Bridging the gap between transactional memory
and two emerging hardware technologies:
non-volatile memory &
heterogeneous computing

Paolo Romano ™\

romano@inesc-id.pt S .
. . @. P -‘i‘ inescid
Lisbon University & INESC-ID SDO3a

)

(g

Roadmap

e About me
* About IST & INESC-ID
* Introduction to Transactional Memory

* Transactional Memory & emerging HW technologies:
* Non-Volatile Memory [IPDPS’18/JPDC’19]
* Heterogeneous Computing [PACT’19]

About me

e MSc at Tor Vergata (2002)

* PhD at Sapienza (2004-2007)

* Senior Researcher at INESC-ID, Lisbon, Portugal (2008-today)
 Assistant Professor, Computer Engineering, IST, U. Lisbon (2011-2015)
» Associate Professor, Computer Engineering, IST, U. Lisbon (2015-today)

About IST

* ST, Lisbon University:
* Top engineering school of Portugal

* Two sites:
* Alameda (Lisbon center)
* Tagus Park (half-way to the Atlantic Ocean)

* Computer Engineering Department:
* 91 Faculty members, 5 scientific areas
* Pioneering open search process for faculty positions

About INESC-ID

e Research center affiliated with IST
e Partly owned by IST

* No-profit & private nature enables agile processes (e.g., hiring, purchases)

* Hosts researchers (mostly IST faculty members) with diverse background
» Strong impulse to pursue interdisciplinary research
* Support for both project administration and proposals ° """""""""""""" ° ETtdffhof'E;P

. . Project Human
« 20" anniversary in 2019! A °

Energy Information Interactive

Systems and Decislon Intelligent
Support Systems
Systems

o o o))

Computing
Systems and

Embedded
Electronic
Systems

Communication

Roadmap

e About me
e About IST & INESC-ID

* Transactional Memory & emerging HW technologies:
* Non-Volatile Memory [IPDPS’18/JPDC’19]
* Heterogeneous Computing [PACT’19]

The era of free performance gains is over

e Overthelast30vyears: . ™ T
. 10 g | Transistors
* new CPU generation o8 ‘ ‘ ‘ (thousands)
=> free Speed'up '8 | Single-Thread
Performance
1ot (SpecINT x 10°)
* Since 2003: - | Freauency (MHz)
* CPU clock speed plateaued... , Typical Power
* but Moore’s law chase 10] :\:Nat:) f
. umber o
continues: 10’ 3 Logical Cores
e Multi-cores, 10 _,i,,: T % ,..........m:‘:’“ AAAAAAAAAAAAAAAAAAAAAAAAAA |
Hyperthreading... ' i i i
1970 1980 1990 2000 2010 2020
Year

FUTURE IS PARALLEL

Traditional Software Scaling

7X

Speedup 3.6X
1.8x

User code

Traditional I
Uniprocessor

Time: Moore’s law

>

ldeal Multicore Software Scaling

X

Speedup 1 8x 3.6x
User code DDDD
L
Multicore I i I I I i
B & & &
' = i 8
nfortunately this is not the case 3 &

In practice....

Real-World Multicore Scaling

Speedup
1.8X 2X 2.3%
Y,
b b L Y
6 48 rL oI N
User code A @;‘ @@ F;_@mu_‘ @@DQ

Multicore I I I I
E 3

Hard to parallelize application efficiently: i
- correct synchronization :

- load balancing
- data locality

Coarse-grained Locking?
simple but does not scale

Amdahl’'s Law:
Speedup = 1/(ParallelPart/N + SequentialPart)

Pay for N = 128 cores
SequentialPart = 25%

As num cores grows the effect of 25%
becomes more acute

2.3/4,2.9/8, 3.4/16, 3.7/32....

Fine-grained Locking?

