed environments
e avoids wasting computational resources in “useless”

transactions:
— not associated with any possible final AB-delivery order

STR problem - Non-redundancy

Non-redundancy: no two speculative instances of the
same transaction observe the same snapshot.

Filters out trivial solutions that blindly enumerate all
permutations of Opt-delivered transactions:

* force solutions to reason on conflict relationships
among transactions before exploring new
serialization orders

STR problem - Completeness

Completeness: Let 5 be the set of Opt-delivered, but
not yet TO-delivered, transactions.

If the system stops Opt- and TO-delivering messages,
eventually every permutation of 2 that produces a
distinct snapshot is explored.

e Shelters from any possible mismatch between
optimistic and final delivery orders

An STR Protocol [ISPA2010]

Key idea
Speculative Polygraph (SP)

* inspired by Papadimitriou’s Polygraph [JACM79]:
— originally used to identify view-serializable schedules

— polygraphs embed a family of digraphs, each
associated with a different equivalent serial history

* SPs support:

— on-line identification of all and only non-equivalent
serialization orders of a speculative transaction

— tolerate the coexistence of speculative transactions in
the same execution history

e
Q@%Speculatlve Polygraphs

SP(TJ)=(N,A,B) where:
N: set of vertexes, associated with (speculative) transactions
A: set of merging edges (TS @=>T/) which merges SP(T) and SP(T/)

reae-irom

TS w(x.®)
T r(x?) @ relationships

B: set of asymmetric bipaths denoted as <(T,Y @=T)), (T/>T')>

I_rjsfr"("x(’s‘;s) @ not read-from
TV w(x Y @ relationships

The importance of being ...
non-redundant

5.00

" Blind Sp')eculation'
4.50

4.00
3.50
3.00
2.50
2.00

1.50

#Spec. Transactions / #0pt-Delivered Msgs

1.00 *

2 4 6 8 10 12 14
Opt-Delivered Msgs (m)

Simulation study based on real (STM) workloads:
Optimal STR scheme: #S0s=[2.5-5] with 15 opt-delivered xacts
Blind enumeration: #50s=1,000,000 with 10 opt-delivered xacts

To be or not be... complete?

* Completeness can have a considerable price:

1. querying Speculative Polygraphs has an
exponential cost in the number of bi-paths

2. the number of serialization orders in which a
transaction T needs to be re-executed grows
factorially with the number of transaction T
conflicts with

What about relaxing completeness?

Relaxing completeness

* The relevance of the completeness property
depends on the likelihood of mismatches
between final and optimistic delivery orders

* This led us to design two additional protocols:

. completeness

22 =) V4
| n.c../\.

AGGRO OSARE Polygraphs

at-most one.

some “cheap”
speculative order

every distinct
speculative orders

speculative order

AGGRO [NCA10] — Main Idea

BASE ASSUMPTION: “optimistic and final
delivery order coincide with high probability”

* Transactions are speculatively started
immediately after their optimistic delivery...

* and try to execute in a serialization order
compliant with the optimistic delivery order:

— speculative snapshot are aggressively propagated
along chains of speculative conflicting transactions

AGGRO — Key Problem

* To maximize parallelism, transactions are
activated without waiting for previously opt-
delivered ones to be committed

* Two consequences.
— writes of prev. xacts may be observed too soon:
* non-opaque schedules

— writes of prev. xacts may be missed:
 different serialization order (snapshot miss event)

AGGRO — algorithm in a nutshell (i)

* If T, writes X:
— mark X as Work in Progress (WIP) by T.
— kill all T; that:
1. already read X, and snapshot miss

2. follow T, in opt-delivery order
=> ensure T, is aligned with opt-delivery order

* If T, reads X:

— if X is marked as WIP by a xact that precede T, in the
opt-delivery order: wait till T, unmarks X as WIP

— return the version created by the most recent xact
preceding T,

AGGRO — algorithm in a nutshell (ii)

* Upon completion of transact. execution:

— release locks on writeset:
* this makes write-set readable only when it’s stable
* avoiding leakage of intermediate snapshots

* Upon final delivery of T,

— wait until all xacts preceding T.in final order
commit

— validate(T,) and accordingly commit/abort it

AGGRO - What speedups?

