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Abstract. TM is a powerful abstraction that promises to drastically
simplify parallel programming. On the other hand, the efficiency of ex-
isting TM implementations can be strongly affected by the characteristics
of the workloads generated by TM applications. This has raised interest
in designing self-tuning solutions that adapt specific building blocks of
existing TM implementations
This document first overviews the state of the art in the area of TM,
analyzing the key trade-offs that affect the performance of these systems.
Next it discusses existing self-tuning solutions for TM, highlighting a
critical limitation of existing approaches: these only support the dynamic
adaptations of individual building blocks of a TM. This prevents existing
solutions from pursuing globally optimal configurations.
In the light of this critical analysis of the state of the art, the document
proposes the development of Green-TM, a library supporting the dy-
namic and possibly simultaneous adaptation of multiple building block-
mechanisms of a TM.
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1 Introduction

Over the last years, processors manufacturers faced a problem with increasing
the clock speed of a single processor. As a result, parallel processor architectures
have entered the realm of mainstream computing: nowadays commodity proces-
sors adopt a multi-core organization, according to which computing capacity is
expanded by increasing the number of cores, rather than enhancing the proces-
sor’s clock speed.

However, having more cores is not equivalent to having a single more powerful
CPU. In fact, in order to take advantage of the computing capacity offered by
multi-core architectures, application developers are required to embrace a major
paradigm shift, moving from sequential to parallel programming. Unfortunately,
parallel programming is notoriously more challenging. One well-known, critical
problem of parallel programming is how to synchronize concurrent accesses to
shared data. In fact, the conventional approach to synchronization is based on
locking, which is well known to suffer of severe issues like lack of composability,
deadlocks, and livelocks.



Given the huge relevance that parallel programming has gained over the last
years, the academic and industrial research community have invested a great
effort to identify a synchronization mechanism that could represent a simpler,
yet efficient alternative to locking. Currently, Transactional Memory (TM) is
probably the most prominent proposal in this sense.

TM brings the familiar abstraction of transactions, used for decades with
success in the area of database systems to the domain of parallel programming.
By requiring programmers to only specify what should be executed atomically,
and not how atomicity should be achieved, TM can drastically simplify the prob-
lem of correctly synchronizing concurrent computations. Further, by leveraging
on scalable and efficient concurrency control mechanisms, possibly accelerated
via dedicated hardware supports, TM has been shown to deliver performance
comparable, or even superior, to the one achievable by complex and error-prone
fine-grained locking mechanisms.

On the down side of the coin, the design space of a TM implementation
is huge, and existing research has shown that no-one-size-fits-all design exists
that can deliver optimal performance for all possible workloads [6, 14, 15, 35, 36].
To further complicate the matter, algorithmic designs are not the only factor
influencing TM performance. The correct tuning of the parameters of a TM
algorithm, as well the characteristics of the hardware platform are known to
have a strong impact on the efficiency of existing TM libraries.

These considerations motivate the research on self-tuning mechanisms capa-
ble of dynamically adapting the various internal mechanisms encompassed by
TM systems, in order to match the characteristics of application’s workloads as
well as of the underlying hardware infrastructure.

This document is structured as follows: Section 2 overviews the state of the
art in the TM field, including existing approaches for self-tuning TM systems.
Section 3 presents the objectives that I intend to pursue during the next phase
of my dissertation. Section 4 focuses on how I plan to evaluate the work carried
out in the context of my dissertation. Finally Section 5 contains a brief summary
of the phases of my work.

2 Related Work

This section discusses and details the study conducted on the TM field. It
covers several topics ranging from TM implementations (software, hardware,
hybrid) to self-tuning techniques (Adaptive Thread Mapping, Tuning of internal
TM parameters, etc.).

More precisely, it contains a overview of Transactional Memory, Software
Transactional Memory (STM) and state of the art implementations, Hardware
Transactional Memory (HTM) and current HTM support libraries, Hybrid Trans-
actional Memory (HyTM), and lastly self-tuning schemes.



2.1 Transactional Memory

Transactional Memory is a lightweight concurrency control mechanism that
many researchers believe to be the path to follow to achieve performance com-
parable (and under some conditions better) to fine-grained locking, providing at
the same time the ease of use of coarse-grained locking.

As mentioned before, with TM the programmer only needs to specify a crit-
ical zone of code as atomic, and the underlying implementation will take care of
correctly synchronizing it, removing loads of complexity from the programmer’s
shoulders.

This mechanism is based on the concept of transactions, which was success-
fully introduced decades ago in the context of database systems. As in classic
database transactions environments, TM transactions preserves atomicity; as
such, a transaction either has no effect (i.e., it is aborted), or appears to take
effect instantaneously in some point in time (serialization point) within its start
and completion.

Transaction memory enables several transactions to run in parallel with or
without locks. The detection of invalid operations that would break consistency
can be performed either while a transaction is running (eager) or at commit-time
(lazy). This ensures that a given transaction has a consistent view of the shared
memory.

TM was initially proposed as an extension for multi-processors cache-coherency
protocol [22]. However, the lack of architectural support for transactions led re-
searchers to focus on software-based solutions to further investigate the poten-
tiality of the approach. Moreover, hybrid solutions have been proposed, which
try to reconcile the software and the hardware.

2.2 Software Transactional Memory

Software Transactional Memory is the most common implementation of TM,
since its implementation is not bound to the availability of any architectural
support [1, 10, 16, 13, 18, 19].

At their basis, STM implementations rely on special data structures that
track what a transaction read and write (read and write set). These sets are
checked (either eagerly or lazily) to detect conflict.

Throughout the years, many STMs have been proposed, with the purpose of
improving its performance. From the base design choices exploited, it is possible
to identify the following alternatives:

1. word-based vs object-based - granularity level at which memory is accessed.
Word-based means that the memory is accessed at the granularity of machine
words or larger chunks of memory. Object-based implies that accesses to
memory are done at object granularity and it requires the TM to be aware
of the object associated in every access.

