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Abstract Multicore processors represent the de-facto standard archi-

tecture for a wide variety of devices, from high performance computers

to mobile devices. However, developing concurrent programs to harness

the capabilities of multicore architectures using traditional lock-based

synchronisation is known to be a complex and error prone task, as the

fine-grained locking approach is prone to deadlocks, livelocks and it is dif-

ficult to debug, while coarse-grained locking does not provide performance

gains. Transactional Memory (TM) has emerged as a powerful paradigm

that promises to simplify the life of programmers while still achieving

performance similar to fine grained locking, programmers only need to

specify which parts of the code have to appear as executed atomically, and

not how atomicity should be achieved. This document first overviews the

state of the art of TM, analysing some of the main TM implementations

based on software (STM), hardware (HTM), or on combination thereof

(Hybrid TM). Next, It overviews the state of the art benchmarks that

has been created to evaluate Transactional Memory implementations

and stress the advantages and disadvantages over the traditional locking

mechanisms. In the light of this critical analysis of the state of the art, the

document proposes a novel Hybrid TM algorithm that aims to minimise

synchronisation overheads between HTM and STM by relying on a novel

dynamic memory partitioning scheme.

Keywords: Transactional Memory, Concurrent Programming, Data Partition-

ing, Efficiency

1 Introduction

Multicore processors have become the standard architecture in today’s computing

systems, ranging from high-end servers, to personal computers, as well as smart-

phones and embedded systems, all have the multicore technology and the trend

is to increase the number of cores towards manycore architectures. Unfortunately,

the development of parallel applications that can fully exploit the advantages of

the multicore technology is far from being a trivial task.
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Indeed, when using traditional lock-based synchronisation mechanisms, devel-

opers are faced with a major dilemma. They can either opt for using coarse-grained

locks, which simplifies significantly reasoning on the correctness of concurrent

applications, but can severely hinder parallelism and hamper performance. Or

they can opt for a second alternative which is to use fine-grained locking. This

approach allows for extracting the most parallelism possible, avoiding the in-

efficiency of coarse-grained locking, but it is harder to devise and more prone

to deadlocks and livelocks, which are notoriously hard to debug [33]. In fact,

fine grained locking is considered difficult to use for the average programmer

[33], who may not be necessarily well trained for the development of concurrent

applications.

Transactional Memory (TM) [25] precisely answers this urge by specifying a

new programming paradigm that alleviates the complexity of classical locking

mechanisms while ensuring performance similar or even better than complex fine-

grained locking schemes. TM borrows the concept of transactions from databases

and applies it to parallel programming: with TM, programmers devise code into

blocks that will be ensured by the TM system to run atomically. The underlying

system is responsible for either committing the transactions, and making it’s

modifications globally visible, or to aborting the transactions and ensuring that

no modifications are observed out of the context of the transaction. This approach

leads to drastically simplifying the development of parallel applications and abate

their time to market and costs.

Transactional Memory was initially proposed twenty years ago as an extension

to multi-processors’ cache coherence protocols [25]. Due to the difficulty of rapid

prototyping in hardware environments, researchers resorted to Software Trans-

actional Memory to advance the state of the art [12,19,20,22]. Simultaneously,

hardware-based implementations have also been proposed, whose designs were

validated using simulators.

Hardware Transactional Memory (HTM) is currently supported by the main-

stream Intel Haswell and the IBM Power8 processors. These implementations are

best-effort, which means that they always ensure correctness, but do not provide

any progress guarantee. This means that transactions executing in hardware

may never commit (even in absence of concurrency) due to inherent limitations

of hardware, such as transaction exceeding capacity of hardware or running

prohibited instructions. This raises the need for a software fallback path to ensure

forward progress [18].

This fallback path can be either as simple as a global lock or as complex as

a software transactional memory, which is designated by Hybrid Transactional

Memory (HyTM) [8,11,13,29,36]. The goal of HyTM is to fully exploit best-effort

HTM as much as possible, and in the case of abort, fall back to the more costly

Software Transactional Memory (STM), which provides progress guarantee.