Fine grained parallelism

© has huge performance
© benefit
Coarse . Fine /
Grained [p Grained
25% E“ @‘%‘E 25%
‘ Shared Shared
i ©i@n®©
© ©
© © 75% 75%
‘ ‘ Unshared Unshared
© ©

Fine-grained Locking?
easier said than done

Fine grained locking is hard to get right:

— deadlocks, livelocks, priority inversions:

— complex/undocumented lock acquistion protocols
— no composability of existing software modules

... and a verification nightmare:
* subtle bugs that are extremely hard to reproduce

Lock-based synchronization does not support
modular programming

* Synchronize moving an element between lists
void move(list 11, list 12, element e)
{if (I1.remove(e)) 2.insert(e); }

* Assume remove/insert acquire a per-list lock
* Consider two threads that execute:
Threadl Thread?

move(listl,list2,e) move(list2,list1,e’)

listl.lock() = OK EZED'E;AL@CK list2.lock() = OK
list2.lock() = wait T listl.lock() =» wait T2

Transactional memory (TM)

atomic
A.withdraw(3)
B.deposit(3)
end

e Same idea as in a ACIB database transaction:

— “Write simple sequential code & wrap atomic around it
— Hide away synchronization issues from the programmer

* Programmers say what should be made atomic...
and not how atomicity should be achieved

— way simpler to reason about, verify, compose
— similar performance to fine-grained locking

* via speculation & possibly hardware support

TM : Brief historic overview

— Original idea dating back to early 90s
* Herlihy/Moss ISCA 1993 =» hardware-based

— Largely neglected until advent of multi-cores (~2003)

— Over the last 15 years:

* one of the hottest research topics in parallel computing

— Since ~2013:
* IBM and Intel CPUs ship with hardware support for TM

— Standardization of language supports for C/C++

— Integration in most popular programming languages

How does it work?

* Various implementations are possible:
—|Software (STM):

* instrumentation of read and write accesses

— Hardware (HTM):

 extension of the cache consistency mechanism

— Hybrid (HyTM)

* mix of the two worlds that tries to achieve the best of both

STM

* Many algorithms proposed over the last decade(s):
— DSTM,JVSTM,TL,TL2,LSA,TinySTM,SwissTM,TWM,NOREC,AVSTM...

» Key design choices
» word vs object vs field based
* single-version vs multi-version

* in-place write+undo logs vs deferred writes+redo logs

lock-based vs lock-free

commit-time locking vs encounter-time locking

safety and progress semantics

Example STM Algorithm : TL2
(Transactional Locking 2)

Dave Dice, Ori Shalev, and Nir Shavit.
Transactional locking Il. DISC 2006

TL2 overview

* Key design choices

word- vs object vs field based

single-version vs multi-version

in-place write + undo logs vs deferred writes + redo logs
lock-based vs lock-free

lazy locking vs eager locking

visible vs invisible reads

progress : no deadlock, no livelocks, no abort for RO tx

/

achieved via an external contention manager
(e.g., exponential back-off of aborted transactions)

Array of Versioned-

Write-Locks
Application

Memory

Versioned Locks
<

B

PS = Lock per Stripe (separate array PO = Lock per Object
of locks) (embedded in object)

Read-only Transactions

Mem Locks . VClock

On Tx begin

RV < VClock

On Read

read lock, read mem, read lock:
check unlocked, unchanged, and
v# <= RV

On Commit

nothing to be done!

Mem Locks

Update transactions

Commit

RV

On Tx beqgin

RV & VClock
On Read/Write

check unlocked and v# <= RV
then add to Read/Write-Set

On Commit

1. Acquire Locks

2. WV = F&I(VClock)

3. Validate each v# <= RV

4. Release locks with v# < WV

STM Performance: the bright side

Skip list, 16k elements, 20% updates

Throughput (x 10° txs/s)

20 40 60 80 100 120 140 160 180
Number of threads

(Azul — Vega2 — 2 x 48 cores)

STM Performance: the dark side

Sources of overhead in STMs

* STM scalability is as good if not better than fine-grained
locking, but overheads are much higher

e Key sources of overhead:

— Instrumented accesses — constant overhead on every read/write

— Readset vc\Q\’_ion l@{g {gh@ [}n@[?@ﬂW@[f'@

doertheldintyAwelnk
=>» Hardware TV

d items

How does it work?

Various implementations are possible:
— Software (STM):

* instrumentation of read and write accesses

—{Hardware (HTM):

 extension of the cache consistency mechanism

—{Hybrid (HyTM)

* mix of the two worlds that tries to achieve the best of both

HTM is now available in several CPUs

Intel: most CPUs since Haswell family (~2013)
IBM: BG/Q, zEC12, Power8

HTM implementations are NOT born equal...
Yet, they share two important commonalities:

1. Based on cache coherency protocol

2. Best-effort nature

Overview of Intel’s HTM: TSX

CPU 1 CPU 2

xbegin
read x: O /| Set bit read on x cache line
write y =1 // Buffer write in L1 cache

xend /I Atomically clean bits and publish
xbegin
read y: 1
_ _ invalidation snooped write
write y = 2 Memory Bus invalidates tx read
x:0--r BN¥ CPU CPU L1 abort

Y SV Cach Cache AR
y ache T4%: on ache [}

L2 Cache L2 Cache

L3 Cache

HTM'’s best effort nature

No progress guarantees:

» Atransaction may always abort

...due to a number of reasons: HTM alone s not enough

» Capacity of caches
* Forbidden instructions (e.g., system calls)
» Faults and signals

« Contending transactions, aborting each other

Fallback plan!

