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About me

• MSc at Tor Vergata (2002)
• PhD at Sapienza (2004-2007)
• Senior Researcher at INESC-ID, Lisbon, Portugal (2008-today)
• Assistant Professor, Computer Engineering, IST, U. Lisbon (2011-2015)
• Associate Professor, Computer Engineering, IST, U. Lisbon (2015-today)



About IST

• IST, Lisbon University: 
• Top engineering school of Portugal
• Two sites: 

• Alameda (Lisbon center)
• Tagus Park (half-way to the Atlantic Ocean)

• Computer Engineering Department:
• 91 Faculty members, 5 scientific areas
• Pioneering open search process for faculty positions



About INESC-ID

• Research center affiliated with IST
• Partly owned by IST

• No-profit & private nature enables agile processes (e.g., hiring, purchases)

• Hosts researchers (mostly IST faculty members) with diverse background
• Strong impulse to pursue interdisciplinary research
• Support for both project administration and proposals

• 20th anniversary in 2019!
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The era of free performance gains is over

• Over the last 30 years:
• new CPU generation

è free speed-up

• Since 2003:
• CPU clock speed plateaued...
• but Moore’s law chase
continues:

• Multi-cores, 
Hyperthreading...

FUTURE IS PARALLEL



Traditional Software Scaling

User code

Traditional
Uniprocessor 

Speedup
1.8x

7x

3.6x

Time: Moore’s law



Ideal Multicore Software Scaling

User code

Multicore

Speedup 1.8x

7x
3.6x

Unfortunately this is not the case
in practice….



Real-World Multicore Scaling

1.8x 2x 2.9x

User code

Multicore

Speedup

Hard to parallelize application efficiently:
- correct synchronization
- load balancing 
- data locality



Amdahl’s Law: 
Speedup = 1/(ParallelPart/N + SequentialPart)

Pay for N = 128 cores 
SequentialPart = 25%

Speedup = only 3.9 times!

Coarse-grained Locking?
simple but does not scale

As num cores grows the effect of 25%
becomes more acute 
2.3/4, 2.9/8, 3.4/16, 3.7/32….



Fine-grained Locking?
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Fine-grained Locking?
easier said than done

• Fine grained locking is hard to get right:
– deadlocks, livelocks, priority inversions:
– complex/undocumented lock acquistion protocols
– no composability of existing software modules 

... and a verification nightmare:
• subtle bugs that are extremely hard to reproduce



Lock-based synchronization does not support 
modular programming

• Synchronize moving an element between lists
void move(list l1, list l2, element e)
{ if (l1.remove(e)) l2.insert(e); }

• Assume remove/insert acquire a per-list lock
• Consider two threads that execute:

Thread1 Thread2
move(list1,list2,e) move(list2,list1,e’)
list1.lock() è OK list2.lock() è OK
list2.lock() è wait T1 list1.lock() è wait T2



Transactional memory (TM)

• Same idea as in a ACID database transaction:
– “Write simple sequential code & wrap atomic around it”.  
– Hide away synchronization issues from the programmer

• Programmers say what should be made atomic…
and not how atomicity should be achieved

– way simpler to reason about, verify, compose
– similar performance to fine-grained locking 

• via speculation & possibly hardware support

atomic
A.withdraw(3)
B.deposit(3)

end



TM : Brief historic overview
– Original idea dating back to early 90s

• Herlihy/Moss ISCA 1993 è hardware-based

– Largely neglected until advent of multi-cores (~2003)

– Over the last 15 years: 
• one of the hottest research topics in parallel computing

– Since ~2013:
• IBM and Intel CPUs ship with hardware support for TM

– Standardization of language supports for C/C++

– Integration in most popular programming languages 



How does it work?

• Various implementations are possible:
– Software (STM):

• instrumentation of read and write accesses

– Hardware (HTM):
• extension of the cache consistency mechanism

– Hybrid (HyTM)
• mix of the two worlds that tries to achieve the best of both



STM

• Many algorithms proposed over the last decade(s): 
– DSTM,JVSTM,TL,TL2,LSA,TinySTM,SwissTM,TWM,NOREC,AVSTM…

• Key design choices
• word vs object vs field based
• single-version vs multi-version
• in-place write+undo logs vs deferred writes+redo logs
• lock-based vs lock-free 
• commit-time locking vs encounter-time locking
• safety and progress semantics
• …



Example STM Algorithm : TL2
(Transactional Locking 2)

Dave Dice, Ori Shalev, and Nir Shavit. 
Transactional locking II. DISC 2006



TL2 overview

• Key design choices
• word- vs object vs field based
• single-version vs multi-version
• in-place write + undo logs vs deferred writes + redo logs
• lock-based vs lock-free
• lazy locking vs eager locking
• visible vs invisible reads
• progress : no deadlock, no livelocks, no abort for RO tx

achieved via an external contention manager 
(e.g., exponential back-off of aborted transactions)



Versioned Locks

Map

Array of Versioned-
Write-Locks

Application 
Memory

PS = Lock per Stripe (separate array 
of locks)

PO = Lock per Object
(embedded in object)

V#      



Read-only Transactions

On Tx begin
RV ß VClock
On Read
read lock, read mem, read lock: 
check unlocked, unchanged, and 
v# <= RV
On Commit
nothing to be done!
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34       0 

99       0 99       0 

50       0 50       0 

Mem    Locks

Reads from a consistent snapshot of memory.
No need to track and validate read set!
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Update transactions

On Tx begin
RV ß VClock

On Read/Write
check unlocked and v# <= RV

then add to Read/Write-Set
On Commit
1. Acquire Locks
2. WV = F&I(VClock)
3. Validate each v# <= RV
4. Release locks with v# ß WV

100 VClock

87       0 87       0 
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88       0 
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99       0 99       0 

50       0 50       0 

Mem    Locks
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STM Performance: the bright side 

(Azul – Vega2 – 2 x 48 cores)





STM Performance: the dark side 
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Sources of overhead in STMs

• STM scalability is as good if not better than fine-grained 
locking, but overheads are much higher

• Key sources of overhead:
– Instrumented accesses – constant overhead on every read/write 
– Readset validation – proportional to number of read items



How does it work?