Despite the number of papers published in this area in recent years, HyTM

still suffer from large overheads [18]. These overheads are noticed on HyTMs based

on early STM implementations [36], which requires dealing with per-location

metadata and consequently makes the implementation prone to capacity aborts
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due to the handling of metadata by HTM [11]; but also in HyTMs that use a

software fallback without per location metadata, as these HyTMs suffer from a

scalability bottleneck as every transaction must read a sequence lock. Further,

they can induce spurious aborts of HTM transactions if any concurrent, non-

conflicting HTM commits [18]. Benchmarks’ tests indicate that the performance

of state of the art HyTM can not surpass HTM performance for workloads

characterised by short transactions with small read and write-set, and that it

can not surpass the scalability of STM for workloads characterised by long

transactions with large read and write-set. The results show that HyTM has costs

incurred by synchronising both the execution of HTM and STM, as the memory

locations accessed by one TM has to be validated with the read and write-set of

both TMs. Results also show that the performance of HyTM is highly dependent

on the workload.

The goal of this work is to provide a new class of HyTM without the overheads

incurred by the synchronisation of HTM and STM. The solution proposed in this

document is to dynamically partition the memory into two distinct partitions

where both STM and an HTM can execute transactions disjointly, thus avoiding

overheads of the synchronisation between both systems. The main challenge is

how to ensure safety (i.e. accesses by HTM and STM are actually constrained to

their current partitions) without imposing costly instrumentation overheads on

HTM and also STM.

The rest of this document is structured as follows: Section 2 overviews the state

of the art in the TM field. Section 3 describes the architecture of the proposed

solution. Section 4 focuses on how the proposed solution will be evaluated and

which metrics are going to be used and Section 5 contains the scheduling for the

future work.

2 Related Work

This section overviews the state of the art of Transactional Memory, it first

begins with STM and presents three implementations that address different

design approaches. Then, it presents the state of the art of HTM and shows the

virtues and limitations of each HTM available. Next, it presents the state of the

art of HyTM and it presents six different approaches to synchronise both HTM

and STM. Finally, is presented an overview of state of the art benchmarks used

to evaluate TM.

2.1 Software Transactional Memory

Software Transactional Memory (STM) is a category of systems that implement

the Transactional Memory abstraction through a purely software-based runtime

library.

During the last decade, STM was object of a thorough research mainly because

it is a solution that is not bound to a specific architecture, nor it is restricted

by the underlying hardware, making STM a widely portable solution. In STM,
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transactional reads and writes are tracked by a software runtime, which has

the responsibility of maintaining the read and write set of transactions. Besides

maintaining the read and write sets, most STMs keep additional metadata about

transactions, such as locking, ownership records and versioning.

Existing literature in the area of STM can be coarsely classified according

to the following design choice choices: word-based vs object-based, lock-based

vs lock-free, write-through vs write-back, eager vs lazy conflict detection. word-

based STMs access the memory directly at the granularity of machine words or

larger chunks of memory, yet object-based STMs access the memory at object

granularity and it requires the TM to be aware of the object associated in every

access. In terms of locking mechanisms, lock-based STMs uses locks to control

the concurrency between transactions accessing the same data while lock-free

STMs do not use any lock to protect memory from concurrent accesses. STMs

can be write-through, writing their updates directly to memory and storing the

previous ones on a undo log, or write-back which means that changes are only

written to memory at commit-time. Finally, the conflict detection can be eager,

which means that conflicts are detected at the moment of occurrence, or it can

be lazy if the detection is performed at commit-time.

The best design can vary according to a number of factors like the underlying

architecture, the number of cores per CPU and the size of caches. More important

to note is that the efficiency that will result from these choices is highly dependent

from the type of workload generated by the application.

In comparison with HTM, STM systems incur heavy instrumentation on

the code, issuing modification on the atomic code blocks in order to account

for transactional operations and other operations performed by the underlying

system as log keeping and conflict detection. Despite of the drawbacks, state of

the art STM normally provides stronger progress guarantees than HTM: being

fully implemented in software, STM does not suffer from the restrictions that

affect HTM and can support the execution of arbitrarily long transactions.

TinySTM TinySTM [20] is a STM implementation presented by Felber et al.

in 2008.

Authors state that the characteristics of the workload of an STM implementa-

tion plays a major role in selecting the right choice and configuration parameters.

Some of the characteristics are the ratios to update read-only transactions, the

size of read and write-sets and contention on shared memory.

TinySTM is a word-based STM implementation, meaning that it allows for

directly mapping of transactional accesses to the underlying memory subsystem.

This STM uses an encounter-time locking mechanism, as authors state that

it increases the transactions throughput because transactions do not perform

useless work. This mechanism also allows the efficient handling of reads-after-

write conflicts without requiring expensive or complex mechanisms, a valuable

feature especially when write-sets have non-negligible size.

Along with encounter time locking, two other strategies can be used in

TinySTM to access memory: write-through and write-back access. In write-
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through access, transactions immediately write to memory and undo updates if

aborted. In write-back access, transactions do not update until the commit time.