* After a few attempts using HTM, the tx is executed using
software synchronization:

— Single global lock (current standard approach)
* PRO: success guarantee, support for not-undoable ops.
* CON: no parallelism (extermination of concurrent hw tx)

— STM =>» Hybrid TM

* PRO: fallback path does support parallelism
* CON: large synchronization overheads btw HTM and STM

Roadmap

 About me

 About IST & INESC-ID

* |Introduction to Transactional Memory
— Non-Volatile Memory [IPDPS’18/JPDC’19]
— Heterogeneous Computing [PACT'19]

Two emerging hardware technologies

* Non-Volatile Memory * Heterogeneous architectures

(inteD OPTANE DC O

PERSISTENT MEMORY

GPU GPU GPU

TRT— Y S — »
ASIC ASIC ASIC ASIC

Roadmap

About me

About IST & INESC-ID

Introduction to Transactional Memory

Transactional Memory & emerging HW technologies:

— Heterogeneous Computing [PACT'19]

-

Non-Volatile Memory (NVM)

* Fast byte-addressable storage

* Higher density/lower cost per byte when compared with volatile RAM
* Expect writes to be slower than RAM (2x-5x):

 Subject to wear off upon write (technology dependent)

r== = _D;at;se_ T T T \ Database

| In-memory Durable | |

| tables support | I NV

! | In-memory Durable

I RAM | : tables + support
——————————— - |

Free durability? 36

: emory &]
BIZLE IT- . ona‘ r.r‘ Hasw
":YansaC“ mwW ith Intel
mainstrea™ =,
Transac\‘\onal memory jsap IBM,

™ 'S n .
o012, 210~ "
peTERBRY 2012 or. brea tr

Working
mEmOry and

Concurrent

p -|Igbecomeg persistent store
wi .
Easy.

\

Can we combine both hardware revolutions?

Well, not directly...

Can we combine both hardware revolutions?

Well, not directly...

NV-HTM can do it on unmodified hardware
by leveraging hardware-software co-design...

...while achieving up to 10x better performance
when compared to solutions that
modify the hardware

Non-Volatile Memory: the bad news...

e CPU Caches (most likely) will continue being volatile:
* What is effectively written into memory?

— — » Applications must explicitly bypass caches:
e clflush, clflushopt, clwb

* Else:
* writes are not guaranteed to enter PM
e writes may be reordered

* What about applications that require
atomic access/transactions to memory
regions?

Core Core Core Core

still volatile Now persistent

40

Integrating NVM and Software-based TM

* Durability of transactions regulated via software concurrency is well-
understood: decades of literature in DBMS area!

* Example based on a recent PM-oriented software-based approach

[ASPLOSI6]: Unfortunately
* Upon write - .
1. Lock the value not possible with

2. Log (flush) the old value

3. Do the write HTM ! v’.’ begin

* Upon commit « & gev)
1. Flush write-set '
2. Add commit marker log(X)
3. Unlock values crash -—— -
4. Destroy log

recoverability 2l
commit_log

Hardware Transactional Memory (HTM)

_xbegin _xend

Concurrency is built on on cache
coherency protocols [ISCA93]

Atomically
W(X,1) W(Z,3) committed on cache

W(Y,2)

Private
Cache

Private
Cache

Shared

Private Cache

Cache

Private

o Example of a story of a non-durable (and
ache

non-atomic after recovery) transaction!

42

Hardware Transactional Memory (HTM)

_xbegin

W(X,1)
Log(X) clflush

(0]}
Cache

On

Memory
(NVM)

Externalization of cache-lines while the
transactions is running is not allowed!