• Various implementations are possible:
– Software (STM):

• instrumentation of read and write accesses

– Hardware (HTM):
• extension of the cache consistency mechanism

– Hybrid (HyTM)
• mix of the two worlds that tries to achieve the best of both



HTM is now available in several CPUs

• Intel: most CPUs since Haswell family (~2013)
• IBM: BG/Q, zEC12, Power8

• HTM implementations are NOT born equal…
• Yet, they share two important commonalities:

1. Based on cache coherency protocol

2. Best-effort nature



Overview of Intel’s HTM: TSX

CPU
1

CPU
2

Memory Bus

L1 
Cache

L1 
Cache

L2 Cache L2 Cache

L3 Cache

CPU 1 CPU 2

xbegin

TSX: on

read x: 0 // Set bit read on x cache line

x: 0 -- r

write y = 1 // Buffer write in L1 cache

y: 1 -- w

xend // Atomically clean bits and publish

x: 0
y: 1

xbegin
read y: 1

write y = 2

abort

invalidation snooped write
invalidates tx read

…

…

y: 1 -- r
x: 0
y: 2



HTM’s best effort nature

No progress guarantees:

• A transaction may always abort

…due to a number of reasons:

• Capacity of caches

• Forbidden instructions (e.g., system calls)

• Faults and signals

• Contending transactions, aborting each other



Fallback plan!

• After a few attempts using HTM, the tx is executed using 
software synchronization:

– Single global lock (current standard approach)
• PRO: success guarantee, support for not-undoable ops.
• CON: no parallelism (extermination of concurrent hw tx)

– STM è Hybrid TM
• PRO: fallback path does support parallelism
• CON: large synchronization overheads btw HTM and STM



Roadmap

• About me
• About IST & INESC-ID
• Introduction to Transactional Memory
• Transactional Memory & emerging HW technologies:

– Non-Volatile Memory [IPDPS’18/JPDC’19]
– Heterogeneous Computing [PACT’19]



Two emerging hardware technologies 

• Non-Volatile Memory • Heterogeneous architectures
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Non-Volatile Memory (NVM)

• Fast byte-addressable storage
• Higher density/lower cost per byte when compared with volatile RAM
• Expect writes to be slower than RAM (2x-5x):
• Subject to wear off upon write (technology dependent)

36

Database

NVMIn-memory 
tables

Durable 
support

Database

DiskRAM
In-memory 

tables
Durable 
support+

Free durability?



These are exciting times for programmers

Working 
memory and 

persistent store 
will become 
the same!

Concurrent 
programming 
will become 

easy!



Can we combine both hardware revolutions?

Well, not directly…



Can we combine both hardware revolutions?

NV-HTM can do it on unmodified hardware 
by leveraging hardware-software co-design…

Well, not directly…

…while achieving up to 10x better performance
when compared to solutions that 

modify the hardware



Non-Volatile Memory: the bad news…

Co
re
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re

Co
re
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re

Main 
MemoryCaches

Still volatile Now persistent
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• CPU Caches (most likely) will continue being volatile:
• What is effectively written into memory?

• Applications must explicitly bypass caches:
• clflush, clflushopt, clwb
• Else:

• writes are not guaranteed to enter PM
• writes may be reordered

• What about applications that require 
atomic access/transactions to memory 
regions?



Integrating NVM and Software-based TM

• Durability of transactions regulated via software concurrency is well-
understood: decades of literature in DBMS area!

• Example based on a recent PM-oriented software-based approach 
[ASPLOS’16]:

• Upon write
1. Lock the value
2. Log (flush) the old value
3. Do the write

• Upon commit
1. Flush write-set
2. Add commit marker
3. Unlock values
4. Destroy log

41

begin

end

x ß R(X)

W(X, x+2) crash 
recoverability

begin

end

x ß R(X)

W(X, x+2)

log(X)

commit_log

Unfortunately 
not possible with 
HTM!



Hardware Transactional Memory (HTM)
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Private 
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Main 
Memory

Shared 
Cache
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On 
Cache

On 
Memory
(NVM)

time

_xbegin _xend
Concurrency is built on on cache 
coherency protocols [ISCA’93]

Example of a story of a non-durable (and 
non-atomic after recovery) transaction!

