
Multi-dimensional Self-tuning in Transactional Memory

Ricardo Neves

Abstract

The Transactional Memory (TM) paradigm promises to
greatly simplify the development of concurrent applications.
This led, over the years, to the creation of a plethora of TM
implementations delivering wide ranges of performance across
workloads. Yet, no universal TM implementation fits each and
every workload. In fact, the best TM in a given workload can
reveal to be disastrous for another one. This forces developers
to face the complex task of tuning TM implementations, which
significantly hampers the wide adoption of TMs.

This thesis addresses the challenge of automatically identi-
fying the best TM implementation for a given workload. The
proposed system, ProteusTM, hides behind the TM interface a
large library of implementations. Under the hood, it leverages
an innovative, multi-dimensional online optimization scheme,
combining two popular machine learning techniques: Collab-
orative Filtering and Bayesian Optimization.

ProteusTM was extensively evaluated, obtaining average
performance < 3% from optimal, and gains up to 100× over
static alternatives.

1. Introduction

The advent of multi-cores has brought parallel computing to
the fore-front of software development. The Transactional
Memory (TM) [25] abstraction is a prominent approach that
promotes a simple idiom for synchronizing code: program-
mers specify only what should be done atomically (via seri-
alizable transactions), leaving to the TM the responsibility of
implementing how to achieve it.

Over time, several works have provided evidence [42, 36,
40] on the effectiveness of TM to simplify the development and
verification of concurrent programs. Recently, the relevance
of TM was amplified by the standardization of constructs in
popular languages (such as C/C++ [38]), and by the integration
of hardware support in processors by Intel and IBM [50, 29].
The abstraction vs performance dilemma. Unfortunately,
TM performance remains a controversial matter [7]: despite
the large body of work in the area, the search for a “uni-
versal” TM with optimal performance across all workloads
has been unsuccessful. Fig. 1 conveys experimental evidence
of the strong sensitivity of TM to the workload characteris-
tics. The energy efficiency (in Fig. 1a) and throughput (in
Fig. 1b) of various TMs are reported in different architectures
and benchmarks. The data is normalized with respect to the
best performing configuration for the considered workload.
Fig. 1 shows that, in two different architectures and metrics,
the optimal TM configuration differs significantly for each
workload. Furthermore, choosing wrong configurations can

 0

 0.2

 0.4

 0.6

 0.8

 1

genome red-black tree labyrinth

N
or

m
al

iz
ed

 w
rt

be
st NOrec:4t

Tiny:8t
HTM:8t

(a) Throughput/Joule on a single-chip
8-core CPU (Machine A in Table 1).

 0

 0.2

 0.4

 0.6

 0.8

 1

vacation red-black tree intruder

N
or

m
al

iz
ed

 w
rt

be
st NOrec:48t

Tiny:8t

Swiss:32t

(b) Throughput on a multi-chip 32-
core CPU (Machine B in Table 1).

Figure 1: Performance heterogeneity in TM applications.

cripple performance by several orders of magnitude. Inter-
estingly, some TMs used in these experiments were designed
to tackle various workloads [21, 20], but configuring them
properly is non-trivial and they still cannot perform well for
all workloads.

The problem is that the efficiency of existing TM implemen-
tations is strongly dependent on the workloads they face.

Given the vast TM design space, manually identifying opti-
mal configurations is a daunting task. Overall, the complexity
associated with tuning TM contradicts the motivation at its
basis, i.e., to simplify the life of programmers, and repre-
sents a roadblock to the adoption of TM as a mainstream
paradigm [32].
Contributions

The main contribution of this thesis is ProteusTM, the
first TM with multi-dimensional self-tuning capabilities. Pro-
teusTM contains two main modules:
• PolyTM is a polymorphic TM library that encapsulates state-
of-the-art results from research in TM, and has the unique
ability to transparently and dynamically adapt across multiple
dimensions: (i) switch between different TM algorithms; (ii)
reconfigure the internal parameters of a TM; (iii) adapt the
number of threads concurrently generating transactions.
• RecTM is in charge of determining the optimal TM config-
uration for an application. Its basic idea is to cast the problem
of identifying such best configuration as a recommendation
problem [41]. This allows RecTM to inherit two highly desir-
able properties of state of the art Recommender System (RS)
algorithms: the ability to operate with very sparse training
data, and to require only the monitoring of the Key Perfor-
mance Indicator (KPI) to be optimized. This avoids intrusive
instrumentation [44] and (possibly inaccurate) static code anal-
ysis [49] employed by other machine learning-based solutions.

While building ProteusTM, several challenges were solved:
I Transparency and portability: PolyTM encapsulates a wide
variety of TM implementations, along with their correspond-
ing tuning procedures. The key challenge here is to conceal
these mechanisms without breaking the clean and simple ab-
straction of TM. Furthermore, one of the key design goals

of ProteusTM is to seamlessly integrate with existing TM
applications, and to support different machine architectures.

This issue was tackled by integrating PolyTM in GCC, via
the standard TM ABI [38], and by exposing to programmers
standard C++ TM constructs. Not only this preserves the sim-
plicity of the TM interface, but it also maximizes portability
due to the widespread availability of GCC across architectures.

I Minimizing the cost of adaptivity. Supporting reconfigu-
ration across multiple dimensions requires introducing some
degree of synchronization, in order to ensure correctness dur-
ing run-time adaptations. The challenge here is to ensure that
the overheads to support adaptivity are kept small enough not
to compromise the gains achievable via self-tuning.

This challenge was addressed by designing lightweight syn-
chronization schemes that exploit compiler-aided, and asym-
metric code instrumentation. The combination of these tech-
niques allows PolyTM to achieve a negligible overhead of
around 1% and a maximum overhead of 8%, even when con-
sidering the most performance sensitive TM implementations.

I Applying Recommender Systems to the TM domain:
Decades of research have established RS as a powerful tool
to perform prediction in various domains (e.g., music and
news) [35, 13, 11]. The application of RS techniques to
performance prediction of TM applications, however, raises
unique challenges, which were not addressed by previous
RS-based approaches to the optimization of systems’ perfor-
mance [15, 14]. One key issue here is that, in conventional
RS domains (e.g., recommendations of movies), users express
their preferences on a homogeneous scale (e.g., 0 to 5 stars).
On the contrary, the absolute value of key performance indica-
tors (KPIs) of TM applications can span very heterogeneous
scales.

To cope with this issue, a novel normalization technique
has been introduced, called rating distillation, which maps
heterogeneous KPI values to scale-homogeneous ratings. This
allows ProteusTM to leverage state-of-the-art RS algorithms
even in the presence of TM applications whose KPIs’ scales
span across different orders of magnitude.

I Large search space: Although RS algorithms are designed
to work with very sparse information, their accuracy can be
strongly affected by the choice of the configurations [45] that
are initially sampled to characterize a TM application. De-
ciding which and how many TM configurations to sample is
a challenging task, as ProteusTM supports reconfiguration
across multiple dimensions, resulting in a vast search space.