As most word-based STM designs, TinySTM relies upon a shared array of

locks to manage concurrent accesses to memory. Each lock covers a portion of

the address space. Addresses are per-stripe mapped to the lock based on a hash

function. Each lock represents a size of address in memory, as the least significant

bit shows whether lock is owned or not. If the lock is owned, the remaining bits

of address store the owner transaction, if not, a version number based on the

timestamp of the last owner transaction is stored in the remaining bits.

The locks are used to protect memory, when a transaction issues a read it

first checks if the lock protecting the read item is currently being held by other

transaction. Then, it reads the value of the item, and finally the lock again. If

the lock is not held by other transaction or the value of the lock did not change

between both reads, then the value read is consistent.

When a transaction writes to a memory location, it reads the lock entry from

selected memory addresses. If it finds that the lock bit is set then it verifies either

the current transaction is the owner or not. If current transaction is the owner,

then it simply writes the new value to memory location. If it is not owner of the

current transaction then the current transaction can wait for some time to get

resources free or aborts immediately.

TinySTM guarantees that there is a consistent read-set upon each read for

read-only transactions, therefore read-only transactions do not need to validate

their read-sets upon commit. Update transaction have to validate their read-set

before updating any memory location. The downside of this approach is that

the validation of large read-set may be costly, to avoid this overhead the number

of locks can be reduced. On the other hand reducing the number of locks can

increase abort rate as it increases false sharing.

In order to solve this problem, authors proposed hierarchical locking. In

addition to the shared array of locks, it is maintained a smaller array of counters

which goal is to hold the number of commits done to locations in that region.

An hash function is used to map memory addresses to counters, this function

is consistent with the one used to map addresses to lock arrays, i.e. memory

locations that are mapped to the same lock are also mapped to the same counter,

which implies that a counter covers multiple locks and the associated memory

addresses. This scheme allows transactions to determine whether locks have been

acquired or not, however it has an overhead associated with it but authors state

that it is amortised when transactions have large read sets or when there are few

writes from competing transactions.

TinySTM periodically adapts the tuning parameters at runtime and measures

the throughput over a period of approximately one second. The system registers

the most recent throughput for each tuning configuration. Each tuning configura-

tion is a triple consisting of the number of locks, the number of shifts, and the

size of the hierarchical array. The tuning strategy is a hill climbing algorithm

with a memory and forbidden areas in order to achieve the best configuration to

the given workload.
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STM with Data Partitioning Scheme In order to mitigate the concern of

different parts of the data having different access patterns, thus requiring specific

design optimisations, Riegel et. al [35] proposed the use of a data partitioning

scheme integrated with TinySTM [20]. This approach enables STM to divide

data structures in partitions and to compose different specialised optimisations

for each partition accordingly to the workload or even to use a different STM

backend in that partition, hence improving the transactional throughput of each

partition. To identify the partitions of an application, it is constructed a Data

Structure (DS) graph at compile-time for every function encountered in the

program. The DS graph is determined by analysing to which node (partition)

does the pointers in a program are permitted to point to, and whenever two

pointers stored in the same field point to disjoint nodes, those nodes are unified.

Each partition has a type that indicate the concurrency control. The partitions

types vary from read-only partitions to partitions with multiple locks, each

partition type is determined at runtime accordingly to the number of aborts. The

inherent problem of this approach is the usage of pointers in certain languages

like C. Pointers allow to access memory directly, thus another partition, without

the knowledge of the STM.

SwissTM SwissTM [19] is a STM implementation presented by Dragojevic et

al. in 2009.

Authors state that state of the art STMs only have good performance for

workloads with small scale transactions, but in practice do not work well for

large scale applications like business software and video games.

This STM uses four-word lock granularity to protect shared memory, as

authors state that this approach outperforms both word-level and cache line-level

locking for all benchmarks considered.

It uses a mixed invalidation conflict detection scheme which eagerly detects

write/write conflicts. Thus preventing long transactions, that are doomed to

abort, to continue their execution and possibly cause more conflicts with other

running transactions. On the other hand, read/write conflicts, commonly caused

by short transaction with longer ones, are lazily detected. By using invisible

reads and allowing transactions to read objects acquired for writing, SwissTM

detects read/write conflicts late, thus increasing inter-transaction parallelism.

A time-based scheme is used to reduce the cost of transaction validation with

invisible reads.