W(X,1)
W(Y,2)

W(Z,3)
Atomically 

committed on cache

Crash

Y=2

Evicted



Hardware Transactional Memory (HTM)

Externalization of cache-lines while the 
transactions is running is not allowed!
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On 
Cache

On 
Memory
(NVM)

time

_xbegin

W(X,1)

Abort
Log(X) clflush



Related Work
STM-based solutions[ASPLOS’11, ASPLOS’16]
• build on DBMS literature on logging 

schemes:
• adapted & optimized for PM
• flexible design
• boilerplate on each load and store
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HTM-based solutions [DISC’15, CAL’15]
• Rely on modified HTM implementation
• PHTM [DISC’15]:

• Flush cache-lines within transaction
• Order writes to logs via additional locks
• Commit flushes a commit marker

Drawbacks:
- STM incurs much larger overhead 

than HTM!
- Do not work with HTM

Drawbacks:
- Incompatible with commodity HTM
- Additional locks reduce concurrency 

and available capacity



NV-HTM: Transaction logging – 1/3
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_xbegin

log(X)

W(X, x+2)

_xend

flush_log

x ß R(X)

TS ß ReadTS()

commit_log(TS)

Wait preceding transactions

Non-Durable 
commit

Durable commit

Working 
Snapshot

logs 1
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2

log flushed only after HTM 
commit

commit confirmed 
to application only 
after transaction’s 
log is fully flushed totally ordered log 

maintained in a 
decentralized fashion



NV-HTM: Transaction logging – 1/3

Pros:
ü Ensure interoperability with existing HTM systems!
üAvoid contention hot-spots to maximize scalability

Challenge:
• If a transaction is durable, all transactions it depends upon also are:

• novel synchronization scheme based on physical clock

• Upon crash:
• no guarantee that updates of non-durably committed transaction hit PM
• possible corrupted snapshot upon failure!

46



Ordering Transactions

Thread 1 Thread 2

ts[1]=1
ts[2]=2

TX
TX

Fl
us

h

Fl
us

h

1

Thread 1

2 - -

Thread 2

Thread 3

Thread 4

• Each thread advertises current TS in TS array

• While the transaction is not running, the advertised 
TS is +∞, i.e., ts[i] = +∞

• Before the transaction starts, a timestamp is taken 
à ts[i] = ReadTS()

• After non-durable commit:
1. Advertise the TS taken inside the transaction
2. Flush all log entries but the commit marker
3. Wait while there is an older transaction (smaller TS)
4. Flush commit marker

TS
 a

rr
ay
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ts[1]= +∞

wait 
thread 1



NV-HTM: Transaction logging – 1/3

Pros:
ü Ensure interoperability with existing HTM systems!
üAvoid contention hot-spots to maximize scalability

Challenge:
• If a transaction is durable, all transactions it depends upon also are:

• novel synchronization scheme based on physical clock

• Upon crash:
• no guarantee that updates of non-durably committed transaction hit PM
• possible corrupted snapshot upon failure!
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NV-HTM: Working and Persistent Snapshots – 2/3

• Application writes in a (volatile) working snapshot
• Logged writes are replayed asynchronously to produce a consistent 

persistent snapshot on PM
• via background checkpoint process 
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Replayed via a
background process
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NV-HTM: Working and Persistent Snapshots – 2/3

Pros:
üWrites to PM are 2x-5x slower than on volatile RAM!
ü Provides opportunity to filter redundant (duplicate) writes in the log

• less writes/flushes === longer life for PM!

Challenge:
- Memory efficiency: avoid maintaining 2 full copies of application’s 

memory 

50



Log filtering
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The Checkpoint Process may follow different policies to flush 
the logs:
- Naïve approach: flush every log entry:

- Forward No Filtering (FNF)

- Replay all writes but flush each updated cache line only once:
- Forward Flush Filtering (FFF)

- Scan logs backwards and write/flush only most recent update:
- Backward Filtering Checkpointing (BFC)
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NV-HTM: Working and Persistent Snapshots – 2/3

Pros:
üWrites to PM are 2x-5x slower than on volatile RAM!
ü Provides opportunity to filter redundant (duplicate) writes in the log

• less writes/flushes === longer life for PM!

Challenge:
- Memory efficiency: avoid maintaining 2 full copies of application’s 

memory 

52



Memory efficiency via CoW – 3/3

• Efficient management of working and persistent snapshot via OS/HW-
assisted Copy-on-Write mechanism:

• duplicate on volatile memory only regions actually modified by application
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Recovering from a crash

1. Checkpoint Process replays any pending logged transaction
• Updated persistent snapshot

2. Fork the Checkpoint Process:
• Checkpoint Process mmaps the Persistent Snapshot in shared mode

3. Worker Process mmaps the Persistent Snapshot in private mode
• Obtains a volatile copy of the Persistent Snapshot (the Working Snapshot) 
• OS ensures Copy-on-Write

54



Experimental evaluation

• System configuration:
• 14C/28T TSX enabled Intel Xeon Processor (E5-2648L v4), 22MB L3 cache
• 32 GB RAM
• Emulate write to PM latency by spinning for 500ns

• Synthetic Benchmark: Bank

• STAMP Benchmark Suit [IISWC’08]

• Baselines:
• PHTM [DISC’15]
• PSTM [ASPLOS’11] 
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STAMP benchmarks
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• Comparison for Kmeans (High contention)
• NV-HTMNLP: enough capacity for all writes
• NV-HTM10x: logs are 1/10 of all writes

• Checkpoint Manager has minimal impact in 
throughout

Up to ~4x greater 
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STAMP benchmarks
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- In average, NV-HTMx10 produces 2.72x less writes than PHTM and 6.72x 
less than PSTM, while only producing 13% more writes than NV-HTMNLP

Average Writes and Flushes per transaction

only ~13% extra 
writes by using our
filtering approach

less 2.72x writes
than PHTM in 
average

less 6.72x writes
than PSTM in 
average



Log filtering - Comparison
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• Solutions:
• NV-HTMNLP: very large log à Checkpoint Process never awakes
• NV-HTMx1: Log size is comparable (~85%) to the amount of writes
• NV-HTMx10: Log size is 1/10 the number of writes
• NV-HTMFFF: Flush Filtering
• NV-HTMFNF: No Filtering