RecTM addresses this issue by relying on Bayesian opti-
mization techniques [5] in order to steer the selection of the
configurations included in the characterization of a TM appli-
cation.

The rest of the paper is structured as follows. In §2 back-
ground on TM and CF is provided. Then, §3 overviews Pro-
teusTM, which is detailed in §4 and §5. The evaluation follows
in §6, and conclusions in §7.

2. Background
Next, background on TM is provided, as well as, an overview
of prominent Collaborative Filtering techniques for Recom-
mender Systems.

2.1. Transactional Memory

The TM programming model relies on the abstraction of
atomic blocks to demarcate which portions of code of a con-
current application must execute as atomic transactions. The
TM implementation guarantees serializable transactions, by
aborting transactions that perform unsafe operations and auto-
matically re-executing them until completion.

Many design and configuration choices have high impact
on performance. Next, it will be discussed their associated
trade-offs that are self-tuned by ProteusTM.
TM implementations. The TM abstraction has been imple-
mented in software (STM), hardware (HTM), or combinations
thereof (Hybrid TM). A wide variety of STMs have been
proposed [24]. STMs pose no restrictions on the number of
memory accesses of a transaction, but they require costly code
instrumentation to track transactional operations. HTMs do
not need instrumentation, but they are best-effort [50, 17]:
only transactions whose memory footprint fits in the proces-
sor’s cache can be executed; otherwise they incur a capacity
abort and resort to a fall-back synchronization. The fall-back
is typically a global lock [50], or an STM [9].
Degree of parallelism. The number of concurrently active
threads is another parameter with a potentially strong impact
on TM performance: a low thread count may lead to sub-
utilizing available processing power; a high one, conversely,
may induce excessive contention and lead to thrashing [18].

2.2. Collaborative Filtering in Recommender Systems

A Recommender System (RS) seeks to predict the rating that
a user would give to an item. These ratings can be exploited to
recommend items of interest to users [35]. This work focuses
on Collaborative Filtering (CF) [45], a prominent prediction
technique used in a RS. To infer the rating of a 〈user, item〉 pair,
CF techniques exploit the preferences expressed by other users,
and ratings by the user on different items. Ratings are stored
in a Utility Matrix (UM): rows represent users and columns
represent items. Typically, a UM is very sparse, as a user rates
a small subset of the items. A CF algorithm reconstructs the
full UM, from its sparse representation, by filling empty cells
with ratings close to the ones that the users would give.

K-Nearest Neighbors (KNN) and Matrix Factorization (MF)
are popular CF techniques [41]. KNN uses a similarity func-
tion to express the affinity of two rows or columns: a recom-
mendation for a pair 〈u,i〉 is computed with a weighted average
of the ratings of the most similar users to u (and/or on the most
similar items to i) [41]. MF, instead, maps users and items to
a latent factors space of dimensionality d. Each dimension
represents a hidden similarity concept: in the movies’ domain,

2

atomic {
 x = y + 1
}

GCC

tm_start()
y1 = tm_read(y)
y1 += 1
tm_write(x,y1)
tm_end()

tm_start()
x = y + 1
tm_end()

non-instrumented instrumented

linkcompile

generates binary
profile

STM1 HTM …application

Recommender

Monitor

SMBOController

KNN

query

kpi

STM2

adapt

ProteusTM

PolyTMTM ABI

RecTM

Figure 2: Architecture of the ProteusTM system.

a similarity concept may be how much a user likes drama
movies, or how much a movie belongs to the drama category.
To compute recommendations, MF infers two matrices P and
Q, which represent, respectively, users and items in the afore-
mentioned d-dimensional space. The product of P and Q is a
matrix R that is similar to a given UM A, i.e., QT P = R∼ A,
containing also predictions for the missing ratings in A [41].

3. ProteusTM in a Nutshell

In essence, ProteusTM applies Collaborative Filtering (CF) to
the problem of identifying the best TM configuration that max-
imizes a user-defined Key Performance Indicator (KPI): e.g.,
throughput or consumed energy. ProteusTM aims to maximize
the efficiency of TM applications by orchestrating a number
of TM algorithms and the dynamic reconfiguration of their pa-
rameters. Let us now overview the architecture of ProteusTM,
depicted in Fig. 2, which enables its self-tuning capabilities.
More details shall be provided in the corresponding sections.

• PolyTM §4: consists of a Polymorphic TM library com-
prising various TM implementations. It allows for switching
among TMs and reconfigure several of their internal parame-
ters. It exposes transactional operators via an implementation
of the standard TM ABI [38] (supported by GCC [28]).

• RecTM §5: is responsible for identifying the best configu-
ration for PolyTM depending on the current workload. It is
composed, on its turn, by the following sub-modules:

1. Recommender §5.1: a RS that acts as a performance
predictor and supports different CF algorithms. It receives
the KPIs of explored configurations from the Controller, and
returns ratings (i.e., predicted KPIs) for unexplored ones.

2. Controller §5.2: selects the configurations to be used
and triggers their adaptation in PolyTM. It queries the Rec-
ommender with the KPI values from the Monitor, obtaining
estimates for the ratings of unexplored TM configurations.

3. Monitor §5.3: this module collects the target KPI to (i)
give feedback to the Controller about the quality of the current
configuration and (ii) detect changes in the workload, so as to
trigger a new optimization phase in the Controller.

adapter thread1 thread2 thread3
change

TMA to TMB block

TMB

ok
switch

functions change

tm-begin

TMB TMB

TMA

tm-begin

tm-end

tm-begin
tm-begin

w
ai
t

e2

e1

Figure 3: Switching TM algorithm safely in PolyTM.

4. PolyTM: a Polymorphic TM Library
The PolyTM library encompasses a wide variety of TM im-
plementations. It interacts with compilers, like GCC, via the
standard TM ABI [28]. Each atomic block, written by the pro-
grammer using standard C/C++ constructs [38], is compiled
into calls to the various modules of ProteusTM.

For every atomic block, GCC inserts a call to tm_begin
and tm_end, which is direct to PolyTM. Also, two code paths
are generated: a non-instrumented path, and a second one in
which reads and writes to memory are instrumented with calls
to PolyTM. The latter allows the code to arbitrate reads and
writes, besides the begin and commit of transactions.

Behind the TM ABI interface, it is implemented in PolyTM
several TM algorithms, and run-time support to switch among
them: 4 STMs [10, 16, 21, 20], 2 HybridTMs [9, 37], and 2
HTMs [50, 1].

PolyTM collects the commits and aborts at each thread, and
the energy consumed by the system. It also uses a dedicated
adapter thread to change the TM configuration.

In the following, the mechanisms used by PolyTM to sup-
port run-time configuration changes are described.

4.1. Switching Between TM Algorithms

The different TM implementations are hidden under a common
interface defined in PolyTM. Each thread uses a set of function
pointers to this interface to process transaction operations. To
switch between TMs, a thread switches the function pointers
to a different implementation.