2. lock-based vs lock-free - whether or not a TM resorts to locks to correctly
handle concurrency.



3. write-back vs write-through - how updates are written to memory. Write-
through writes the updates directly to memory and previous values are stored
in an undo log, providing lower commit-time overhead than Write-back. On
the other hand, Write-back writes updates to memory upon commit, and
stores it in a write log, granting lower abort overhead than the latter.

4. encounter-time locking vs commit-time locking - when conflict detection is
performed either at commit (lazy) or during execution (eager).

As it was demonstrated, there exists a several number of different design
choices, and internal parameters configurations to apply, and these decisions
have a huge impact on the TM performance.

The best design and configuration can vary according to the architecture,
depending on the CPU and the size of the caches. More important to note is
that the efficiency that will result from these choices will hugely vary depending
on the workload generated by the application.

Most of the researchers agree that there is no STM implementation that can
always deliver the best performance independently of the workload [8, 14, 16, 35].

In this subsection, three STM implementations will be analyzed, namely
TinySTM, JVSTM, and NOrec. These STMs explore different possibilities of
the design space for what concerns the aforementioned design choices. Such
different design choices, as hinted in Section 1, result into these STMs being
optimized for different kinds of workload: TinySTM provides high scalability on
write-intensive workloads, NOrec was conceived to minimize the overhead at low
thread counts, and JVSTM excels at long-running read-only transactions.

It will be given focus to the design choices made by the authors of each one,
as well as the auxiliary mechanisms incorporated, which led to these different
specializations.

TinySTM

TinySTM is a STM implementation presented by Pascal Felber, Christof Fetzer
and Torvald Riegel in 2008 [16].

This TM is a word-based implementation that resorts to locks to protect
shared memory locations, and to an encounter-time locking (eager) scheme to
guarantee that any transaction always read consistent states. It also allows the
co-existence of both write-through and write-back designs for memory access.

The authors justify the adoption of encounter-time locking with the two
following considerations:

1. Their experimental observations seem to indicate that if the conflicts are
detected early, then the transaction throughput will increase because there
will not be useless work done by transactions.

2. It allows to handle read-after-writes efficiently without requiring expensive
mechanisms. Encounter-time locking enables a transaction to temporarily
acquire the locks corresponding to the memory locations that it accesses. In
combination with write-through it assures that the memory always contains
the latest value written.



The validation of transactions at commit-time is implemented using a Hi-
erarchical Locking scheme. This strategy uses a shared array of l locks, and a
smaller ”hierarchical” array of h � l counters. Choosing l as a multiple of h,

l = 2i, h = 2j , i > j (1)

it is possible to compute the index of the lock and the counter, for a given
address:

lockIndex(addr) = hash(addr)mod(l) (2)

counterIndex(addr) = hash(addr)mod(h) (3)

This scheme allows transactions to determine whether locks have been acquired,
and can be generalized to multiple levels of nesting.

TinySTM’s internals are optimized for workload that exhibit the following
characteristics:

1. update transactions read many locations.
2. few writes from concurrent transactions.

The authors tested, and believe that these conditions are often found in real
applications, to consider it a useful strategy.

Finally, TinySTM implements self-tuning strategies to automatically adjust
the values for this STM internal parameters. This aspect will be covered in the
Self-Tuning Section.

JVSTM

Java Versioned Software Transactional Memory is a Java STM implementation
(unlike most of STM on C) presented by João Cachopo, and António Rito Silva
in 2006 [1].

It is actually used in a production environment on the IST’s FénixEDU
project as a replacement of the previous lock-based concurrency control mech-
anism. JVSTM ensures that object cache maintained by the middle-tier servers
are consistently and atomically updated with the back-end database [4, 27].

The original version of this STM used commit-time locking with a single
global lock, nested transactions, and versioned boxes.

A nested transaction is a transaction (child) that starts within the context
of another transaction (parent). A versioned box is a container that keeps a
sequence of values, and can be seen as a replacement for memory locations, and
transactional variables.

It was the first known STM in literature to guarantee that read-only trans-
actions would never conflict with concurrent ones, which improved the concur-
rency on applications consisting of long transactions containing considerably
more reads than writes.

To minimize the overhead of running applications with a large fraction of
read-only transactions (common scenario in many workloads) [2], JVSTM’s de-
fault configuration speculates that any starting transaction is going to be read-
only. This avoids tracking the transaction’s read set and improve performance in



case the speculation is correct. If the transaction is detected to not be read-only,
it is re-executed.

JVSTM employs two techniques to further reduce conflicts:

1. Delaying computations - avoids high-contention boxes, and re-executes the
parts of the transaction that caused the conflicts. To effectively use this
technique, it uses boxes that hold values private to a transaction.

2. Restartable transactions - allows the parts that caused the conflict to be
re-executed.

Like stated before, the original version of JVSTM [1] used a global lock to handle
mutual exclusion at commit-time. Later in 2011, Sérgio Miguel Fernandes and
João Cachopo published a second, enhanced, implementation of JVSTM, which
adopts a lock-free scheme [18].

The change was motivated for some reasons, e.g.: Poor performance in ap-
plications containing transactions that execute several writes in a short period.
Thus, high contention on the global lock will significantly degrade performance.

The new commit algorithm proposed uses some concepts of the old one, e.g.,
read-set validation, write-back, commit visible to other transactions. While the
original lock-based used snapshot validation as a validation technique, this new
version uses incremental validation. The latter, consists in checking every write-
set committed since the transaction started, in search for an intersection with
its read-set.