• Bank: High contention workload vs Low contention workload
• Different amount of writes
• Vary the pressure on the Checkpoint Process 



Log filtering - Comparison
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Threads Threads

~2x greater throughput 
than PSTM

~10x greater throughput 
than PHTM



Average Writes and Flushes per transaction

Log filtering - Comparison
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- NV-HTMx10 produces 11.6x less flushes than PSTM



Summing up

• NV-HTM efficiently combines HTM and NVM
• Reduced overheads within Hardware Transactions

• Worker threads only need to flush data outside the transaction

• Aims to reduce the number of writes to NVM
• Checkpoint Process effectively filters repeated writes/flushes

• Does not requires hardware changes

• Up to x10 better throughput and 11.6x less flushes than state-of-the-
art solutions
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Ongoing & Future work on TM + NVM

• Intel has finally made NVM commercially available
• Every previous work was based on simulation…
• Need to reassess actual performance on realistic system

• NV-HTM introduces a serial step in commit phase:
• Waiting for previous transactions to be durably committed, before a new 

transaction can be durably committed (flush commit marker to NVM)
• Latency for flushing commit marker is on critical path of execution
• Can limit throughput especially if NVM latency is high

• Ongoing work on how to bypass this limitation
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Dedicated interconnect

Post-Moore Architectures: heterogeneity

Special 
Purpose 

Processor

Circuit switched 
optical network

FPGAs
FPGAs

FPGAs

GPU

sFuture 
devices

Standard 
multi-core 

CPU

Remote 
Memory

RAM

NV-
RAM
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Application development trends in the 
heterogeneous computing era

66

application

OpenCL runtime

command
queues

CPU GPU

Fig. 1: OpenCL in a heterogeneous environment. The user schedules task to
command queues of which there is one for each device. The OpenCL run-time
then breaks data-parallel task into chunks and sends them to the processing
elements in the device.

The rest of this paper is structured as follows. Section 2 gives a brief intro-
duction to OpenCL mapping and is followed in section 3 by a short example
illustrating the performance impact of mapping decisions. Section 4 describes
how we automatically build a partitioning model which is then evaluated in sec-
tions 5 and 6. Section 7 describes related work and is followed by some concluding
remarks.

2 The OpenCL Programming Framework

Recent advances in the programmability of graphics cards have sparked a huge
interest in what is now called general-purpose computing on graphics process-
ing units or GPGPU. Several proprietary solutions like Brook [7] or NVIDIA
CUDA [22] have been proposed, out of which the latter has arguably the great-
est following. OpenCL is an attempt to develop an open alternative to these
frameworks and is now being supported by most major hardware manufacturers.
Furthermore, OpenCL not only targets GPUs, but entire heterogeneous systems
including GPUs, CPUs and the Cell architecture.

Due to its success, OpenCL’s programming model is similar to CUDA, fo-
cusing on data-parallelism. Data-parallel tasks are suitable for GPUs, in which
groups of processing cores work in a SIMD fashion. In OpenCL, a data-parallel
task is expressed as a kernel that describes the computation of a single work-
item1. During program execution, a user-specified number of work-items is launched

1 A work-item is equivalent to a thread in CUDA.

Recent trend:
• Cooperative approach
• CPUs are better fit for, e.g.,:

• Latency sensitive appl.
• Fine grained tasks

The old way:
• CPU serves as master
• Bulk work done on 

hw accelerators

New abstractions to simplify
application development

both at the hw and sw level

Focus of this work



Many applications are inherently concurrent

Simplify the development of concurrent applications 
for heterogenous CPU+GPU systems

Focus of this work
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Gap in literature:
no CPU+GPU TM system

Transactional Memory

Shared Memory

TX2 TX3

TX1

HeTM
Transactional Memory
for CPU+GPU systems

CPU TM

• Mature research
• Widely available in:

• Software
• Hardware
• combinations thereof

GPU TM

• More recent
• Adapted for GPUs

• Highly parallel architecture
• Threads execute lockstep

68



Challenges

CP
U

core core

cache

0 1

Existing TM implementations rely on
fast intra-device communication

PCIe

Need to revisit the TM abstraction 
and consistency criteria

Serial inter-device communication makes 
fine-grained synchronization difficult

Build a system upon this new abstraction
69
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Correctness guarantee for traditional TM

P1. The behavior of every committed transaction has to be justifiable by the same sequential 
execution containing only committed transactions, without contradicting real-time order. 

P2. The behavior of any active transaction, even if it eventually aborts, has to be justifiable 
by some sequential execution (possibly different) containing only committed transactions. 

GPU

CPU

X = X + 1

Y = Y + 1

70

Commit

Commit

Hard notion of committed transaction:
need to transfer single transaction metadata over PCIe



Correctness guarantee for traditional TM

Begin Commit

Active

Abort
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Correctness guarantee for HeTM

Begin

Commit

Active

Abort
Speculative 

Commit
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Inter-device 
sync

Intra-device 
sync

- Slow
+ Syncs global state

+ Fast
- Syncs local state



Speculative HeTM (SHeTM): architecture

GPU TM CPU TM

SHeTM
instrum

entation

SHeTM
instrum

entation
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CPU

W
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G
PU

CPUQ

Shared dataset

SHeTM metadata

Queueing 
System

GPUQ

SHAREDQ
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Transaction batching
+ Amortizes synchronization costs
+ load-balancing using a shared queue

Modular design



Speculative HeTM (SHeTM): overview
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Synchronization phase 
constructs the new dataset