Running concurrent transactions with different TMs is not
safe in general [49, 34]. So, PolyTM enforces an invariant: a
thread may run a transaction in mode TMA only if no other
thread is executing a transaction in mode TMB. The problem
is illustrated in Fig. 3: at time e1 the adapter thread tries to
change the TM mode; if thread 2 immediately applied the
change, it could run mode TMB concurrently with thread 1 in
TMA. The above invariant guarantees correctness by forcing
thread 2 to wait until e2 to change to TMB.

The invariant is enforced via an implementation based on
the following three steps: (i) adapt parallelism degree (i.e.,
number of threads) from its current value, say P, to 0; (ii)
change TM back-end; (iii) adapt parallelism degree back to P.

4.2. Adapting the Parallelism Degree

The maximum number of active threads is adapted using the
synchronization scheme described in Algorithm 1.

3

Algorithm 1 Changing the parallelism degree in PolyTM.
1: const int RUN← 1 , BLOCK← 1� 32
2: padded var int threadState[MAX_THREADS]← { 0 }

3: function disable-thread(int t) . adapter thread
4: int val← fetch-and-add(threadState[t], BLOCK)
5: while (val & RUN) val← threadState[t]

6: function enable-thread(int t) . adapter thread
7: threadState[t]← RUN
8: signal(t) . wakes up thread t (locking omitted)

9: function tm-start(int t) . application thread
10: int val← fetch-and-add(threadState[t], RUN)
11: if (val & BLOCK)
12: fetch-and-sub(threadState[t], RUN)
13: cond-wait(t) . checks it is still blocked after locking
14:omitting logic for tm-start...

15: function tm-end(int t) . application thread
16:omitting logic for tm-end...
17: fetch-and-sub(threadState[t], RUN)

Each application thread synchronizes with the adapter
thread via a (padded) state variable. When executing a transac-
tion for the first time, a thread is registered in PolyTM. This is
simplified in the algorithm by assuming a maximum number
of threads, although PolyTM supports an arbitrary number.

Upon starting a transaction, a thread t sets the lowest bit
in its state variable (line 10), whereas the adapter thread sets
the highest bit of t’s state variable when it wants to disable t
(line 4). These writes are performed atomically together with
returning the state of t. Then, both adapter thread and t can
reason on who wins (a potential race): if t sees only the lowest
bit set, it is allowed to proceed and executes the transaction;
otherwise, it must wait for the adapter to change the mode
(line 13). The adapter inversely checks that only the highest
bit is set, or else waits for t to unset the lowest bit (line 5) —
because t was already executing a transaction.

Also, a conditional variable is used, and associated with
each thread t, for t to wait on, in the case it is disabled. The
details of its management have been omitted, for simplicity of
presentation.

PolyTM guarantees that a reconfiguration always termi-
nates: a thread eventually commits a pending transaction, or
else aborts and checks whether it was disabled — assuming
finite atomic blocks. Hence, the duration of a reconfiguration
depends on the longest running transaction. This, however,
does not impair the efficiency of PolyTM’s reconfiguration:
in-memory transactions are generally very fast (given that they
do not entail I/O) [48, 33].

In addition, the success of a reconfiguration does not rely
on threads to eventually call into ProteusTM. This is crucial
to cope with applications whose threads may wait for events
(e.g., client requests) and do not run atomic blocks often.

5. RecTM: a Recommender System for TM

RecTM optimizes PolyTM via a black-box methodology that
relies on a novel combination of off-line and on-line learning.
In short, it operates according to the work-flow of Algorithm 2:

(i) build a training set by profiling the KPI of an initial set of
applications in the encompassed TM configurations (line 1);
(ii) instantiate a CF-based performance predictor based on the
training set obtained off-line in (i) (lines 2 and 3);
(iii) upon deploying a new application or detecting a change
of the workload, profile on-line the application over a small
set of explored configurations (lines 4 and 5);
iv) recommend a configuration for the workload (line 6).

In the following, the building blocks of RecTM will be
detailed.

5.1. Recommender: Using Collaborative Filtering

RecTM casts the identification of the optimal TM configura-
tion for a workload into a recommendation problem, which it
tackles using Collaborative Filtering (CF) [45].

A key challenge to successfully apply CF in predicting the
performance of TM applications, is that CF assumes the rat-
ings in a predetermined scale (e.g., a preference from 0 to
10). The absolute KPI values produced by different TM
applications, instead, can span orders of magnitude (e.g., from
millions [6] to few txs/sec [22]). Further, KPI values of spe-
cific configurations provide no indication on the max/min KPI
that the application can obtain, impairing their normalization.

Recommender tackles this issue with an innovative tech-
nique, which let us address it as rating distillation. This func-
tion maps KPI values of diverse TM applications onto a rat-
ing scale that can be fruitfully exploited by CF to identify
correlations among the performance trends of heterogeneous
applications.
The Rating Heterogeneity Problem. Ratings are stored in a
Utility Matrix (UM) A, of which each row u represents a work-
load and each column i is a TM configuration: Au,i is the rating
of configuration i for workload u (i.e., in the chosen domain,
it expresses the performance of i in u for a given KPI metric).
To illustrate the problem, let us populate the UM directly with
sampled KPI values (e.g., throughput):

(1 2 3
30 20 10
100 200 ?

)
, which

contains information on applications A1 and A2 profiled with
configurations C1,C2 and C3 and A3 profiled only at C1 and C2.
Let us assume that Ci is an application running with a given
TM and i threads. From the matrix, it is possible to infer that
A1 can scale, as its performance increases linearly with the
number of threads; A2 does not, since its performance, though
higher in absolute value than A1’s, decreases as the number of
threads grows. Assume that it is required to predict the rating
for A3,3. Note that A3 exhibits the same linear trends of A1:
for this reason, a likely value for A3,3 would be 300. Next, it
will be shown why well-known CF techniques can be misled
because of the heterogeneity of the ratings’ scales in the UM.
The Need for Normalization. The most common similarity
functions in KNN CF are the Euclidean, Cosine and Pear-
son [41]. The first cannot be applied to heterogeneous ratings.
The other two are scale-insensitive, so they are able to identify
C1 as similar to C3. However, they would yield an incorrect

4

Algorithm 2 RecTM work-flow
1: Off-line performance profiling of an initial training set of applications.
2: Rating distillation and construction of the Utility Matrix (Section 5.1).
3: Selection of CF algorithm and setting of its hyper-parameters).
4: Upon the arrival of a new workload (Section 5.3):
5: Sample the workload on a small set of initial configurations (Section

5.2).
6: Recommend the optimal configuration (Section 5.1).

prediction in absolute value, as it will lie on C1’s scale, which
is different from C3’s.

A solution to these problems is to normalize the entries in
UM. An effective normalization function should fulfill two
requirements: (i) to transform entries in the UM so that simi-
larities among heterogeneous applications can be mined and
(ii) to enable the application of conventional CF techniques.