The size of the write-set is application dependent, hence the list to iterate
at validation depends on the number of write transactions, which hinders the
incremental validation performance. To minimize this issue, Fernandes et al. [18]
introduced a small modification to the validation procedure combining snapshot
with incremental.

Before any validation, a transaction helps to write-back all pending commits
already in a queue, returning the last record that it helped to commit, which is as-
signed to a variable named lastSeenCommited. After that, a snapshot validation
is performed (without synchronization, being possible that concurrent commits
occur). However, the set of committed versions for each transactional location
contains at least all the commits up to the version of the lastSeenCommited
record, performing validation up to that point.

One last validation still needs to be performed, checking for any newer com-
mits, to grant a valid commit. This will be done through incremental validation,
but only from the lastSeenCommitted.

This algorithm is slower for low transaction counts, but scales better because
it keeps the list of write-sets small.

NOrec

No ownership records is an STM library presented in 2010, by Luke Dalessandro,
Michael F. Spear, and Michel L. Scott [10].



NOrec is mostly known for being a TM that incorporates some desirable
features (e.g., low fast-path latency, publication and privatization safety, livelock
freedom, etc.).

NOrec is specifically designed to incur very low overhead at low thread counts,
at the cost of exhibiting limited scalability. Its design is based on a low overhead
STM algorithm, presented by Spear et al. named TML [33].

TML uses a single global sequence lock, which has the advantage (over tra-
ditional reader-writer lock) that readers are invisible, and induce the coherence
overhead of updating the lock. It uses eager conflict detection and in-place up-
dates, where writes acquire the lock for writing, and reads check the lock version
to ensure consistency.

TML scales poorly, since it uses a single global lock with eager conflict de-
tection, meaning that only one writer can be active at a time.

NOrec design diverges from TML, in the sense that it tends to improve
scalability over the latter. While TML is eager, NOrec uses a write-back strategy
to write updates to memory, and performs conflict detection at commit-time.

The lazy conflict detection for concurrent speculative writers, enables to min-
imize the quantity of time that a writer holds the lock. Such, increases the prob-
ability that concurrent read-only transactions will commit. Reads are validated
eagerly, in order to avoid a transaction to read inconsistent values and prevent
erroneous behavior in transactions that are destined to abort.

Privatization problem [32] arises when an object is accessed by transactional
and nontransactional code at the same time (e.g., private to a nontransactional
thread), i.e., TM systems must avoid violation of atomicity, consistency and
isolation in such scenarios to assure safety.

The serialization of writeback ensures privatization safety [32], and combined
with value-based validation, ensures publication safety[24]. This allows for ac-
cessing shared data structures outside transactions, with no additional cost, as
long as the program is transactional data race free.

It does also support closed nesting [26], enabling to abort an inner transac-
tion without making the outer parent to immediately abort as well.

This STM also has high compatibility to legacy systems, and the authors
think that would be a viable choice to use as a fallback software support for
hardware, or hybrid TMs.

2.3 HTM

Hardware Transactional Memory is a more recent bet to build a superior
TM.

In HTM, transactions are executed with the aid of specific architectural sup-
port and processor instructions.

Although the first TM proposal was hardware, the absence of HTM support
in commercial processors, limited most of researchers to emulators to test their
ideas, leading to a major focus on STM to advance the state of art.



Recently, both Intel and IBM1 implemented support for HTM on some of
their new processors. For this reason, real-world HTM implementations are gar-
nering much attention in the last years.

Like the Herlihy and Moss’s original TM proposal [22], these TMs rely on
modified cache coherence protocols in order to achieve atomicity and isolation.

The main advantage of HTM over STM is that it requires no instrumentation
comparing to STM solutions. Since it does not require to instrument reads and
writes, it avoids most of the overheads incurred by STMs that could severely
degrade the performance. On the other hand, a major drawback of HTM lies
in the fact that it cannot guarantee that a transaction will ever succeed (even
without concurrency) due to its limited nature, which has to keep the read-write
set into l1 cache.

Taking this into account, one of the major concerns is to develop an efficient
software fallback mechanism as an alternative synchronization mechanism to use
whenever HTM restrictions may prevent transactions from ever committing.

Intel acknowledged that programmers must provide this software fallback
path on the begin instruction, deciding in this way what should be done upon
abort.

Example of restrictions are: long transactions, which contains lots of opera-
tions and can exceed the size of the l1 cache; interrupts; and context switches.

On the rest of this section, the two topics below will be addressed:

1. TSX
2. BlueGene/Q

It will be presented a brief overview of both HTM implementations (Intel TSX,
IBM BlueGene/Q), and results of some evaluation done so far.

Intel TSX

Intel started including supports for HTM with the release of their Haswell (4rd
gen.) processors, in 2012, and nowadays it is deployed on several machines, from
tablets to servers.

The hardware support was made available by extending the instruction set
for x86 with Transactional Synchronization Extensions (TSX), which is the first
generation of Intel’s commodity HTM. TSX provides two interfaces: Hardware
Lock Elision (HLE) and Restricted Transactional Memory (RTM).

HLE allows optimistic execution of a critical section through eliding the
acquision of a lock when writing, so it appears as free to other threads.

TSX supports HLE by the use of two operates (XAQUIRE and XRELEASE)
that can be placed in LOCK instructions. In Haswell processors those allow to
elide the lock, assuring that it will be read but not written, enabling concurrent
threads to execute the same section simultaneously. Data races are prevented

1 AMD also planned a few years ago to build a next generation processor with support
for HTM [12], but until now there have not been any more updates pointing towards
a near future release.



by keeping track of the speculative accesses, rolling back the execution if the
accesses made are invalidated by cache coherency. In such case, the thread re-
execute the section but this time the lock is acquired and released normally.
Concurrent elisions of the same lock are aborted, since the lock is part of their
transactional footprint.