CPU and GPU 
work in parallel

Device local TM instrumentation 
collects read/write sets

SHeTM sees TXG1 and TXC1 as 
two very large transactions Da
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Base (unoptimized) idea

collect:
RSGPU + WSGPU

collect:
WSCPU

GPU

CPU

Execution phase Validation phase Merge phase

Dataset synchronizationconfigurable 
time interval

RSGPU ∩ WSCPU = ∅?

time
tr

an
sf

er
 W

SC
PU

apply WSCPU
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Optimizations

• Synchronization imposes significative overheads!
• Some optimizations:

• Early validation kernels may reduce wasted work
• Execution of transactions can be overlapped with synchronization stages
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Evaluation

• Intel Xeon E5-2648L v4 (14C/28T, HTM, 32GB DRAM) 
• Nvidia GTX 1080 (8GB XDDR5, driver 387.34, CUDA 9.1)
• CPU TM:

• Intel’s hardware TM implementation (TSX)
• TinySTM in the paper

• GPU TM:
• PR-STM [EuroPar’15]

• Synthetic benchmark
• Random memory accesses on array of integers

• MemcachedGPU-TM
• Popular web caching application
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Synthetic benchmark

• Evaluate the impact of the duration of the Execution phase
• Overhead of synchronization

• Benefits of two main optimizations
1. Early validation 
2. Overlapping execution and synchronization
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Synthetic benchmark – Execution time

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90

T
h

ro
u

g
h

p
u

t 
(n

o
rm

a
liz

e
d

)

SHeTMPR-STM (large bmp, W1)

SHeTMPR-STM (small bmp, W1)

SHeTMPR-STM (large bmp, W2)

SHeTMPR-STM (small bmp, W2)

 10  20  30  40  50  60  70  80  90

Write Transactions (%)

SHeTMTSX (W1)

SHeTMTSX (W2)

SHeTMTinySTM (W1)

SHeTMTinySTM (W2)

Figure 2: Cost of instrumentation of guest TM libraries.

to the current state of the CPU, it suffices to apply to it the
CPU’s write-set logs.

• Enhancing memory transfer’s throughput. In order to
exploit PCIe bandwidth while transferring information, transfers
are performed in chunks of relatively coarse granularity. To
this end, the CPU write-set logs are shipped to the GPU using
a granularity of 48 KB; also, the write-set bitmap on the GPU
tracks updates with a granularity of 16KB.

As a further optimization, the GPU-controller coalesces
transfers of contiguous chunks from the GPU to the CPU during
the merge phase (in the case of no inter-device contention),
as well as when performing the device to device copy from
the shadow to the working copy of the STMR (in the case of
inter-device contention).

V. EVALUATION

This Section presents an experimental study that aims at
answering the following key questions: the costs imposed by the
instrumentation of the guest TM libraries (Sec. V-A); overhead
introduced to workloads whose scalability is not limited by
inter-device contention (Sec. V-B); performance degradation
due to inter-device contention (Sec. V-C); optimization gains
over simpler designs (Sec. V-B and Sec. V-C); and finally, how
effective SHeTM is with realistic applications (Sec. V-D).

Our evaluation is conducted using a machine equipped with
an Intel Xeon E5-2648L v4 CPU (14 cores with support
for HTM, 32GB DRAM), an Nvidia GTX 1080 GPU (8GB
XDDR5, driver 387.34, CUDA 9.1), and running Ubuntu
16.04.3 LTS (kernel 4.4.0-57). Applications are manually
instrumented to use the SHeTM API.

We based our evaluation on a set of synthetic benchmarks
conceived to assess different aspects of SHeTM’s design, and
on MemcahedGPU [25].

In all the tests, we use 8 worker threads on the CPU side.
As for the transactional kernels, we tuned their configuration
(number of transactions per kernel activation, active threads
and thread blocks) on the basis of preliminary evaluations to
maximize the GPU throughput. The synthetic workloads use
the same transactional logic on both the CPU and GPU and
operate on a STMR of size 600MB, unless otherwise specified;
the STMR size in MemcachedGPU is around 480MB.

A. Instrumentation Costs

Let us start by assessing the overhead induced by the software
instrumentation that SHeTM requires for its guest TM libraries.
To this end we consider two workloads, noted W1 and W2,
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Figure 3: Efficiency in absence on contention.

that access the STMR uniformly at random. In W1, read-only
transactions issue 4 reads, whereas update transactions read and
update 4 memory positions. W2 is identical to W1, except that
both transaction types issue 40, and not 4 reads. W1 is designed
to stress the instrumentation of read and write operations. W2

is selected as representative of many realistic workloads, in
which reads outnumber the writes.

In the plot in Figure 2 we vary on the x-axis the percentage
of the update transactions from 10% to 90% and report on the
y-axis the throughput normalized w.r.t. un-instrumented version
of PR-STM [49] for the GPU (left plot), and of TinySTM [15]
and TSX for the CPU (right plot).

In the left plot (GPU), we consider using two different
levels of tracking granularity for the read-set bitmap (RSGPU

bmp ),
namely 4B (small bmp) and 1KB (large bmp). We can see that,
independently of the considered workload, the use of the small
granularity bitmaps induce, larger overheads, approx. 20%,
as its larger size leads to a lower locality of reference. In
contrast, the coarser granularity bitmap reduces significantly the
instrumentation overhead, to approx. 5%, at the cost, though, of
spurious aborts due to the risk of false positives in the conflict
detection scheme. As a matter of fact, the trade-off between
instrumentation overhead and access tracking granularity is
well known in the literature, e.g., TM [15].