Next, it is described how ProteusTM normalizes ratings to
meet the two aforementioned requirements and, thus, enables
CF to optimize TM applications.
Normalization in the Recommender. The rating distillation
used by the Recommender uses a mapping function that, for
any workload w in the UM, ensures: (i) the ratio between the
performance of two configurations ci, c j is preserved in the

rating space, i.e.,
kpiw,ci
kpiw,c j

=
rw,ci
rw,c j

; and (ii) the ratings of the corre-

sponding configurations, rw,c, are distributed (assuming a max-
imization problem) in the range [0,Mw], so as to minimize the
index of dispersion of Mw: D(Mw) = var(Mw)/mean(Mw).

Property (i) ensures that the information about the relative
distances of two configurations is correctly encoded in the
rating spaces. Property (ii) aligns the scales that express the
ratings of each workload w to use similar upper bounds Mw,
which are tightly distributed around their mean value.

The rating of each row is obtained by normalizing its KPI
with respect to a column C*∈CM , so to minimize the index
of dispersion among the resulting maximum ratings in the
normalized domain.

5.2. Controller: Explorations Driven by Bayesian Models

The Controller uses Sequential Model-based Bayesian Opti-
mization (SMBO) [27] to drive the on-line profiling of incom-
ing workloads, to quickly identify optimal TM configurations.

SMBO is a strategy for optimizing an unknown function
f : D→ R, whose estimation can only be obtained through
(possibly noisy) observation of sampled values. It operates as
follows: (i) evaluate the target function f at n initial points
x1 . . .xn and create a training set S with the resulting 〈xi, f (xi)〉
pairs; (ii) fit a probabilistic model M over S; (iii) use an
acquisition function a(M,S)→ D to determine the next point
xm; iv) evaluate the function at xm and accordingly update M;
v) repeat steps (ii) to iv) until a stopping criterion is satisfied.
Acquisition function. Controller uses as acquisition function
the criterion of Expected Improvement (EI) [30], which selects
the next point to sample based on the gain that is expected with
respect to the currently known optimal configuration. More

Machine ID Processor / Number of cores / RAM HTM RAPL
Machine A 1 Intel Haswell Xeon E3-1275 3.5GHz /

4 (8 hyper-threads) / 32 GB
Yes Yes

Machine B 4 AMD Opteron 6172 2.1 Ghz / 48 / 32 GB No No

Table 1: Machines used in the experimental test-bed.

formally, considering without loss of generality a minimization
problem, let De be the set of evaluation points collected so
far, Du the set of possible points to evaluate in D and xmin =
argminx∈Du

f (x). Then the positive improvement function I
over f (xmin) associated with sampling a point x is Ixmin(x) =
max{ f (xmin− f (x),0}. Since f has not been evaluated on x,
I(x) is not known a priori; however, thanks to the predictive
model M fitted over past observations, it is possible to obtain
the expected value for the positive improvement:
EIy(xmin)(x) =E[Iy(xmin)(x)] =

∫ y(xmin)
−∞ (fxmin−c)pM(c|x)dc. Here, pM(c|x)

is the probability density function that the model M associates
to possible outcomes of the evaluation of f at point x [30].

Computing pM(c|x). The Controller computes pM(c|x) with
an ensemble of CF predictors, and obtains predictive mean
µx and variance σ2

x of p(c|x) as frequentist estimates over
the output of its individual predictors evaluated at x. It then
models pM(c|x) as a Gaussian distribution ∼ N(µx,σ

2
x). As-

suming a Normal distribution for p(c|x) is frequently done
in SMBO [27] and other optimization techniques [39] to en-
sure tractability. Given a Gaussian distribution for pM(c|x),
EIy(xmin)(x) can be computed in closed form as EIy(xmin)(x) =

σx[uΦ(u)+φ(u)], where u= y(xmin)−µx
σx

and Φ and φ represent,
respectively, the probability density function and cumulative
distribution function of a standard Normal distribution [30].

Stopping Criterion. As discussed, SMBO requires the defi-
nition of a predicate to stop exploring new configurations.

Controller uses a stopping criterion that seeks a balance be-
tween exploration and exploitation by relying on the notion of
EI: it uses the estimated likelihood that additional explorations
may lead to better configurations.

5.3. Monitor: Lightweight Behavior Change Detection

The Monitor periodically gathers KPIs from PolyTM. These
are used for two tasks: (i) while profiling a new workload,
they are fed to the Controller, providing feedback about the
quality of the current configuration; (ii) at steady-state, they
are used to detect a workload change. The Monitor implements
the Adaptive CUSUM algorithm to detect, in a lightweight
and robust way, deviations of the current KPI from the mean
value observed in recent time windows [2]. This allows the
Monitor to detect both abrupt and smooth changes and to
promptly trigger a new profiling phase in Controller. Note that
environmental changes (e.g., inter-process contention or VM
migration) are indistinguishable from workload changes from
the perspective of the implemented behavior change detection.

5

Machine
ID

TM Backend # threads HTM Abort
Budget

HTM Capacity
Abort Policy

Machine A STMs and
TSX [50]

1,2,3,4,
5,6,7,8

1,2,4,
8,16,20

Set budget to 0;
decrease budget
by 1; halve budget

Machine B STMs 1,2,4,6,
8,16,32,48

N/A N/A

Table 2: Parameters tuned by ProteusTM. STMs are
TinySTM [21], SwissTM [20], NORec [10] and TL2 [16].

6. Evaluation
This section provides an extensive validation of ProteusTM.
Section 6.1 introduces the testbed, applications, and accuracy
metrics used. In Section 6.2 the overhead incurred by PolyTM
to provide self-tuning capabilities is assessed. In Section
6.3, the effectiveness of RecTM’s components is evaluated in
separate.

6.1. Experimental Test-Bed

ProteusTM was deployed in two machines with different char-
acteristics (described in Table 1) and used a wide variety of
standard TM benchmarks. Over 300 workloads were con-
sidered, which are representative of heterogeneous applica-
tions, from highly to poorly scalable, from HTM to STM
friendly [19]. Moreover, three KPIs were tested: execution
time, throughput and EDP (Energy Delay Product, a popular
energy efficiency metric [26]). The energy consumption was
measured via RAPL [12] (available on Machine A).

The system optimizes the KPI by tuning the four dimensions
listed in Table 2. Overall, a total of 130 TM configurations are
considered for Machine A and 32 for Machine B.
Evaluation metrics. The performance of ProteusTM is eval-
uated by considering 2 accuracy metrics: Mean Average Per-
centage Error (MAPE) and Mean Distance From Optimum
(MDFO).

Noting ru,i the real value of the target KPI for workload u
when running with i as configuration, r̂u,i the corresponding
prediction of the Recommender, and S the set of testing 〈u, i〉
pairs, MAPE is defined as: ∑〈u,i〉∈S |ru,i− r̂u,i|/ru,i.

Noting with i∗u the optimal configuration for workload u and
with î∗u the best configuration identified by the Recommender,
the MDFO for u is computed as: ∑〈u,·〉∈S |ru,i∗u − ru,î∗u

|/ru,i∗u .
MAPE reflects how well the CF learner predicts perfor-

mance for an application. In contrast, MDFO captures the
quality of final recommendations output by the Recommender.