* no mismatch between optimistic and final delivery

* baseline uses opt-deliveries but does not propagate
snapshots

] List a
no speculation i speculation
8000 , . ont . , .
s s Opt -
000 [ff|- S Opt -
. | | Aggro - 3 |
2] | | Aggro - | /
$ 6000 W e - Aggro -
= } } } ; } ;i
2 >
E 5000 .
p | 10 speedup y
c | | | | N
S 4000 [Pl .
2 | | | .
<} L
o 3 3 3 : 3
BO00 [¢ | T
2000]

10000 15000 20000 25000 30000 35000
Transactions per Second (\)

OSARE [SRDS11] — Main Idea

 Asin AGGRO, attempt to serialize xacts according to
opt-delivery order.

* Unlike AGGRO, if a xact T undergoes a snapshot miss,
don’t abort it, but

— explore new speculative serialization orders in an
opportunistic fashion:

 avoiding expensive polygraphs’ manipulations

— activate a new instance of T realigned with optimistic
delivery order

OSARE®": Opportunistic Speculation in Active Replication

(*) OSARE means “to dare” in Italian

OSARE — how complete?

Largest set of explored speculative serialization orders: O(2")

— Full permutation tree is O(n!)

-
-——

transactions serialized according _
to the optimistic delivery order ~ __-=7"

—

Speed-up (%)

OSARE — what speedups?

200 %

150 %

100 %

50 %

0 %

Labyrinth++ Osare/SM
Labyrinth++ Osare/Opt &z
Labyrinth++ Osare/Aggro
Yada++ Osare/SM
Yada++ Osare/Opt
Yada++ Osare/Aggro

VAN

<
4
%
%
%
%
%
%
%
%
%
%
%
%
2
%
%
%
%
‘4

9.9

<2

el |

VAN

1000/16% 2000/26% 3000/34% 4000/48%
Transactions per second / % Msg Reordering

Conclusions

Bad news:

— Replication overhead are strongly amplified in STMs

Good news:

— Active replication costs can be strongly reduced by
speculatively overlapping processing and communication

We formalized the Speculative Transactional
Replication (STR) problem...

...and proposed three protocols exploring different
trade-offs for what concerns completeness

Open questions

* Are there other interesting trade-offs for what
concerns completeness?

 How to apply speculative techniques to replication
protocols other than active replication?

— deferred update replication technique (a.k.a. certification
or DBSM [DPDO03]):

* in [Systor11] we proposed a non-complete (a-la AGGRO)
speculative protocol

* what about different degrees of completeness?
— lease based certification protocols [Middleware10]?
— partial replication protocols [SRDS10,PRDC11]?
— your favorite replication protocol!

Thanks for the attention

PV 4T

ocoskE EUR: TV

IIIIIIIIIIII

References

[DPDO03] Fernando Pedone, Rachid Guerraoui, and Andr\&\#233; Schiper. 2003. The Database State Machine Approach.
Distrib. Parallel Databases 14, 1 (July 2003), 71-98.

[ISPA10] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho and L. Rodrigues, An Optimal Speculative Transactional
Replication Protocol, Proc. 8th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA), Taiwan, Taipei, IEEE Computer Society Press, September 2010

[Middleware10] N. Carvalho, P. Romano and L. Rodrigues, Asynchronous Lease-based Replication of Software
Transactional Memory, Proceedings of the ACM/IFIP/USENIX 11th Middleware Conference (Middleware), 2010

[PRDC11] P. Ruivo, M. Couceiro, Paolo Romano and L. Rodrigues, Exploiting Total Order Multicast in Weakly Consistent
Transactional Caches, Proc. IEEE 17th Pacific Rim International Symposium on Dependable Computing (PRDC'11),
Pasadena, California, Dec. 2011

[SPAA10] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho and L. Rodrigues, On Speculative Replication of Transactional
Systems (Brief Announcement), Proc. 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
Santorini, Greece, ACM Press, June 2010

[SRDS10] N. Schiper, P. Sutra and F. Pedone, P-Store: Genuine Partial Replication in Wide Area Networks, 29th
International Symposium on Reliable Distributed Systems (SRDS 2010)

[SRDS11] R. Palmieri, F. Quaglia and P. Romano, OSARE: Opportunistic Speculation in Actively REplicated Transactional
Systems, The 30th IEEE Symposium on Reliable Distributed Systems (SRDS 2011), Madrid, Spain, Oct. 2011

[Systor11] N. Carvalho, Paolo Romano and L. Rodrigues, SCert: Speculative Certification in Replicated Software
Transactional Memories, Proceedings of the 4th Annual International Systems and Storage Conference (SYSTOR 2011)