In the right plot (CPU), we observe that the instrumentation
cost is on average around 5% for W2 for both TinySTM and
TSX. In all scenarios, the overhead is below 10% except for the
most write intensive variants of W1, where it remains anyway
below 20% even in presence of 90% of update transactions.

B. Efficiency in absence of inter-device contention

Next, we intend to assess which overheads SHeTM incurs
in workloads whose scalability is not limited by inter-device
contention. Here, we consider two variants of the W1 workload,
generating 100% (W1-100%) and 10% (W1-10%) update
transactions, respectively.

We avoid inter-device contention by partitioning the STMR
in two halves and restricting CPU and GPU to access a different
half. The results of this study are reported in Figure 3, in which
we vary on the x-axis the duration of the execution phase from
1 msec to 600 msec and report on the y-axis the throughput
of SHeTM and of the following baselines: the basic variant
of SHeTM presented in Section IV-C, noted SHeTM basic;
TSX running solo, noted CPU-only; PR-STM running solo and
copying its STMR to the host, after executing a kernel, using
double buffer (i.e., without blocking), noted GPU-only.
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Figure 3. Cost of instrumentation of guest TM libraries.

use the same transactional logic on both the CPU and GPU and
operate on a STMR of size 600MB, unless otherwise specified.

A. Instrumentation Costs
Let us start by assessing the overhead induced by the software

instrumentation that SHeTM requires for its guest TM libraries.
To this end we consider two workloads, noted W1 and W2,
that access the STMR uniformly at random. In W1, read-only
transactions issue 4 reads, whereas update transactions read and
update 4 memory positions. W2 is identical to W1, except that
both transaction types issue 40, and not 4 reads. W1 is designed
to stress the instrumentation of read and write operations. W2
is selected as representative of many realistic workloads, in
which reads outnumber the writes.

In the plot in Figure 3 we vary on the x-axis the percentage
of the update transactions from 10% to 90% and report on
the y-axis the throughput normalized w.r.t. un-instrumented
versions PR-STM, for the GPU (left plot), and of TinySTM
and TSX, for the CPU (right plot).

In the right plot (GPU), we consider using two different
tracking granularities for the read-set bitmap (RS

GPU
BMP ), namely

4 bytes and 1KB. We can see that, independently of the
considered workload, the use of the small granularity bitmaps
induce, larger overheads, approx. 20%, as its larger size leads
to a lower locality of reference. The use of a coarser granularity,
in contrast, allows to reduce significantly the instrumentation
overhead, to approx. 5%, at the cost, though, of spurious aborts
due to the risk of false positives in the conflict detection scheme.
As a matter of fact, the trade-off between instrumentation
overhead and access tracking granularity is well known in the
literature, e.g., TM [15].

In the left plot (CPU), we observe that the instrumentation
cost is on average around 5% for W2 for both TinySTM and
TSX. In all scenarios, the overhead is below 10% except for the
most write intensive variants of W1, where it remains anyway
below 20% even in presence of 90% of update transactions.

B. Efficiency in absence of inter-device contention
Next, we intend to assess which overheads SHeTM incurs

in workloads whose scalability is not limited by inter-device
contention. Here, we consider two variants of the W1 workload,
generating 100% (W1-100%) and 10% (W1-10%) update
transactions, respectively.

We avoid inter-device contention by partitioning the STMR
in two halves and restricting CPU and GPU to access a different
half. The results of this study are reported in Figure 4, in which
we vary on the x-axis the duration of the execution phase from
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Figure 4. Efficiency in absence on contention. Left plot: 100% update
transactions. Right plot: 10% update transactions.
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Figure 5. Break-down of exec. times (100% update transactions)

1 msec to 600 msec and report on the y-axis the throughput
of SHeTM and of the following baselines: the basic variant
of SHeTM presented in Section IV-C, noted SHeTM basic;
TSX running solo, noted CPU-only; PR-STM running solo and
copying its STMR to the host, after executing a kernel, using
double buffer (i.e., without blocking), noted GPU-only.

The throughput plot on the left, which refers to W1-100%,
shows that as the execution period grows the performance of
SHeTM also increases — as expected, since the relative amount
of time spent performing the validation and merge phases
reduces, amortizing their cost over larger period of useful
processing (see right plot of Figure 4). The peak throughput
of approx. 17M tx/sec, is reached at 200 msecs and plateaus
beyond that value. SHeTM’s peak throughput is about 55%
higher than the peak throughput of CPU-only and GPU-only
(approx. 11 M tx/sec) and only 23% lower than the throughput
of an idealized system that could total the combined throughput
of both uninstrumented devices.

By contrasting the performance of SHeTM with that of basic
we can clearly appreciate the performance gains enabled by the
optimizations described in Section IV-D, which are particularly
significant with small execution periods (up to +56% higher
throughput when the execution period lasts 1 msec). The bar
plots in Figure 5, which report the breakdown of times spent
by the CPU and GPU in various phases, allow us to derive
additional insights on the sources of these gains. The use of
double buffering on the GPU side to overlap kernel processing
with the device to host transfer in the merge phase is the largest
source of gains and, despite the device to device cost has a
relatively larger cost for the smallest execution periods, the
gains it enables largely outweigh the costs it imposes. On the
CPU side, the ability to overlap transaction processing (noted
non-blocking in the figure) with the shipping of logs to the
GPU has also a meaningful impact on reducing the blocking

10

Significative reduction on 
CPU and GPU idle time:

• CPU: 60% è 45%
• GPU: 60% è 20% 

Non optimized 
SHeTM

Optimized 
SHeTM

81

Synchronization overlapping Ex
ecu

tio
n

GPU

CPU

Validation Merge

time

Non-blocking 
execution

WSGPU



Synthetic benchmark – Early validation
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Figure 6. Sensitivity to inter-device contention.

time, although not as strong as on the GPU side.
Finally, let us analyze the results reported in the right plot

of Figure 4, which refers to the workload with 10% of update
transactions. In this scenario, which considers a less extreme
(and arguably more realistic) application workload we can see
that the peak throughput of SHeTM converges to 4, which ,is
very close to the peak throughput achieved by an idealized
solution that achieves a performance equal to that of the
two device — an additional evidence of the efficiency of
the proposed design.