6.2. Overhead Analysis and Reconfiguration Latency

The overhead of PolyTM, is now assessed i.e., the inherent
steady-state cost of supporting adaptation. Let us proceed to
the performance comparison of a bare TM implementation
T with that achieved by PolyTM using T without triggering
adaptation.

Table 3 summarizes the results averaged across all bench-
marks. The contention management for HTM is set to decrease
linearly the retries starting from 5 (a common setting [50, 31]).

#threads TL2 NOrec Swiss Tiny HTM-opt HTM-naive
1 3 3 2 3 5 13
4 < 1 1 < 1 3 6 12
8 < 1 < 1 < 1 4 8 19

Table 3: Overhead (%) incurred by ProteusTM for different TM
and # threads. Results are an average across ten runs.

Benchmark (Machine) # Threads
1 2 4 8 16 32

TPC-C (Machine A) 21 91 213 3419 N/A N/A
Memcached (Machine B) 2 8 28 145 1103 1849

Table 4: Reconfiguration (TM and #threads) latency (µsec).

It is also shown the overhead of the optimized code path, em-
ployed for HTM, and the one resulting from the default GCC
instrumentation (fully instrumented path).

These experiments reveal overheads consistently < 5% for
STMs and only slightly larger for HTMs (at most 8%). The
lower STM overhead is justifiable considering that STMs na-
tively suffer from instrumentation costs that end up amortizing
most of the additional overhead introduced by PolyTM.

Also, it is assessed the average latency of a typical reconfigu-
ration in PolyTM to switch TM algorithms (which also entails
changing the number of threads). The results, shown in Ta-
ble 4, encompass two heterogeneous workloads: Memcached
uses 100× shorter transactions than TPC-C. The results high-
light the practicality of the system’s reconfiguration algorithm.
Even in the worst case of large transactions in TPC-C, the
latency is negligible: in fact, this is only incurred during the
exploration phase, which, as we shall see, is kept very short
by ProteusTM.

6.3. Quality of the Prediction and Learning Processes

Let us evaluate each of RecTM’s components by means of
a trace-driven simulation. Traces of real executions were
collected using a subset of the test cases (namely, STAMP and
Data Structures), averaging the results over 5 runs.

The data-set was split into a training set (30%) and a test
set (70%). The training set is used to choose and tune the
CF algorithm and to instantiate the predictive model. It is
used 10 learners for the bagging ensemble, as this is a typical
value [27, 46]. To simulate sampling the performance of the
application in a given configuration, the corresponding value
from the test set is inserted in the UM of the Recommender.
Rating distillation. The effectiveness of the distillation
function was assessed versus several UM preprocessing tech-
niques:
(i) No normalization: CF is applied on the UM containing raw
KPI samples. This is equivalent to Quasar [15]);
(ii) Normalization w.r.t. max.: entries in the UM are relative
to the highest value, supposed to be known a priori. It re-
sembles Paragon’s approach [14], where the machine’s peak
instructions/sec rate is used as normalizing constant;
(iii) Ideal normalization: the scheme described in Section 5.1;

6

0.1

0.2

0.4

0.8

2 3 5 10 20

M
A

P
E

 (l
og

)

randomly selected configuration (log)

Ideal norm
ProteusTM

2
10

100M
A

P
E

(a) MAPE, KNN Cosine

0.05

0.1

0.2

0.4

2 3 5 10 20

M
D

FO
 (l

og
)

randomly selected configuration (log)

No norm
Norm wrt Max

RC-diff

(b) MDFO, KNN Cosine

Figure 4: Rating distillation for Exec. Time on Machine A.

(iv) Row-column subtraction: noted RC, is typically employed
in CF to cope with biases in users and item ratings [41]. It
consists in removing from each known rating the average value
of the corresponding row; then, the average value per column
— computed after the first subtraction — is subtracted;
(v) Rating distillation: used in ProteusTM.

A subset of results are shown, focusing on execution time
KPI on Machine A employing KNN with cosine similarity.
The number of randomly chosen known ratings per row is
varied and then MAPE and DPO are accordingly computed..

Fig. 4 shows that using no normalization, or normalization
w.r.t. the maximum performs very poorly, both in terms of
MAPE (Fig. 4a) and MDFO (Fig. 4b). Both yield similar
results as a normalization w.r.t. any constant. RC is subject
to lower MAPE than the two aforementioned normalizations,
yet its accuracy is significantly lower than rating distillation’s,
both in terms of MAPE and MDFO. Also, the approach of
ProteusTM closely follows the ideal normalization. To ensure
a fair comparison, the same training set was used, and not
forcing the presence of the column used for normalization
among the profiled configurations for ProteusTM.
Controller. Let us now evaluate the proposed EI-based ap-
proach (called EI) with respect to a randomized sampling
approach, used in Quasar and Paragon [14, 15]), and two other
SMBO approaches using acquisition functions different from
EI: Variance explores configurations with high uncertainty for
the underlying model (i.e., high variance/mean ratio); Greedy
explores the configuration with highest predictive mean.

The simulation proceeds in rounds: each one profiles the
target workload on the reference configuration chosen by the
rating distillation function; then the sampling phase begins.
Afterwards, the Recommender produces a recommendation
for the optimal configuration, noted ĉ∗. If such a configuration
is explored, then the optimization is concluded; otherwise, a
final exploration of ĉ∗ is performed. The final recommendation
c∗ is the one which, among those explored, yields the best
performance. The MDFO is computed on the basis of c∗ and
the MAPE is an average MAPEs computed per workload.

In Fig. 5a, it is reported the MDFO for EDP (on Machine
A). The EI exploration policy is able to identify a high qual-
ity solution requiring, on average, less explorations than any
competitor. Fig. 5b shows that the 80-th percentile of the
DFO obtained by EI — after 5 explorations — is less than

10%. Note that, the EDP KPI was the most challenging to
optimize: hence, the latter result represents a lower bound on
the system’s accuracy.

In Fig. 5d, it is shown the MDFO when optimizing exe-
cution time (on Machine B): once again, the EI-based Con-
troller’s exploration performs best. Fig. 5c shows the MAPE
per explorations. Interestingly, the Variance policy has the
best mean prediction accuracy. However, as it does not aim
at sampling potential optimal solutions, but only at reducing
uncertainty, it does not learn the behavior of the target function
for potentially good configurations. Thus, the quality of the
recommended configurations is significantly worse than EI’s
(see Fig. 5d).

Finally, let us compare EI policy with random sampling in
Figs. 5a and 5d: taking 5% distance as reference, EI achieves
a number of explorations vs MDFO trade-off that is up to 4×
better than its competitor. This highlights the effectiveness of
the SMBO-based approach over simpler sampling techniques
used in recent systems [15, 14]).