RTM offers more flexibility, offering instructions such as XBEGIN and
XEND, that map directly to the usual construction beginning and commit-
ting of a transaction. Another advantage is that it allows the application of
more fallback strategies upon abort of the hardware transaction, unlike HLE
that gives up immediately. On the other hand, determining the best fallback
strategy is not an easy task, as it ultimately depends on the workload.

The provided hardware support is best-effort nature, and, due to inherent
HTM limitations, it cannot guarantee if a transaction will ever be able to commit,
not ensuring progress guarantees.

Intensive evaluations done on Intel TSX were recently published by Diegues
et al. [15]. The evaluation was done comparing this HTM to several state of
arts STMs, and coarse/fine-grained locking schemes. Amongst other conclusions,
the study demonstrates that TSX can clearly outperform any synchronization
scheme in some workloads (e.g., short and infrequent transactions) but performs
poorly in others (e.g., long and contention-prone transactions, where STM and
fine-grained locking perform better).

IBM Blue Gene/Q

Blue Gene/Q is one of the first implementations of HTM for commercial pro-
cessors, and it was made available by IBM.

Being a HTM it partially solves some of the main problems of STM solutions,
such as: the high overheads from starting and committing a transaction, and the
instrument and monitoring of memory references inside a transaction. But like
expected from its nature, it does not ensure forward progress, and like Intel TSX
it can benefit from software support to improve its performance.

The BG/Q provides the following to support transactional execution:

1. Buffering of speculative states - writes made during a transaction execution
store a speculative state, that is buffered on the L2 cache, and becomes
visible to the other threads after commit, in an atomic way.

2. Hardware conflict detection - hardware detects write-read, read-write, and
write-write between concurrent transactions, or when a transaction is fol-
lowed by a non-transactional access to the same address.

Hardware support is primarily implemented on the L2 cache that acts as a
point of coherence, and efficiently supports TM enabling a considerably large
speculative state.

The HTM alone shows good results on several benchmarks [34]. Unfortu-
nately, there are no extensive works that compare Blue Gene with STMs. How-
ever, due to its HTM best effort nature, it is likely to exhibit limitations and



trade-offs similar to the TSX case. Like the Intel TSX an efficient software sup-
port is desirable to assure forward progress.

2.4 HyTM

Hybrid Transactional Memory is a TM that enables both hardware and soft-
ware transactions to be executed in conjunction within the same TM.

After the first real HTMs like TSX and BlueGene/Q were released, an aug-
mented interested on HyTMs solutions emerged. Due to the best-effort nature
of HTMs, it is desirable to find a scalable STM to be used in the fallback path
to ensure progress, instead of coarse lock-based schemes.

HyTM schemes aim to deliver the best of both TM types: HTM’s efficiency
and modern STM’s scalability. Some TM researchers argue that HyTM has
plenty of potential to be exploit [3, 9, 15, 23], but there is still lots of work to
be done.

One of the latest results worth to mention on this field is Invyswell, a HyTM
released this year, which will be addressed in detail on this section.

Invyswell

Invyswell is a recent published HyTM presented by Calciu et al., in 2014 [3].
This HyTM is a scalable hybrid implementation that uses a HTM along with a
STM fallback, to guarantee forward progress.

It uses hardware transactions from Intel RTM, and software transactions from
a modified version of an STM called InvalSTM [19]. Like any HyTM, Invyswell
pursues the objective of enabling both hardware and software transactions to be
concurrently executed, with the objective of delivering a solution that is effective
for all transactions sizes and contention levels.

The STM used provides scalability and performance for large transactions
with considerable contention, and has a distinctive difference compared to other
STMs, i.e., it performs commit-time invalidation [19].

Commit-time invalidation allows the STM to have full knowledge of all con-
flicts between a committing transaction and others in-flight transactions, allow-
ing it to make decisions on how to best mitigate contention. This design choice
is extremely useful on HyTMs as it allows to mitigate the conflicts between
software and hardware transactions. Another important aspect, is that it allows
read-only transactions to commit without incurring serialization overhead, being
transparent to RTM’s faster executing hardware transactions.

This STM aims at optimizing performance against large transactions work-
load, complementing RTM, which excels with short transactions. Regarding this
interplay, it is important to note that the STM chosen, does not serialize read-
only transactions, enabling RTM to execute without interfering with the STM
when the latter executes read-only transactions.

In this implementation, Haswell’s hardware transactions are instrumented to
track their read and write set via Bloom Filters. InvalSTM can then leverage



on the information maintained by these bloom filters for detecting conflicts with
concurrently executing hardware transactions.

To manage the shared-memory between HTM and STM, Invyswell performs
the conflict detection between a hardware and a software transaction after the
hardware transaction has committed. This is unavoidable, since any write oper-
ation performed by an hardware transaction is buffered until commit time (TSX
does not support non-transactional operations from within a transactional con-
text). RTM does not support escape actions, hence when a hardware transaction
conflicts with a software one, it aborts. By combining invalidation and conflict
detection after a hardware transaction, this scheme minimizes the chance to
abort a hardware transaction due to an in-flight software one.

The need for assuring progress guarantees, and adaptability to different het-
erogeneous workloads, lead Invyswell to support five transactions types:

1. SpecSW - software speculative transaction that uses private Bloom filters
to track accessed memory locations. Performs invalidation after committing,
which makes it compatible with hardware transactions that can invalidate
in-flight SpecSWs.

2. BFHW - hardware bloom filter-based transaction. Used to handle conflict
with software transactions, by preventing software transactions (SpecSWs)
from committing or reading, while is still committing. After commit, it per-
forms post-commit invalidation, marking as invalid all in-flight SpecSWs.

3. LiteHW - lightweight hardware transaction executed without read or write
annotations. Can only commit if there are no in-flight software at the begin-
ning of their commit-phase. Optimal for small transactions.