C. Sensitivity to contention
We now consider the same workload as in the previous study,

but inject with a given probability a conflicting access at random
in the stream of writes generated by the CPU transactions.

We vary on the x-axis the inter-device conflict probability, fix
the duration of the execution phase at 80 msecs and compare, in
Figure 6, the performance of SHeTM with and without the early
validation mechanism. On the y-axis we report the throughput
normalized with respect to TSX (unistrumented) running solo
and report, as reference, also the throughput achieved using
PR-STM, running solo with double buffering.

The analysis of this plots reveals several insights. The first
observation is that SHeTM consistently outperforms both TSX
and PRSTM for abort rates as high as 80%. In medium con-
tention, e.g., 50% probability of contention, SHeTM continues
to deliver a 40% gain over the fastest individual device (CPU).
Even when operating at the extreme 100% abort rate it incurs
only a modest overhead (approx. 20% if the early validation
is disabled. Overall, these results confirm the robustness of
SHeTM performance even in adverse scenarios.

Early validation appears to be a powerful mechanism
to mitigate overhead, especially in medium-high contention
scenario (60% and 80% abort rate). The only exception is
the case of 100% inter-device contention: in such an extreme
(and arguably non-representative of the desirable operational
region of HeTM or of any other TM systems) scenario, early
validation fails constantly, triggering the completion of the
current execution phase and device transfer of the CPU logs.
This is logically equivalent to operate with a much shorter
execution phase, which, as seen in Figure 4, tends to induce
longer blocking periods of the CPU.

D. MemcachedGPU
As mentioned, MemcachedGPU extends Memcached, a

popular in-memory object caching system, in order to use GPUs
to serve lookup requests for cached objects (GET operations).
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Figure 7. Throughput of HeTM for Memcached with possible conflicts.

The original implementation MemcachedGPU does not
integrate a TM. As such, its developers had to implement an
ad-hoc synchronization mechanism to propagate the effects of
updates to the cache (e.g., via PUT operations) to the contents
maintained in the GPU’s cache. Besides being non-trivial, the
synchronization scheme used in the original MemcachedGPU
system suffers of a notable limitation. PUT operations on the
GPU kernel need to be executed in a single threaded fashion
and blocking any other concurrent GET operation. Both these
problems can be avoided thanks to the HeTM abstraction, which
we use to transparently keep the cache’s state synchronized
both on the CPU and GPU and to support (via its guest TM
library, PR-STM) the concurrent execution of state-changing
operations on both devices.

In this experiment, we use a cache with 1000000 sets, which
corresponds to a size of approx. 480MB. The sets are 8-way
associative, and the size of the key is 16 bytes while that of
the value is 32 bytes. We use LRU as replacement policy in
case of eviction. The workload is composed by 99.9% of GETs
and the object popularity follows a Zipfian distribution with
parameter ↵ = 0.5 — which represent typical is a common
distribution when settings for evaluating caches [5].

We consider 4 different workloads, defined as follows. In
the first workload (no-conflicts), we balance the load (i.e.,
cache operations) in input to the GPU and CPU by using the
last bit of the key accessed by an operation. This guarantees
that the input queues of the CPU and GPU can never contain
operations that access a common key, excluding the possibility
of inter-device contention.

We then emulate load unbalances scenarios, in which the
GPU receives progressively less input operation (e.g., due to
shifts in keys’ popularity) and starts stealing requests from
the CPU queue with increasing probability (steal 20% and
steal 80%). We consider also the extreme scenario in which
no device affinity is set to mitigate contention, so that both
devices access the same set of keys (steal 100%).

Note that in this case the peak normalized throughput
achievable by an ideal solution that incurs no overhead and
totals the equivalent normalized throughput of both CPU-only
and GPU-only is of approx. 1.9.

The plot shows that SHeTM achieves almost indistinguish-
able performance in the no-conflict and the 20% conflicts
scenarios, being in both cases less than 20% away from
the ideal solution and 80% better than both GPU-only and
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MemcachedGPU-TM
• Popular object caching system built by Facebook

• [SoCC’15]: port of Memcached to GPU 
• Complex lock-based scheme that unnecessarily restricts concurrency

• Workload:
• 99.9% of GETs and key frequency follow a Zipfian distribution (α = 0.5)
• Keys partitioned based on last bit:

• Odd keys è GPU; Even keys è CPU

• Emulate load unbalances:
• vary the popularity of keys maintained by GPU and CPU
• GPU steals CPU requests (non-zero probability of conflicting in a key)
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MemcachedGPU-TM

• Emulate load unbalances:
• vary the popularity of keys maintained by GPU and CPU
• GPU steals CPU requests (non-zero probability of conflicting in a key)
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MemcachedGPU-TM
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Figure 6. Sensitivity to inter-device contention.

time, although not as strong as on the GPU side.
Finally, let us analyze the results reported in the right plot

of Figure 4, which refers to the workload with 10% of update
transactions. In this scenario, which considers a less extreme
(and arguably more realistic) application workload we can see
that the peak throughput of SHeTM converges to 4, which ,is
very close to the peak throughput achieved by an idealized
solution that achieves a performance equal to that of the
two device — an additional evidence of the efficiency of
the proposed design.

