Cloud-TM
Overview & Collaboration Opportunities

Paolo Romano
INESC ID Lisbon, Portugal
At a glance

Partners:

- INESC ID (PT)
- Algorithmica (IT)
- C.I.N.I. (IT)
- Red Hat (IE)

Project coordinator: Paolo Romano, INESC ID (PT)
Duration: From June 2010 to May 2013

Programme: FP7-ICT-2009-5 – Objective 1.2
Further information: http://www.cloudtm.eu
Cloud computing: the vision

- lower barriers to entry and capital costs via usage-based pricing schemes
- minimize operating costs & carbon footprint via elastic resource provisioning
- achieve unprecedented scalability levels
Project Motivations

• Cloud computing is at the peak of its hype…

• How to materialize the vision and maximize actual productivity?

SIMPLIFYING THE DEVELOPMENT AND ADMINISTRATION OF CLOUD APPLICATIONS
Develop an open-source middleware platform for the Cloud:

1. Providing a simple and intuitive programming model:
 - hide complexity of distribution, persistence, fault-tolerance
 - let programmers focus on differentiating business value

2. Minimizing administration and monitoring costs:
 - automate elastic resource provisioning based on applications QoS requirements

3. Minimize operational costs via self-tuning
 - maximizing efficiency adapting consistency mechanisms upon changes of workload and allocated resources
The Cloud-TM Programming Paradigm: Background

• Transactional Memories (TM):
 – replace locks with atomic transactions in the programming language
 – hide away synchronization issues from the programmer
 • avoid deadlocks, priority inversions, convoying
 • way simpler to reason about, verify, compose
 • deliver performance of hand-crafted locking via speculation
 – drastically simplify development of parallel applications

• Distributed Transactional Memories (DTM):
 – extends the TM abstraction over the boundaries of a single machine
 – avoid performance pitfalls of Distributed Shared Memory by batching consistency actions at commit time
The Cloud-TM Programming Paradigm: Elastic Distributed Transactional Memory

- Elastic scale-up and scale-down of the DTM platform:
 - data distribution policies minimizing reconfiguration overhead
 - auto-scaling based on user defined QoS & cost constraints

- Transparent support for fault-tolerance via data replication:
 - self-tuning of consistency protocols driven by workload changes

- Language level support for:
 - persistence (ACI vs ACID transactions)
 - parallel transaction nesting
Architectural Overview

User-Level Application

STM

Reconfiguration Manager

Group Communication System

Reconfigurable Distributed STM

Reconfigurable Storage System

Policy Repository

WORKLOAD MONITOR

WORKLOAD ANALYZER

ADAPTATION MANAGER

Autonomic Manager
Autonomic adaptation at play

• low resources:
 - minimum costs
 • primary-backup:
 - low % write:
 low load on primary

• auto-scale up:
 - new nodes hired for
 read-only requests
 • primary-backup:
 - low % write:
 primary stands the load

• multi-master:
 - hi % write
 primary overwhelmed
 • higher scalability

• auto-scale down:
 - minimum costs
 • switch back to
 primary-backup

Legend

: node processing read-only requests
: node processing read&write requests

• low traffic
 • read-dominated
 • low conflict

• hi traffic
 • read-dominated
 • low conflict
 • write dominated
 • low conflict

High

% write

Low % write transactions

Hi % write

Low

Time

High

Hi traffic

Low traffic

reqs/sec
Project’s timeline

Dec 2010
- User requirements

June 2011
- Architecture Specification Draft
- Preliminary Prototype of RDSTM & RSS

Dec 2012
- Initial Pilot Applications
- Prototype of RDSTM & RSS
- Prototype of the Autonomic Manager

Mar 2013
- Final Pilot Applications
- Final CloudTM Prototype

June 2013
- Demonstration
- Evaluation
Opportunities for collaboration

• Standards/tools to specify and negotiate SLAs
 – focus in Cloud-TM is on performance, reliability and cost

• Standards/tools to allocate resources from the Cloud

• Tools for monitoring provided QoS

• Auto-scaling/proactive reconfiguration:
 – challenging goal common to very projects
 – in Cloud-TM we will target data intensive applications

• Achieve interoperability with storage solutions for the cloud developed by other projects
THANKS FOR THE ATTENTION

Q&A

Webpage: www.cloudtm.eu
Contact: romano@gsd.inesc-id.pt