For conflict detection it uses a two-phase contention manager scheme that

incurs no overhead on read-only and short read-write transactions. Upon a write,

every transaction increments a local counter. If the value of this counter is

below 10, then it is considered a short transaction and in case of conflict it will

use a timid contention management scheme, aborting on the first encountered

conflict. Transactions that are more complex increment the global counter above

10 are then switched dynamically to the Greedy mechanism that involves more

overhead but favours these transactions, thus preventing starvation. This means

that more complex transactions have higher priority than simpler transactions.
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Additionally, transactions that abort due to write/write conflicts back-off for a

period proportional to the number of their successive aborts, hence reducing the

probability of aborting repeatedly because of the same conflict.

Authors state that SwissTM outperforms all state of the art STM in mixed

workloads characterised by non uniform, dynamic data structures and various

transaction sizes while also delivering good performance in smaller-scale scenarios.

NOrec NOrec is a STM library presented in 2010, by Luke Dalessandro, Michael

Spear and Michael Scott [12].

Authors advocate a minimal approach on STM handling of metadata. NOrec

does not need fine grained, shared metadata, only requires a single global sequence

lock (seqlock) for concurrency control. Transactions buffer writes and log read

address/value pairs in thread local structures.

Upon start, transactions poll back seqlock and check if there is any transactions

in write-back phase; if there is, transactions waits until there is no transaction

in the write-back phase. Committing writers increments the seqlock in order to

signal that they have written new values to memory.

When a read is issued, active transactions poll the global seqlock and compare

it with the one held locally by the transaction. A new value is evidence of possible

inconsistency and triggers validation, which is carried out in a value-based style

by comparing the pair address/value in log to the actual values in main memory.

In this protocol, only a single writer can commit and perform writeback at a

time. This sequential bottleneck is minimised by validation prior to acquiring

the seqlock for commit.

By successfully incrementing the seqlock, a writer transitions to a committed

state in which it immediately performs it’s writeback and then releases the lock.

Read-only transactions can automatically commit because their reads are proven

to be consistent because of the validation mechanism.

NOrec scales well when it’s single-writer commit serialisation does not rep-

resent the overall application bottleneck, i.e., writeback does not dominate the

runtime, and has been shown to have low latency, although it’s read set entries

are twice as large as the corresponding orec-based implementations, as NOrec

stores both the address of the read location and the value that was seen.

NOrec guarantees consistency among transactional and non-transactional

accesses to shared data, a characteristic named privatization [30,38], which is

required for compatibility with the C++ draft TM standard [4]. Further, it

provides support for closed nesting, where inner transactions can abort and

restart separately from their parents, which is expected to improve performance

in certain applications.

Authors conclude that NOrec have low overhead and high scalability, which

is ideal for use in legacy system as well as a fallback mechanism in HyTM due to

it’s robust performance.
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2.2 Hardware Transactional Memory

Although TM was originally proposed as an micro-architectural feature [25], the

absence of hardware support switched a large body of TM research into STM

[12,19,20,22]. Unlike Hardware solutions, STM require instrumentation of reads

and writes in order to track the read and write-set of active transactions and

detect conflicts between them. This instrumentation can introduce, in certain

scenarios, large overheads that are non-negligible and can hinder performance

with respect to conventional fine-grained locking.

HTM is thus desirable, as it relies on modified cache coherence protocol in

order to achieve atomicity and isolation. The main advantage of HTM is that it

requires no instrumentation of reads and writes, which degrades the performance

of STM solutions, as the read and write-set are stored in L1 cache and conflicts are

detected by the cache coherence protocol. A major drawback is that current HTM

does not guarantee that a transaction will succeed, even without concurrency,

due to it’s limited nature, which is limited by the fact that read and write-set

fits in L1 cache.

The maturing of TM led to a change in the industry of processor manufactur-

ing, as manufacturers revealed the first processors that successfully implemented

HTM: Azul [10] and Rock [17] processors. Unfortunately, these system were not

usable, as Azul programming interface was not disclosed, thus making HTM

hidden for the programmers and Rock processor was cancelled before reaching

the market. IBM Blue Gene/Q was the first processor on the market that provide

an HTM implementation [39], followed by zEnterprise EC12 [2], IBM Power8

[3] and Intel Haswell [40]. This represented a significant milestone for TM, as

with Intel Haswell processor, TM became available on commodity hardware from

high-end servers to mainstream laptops.