Comparison with ML approaches. Let us now compare
ProteusTM with an approach based on the same technique
proposed by Wang et. al [49] to automate the choice of the
TM algorithm for a given workload. This approach relies on
workload characterization data to train a ML-based classifier
that is used to predict the best TM configuration for a given
workload. The workload characterization uses 17 features:
e.g., duration of transactions, data access patterns, and level of
data contention. Wang et al. also uses static analysis to obtain
other features, e.g., the number of atomic blocks. This step
was not performed but we extend the set of features proposed
by the authors with information on contention management
(Aggressive, Suicide, Polite, Karma, Timestamp). These fea-
tures were not considered by the authors, but they were found
to be highly correlated with performance.

The simulation for ProteusTM evolves as previously ex-
plained. For the ML competitor, instead, a workload is first
profiled over a reference configuration (TinySTM, 4 threads)
and then the ML is invoked to predict the best configuration.
After it, the MDFO is computed for this predicted configura-
tion.

300 STAMP and Data Structures workloads were used in
Machine A, and splitted randomly into training and test sets:
30-70 and 70-30 train-test splits. For ProteusTM, the training
set is the UM corresponding to the selected workloads; for ML
approaches, the training set is composed, for each workload,
by the aforementioned features and the identifier of the best
configuration as target class. The target KPI is throughput.

3 ML algorithms, implemented in Weka [23] were con-
sidered: Decision Trees (CART), Support Vector Machines
(SMO), and Artificial Neural Networks (MLP) [4]. Their
parameters were chosen via random search optimization [3],
which evaluated 100 combinations with cross-validation on
the training set.

Fig. 6 reports the CDF of the DFO of each technique over 10

7

0.02

0.05

0.1

0.2

0.4

 2 4 6 8 10 12 14 16 18 20

M
D

FO
 (l

og
)

Number of explorations

usTM)

Greedy

Random

Variance

EI (Prote

(a) MDFO for EDP

0.2

0.4

0.6

0.8

1.0

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Dist. from Optimal after 5 explorations

Random, Variance

GreedyEI (ProteusTM)

(b) CDF of DFO for EDP

0.1

0.2

0.4

 2 4 6 8 10 12 14 16 18 20

M
A

P
E

Number of explorations

Greedy
Random
Variance

EI (ProteusTM)

(c) MAPE for Exec. Time

0.0002

0.0016

0.01

0.2

 2 4 6 8 10 12 14 16 18 20

M
D

FO
 (l

og
)

Number of explorations

Greedy
Random
Variance
EI (ProteusTM)

(d) MDFO for Exec. Time

Figure 5: Controller’s exploration policies for EDP on Machine A (left figures) and Exec. Time on Machine B (right figures).

runs. The data shows the superiority of ProteusTM relatively
to pure ML approaches. In particular, with 30% training set,
ProteusTM already delivers a DFO of 1.6% against the 10%
of the ML competitors, and a 90-th percentile of 3.5% against
25% of CART (the best alternative). Also, by increasing the
training set to 70%, ProteusTM delivers a DFO of 1.3% and
a 90-th percentile of 3%, against 6.8% DFO and 21% 90-th
percentile of the best alternative (SMO).

Note that the DFO of ProteusTM is similar (both in mean
and 90-th percentile) in both cases, whereas ML greatly bene-
fits from more training data. This difference can be explained
by the number of explorations required by ProteusTM to per-
form its profiling phase (with threshold ε = 0.01): at 30%
training, the 90-th percentile number of explorations is 7,
but this lowers to 6 with 70% training set. This means that
ProteusTM delivers high accuracy also in presence of scarce
training data, by autonomously exploring more.

The evaluation suggests that detecting similarities on the
KPI is more effective than statistically inferring relationships
from training data. This possibly depends on two, tightly in-
tertwined, causes: (i) thanks to the employed novel normaliza-
tion, using CF is more robust than ML, as it is based on direct
KPI observations, rather than on learning the mapping of input
to output features; (ii) the adaptive profiling phase proved to
be more effective than a one-shot classification-based solution.

6.4. Online Optimization of Dynamic Workloads

In Fig. 7, the ProteusTM system is evaluated as a whole. Both
RecTM and PolyTM amount to 6.5K and 6K lines of code,
excluding third party code (e.g., Mahout and TMs).

4 use cases for ProteusTM’s runtime optimization are shown
on 2 TM benchmarks (Red-Black Tree and STMB7 [22]), a
TM porting of TPC-C [47] and of Memcached [43]. For each
application 3 workloads are triggered and chosen to exemplify

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

C
D

F

Distance from Optimal (DFO)

ProteusTM, 90perc: 0.035

SMO: Support
Vector Machine
90perc: 0.35

CART: Decision
Tree

90perc: 0.25

MLP: Neural
Network

90perc: 0.33

ProteusTM explorations: median 4, 90perc 7

(a) 30% Training data used.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

C
D

F

Distance from Optimal (DFO)

ProteusTM, 90perc: 0.03

SMO: Support
Vector Machine
90perc: 0.21

CART: Decision
Tree

90perc: 0.22

MLP: Neural
Network

90perc: 0.41

ProteusTM explorations: median 4, 90perc 6

(b) 70% Training data used.

Figure 6: Comparison vs Machine Learning based techniques.

M
ac

hi
ne Mean Distance from Optimum (MDFO %)

Benchmark Optimal in Workload i ProteusTM
Name Workload (Opt Conf) Opt 1 Opt 2 Opt 3 (explorations)

A RBT
1 (NOrec: 7t) 0 137 93 < 1 (4 expl)
2 F (HTM:8t Half-20) 33 0 71 2 (4 expl)
3 (HTM: 4t GiveUp-4) 154 37 0 < 1 (7 expl)

A STMB7
1 (HTM: 4t Linear-2) 0 20 210 2 (6 expl)
2 (Swiss: 4t) 135 0 28 < 1 (4 expl)
3 F (TL2: 8t) 390 29 0 < 1 (3 expl)

A TPC-C
1 F (Tiny: 4t) 0 273 47 < 1 (3 expl)
2(HTM:3t GiveUp-16) 68 0 152 3 (4 expl)
3 (Tiny: 8t) 22 370 0 < 1 (3 expl)

B Memchd
1 F (Swiss: 32t) 0 50 26 4 (3 expl)
2 (Tiny: 32t) 19 0 258 < 1 (4 expl)
3 (Tiny: 4t) 18 66 0 < 1 (3 expl)

Table 5: For each benchmark (of Fig. 7), it is shown the MDFO
(in %) of ProteusTM, each Optimal and BFA (F) configura-
tions. Each workload is labeled with its optimal configuration.

contrasting characteristics and resulting performances. In each
case, ProteusTM is totally oblivious of the target application:
no workloads of the application are present in its training set.
This highlights the Recommender’s ability to detect similarity
patterns between the target workloads and the set of disjoint
applications used as training set.

Setting the Monitor period to 1 sec and the SMBO ε to 0.01.
In each run, let us measure the performance of (i) ProteusTM,
(ii) the 3 configurations that perform best in each workload,
(iii) the Best Fixed configuration on Average (BFA) across the
workloads, and (iv) a Sequential non-instrumented execution.