4. IrrevocSW - direct update software transaction, which acquires the commit
lock as soon as it execution begins. Used to assure progress guarantees.

5. SglSW - direct update software transaction that does not allow concurrent
execution of other software transactions. Used for small transaction that
contain instructions not supported by RTM, assuring progress guarantees.

The transactions are scheduled in a performance descending order: first the
high-risk hardware transactions, then the low-risk software transactions. The
transitions between the types are decided at runtime, based on an application
independent heuristic.

Finally, Invyswell relies on a Contention Manager that can be used by soft-
ware transactions, which decides how to handle conflicts based on information
such as the priority of each conflicting transactions and the size of their read
and write sets.

The experimentation done with Invyswell shows that this HyTM delivers a
better performance on a range of STAMP benchmarks [25] than the state of the
art NOrec[10], and the authors believe that the hybrid mechanisms can become
a first choice when Haswell platforms with more cores are released.

2.5 Self-Tuning

The success of a transactional memory largely depends on the fact that it greatly
simplifies the task of writing and maintaining parallel applications. However, as



previously shown, the performance of a TM strongly depends on the affinity
between its design and the workload characteristics.

Taking into account such considerations, self-tuning is needed to deliver op-
timal performance across all workloads, by reconfiguring the TM at runtime de-
pending on the currently workload characteristics. This mechanism, in an ideal
scenario, can permit the TM system to predict changes, adapting the system in
a dynamic way to the configuration that will provide the best performance.

A self-tuning scheme needs to answer the following:

1. When to adapt?
2. How to adapt?

Regarding when to trigger the adaptation, the self-tuning mechanism can either
be designed to react to workload changes (reactive), or to try anticipate them
(proactive).

Reactive schemes determine the need for reconfiguration based on the recent
observations of the workload. Proactive schemes try to anticipate the need for
reconfiguration by predicting future workloads, and their effectiveness highly
depends on the precision of the mechanisms chosen to predict these workloads.

Upon detection or prediction of the workloads changes, the self-tuning mech-
anism has to decide how to adapt to this change, i.e. which adaptation should
be triggered, if any. The proper identification of the optimal configuration for a
given workload is performed by the use of performance models, which allows the
prediction of the system’s performance in the available configurations to trigger.

Couceiro et al. [6] recently classified the performance models that can be
used in self-tuning systems, in three categories:

1. White-box modelling
2. Black-box modelling
3. Grey-box modelling

White-box modelling leverages on the available knowledge of the systems
and applications, and codifies it into a model (e.g., analytical or simulative), to
capture how the system configuration and workload characteristics translate to
performance. These models typically do not require training, still can benefit
from a minimal sampling phase to get value for some parameters. The drawback
of white box is that it relies on approximations, and assumptions, that may
hinder the performance in certain situations [6].

Black-box modelling does not require any prior knowledge on the internal
dynamics of the target system, and it relies on a training phase, observing the
inputs (e.g., workload characteristics) and outputs (e.g., KPIs like throughput or
energy consumption) of a system, with the objective to infer a statistical model
(e.g., based on ML techniques) that captures the observed relations between
inputs and outputs. It relies in inferring the performance function by observing
the output (e.g., throughput, read/writes ratio) corresponding to an input (e.g.,
workload with small read-only transactions, using a configuration for HTM to
retry 5 times). In comparison to White-box, this modelling provides adaptability



(e.g., initially unknown workloads), and tends to achieve a better precision, but
could require a big amount of samples to build an efficient performance function.

Black-box can be further divided into off-line and on-line approaches. Offline
approaches rely on a controlled training phase, during which the system exper-
iments with different input/outputs to infer the performance function. Online
approaches, instead, aim at finding a configuration that maximizes performance
by exploring different configurations at runtime.

Grey-box modelling is a hybrid approach that uses both white and black
modelling, attempting to benefit from the best that the two can offer: minimal
training (White-box), and enhanced accuracy via retraining (Black-box).

With the available knowledge, the self-tuning implementation has to decide
what should be the best decision for a system, for it to get the best possible
performance. The literature on the self-tuning TM has explored a wide number
of alternative techniques that are heterogeneous both in the employed modelling
technique and in the target self-tuned aspect (e.g., TM parameters, TM switch-
ing, Thread Mapping Strategy, Contention Manager).

This section will consist of an overview of some of these self-tuning schemes:
TM internal parameters, Adaptive thread mapping, Contention Manager adap-
tation, TM switching. Lastly I will describe some honorable mention self-tuning
techniques for Distributed TM, which have some aspects that will used on the
proposed solution (Section 3).

TM parameters

Research on TM has shown that a variety of parameters have a huge impact
in the delivered performance. The tuning of the internal parameters of a TM
has been subject of study by various works [14, 16, 29, 30]. Again, the dynamic
change of these parameters is motivated by the acknowledge of the TM research
community that there is no configuration that can fit better than all the others
independently of the workload characteristics.

An example of a mechanism that focus on tuning the retry policy of an HTM
is Tuner. Tuner is a self-tuning mechanism for Intel TSX, presented by Nuno
Diegues and Paolo Romano, in 2014 [14].

It is an innovative approach that makes use of learning techniques, and profil-
ing at run-time in order to identify the optimal TSX configuration in a workload.

Diegues and Romano show that properly handling HTM retry parameter,
can provide a huge boost on performance.

Tuner deals with optimizing the retry strategy of TSX by tuning two internal
HTM parameters:

1. Number of retries before giving up to software
2. How to spend the number of retries

Regard point one, it has been recently reported that 5 appears to be the best all
round value for the maximum number of attempts in hardware [14, 15, 36]. Still



static configuration delivers suboptimal performance, due to the heterogeneity
of the workloads generated by applications.

As for point two, the budget of retries can decrease linearly, divide by two,
or set immediately to zero upon detecting a capacity abort in a transaction.