43

Related Work

STM-based solutions[ASPLOS'11, ASPLOS'16] | HTM-based solutions [DISE’15, CAI'15]

* build on DBMS literature on logging| « Rely on modified HTM implementation
schemes: * PHTM [DISC15]:

) ?Ida%tfdd& ?ptlmlzed for PM * Flush cache-lines within transaction
exibie design * Order writes to logs via additional locks

* boilerplate on each load and store . :
* Commit flushes a commit marker

Drawbacks: Drawbacks:
- STM incurs much larger overhead | - Incompatible with commodity HTM
than HTM!

- Additional locks reduce concurrency
- Do not work with HTM and available capacity

44

NV-HTM: Transaction logging — 1/3

Working

_xbegin
Snapshot

x € R(X)
W(X, x+2)

Transaction 1
Transaction 2

log(X)
TS € ReadTS()

Non-Durable

commit confirmed com_rmt_ - —xend SN |og flushed onIy_after HTM
to application only flush_log commit

after transaction’s _])
log is fully flushed Wait preceding transactions

totally ordered log
commit_log(TS) maintained in a

Durable commit

decentralized fashion

NV-HTM: Transaction logging — 1/3

Pros:
v’ Ensure interoperability with existing HTM systems!

v’ Avoid contention hot-spots to maximize scalability

Challenge:

* Upon crash:
* no guarantee that updates of non-durably committed transaction hit PM

» possible corrupted snapshot upon failure!

46

Ordering Transactions

N o) > ™
O R O O

> > > . .
PSP PN * Each thread advertises current TS in TS array

* While the transaction is not running, the advertised

TS is 40, i.e., ts[i] = +o0

TS array

Thread 1 Thread 2 : i '
red rea e Before the transaction starts, a timestamp is taken

. - ts[i] = ReadTS()
X
ts[2]=2 * After non-durable commit:

wait 1. Advertise the TS taken inside the transaction

thread 1 Flush all log entries but the commit marker

2
3. Wait while there is an older transaction (smaller TS)
4. Flush commit marker

47

NV-HTM: Transaction logging — 1/3

Pros:
v’ Ensure interoperability with existing HTM systems!
v’ Avoid contention hot-spots to maximize scalability

Challenge:

* Upon crash:

* no guarantee that updates of non-durably committed transaction hit PM
» possible corrupted snapshot upon failure!

48

NV-HTM: Working and Persistent Snapshots — 2/3

* Application writes in a (volatile) working snapshot

* Logged writes are replayed asynchronously to produce a consistent
persistent snapshot on PM

* via background checkpoint process

in volatile RAM

Working Persistent Replayed via a
Snapshot : | SUEREIRE 1 background process

Transaction

49

NV-HTM: Working and Persistent Snapshots — 2/3

Pros:

v Writes to PM are 2x-5x slower than on volatile RAM!

Challenge:

- Memory efficiency: avoid maintaining 2 full copies of application’s
memory

50

Thread 1

Thread 2

Log filtering

=)
T
7,
bt
5=
£
£
o
O

:2)

7,
bt
5=
£
£
o
O

=3)

Commit(TS

Commit(TS=4)

E=5
G=1
Commit(TS

=5)

Cache Line

The Checkpoint Process may follow different policies to flush
the logs:

Naive approach: flush every log entry:
- Forward No Filtering (FNF)

Replay all writes but flush each updated cache line only once:
- Forward Flush Filtering (FFF)

Scan logs backwards and write/flush only most recent update:
- Backward Filtering Checkpointing (BFC)

51

NV-HTM: Working and Persistent Snapshots — 2/3

Pros:
v Writes to PM are 2x-5x slower than on volatile RAM!
v’ Provides opportunity to filter redundant (duplicate) writes in the log

* |ess writes/flushes === longer life for PM!

Challenge:

- Memory efficiency: avoid maintaining 2 full copies of application’s
memory

52

Memory efficiency via CoW — 3/3

* Efficient management of working and persistent snapshot via OS/HW-
assisted Copy-on-Write mechanism:
 duplicate on volatile memory only regions actually modified by application

Working Persistent
Snapshot Snapshot

% :

Application

53

Recovering from a crash

1. Checkpoint Process replays any pending logged transaction
* Updated persistent snapshot

2. Fork the Checkpoint Process:
* Checkpoint Process mmaps the Persistent Snapshot in shared mode

3. Worker Process mmaps the Persistent Snapshot in private mode
* Obtains a volatile copy of the Persistent Snapshot (the Working Snapshot)
* OS ensures Copy-on-Write

