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Best-Effort Nature of HTM

No progress guarantees:

« Atransaction may always abort

...due to a number of reasons:
* Forbidden instructions
« Capacity of caches (L1 for writes, L2 for reads)
* Faults and signals

« Contending transactions, aborting each other

Need for a fallback path, typically a lock or an STM



When and how to activate the fallback?

« How many retries before triggering the fall-back?
* Ranges from never retrying to insisting many times

« How to cope with capacity aborts?
* GiveUp — exhaust all retries left
« Half — drop half of the retries left
« Stubborn — drop only one retry left

 How to implement the fall-back synchronization?
« Wait — single lock should be free before retrying
* None - retry immediately and hope the lock will be freed
* Aux — serialize conflicting transactions on auxiliary lock



Is static tuning enough?

Focus on single global lock fallback

Heuristic:
Try to tune the parameters according to best practices

« Empirical work in recent papers [SC13, HPCA14]

* Intel optimization manual

GCC.:
Use the existing support in GCC out of the box
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Why Static Tuning is not enough

Speedup with 4 threads (vs 1 thread non-instrumented)

Benchmark GCC Heuristic Best Tuning

genome 1.54 3.14 3.36 wait-giveup-4
intruder 2.03 1.81 3.02 wait-giveup-4
kmeans-h 2.73 2.66 3.03 none-stubborn-10
rot-I-w 2.48 2.43 2.95  aux-stubborn-3
ssca2 1.71 1.69 1.78 wait-giveup-6
vacation-h 2.12 1.61 2.51 aux-half-5
yada 0.19 0.47 0.81 wait-stubborn-15

~)

room for improvement

Intel Haswell Xeon with 4 cores (8 hyperthreads)



No one size fits all
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Are all optimization dimensions relevant?

« How many retries before triggering the fall-back?
* Ranges from never retrying to insisting many times

 How to cope with capacity aborts?
* GiveUp — exhaust all retries left
» Half — drop half of the retries left
« Stubborn — drop only one retry left

 How to implement the fall-back synchronization?

« Wait — single lock should be free before retrying

* None - retry immediately and hope the lock will be freed
* Aux — serialize conflicting transactions on auxiliary lock

aux and wait perform similarly

When none is best, it is by a marginal amount

Reduce this dimension in the optimization problem



Self-tuning design choices

3 key choices:

- How should we learn?

- At what granularity should we adapt?

- What metrics should we optimize for?



How should we learn?

- Off-line learning
- test with some mix of applications & characterize their workload
- infer a model (e.g., based on decision trees) mapping:
workload =» optimal configuration

- monitor the workload of your target application, feed the model with
this info and accordingly tune the system

- On-line learning
- no preliminary training phase
- explore the search space while the application is running
- exploit the knowledge acquired via exploration for tuning



How should we learn?

- Off-line learning
- PRO:
* no exploration costs

- CONSs:

- initial training phase is time-consuming and “critical”
* accuracy is strongly affected by training set representativeness
- non-trivial to incorporate new knowledge from target application

- On-line learning reconfiguration cost is low with HTM
- PROs: => exploring is affordable

- no training phase = plug-and-play effect

- naturally incorporate newly available knowledge
- CONs:

- exploration costs




Which on-line learning techniques?

Uses 2 on-line reinforcement learning techniques in synergy:
« Upper Confidence Bounds: how to cope with capacity aborts?

* Gradient Descent: how many retries in hardware?

« Key features:
* both techniques are extremely lightweight =» practical
» coupled in a hierarchical fashion:
» they optimize non-independent parameters

e avoid ping-pong effects



Self-tuning design choices

3 key choices:

- How should we learn?

- At what granularity should we adapt?

- What metrics should we optimize for?



At what granularity should we adapt?

- Per thread & atomic block
- PRO:
- exploit diversity and maximize flexibility

- CON:

- possibly large number of optimizers running in parallel
* redundancy =» larger overheads
* interplay of multiple local optimizers

- Whole application

- PRO:
- lower overhead, simpler convergence dynamics

- CON:
- reduced flexibility



Self-tuning design choices

3 key choices:

- How should we learn?

- At what granularity should we adapt?

- What metrics should we optimize for?




What metrics should we optimize for?

- Performance? Power? A combination of the two?

- Key issues/questions:

- Cost and accuracy of monitoring the target metric

- Performance:

+ RTDSC allow for lightweight, fine-grained measurement of latency
- Energy:

* RAPL: coarse granularity (msec) and requires system calls

- How correlated are the two metrics?



Energy and performance in (H)TM:
two sides of the same coin?

- How correlated are energy consumption and throughput?

- 480 different configurations (number of retries, capacity aborts
handling, no. threads) per each benchmark:

- includes both optimal and sub-optimal configurations

Benchmark | Correlation Benchmark Correlation
genome 0.74 linked-list low 0.91
intruder 0.84 linked-list high 0.87

labyrinth 0.82 skip-list low 0.94
kmeans high 0.76 skip-list high 0.81
kmeans low 0.92 hash-map low 0.98
ssca2 0.97 hash-map high 0.72
_vacation high | 0.00 | rbt-low 0.95

vacation low rbt-high 0.73

yada 0. ____average | 081 |




Energy and performance in (H)TM:
two sides of the same coin?

- How suboptimal is the energy consumption if we use a
configuration that is optimal performance-wise?

Benchmark | Relative Energy Benchmark Relative Energy
genome 0.99 linked-list low 1.00
intruder 1.00 linked-list high 1.00

labyrinth 0.92 skip-list low 1.00
kmeans high 1.00 skip-list high 0.98
kmeans low 1.00 hash-map low 0.99

ssca2 1.00 hash-map high 0.99
rbt-low 1.00
vacation low 1.00 rbt-high 1.00

yada 0.89




T
(G)Tuner

Performance measured through processor cycles (RTDSC)

Support fine and coarse grained optimization granularity:
* Tuner: per atomic block, per thread -
* no synchronization among threads
G obany-Tuner: application-wide configuration
* Threads collect statistics privately
* An optimizer thread periodically:

« Gathers stats & decides (a possibly) new configuration

Periodic profiling and re-optimization to minimize overhead



Evaluation
RTM-SGL RTM-NOrec
* |dealized “Best” variant * |dealized “Best” variant
* Tuner * Tuner
* G-Tuner * G-Tuner
* Heuristic: GiveUp-5 * Heuristic: GiveUp-5
« GCC  NOrec (STM)

Adaptive Locks [PACTO09]

Intel Haswell Xeon with 4 cores (8 hyper-threads)
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Evaluating the granularity trade-off
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Take home messages

Tuning of fall-back policy strongly impacts performance

Self-tuning of HTM via on-line learning is feasible:
* plug & play: no training phase

« gains largely outweigh exploration overheads

Tuning granularity hides subtle trade-offs:

 flexibility vs overhead vs convergence speed

Optimize for performance or for energy?
« Strong correlation between the 2 metrics

 How general is this claim? Seems the case also for STM
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Thank you!

Questions?