Three conclusions can be drawn from these plots: (i) Pro-
teusTM is able to quickly identify, at runtime, configurations
that are optimal — or very close. Remarkably, ProteusTM
delivers performance that is, on average, only 1% lower than
the optimal; (ii) employing any of the baseline alternatives
yields up to two orders of magnitude lower performance; (iii)
thanks to the SMBO approach, the performance degradation
incurred when exploring is minimal (at most 7 explorations
in these use cases). Such cost is usually amortized in long-
running services (e.g., databases), in which workload shifts
are infrequent [8].

A summary is provided in Table 5 where it is listed the
optimal configurations in each workload. It also shows the
BFA (with F) which is always also an optimal configuration
in some workload. This data highlights the robustness of Pro-
teusTM to optimize heterogeneous applications with diverse
optimal configurations, in terms of TM algorithm (STMB7),
parallelism degree (TPC-C) and HTM tuning (RBT and Mem-

8

0.3

0.5

0.7

10 20 30 60 70 80

Th
ro

ug
hp

ut
 (m

ill
io

n
tx

/s
ec

)

Time (s)

8

11

14T

(a) Red-Black Tree (RBT)

0

0.1

0.2

0.3

10 20 30 60 70 80Time (s)

Optimal configuration in:
Workload 1
Workload 2
Workload 3

(b) STMBench7

0.02
0.03
0.04

10 20 30 60 70 80Time (s)

0.8

1.6

2.4

3.2

Sequential
ProteusTM

(c) TPC-C

0.2

0.3

0.4

0.5

10 20 30 60 70 80Time (s)

0.8

1.6

2.4

3.2

(d) Memcached

Figure 7: Performance of four applications when their workload changes three times. It is shown the performance obtained with
ProteusTM, and three additional fixed configurations, each one corresponding to an optimum in each workload.

0

1

2

3

4

5

10 20 30 60 70 80Th
ro

ug
hp

ut
 (m

ill
io

n
tx

/s
ec

)

Time (s)

Sequential

TinySTM-7t

HTM-7t-H20

HTM-2t-G20
ProteusTM

Figure 8: Similar to Fig. 7c, but with a static application work-
load, varying instead the availability of machine resources.

chd).
Finally, in Fig. 8, what was claimed in Section 5.3 is con-

firmed by using a static TPC-C workload and varying external
factors to the application to trigger behavior changes. To simu-
late these external changes the stress Unix tool was used with
different configurations over periods of 30 seconds: it either
created high CPU, memory or IO usage in each workload.
The results are similar to what was chosen previously, in that
ProteusTM obtains perform close to the optimal across the
test.

7. Conclusions

This thesis presents ProteusTM, the first TM system with
multi-dimensional self-tuning capabilities. ProteusTM is inte-
grated with GCC and exposes a standard TM interface, which
ensures full transparency, ease of use and portability. At its
heart, ProteusTM relies on a novel self-tuning technique that
leverages on Collaborative Filtering and Baeysian Optimiza-
tion.

Via an extensive evaluation based on real-word applica-
tion and well-known benchmarks, it was demonstrated Pro-
teusTM’s capability to optimize heterogeneous applications in
high-dimensional configuration spaces: ProteusTM achieves
performance that are, on average, < 3% from optimum and
gains up to 100× relatively to static configurations.

References
[1] Allon Adir, Dave Goodman, Daniel Hershcovich, Oz Hershkovitz,

Bryan Hickerson, Karen Holtz, Wisam Kadry, Anatoly Koyfman, John
Ludden, Charles Meissner, Amir Nahir, Randall R. Pratt, Mike Schiffli,
Brett St. Onge, Brian Thompto, Elena Tsanko, and Avi Ziv. Verification
of transactional memory in power8. In Proceedings of the 51st Annual
Design Automation Conference, DAC ’14, pages 58:1–58:6, New York,
NY, USA, 2014. ACM.

[2] Michèle Basseville and Igor V. Nikiforov. Detection of Abrupt Changes:
Theory and Application. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1993.

[3] James Bergstra and Yoshua Bengio. Random search for hyper-
parameter optimization. J. Mach. Learn. Res., 13(1):281–305, February
2012.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag New York, Inc., 2006.

[5] Eric Brochu, Vlad M Cora, and Nando de Freitas. A tutorial on
bayesian optimization of expensive cost functions, with application to
active user modeling and hierarchical reinforcement learning. eprint
arXiv:1012.2599, arXiv.org, December 2010.

[6] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle
Olukotun. STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08: Proceedings of The IEEE International
Symposium on Workload Characterization, September 2008.

[7] Calin Cascaval, Colin Blundell, Maged Michael, Harold W Cain, Peng
Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software transactional
memory: why is it only a research toy? Communications of the ACM,
51(11):40–46, 2008.

[8] Carlo Curino, Evan P.C. Jones, Samuel Madden, and Hari Balakr-
ishnan. Workload-aware database monitoring and consolidation. In
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, pages 313–324, New York, NY,
USA, 2011. ACM.

[9] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark
Moir, Michael L. Scott, and Michael F. Spear. Hybrid NOrec: A
Case Study in the Effectiveness of Best Effort Hardware Transactional
Memory. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pages 39–52, New York, NY, USA, 2011.
ACM.

[10] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec:
Streamlining stm by abolishing ownership records. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’10, pages 67–78, New York, NY, USA,
2010. ACM.

[11] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram.
Google news personalization: Scalable online collaborative filtering.
In Proceedings of the 16th International Conference on World Wide
Web, WWW ’07, pages 271–280, New York, NY, USA, 2007. ACM.

[12] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna,
and Christian Le. Rapl: Memory power estimation and capping. In
Proceedings of the 16th ACM/IEEE International Symposium on Low
Power Electronics and Design, ISLPED ’10, pages 189–194, New
York, NY, USA, 2010. ACM.

[13] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor
Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Liv-
ingston, and Dasarathi Sampath. The youtube video recommendation
system. In Proceedings of the Fourth ACM Conference on Recom-
mender Systems, RecSys ’10, pages 293–296, New York, NY, USA,
2010. ACM.

[14] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware
Scheduling for Heterogeneous Datacenters. In Proceedings of the
Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS, pages 77–88,
2013.

[15] Christina Delimitrou and Christos Kozyrakis. Quasar: resource-
efficient and QoS-aware cluster management. In Proceedings of Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS, pages 127–144, 2014.

9

[16] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II.
In Proceedings of the 20th International Conference on Distributed
Computing, DISC, pages 194–208, Berlin, Heidelberg, 2006. Springer-
Verlag.

[17] David Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early
experience with a commercial hardware transactional memory imple-
mentation. In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS, pages 157–168, 2009.

[18] Diego Didona, Pascal Felber, Derin Harmanci, Paolo Romano, and
Joerg Schenker. Identifying the optimal level of parallelism in transac-
tional memory applications. Computing Journal, pages 1–21, Decem-
ber 2013.