Experimental evaluation

 System configuration:
* 14C/28T TSX enabled Intel Xeon Processor (E5-2648L v4), 22MB L3 cache

* 32 GB RAM
* Emulate write to PM latency by spinning for 500ns

 Synthetic Benchmark: Bank
 STAMP Benchmark Suit [lISWC'08]

* Baselines:

« PHTM [DISE'15]
« PSTM [ASPLOS1H]

STAMP benchmarks

T —psm e nwvrmmg. | * Comparison for Kmeans (High contention)
—%— PHTM NV-HTM g,

(o]

(o]
>

* NV-HTM,p: enough capacity for all writes
* NV-HTM,,,: logs are 1/10 of all writes

* Checkpoint Manager has minimal impact in
throughout

~
T

(o))
T

()]
T

o
T

w
T

Throughput (xi0° TXs/s)

\e}
T

\ Up to ~4x greater

throughput than PHTM

o S 7T R - S < N/

Number of threads 26

STAMP benchmarks

Vacation (high)|Kmeans (high) Yada
Jwrites| flushes |writes| flushes |writes|flushes
NV-HTMy 1. £,)
NV-HTM ¢ :
PHTM i
PSTM | 1744

Average Writes and Flushes per transaction

- In average, NV-HTM, ;, produces 2.72x less writes than PHTM and 6.72x
less than PSTM, while only producing 13% more writes than NV-HTMyp

Log filtering - Comparison

e Solutions:

* NV-HTMyp: very large log = Checkpoint Process never awakes
NV-HTM,: Log size is comparable (~¥85%) to the amount of writes
NV-HTM,,: Log size is 1/10 the number of writes

NV-HTM¢ge: Flush Filtering

NV-HTMgyr: No Filtering

* Bank: High contention workload vs Low contention workload
» Different amount of writes
* Vary the pressure on the Checkpoint Process

Log filtering - Comparison

~2x greater throughput
than PSTM

Throughput (x106 TXs/s)

N

A

o

\ngh Contentlon

~10x greater throughput

than PHTM

%’e‘% S i &-&m

O—Ll\)w-h(ﬁ

Low Contention

S N 2 %
Threads

- 4+ - NV-HTMy p

Threads

- PSTM 4T
—X - PHTM + *
-0-0 7
o9 |
©,--0---000:0 - - - 91900
S o % “’0 o)

60

Log filtering - Comparison

NV—HTM PHTM |PSTM
NLP (85% |(10 (10X) ppp|(10X)FNF
Writes | 4.5 8.1 8.1 9.1 .
Flushes| 1.8 Wﬁ\ 1.83 6.4 6.3 (| 21.2
Average es and Flushes per transaction

- NV-HTM,,, produces 11.6x less flushes than PSTM

61

Ssumming up

* NV-HTM efficiently combines HTM and NVM

* Reduced overheads within Hardware Transactions
* Worker threads only need to flush data outside the transaction

* Aims to reduce the number of writes to NVM
* Checkpoint Process effectively filters repeated writes/flushes

* Does not requires hardware changes

e Up to x10 better throughput and 11.6x less flushes than state-of-the-
art solutions

Ongoing & Future work on TM + NVM

. . . intel) DC
* Intel has finally made NVM commercially available O ol erens waony
* Every previous work was based on simulation... u L!
* Need to reassess actual performance on realistic system [

* NV-HTM introduces a serial step in commit phase:
* Waiting for previous transactions to be durably committed, before a new
transaction can be durably committed (flush commit marker to NVM)

* Latency for flushing commit marker is on critical path of execution
* Can limit throughput especially if NVM latency is high

* Ongoing work on how to bypass this limitation

63

Roadmap

About me
About IST & INESC-ID
Introduction to Transactional Memory

Transactional Memory & emerging HW technologies:
— Non-Volatile Memory [IPDPS’18/JPDC’19]

Post-Moore Architectures: heterogeneity

Special
Purpose
Processor

Circuit switched
optical network

Future
devices

Standard
multi-core

CPU

65

Application development trends in the
heterogeneous computing era

The old way: Recent trend:

* CPU serves as master e W K] PEEY| TR Cooperative approach
* Bulk work done on ' * CPUs are better fit for, e.g.,:

hw accelerators H H I H H I ' i I * Latency sensitive appl.