An important feature, is that it enables to individual tune the parameters
of each application’s atomic block, instead of using a single global configura-
tion. This feature is relevant in programs that contain transactions with differ-
ent characteristics, leading to heterogeneous workloads, benefiting from different
configurations.

The final solution applied Upper Confidence Bounds (UCB) as a learning
technique, considering each atomic block as a UCB instance. This technique
estimates which one, among the available options for a given parameter, has the
highest reward, and its used to optimize the consumption of the attempts upon
capacity aborts.

To optimize the configuration of the number of attempts for each atomic
block, Gradient Descent Exploration (GRAD) is used, which is an exploration
technique similar to hill climbing.

These two techniques work in conjunction in the final algorithm, with a hier-
archy between the two, so they don’t overlap, allowing UCB to force GRAD to
just explore in another direction, or avoiding ”ping-pong” optimizations between
the two [14]. The authors acknowledged that the joint strategy provided results
that were always better than using only one of the approaches alone.

Still, in the context of self-tuning TM parameters, TinySTM has a scheme
to tune the lock granularity.

This STM, which was already discussed at the STM Section, has a self-tuning
mechanism aimed at optimizing the following parameters:

1. The hash function to map a memory location to a lock.
2. Number of locks.
3. Size of the array for the hierarchical locking.

The employed strategy keeps the throughput corresponding to each tested
configuration, where a configuration is a triple formed by number of shifts, the
number of locks, and the size of the hierarchical locking array.

It relies on a multi-dimensional hill climbing algorithm with memory, forbid-
den areas, and eight possible moves, as so, it works by making a move and then
verifying its effectiveness during the next period.

Thread-Mapping

Multicore processors usually possess complex memory hierarchies of different
levels of cache to reduce accesses to main memory. However, this can increase the
time to access memory and degrade bandwidth usage if threads are not correctly
placed on cores.



Thread-Mapping problem consist into allocating a thread onto the core that
minimizes memory latency, and reduces memory contention through data local-
ity.

Devising an optimal thread mapping strategy for a TM application is cum-
bersome because of two main causes:

1. TM applications are characterized by irregular behaviors, given by phased
workloads and by its speculative nature.

2. Performance of a thread mapping strategy for a TM application not only
depends on the target application, but also on the underlying TM backend.

One of the latest works on this matter focused on TM, was made by Castro
et al.[5]. This study proposes four adaptive thread mapping strategies: two of
which do not require any prior knowledge from TM applications.

In order to increase performance, the adaptive strategies must select the
appropriate mapping for different TM applications, and STM configurations.
The decision of the thread mapping is dynamic, since the workload may change
during the execution. The adaptive thread mapping strategies require different
information from the workload, to decide the mapping to apply, and are divided
in two categories:

1. Single metric-based
2. ML-based

Like the name suggests, the single metric based approach relies on monitoring
at runtime a single metric to characterize the behavior of a workload and to
perform the self-tuning choice. For this, the authors propose two adaptive thread
mapping strategies making use of two reference metric: conflict level (Conflict),
and the execution time (Test).

The ML-based approach, instead, leverages on an offline trained ML algo-
rithm to drive the self-tuning process. The authors applied two ML algorithms
to develop the following two ML-based strategies: ID3, i.e., a Decision Tree, and
Apriori algorithm, i.e., an association rule learner.

Concluding this topic, this recent paper [5] shows that the performance of
TM applications can be improved by better exploiting the memory hierarchy of
multicores, through the use of Thread-Mapping, presenting different adaptive
strategies to find the best thread mapping for TM applications. An important
note, is that during the evaluation process, the authors found that on average
ML-based adaptive strategies deliver a better performance than single metric-
based ones.

Contention Manager

Most of STM systems guarantee weak progress property, named obstruction-
freedom, which, consists in assuming that a transaction that runs for a long
period without overlapping with any transaction will eventually commit [2, 20,
32].



Since this property does not exclude livelock or starvation, stronger proper-
ties can be provided by a module called contention manager (CM).

A CM is a mechanism that resolves conflicts between transactions, by decid-
ing which transaction to abort and when and how to reschedule the execution of
the aborted transaction. The CM affect liveness, not safety, and can be evaluated
by the number of transactions committed per time.

Throughout the years, many different contention managers have been pro-
posed [10, 3, 21, 31]. Evidence suggest that no CM outperforms all the others for
every workload.

On the lights of this consideration, Guerraoui et al. proposed a self-tuning
mechanism for TM, named Polymorphic Contention Manager [20], which, al-
lows transactions to have different CMs, in a tentative to provide the CM that
provides the best throughput for a given transaction according to the situation.
After an extensive experimentation, the authors of this study, concluded that
there is no CM that performs best independent of the circumstances.

Polymorphic CM is a module that allows not only to switch CMs across
workloads, but also across concurrent transactions in a single workload, and
even between phases of a single transaction.

One of the problems of mixing CMs is how can CMs of different classes inter-
act in a useful way. A hierarchy of contention manager classes was implemented,
taking into consideration the cost associated to each CM class, and generaliz-
ing groups of CM classes. The cost associated has to do, with the quantity of
information that a CM keeps, being the less costly, those who do not keep any
information, and the most costly those that maintain a lot of information about
the current transaction, other transactions, etc.

A last note on the topic, is that this study goes one step further, by allowing
nested transactions, and allowing different CMs for these.

TM Backend

As already discussed, the design of each TM implementation is optimized for a
target workload. As such, there is no single TM implementation that delivers the
best performance across all possible workloads. For this reason, there is a recent
proposal by Wang et al. [35] that implements methods to construct policies with
the available knowledge and dynamically choose the most appropriate TM that
maximizes performance.