[19] Nuno Diegues, Paolo Romano, and Luís Rodrigues. Virtues and Limita-
tions of Commodity Hardware Transactional Memory. In Proceedings
of the 23rd International Conference on Parallel Architectures and
Compilation, PACT ’14, pages 3–14, New York, NY, USA, 2014.
ACM.

[20] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka.
Stretching transactional memory. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’09, pages 155–165, New York, NY, USA, 2009.
ACM.

[21] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic perfor-
mance tuning of word-based software transactional memory. In Proc.
of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’08, pages 237–246, New York, NY,
USA, 2008. ACM.

[22] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: A
benchmark for software transactional memory. In Proceedings of
the 2Nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, EuroSys ’07, pages 315–324, New York, NY, USA,
2007. ACM.

[23] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The weka data mining software: An
update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[24] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory,
2Nd Edition. Morgan and Claypool Publishers, 2nd edition, 2010.

[25] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proceedings of
the 20th Annual International Symposium on Computer Architecture,
ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[26] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital
design. In Low Power Electronics, 1994. Digest of Technical Papers.,
IEEE Symposium, pages 8–11, Oct 1994.

[27] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential
model-based optimization for general algorithm configuration. In
Proceedings of the 5th International Conference on Learning and
Intelligent Optimization, LION’05, pages 507–523, Berlin, Heidelberg,
2011. Springer-Verlag.

[28] Intel Corporation. Intel Transactional Memory Compiler and Runtime
Application Binary Interface. https://gcc.gnu.org/wiki/
TransactionalMemory?action=AttachFile&do=get&
target=Intel-TM-ABI-1_1_20060506.pdf, 2009.

[29] Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional mem-
ory architecture and implementation for ibm system z. In Proceedings
of the Annual nternational Symposium on Microarchitecture (MICRO),
pages 25–36. IEEE Computer Society, 2012.

[30] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient
global optimization of expensive black-box functions. J. of Global
Optimization, 13(4):455–492, December 1998.

[31] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel,
and W. Lehner. Improving in-memory database index performance
with intel transactional synchronization extensions. In High Perfor-
mance Computer Architecture (HPCA), 2014 IEEE 20th International
Symposium on, pages 476–487, Feb 2014.

[32] Andi Kleen. Scaling existing lock-based applications with lock elision.
Commun. ACM, 57(3):52–56, March 2014.

[33] Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman,
Jignesh M. Patel, and Mike Zwilling. High-performance concurrency
control mechanisms for main-memory databases. Proc. VLDB Endow.,
5(4):298–309, December 2011.

[34] Yossi Lev, Mark Moir, and Dan Nussbaum. Phtm: Phased transactional
memory. In Workshop on Transactional Computing (Transact), 2007.

[35] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet Computing,
7(1):76–80, January 2003.

[36] Daniel Lupei, Bogdan Simion, Don Pinto, Matthew Misler, Mihai
Burcea, William Krick, and Cristiana Amza. Transactional mem-
ory support for scalable and transparent parallelization of multiplayer
games. In Proceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, pages 41–54, New York, NY, USA, 2010. ACM.

[37] Alexander Matveev and Nir Shavit. Reduced hardware transactions: A
new approach to hybrid transactional memory. In Proceedings of the
Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’13, pages 11–22, New York, NY, USA, 2013.
ACM.

[38] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion
Berkowits, James Cownie, Robert Geva, Sergey Kozhukow, Ravi
Narayanaswamy, Jeffrey Olivier, Serguei Preis, Bratin Saha, Ady
Tal, and Xinmin Tian. Design and implementation of transactional
constructs for c/c++. In Proceedings of the 23rd ACM SIGPLAN
Conference on Object-oriented Programming Systems Languages and
Applications, OOPSLA ’08, pages 195–212, New York, NY, USA,
2008. ACM.

[39] Takayuki Osogami and Sei Kato. Optimizing system configurations
quickly by guessing at the performance. In Proceedings of the 2007
ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’07, pages 145–156,
New York, NY, USA, 2007. ACM.

[40] Victor Pankratius and Ali-Reza Adl-Tabatabai. Software engineering
with transactional memory versus locks in practice. Theor. Comp. Sys.,
55(3):555–590, October 2014.

[41] Anand Rajaraman and Jeffrey David Ullman. Mining of Massive
Datasets. Cambridge University Press, 2011.

[42] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is
transactional programming actually easier? SIGPLAN Not., 45(5):47–
56, January 2010.

[43] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear. Transaction-
alizing legacy code: An experience report using gcc and memcached.
In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASP-
LOS ’14, pages 399–412, New York, NY, USA, 2014. ACM.

[44] Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, and Francesco
Quaglia. Machine learning-based self-adjusting concurrency in soft-
ware transactional memory systems. In Proceedings of the 2012 IEEE
20th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, MASCOTS ’12, pages
278–285, Washington, DC, USA, 2012. IEEE Computer Society.

[45] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative
filtering techniques. Adv. in Artif. Intell., 2009:4:2–4:2, January 2009.

[46] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-
Brown. Auto-weka: Combined selection and hyperparameter opti-
mization of classification algorithms. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’13, pages 847–855, New York, NY, USA, 2013. ACM.

[47] TPC Council. TPC-C Benchmark. http://www.tpc.org/tpcc,
2011.

[48] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy transactions in multicore in-memory databases. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 18–32, New York, NY, USA, 2013.
ACM.

[49] Qingping Wang, Sameer Kulkarni, John Cavazos, and Michael Spear.
A transactional memory with automatic performance tuning. ACM
Trans. Archit. Code Optim., 8(4):54:1–54:23, January 2012.

[50] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar.
Performance evaluation of intel R© transactional synchronization exten-
sions for high-performance computing. In International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1–19. ACM, 2013.

10

https://gcc.gnu.org/wiki/TransactionalMemory?action=AttachFile&do=get&target=Intel-TM-ABI-1_1_20060506.pdf
https://gcc.gnu.org/wiki/TransactionalMemory?action=AttachFile&do=get&target=Intel-TM-ABI-1_1_20060506.pdf
https://gcc.gnu.org/wiki/TransactionalMemory?action=AttachFile&do=get&target=Intel-TM-ABI-1_1_20060506.pdf
http://www.tpc.org/tpcc

	Introduction
	Background
	Transactional Memory
	Collaborative Filtering in Recommender Systems

	ProteusTM in a Nutshell
	PolyTM: a Polymorphic TM Library
	Switching Between TM Algorithms
	Adapting the Parallelism Degree

	RecTM: a Recommender System for TM
	Recommender: Using Collaborative Filtering
	Controller: Explorations Driven by Bayesian Models
	Monitor: Lightweight Behavior Change Detection

	Evaluation
	Experimental Test-Bed
	Overhead Analysis and Reconfiguration Latency
	Quality of the Prediction and Learning Processes
	Online Optimization of Dynamic Workloads

	Conclusions