H | * Fine grained tasks

—

Dramati;;l‘l: fied Memor
. . . y Lower Developer Effort
New a.bStr.aCtIons to S|mpllfy :zr::;znd Developer View Today Develg[}er View h
application development Unified M
both at the hw andfsw Tevel] (OpenCL runtime)
/ 59 % eE
2 ®o Oc Oa

Focus of this work “HBEBE WK T

Many applications are inherently concurrent

~_ P

% Focus of this work
~ o &) (e £

Simplify the development of concurrent applications
for heterogenous CPU+GPU systems

-2

Transactional Memory

CPUTM |{ Shared I\/Iemory GPU T™M
|
|

* Mature research \\ * More recent
* Widely available in: | « Adapted for GPUs
» Software - T T - * Highly parallel architecture

* Hardware * Threads execute lockstep
* combinations thereof

@ HeTM
Transactional Memory

for CPU+GPU systems

Challenges

Existing TM implementations rely on
fast intra-device communication

Serial inter-device communication makes
fine-grained synchronization difficult

Need to revisit the TM abstraction
and consistency criteria

Build a system upon this new abstraction

GPU

SMq S,

warpy warpy || warpg warp,

shared shared

Cache

PCM;L

cache

CPU

9

Correctness guarantee for traditional TM

P1. The behavior of every committed transaction has to be justifiable by the same sequential
execution containing only committed transactions, without contradicting real-time order.

P2. The behavior of any active transaction, even if it eventually aborts, has to be justifiable
by some sequential execution (possibly different) containing only committed transactions.

—— e
Hard notion of committed transaction:

need to transfer single transaction metadata over PCle
o - IEE .

70

Correctness guarantee for traditional TM

Correctness guarantee for HeTM

Intra-device
—__sync Inter-device
+ Fast Ssync

- Syncs local state

\\/- - Slow

+ Syncs global state

Speculative
Commit

Speculative HeTM (SHeTM): architecture

SHeTM metadata

Transaction batching
+ Amortizes synchronization costs

+ load-balancing using a shared queue

Shared dataset

Queueing
System

Modular design

CPU, | GPUq

uollejuawWnNJISul
INLOHS

uollejuUaWNIISuUl
INLOHS

SHARED,

Speculative HeTM (SHeTM): overview

Device local TM instrumentation

/ collects read/write sets
GPU i ___ .

/ \ 1 .
[GPU Batch TXg; p ! | Batch GPU TXs, time
+ N - L = N
Q | = — o -
e 'HIER 5[] &
= : SHeTM sees TXg, and TXc, as : 15| © : sl ©
=8 | twoverylarge transactions | ! Bl BAS | = | e
: e 4
CPU |
! |
" CPU Batch TX¢; S | Batch CPUTXg,
SN a— —m—e— e e ——_E———EE— P d \ - —_——
CPU and GPU Synchronization phase

74

work in parallel constructs the new dataset

Base (unoptimized) idea

Execution phase Validation phase Merge phase
? Case of
collect: RSGPU N WSCPU = @ .
GPU RSGPU 4 \WSGPU apply WSCPY Com m |t

N

c.onfl.gurable Dataset synchronization
time interval 75

Base (unoptimized) idea

Execution phase Validation phase Merge phase
? Case of
collect: RSEPU N WSCPU = @
GPU RSGPU 4 \\/SGPU apply WSCPU Abo rt
§ Q?'\g time
g < L G
vy g =
8 I/
collect: 2 5< ~ ,‘5’
W SCPU o b
= S

) 4 = I

c.onfl.gurable Dataset synchronization
time interval 76

Optimizations

 Synchronization imposes significative overheads!

* Some optimizations:
* Early validation kernels may reduce wasted work

* Execution of transactions can be overlapped with synchronization stages

Synchronization
Execution

Details
in the paper

GPU : Validation [______ I}{Iq:erge
i time
CPU /m / /. / E_X_KWSGPU
5 Non- bIockmg

execution

77

Evaluation

* Intel Xeon E5-2648L v4 (14C/28T, HTM, 32GB DRAM)
* Nvidia GTX 1080 (8GB XDDRS5, driver 387.34, CUDA 9.1)

* CPU TM:
* Intel’s hardware TM implementation (TSX)

* TinySTM in the paper

* GPU TM:
* PR-STM [EuroPar1s]

* Synthetic benchmark
* Random memory accesses on array of integers

* MemcachedGPU-TM
* Popular web caching application

78

Synthetic benchmark

 Evaluate the impact of the duration of the Execution phase

* Overhead of synchronization

* Benefits of two main optimizations
1. Early validation
2. Overlapping execution and synchronization