To select the best STM for a workload, this work relies on information gath-
ered through static analysis and dynamic measurement. The adaptivity policy
framework can be activated during program execution by four events:

1. number of consecutive aborts exceeds threshold,
2. long delays when attempting to begin a transaction,
3. thread creation and destruction,
4. commit rate below defined threshold.

The profiling triggered by the events above, uses a simple custom STM named
by the authors as ProfileTM [35] to sample per-transaction characteristics.



When one of these conditions is met, a profiling phase is performed. The
profiling process is the following: the library blocks new transactions, and waits
for all in-flight transactions to either commit or abort. Then the TM is switched
to ProfileTM, and N transactions are ran, one at a time. After profiling, the
system changes the TM to the one recommended.

If the recommended is the same as the current active TM library, the system
stores the total number of commits and aborts, until the next trigger of the
framework. By storing this information, if the same TM is chosen again, then
it will only remain if there has been forward progress, and the abort limit for
causing another trigger will be doubled.

The adaptivity policies for selecting the most suitable algorithm, can either
be created by a programmer, generated by an ML system, or by a collaborative
process between the programmer and the learning tool.

The authors divided these policies in two general types: Expert policies and
ML-based policies.

Expert policies are written by a programmer to satisfy some requirements,
like for example the intuition that the best algorithm depends on the maximum
number of active threads.

ML-based policies are automatically created through machine learning tech-
niques.

This is the first paper in literature to present an ML-based adaptivity system
for synchronizing TM programs. The experimentation results showed that ML-
based adaptivity offers great performance, maintainability, and flexibility, mak-
ing TM switching using policies automatically generated by ML, an attractive
approach to maximize performance of TM applications, despite heterogeneity
and complexity of those.

Although, this work only supports switching between STMs. The proposed
solution (Section 3) takes a leap further by aiming to support HTM too, since
current HTMs outperform state of art STMs in some workloads [15, 36].

Still in the topic of TM Switching, to the issue of how to perform the switch,
Lev et al. presented PhTM [23].

The main idea of this mechanism relates to being not safe to change modes
without waiting for some conditions to be verified, i.e., in some cases it is better
to delay changes. The delay allows to avoid trashing phenomena in which the
TM is continuously switching between modes, resulting into poor performance.

The changing of TM backend (mode) is based on a single global variable
named modeIndicator that contains 6 fields, being the most relevant:

1. current mode
2. number of transaction that must complete before switching
3. next mode
4. number of transactions that will be switched to the next mode

In certain modes, some transactions cannot be completed, e.g., functionality
is not supported. To tackle this problem, a thread joining a mode can access the
modeIndicator, changing the needed field, to assure correctness.



Distributed TM self-tuning

To conclude the topic of Self-tuning, I will briefly present two more works,
morphR [8] and polycert [7].

Despite being focused on Distributed TM, they present interesting concepts,
which will be applied on the system to develop (Section 3).

MorphR is a framework that supports generic adaptations, and introduces
the concepts of fast-switching vs stop-and-go [8]. This can be extremely useful
in a system composed by multiple reconfigurable components, where the recon-
figuration process is a major part of the overall performance of the solution.

Fast-switching transitions are non-blocking and can be used when there is
knowledge that both states can safely coexist, allowing for a faster reconfigura-
tion process.

On the other hand, Polycert supports the coexistence of multiple protocol
schemes of the same family [7].

Similar to what I will develop, this system relies on Oracles, which use fore-
casting in this case to determine the optimal certification scheme. The protocols
used coexist naturally, since all of them rely on a common phase, during which
they establish global serialization. Each message is tagged with a label that
specifies which is being used for each transaction.

It is possible to create an analogy between tagged messages, and a possibility
for tagged transactions, allowing for different TMs to coexist, something that
could be explored at the proposed solution (Section 3).

Still, the more interesting aspect is the knowledge that grants that they can
coexist, which applied with Morphr fast-switching, can enhance the process of
reconfiguration.

These concepts will be taking into high consideration on the proposed solu-
tion, which will be described in detail on the next section.

3 Proposed Solution

After performing a survey on TM’s state of the art, it is safe to consider
self-tuning TMs as an appealing option towards building a superior TM. Still,
the state of the art lacks in some interesting aspects, e.g.:

1. No solution is capable of encompassing simultaneous tuning of multiple con-
figuration parameters,

2. There is almost no work focused on tuning HTM [14, 29],
3. Only a minority of the solutions focus on energy efficiency (most consider

solely performance).

Taking the above into consideration, the objective of this work is to build a
TM library, named Green-TM, which has the capacity of monitoring and con-
trolling a set of dynamically tunable TM-related components, including:

1. TM back-end (HTM vs STM vs HyTM)



2. Parameters of the HTM retry policy
3. STM algorithm
4. Parameters of the STM algorithm
5. Number of concurrently active threads
6. Contention manager scheme
7. Thread Mapping strategy

One of the desirable features of this library is that it will be extensible,
enabling a way to easily add/remove components, providing high modularity
and flexibility. In order to achieve this result, it will have a set of well-defined
interfaces, which will have to be implemented by the various building blocks that
compose a TM.

These interfaces shall allow the online monitoring and gathering of a set of
performance-oriented metrics, as well as the dynamic adjustment of the mecha-
nisms and parameters employed by the various components of the TM library.
In order to enable the dynamic adaptation of complex mechanisms, like concur-
rency control algorithms, in an efficient way, the interfaces defined by Green-TM
shall support both blocking transitions (e.g., when the initial and final configu-
ration cannot simultaneously coexist, like in the PhTM approach [23]), as well
as non-blocking transitions.

The library to develop shall not only define the mentioned interfaces, but also
employ mechanisms, which can guarantee the correct and efficient orchestration
of the transitions, by exploiting such interfaces. The support of multi-dimensional
adaptations in this TM will be based on the work presented by Couceiro et al.
[7], which focus on Protocol adaptation for distributed TM platforms. The main
idea is to adopt and extend this approach, to the case of multi-dimensional
adaptations in non-distributed shared-memory TM. Such an extension is essen-
tial, since a major goal, and unique characteristic, of Green-TM is precisely to
be able to change multiple parameters at the same time, without endangering
correctness.