C. Sensitivity to contention
We now consider the same workload as in the previous study,

but inject with a given probability a conflicting access at random
in the stream of writes generated by the CPU transactions.

We vary on the x-axis the inter-device conflict probability, fix
the duration of the execution phase at 80 msecs and compare, in
Figure 6, the performance of SHeTM with and without the early
validation mechanism. On the y-axis we report the throughput
normalized with respect to TSX (unistrumented) running solo
and report, as reference, also the throughput achieved using
PR-STM, running solo with double buffering.

The analysis of this plots reveals several insights. The first
observation is that SHeTM consistently outperforms both TSX
and PRSTM for abort rates as high as 80%. In medium con-
tention, e.g., 50% probability of contention, SHeTM continues
to deliver a 40% gain over the fastest individual device (CPU).
Even when operating at the extreme 100% abort rate it incurs
only a modest overhead (approx. 20% if the early validation
is disabled. Overall, these results confirm the robustness of
SHeTM performance even in adverse scenarios.

Early validation appears to be a powerful mechanism
to mitigate overhead, especially in medium-high contention
scenario (60% and 80% abort rate). The only exception is
the case of 100% inter-device contention: in such an extreme
(and arguably non-representative of the desirable operational
region of HeTM or of any other TM systems) scenario, early
validation fails constantly, triggering the completion of the
current execution phase and device transfer of the CPU logs.
This is logically equivalent to operate with a much shorter
execution phase, which, as seen in Figure 4, tends to induce
longer blocking periods of the CPU.

D. MemcachedGPU
As mentioned, MemcachedGPU extends Memcached, a

popular in-memory object caching system, in order to use GPUs
to serve lookup requests for cached objects (GET operations).

0.0

0.5

0.8
1.0
1.2

1.5

1.8

 0  5  10  15  20  25

Th
ro

ug
hp

ut
 (w

rt 
C

PU
)

Concurrent Execution (ms)

GPU-only
SHeTM no-conflicts
SHeTM steal 20%
SHeTM steal 80%
SHeTM steal 100%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0  5  10  15  20  25
Pr

ob
ab

ilit
y 

of
 C

om
m

it
Concurrent Execution (ms)

Figure 7. Throughput of HeTM for Memcached with possible conflicts.

The original implementation MemcachedGPU does not
integrate a TM. As such, its developers had to implement an
ad-hoc synchronization mechanism to propagate the effects of
updates to the cache (e.g., via PUT operations) to the contents
maintained in the GPU’s cache. Besides being non-trivial, the
synchronization scheme used in the original MemcachedGPU
system suffers of a notable limitation. PUT operations on the
GPU kernel need to be executed in a single threaded fashion
and blocking any other concurrent GET operation. Both these
problems can be avoided thanks to the HeTM abstraction, which
we use to transparently keep the cache’s state synchronized
both on the CPU and GPU and to support (via its guest TM
library, PR-STM) the concurrent execution of state-changing
operations on both devices.

In this experiment, we use a cache with 1000000 sets, which
corresponds to a size of approx. 480MB. The sets are 8-way
associative, and the size of the key is 16 bytes while that of
the value is 32 bytes. We use LRU as replacement policy in
case of eviction. The workload is composed by 99.9% of GETs
and the object popularity follows a Zipfian distribution with
parameter ↵ = 0.5 — which represent typical is a common
distribution when settings for evaluating caches [5].

We consider 4 different workloads, defined as follows. In
the first workload (no-conflicts), we balance the load (i.e.,
cache operations) in input to the GPU and CPU by using the
last bit of the key accessed by an operation. This guarantees
that the input queues of the CPU and GPU can never contain
operations that access a common key, excluding the possibility
of inter-device contention.

We then emulate load unbalances scenarios, in which the
GPU receives progressively less input operation (e.g., due to
shifts in keys’ popularity) and starts stealing requests from
the CPU queue with increasing probability (steal 20% and
steal 80%). We consider also the extreme scenario in which
no device affinity is set to mitigate contention, so that both
devices access the same set of keys (steal 100%).

Note that in this case the peak normalized throughput
achievable by an ideal solution that incurs no overhead and
totals the equivalent normalized throughput of both CPU-only
and GPU-only is of approx. 1.9.

The plot shows that SHeTM achieves almost indistinguish-
able performance in the no-conflict and the 20% conflicts
scenarios, being in both cases less than 20% away from
the ideal solution and 80% better than both GPU-only and
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Ongoing & future work on TM + GPUs

• Extend SHeTM to support multiple GPUs

• Exploit integrated GPUs to accelerate STMs

• Design of STMs for GPUs
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Conclusions

• TM is a promising paradigm for simplifying concurrent programming
• Very hot research topic in the 1st decade of 2000
• Today adopted in mainstream processors & programming languages

• New challenges/research opportunities are opened due to 
emergence of new hardware technologies:

• Non-volatile memory
• Heterogeneous architectures

• I would be glad to start collaborations on these fronts:
• Get in touch with me: romano@inesc-id.pt
• and meet f2f - I will be in Rome till Dec. 4 87

http://inesc-id.pt


…or consider visiting my group in Lisbon! 
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Thanks for the attention!

Q&A