. Execution Validation Merge
TV —— »
A E _________ time
Py /” T e
| . Non-blocking

execution

79

Synthetic benchmark — Execution time

<
O
. . &, & In thi ' t:
' T n this experiment:
GPU | xecution A\ : @c& | . . . |
P | “time * no inter-devices conflicts (stresses the
CPU_ I heads of it batch
. . > overheads of commit batches)
Write intensive workloads:
- stress more SHeTM
(a) 100% update transactions (b) 10% update transactions ., only ~25% below sum
| § 4.0 ¢ CPU+GPU performance
— 1ol - 3.5 //%
gm%—ﬂ—& — A A 33-0
5 = 2-5 Read intensive workloads:
> >
8 PU-only ; A A A A
= \ QF:U Om.y 220 + SHeTM throughput is
9 8 —— GPU-only 1 ~95% th CPU+GPU
o 4 —o— SHeTMpugic S 1.0 6 the sum CPU+
= g —e— SHeTM < 8-8
o 2 = 33 =z 5 [e)) OO, A L X2 WX R =
> ° 2 @ 2 9 © %5 % PP DD D "
Execution Phase (msec) Execution Phase (msec)

Lo
C“’& : Merge
Synchronization overlappin R V.
! ! O\ time
v Pping
| ""Nb_n—bloc:king
execution
Non optimized Optimized
SHeTM cpy >HelM
100 11 I |_1|_| |==3 Non-blocking
o 80y L — 4 |=—= Processing
£ 601‘ H —[|
P , 70
Significative reduction on X ool
CPU and GPU idle time: 0
. 0) SHeTM basic — Validation
* CPU: 60% =» 45% 10 —— DiH
* GPU: 60% =» 20% GEJ 80I _::=E] | | | === Processing
= o
5 40
R
20
"5 %%%%%5% 20?2%%%%% .

Execution Phase (msec)

Synthetic benchmark — Early validation

Significative gains in medium . Execution : B\

contention scenarios Gﬂ_m § ——
cu_

-

Early validation can detect and decrease

the effective duration of conflicting
batches

)
= 02f- @ SHeTMy, cartyva

I_
OO . ! ! . L . ! .
T % v % B %

Probability of Conflict (%) 82

MemcachedGPU-TM

* Popular object caching system built by Facebook

* [S0CC19]: port of Memcached to GPU

* Complex lock-based scheme that unnecessarily restricts concurrency

* Workload:
* 99.9% of GETs and key frequency follow a Zipfian distribution (a = 0.5)

» Keys partitioned based on last bit:
* Odd keys = GPU; Even keys = CPU

* Emulate load unbalances:

 vary the popularity of keys maintained by GPU and CPU
* GPU steals CPU requests (non-zero probability of conflicting in a key)

MemcachedGPU-TM

* Emulate load unbalances:
 vary the popularity of keys maintained by GPU and CPU
* GPU steals CPU requests (non-zero probability of conflicting in a key)

GPU Steal with probability X%
(X=100% means that GPU

operates only on the keys
CPU requests assigned to CPU)

The higher the “steal” probability,
GPU requests the higher the inter-device
contention probability

84

MemcachedGPU-TM

Tuning the durations allows
high contention workloads to
still benefit from CPU+GPU \

overhead is ~“10% in
absence of contention

3505 | —6- SHeTMno-conflicts
o™ SHeTM steal 20%
|E —¢— SHeTM steal 80%
0.0 —A— SHeTM steal 100% |
YO 5)'0 76‘ 90 ‘36‘

Execution phase (msec) 85

Ongoing & future work on TM + GPUs

* Extend SHeTM to support multiple GPUs
* Exploit integrated GPUs to accelerate STMs

* Design of STMs for GPUs

Conclusions

* TM is a promising paradigm for simplifying concurrent programming
 Very hot research topic in the 1%t decade of 2000
* Today adopted in mainstream processors & programming languages

* New challenges/research opportunities are opened due to
emergence of new hardware technologies:
* Non-volatile memory
* Heterogeneous architectures

| would be glad to start collaborations on these fronts:
e Get in touch with me: romano@inesc-id.pt
* and meet f2f - | will be in Rome till Dec. 4

http://inesc-id.pt

...0r consider visiting my group in Lisbon!

V)

NN

Thanks for the attention!

e

Q&A

U