Green-TM will support the modular interaction with external predictors,
which will be responsible of determining when to trigger an adaptation, and
which adaptation to trigger. To this end, Green-TM will expose well-defined
interfaces, which will expose information regarding key performance indicators
(KPIs), the current configuration of the TM library, and optionally metrics re-
lated to the workload characteristics (e.g., transaction duration, read/write ra-
tio).

The system will encapsulate the prediction functionalities by means of an
Oracle abstraction, which can be seen as an abstract component that relies on
statistical knowledge to predict performance gains under a certain configuration.
This component will rely on various ML-based techniques, which are being de-
veloped in parallel by other researchers at the Distributed Systems Group of
INESC-ID.

In the remainder of this section, I will provide an overview on the envisioned
architecture of Green-TM, of the mechanisms supporting dynamic adaptation,
and of the work planned for the next semester.



3.1 Architecture

The proposed system architecture is illustrated in Fig.1, which depicts its
main entities and the relations between them. The main modules are the Green-
TM, the Reconfiguration Manager, and the Oracle.

Green-TM shall define two main APIs: the Monitoring API and the Switching
API.

The Monitoring API will allow externalizing a set of KPIs (e.g., throughput),
the current configuration of the TM library, and, optionally, metrics character-
izing the current application’s workload (e.g., read/write ratio). This API will
be used to convey this set of information to the Reconfiguration Manager.

The Reconfiguration Manager has the role of coordinating the reconfigura-
tions. It takes as input the new reconfiguration to apply, and decides in which
order will be applied, based on the relations among the involved reconfigured
components and the efficiency of the reconfiguration. A major challenge will
be on how to extend the approach in MorphR [8] to handle multi-dimensional
adaptations.

In order to uniformise the interactions between the Reconfiguration Manager
and the TM, the plan is to define an additional API, called Switching API, which
allows the Reconfiguration Manager to specify which configuration(s) should be
adapted, while encapsulating the mechanisms necessary to achieve a correct and
efficient transition.

Fig. 1. Green-TM base structure.

Green-TM’s internal structure is shown in Fig.2. At the lowest layer, the
TM contains multiple tunable TM back-ends (HTM, STM), as well as different
STM implementations. Besides the TM concurrency control mechanisms, Green-
TM will also support the adaptation of additional mechanisms, such as Thread
Mapping and Contention Management.



Fig. 2. Green-TM internal structure.

The entire set of TM algorithms, as well as, the auxiliary mechanisms to
be incorporated in Green-TM are not yet fully defined. However, the plan is to
support the reconfiguration of the following building blocks:

1. Active TM library - TinySTM, NOrec, HTM.
2. Contention Management - suicide, polka, exponential backoff.
3. HTM parameters - number of retries, technique to consume budget of at-

tempts, technique to handle capacity aborts.
4. Maximum number of concurrently active threads.
5. Thread Mapping Strategy.

Since the library will adopt a modular and extensible design, it shall be easy to
add/remove components.

3.2 Focus

The work that I will be doing on the following semester will be more focused
on developing the Green-TM interfaces (Switching, Monitoring), and implement
the strategies for supporting the dynamic reconfigurations of the various adapt-
able mechanisms encompassed by Green-TM.

Like mentioned before, the Oracles will be developed in parallel by others
researchers at INESC-ID, and I will be using them to test their efficiency on the
system.

It is important to mention that the planned work will include an intensive
evaluation phase, aimed to assess the efficiency of the developed monitoring and
reconfiguration strategies, as well as the accuracy of the prediction methodolo-
gies.

The evaluation plan, including the metrics used to this end, and the employed
benchmarks, will be described in further detail in the next section.

4 Evaluation Method

The prototype developed during this dissertation will compare the efficiency
(in terms of performance and energy consumption) of the proposed system (Sec-



tion 3) against state of the art TMs, e.g., TL2, NOrec, SwissTM, TSX, etc., and
coarse/fine-grained locking solutions.

The key metrics to consider on this evaluation, are the following:

1. Throughput (committed transactions per second)
2. Abort rate (aborted transactions per second)
3. Energy consumption (Joule), available, e.g., via the Intel’s RAPL interface

[11]
4. Energy Delay Product (Execution time * Joule consumed during execution)
5. Reconfiguration latency
6. Monitoring Overhead (impact on throughput)
7. Computational cost for generating a prediction (at the Oracle side)

The system will be tested in a wide variety of scenarios: in workloads with
contention ranging from low to high, with low or high percentage of time spent
in transactions, with different number of threads, and using different hardware
architectures (e.g. AMD vs INTEL).

The following benchmarks will be used to test the system:

1. STAMP: this is a standard suite of benchmarks for TM [25] that encom-
passes 8 different realistic applications, which generate very heterogeneous
workloads

2. Memcached: this is a popular distributed object caching system, recently
ported to use TM [28].

3. Microbenchmarks: concurrent data structures, such as linked list, redblack
tree, skip list, which are parallelized using transactions and are frequently
adopted in the TM literature [15]. Despite their simple and synthetic nature,
these microbenchmarks have the advantage of generating easily predictable
workloads that allow for stressing, in a controlled way, different building
blocks of the TM system.

5 Work Plan

For the next semester, the work to be realized is scheduled as follows:

1. January 9 - May 31, 2014: Design and implementation of Green-TM backend
support.

2. June 1 - June 31: Complete experimental evaluation.
3. July 1 - July 31: Finish writing the paper for the Green-TM project.
4. August 1 - September 31 - Conclude writing the dissertation.
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