Haswell uses the L1 cache for conflict detection and maintaining versions and

transactional metadata. However, the details about the conflict detection and

transaction capacities have not been disclosed by Intel. The Intel Transactional

Synchronization Extensions (TSX), i.e., the code-name for the HTM API in

Haswell CPUs, comprises two possible interfaces, Hardware Lock Elision (HLE)

and Restricted Transactional Memory (RTM). The former allows to elide locks

[6] and execute code speculatively in a backwards-compatible manner. RTM

leverages on the same hardware as HLE, but exposes a transaction interface in

which the programmers only need to specify which blocks are atomic, leaving

to the underlying system the responsibility to ensure the correct execution of

transactions.

A very important detail is that the begin instruction requires to specify a

software handler to deal with transaction aborts, and thus provide progress

guarantee. The software fallback must co-operate with HTM in order to ensure

correctness and the mechanism used has a great impact on the performance of

TSX. The simplest approach and the one suggested by Intel’s optimisation manual

is the use of a single global lock as a fallback mechanism. When a hardware

transaction aborts, it has the alternative to check and acquire the global lock if

it is free. To ensure correctness, every hardware transaction must subscribe to



Efficient Dynamic Data Partition Scheme in Hybrid Transactional Memory 9

the global lock and ensure it is free, as the underlying transactional semantics

will guarantee that a transaction only commits when there is no ongoing fallback

execution.

IBM Blue Gene/Q uses the L2 cache for conflict detection and updates

buffering. It assigns a unique speculation ID to each transaction and uses the L2

cache to store the speculation ID upon a transactional access. IBM Blue Gene/Q

has two transactional execution modes: a short-running mode a long-running

mode. In the short-running mode, it uses only the L2 cache to buffer transactional

data, and in the long-running mode, it uses the L1 cache to buffer some of the

transactional data though it invalidates all of the L1 cache lines at the start of

each transaction.

IBM zEC12 uses the L1 cache for both conflict detection and loads buffering,

along with a special LRU-extension, which function is to record the evicted cache

lines. The transactional stores are buffered in an 8-KB gathering store cache,

which is private for each processor and is located between the L1 cache and the

L2/L3 caches. IBM zEC12 also provides constrained transactions, which are

transactions that are guaranteed to commit.

IBM Power8 uses content addressable memory (CAM) linked with the L2

cache for conflict detection [32]. The L2 TMCAM records the cache-line addresses

that are accessed in the transactions with bits to represent read and write.

Although the transactional stored data is buffered in the L2 cache, the transaction

capacity is bounded by the size of the L2 TMCAM. Power8 support rollback-only

transactions, which are transactions that support normal transactional semantics,

i.e. store buffering, but not conflict detection. Also, Power8 support the use of

suspend/resume operations, which allows to escape from a transactional context

and access a variable without risking to incur data conflicts.

Nataike et. al in [32] compared all state of the art processors that provide

HTM, by using a modified version of the STAMP’s benchmark suite [31] better

suited to accommodate the limited capacity of HTM. The experimental results

showed that there is no single HTM system that is more scalable than the others

in all of the benchmarks. Each HTM system has it’s own implementations issues

that limit the scalability in certain workloads.

Results shows that Intel Core has load and store capacity of 4MB and

22KB respectively. This processor has extra transaction aborts due to hardware

prefetching, as it could raise a conflict that would not exist if the hardware did

not prefetch other cache lines in advance. L1 and L2 size are respectively 32KB

and 256 KB.

IBM Power8 has more capacity-overflow aborts than the other processors

because of it’s small transaction capacity, i.e., 8KB for loads and stores, respec-

tively. L1 cache is one of the biggest in the study, with 64 KB is only surpassed

by zEC12’s 96KB. L2 cache size is 512 KB. Results show that the suspend and

resume instructions are beneficial for avoiding data conflicts on a shared variable

to implement ordered transactions.

Diegues et. al [18] and Goel et. al [21] experimentally evaluated Intel TSX

implementation on a variety of workloads produced by different benchmarks,
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more specifically the workloads produced by STAMP benchmark suite [31],

microbenchmark Eigenbench [27] and Memcached [26], as well as workloads

produced by concurrent data structures. Authors state that TSX has outstanding

performance for workloads characterised by small transactions, such as the ones

produced by concurrent data structures and Memcached [26], but only with two

of the STAMP benchmarks, namely Kmeans and SSCA.

Goel. et al [21] also compared the performance and energy consumption of

TSX with TinySTM [20]. The results shows that TSX performance relies heavily

on the access patterns to L1 cache, as every memory access performed inside

a transaction is tracked, implying that long running transactions can lead to

frequent capacity exceptions and spurious aborts. When transaction’s intensity

is medium, TSX is only the best choice for a limited degree of parallelism, and

it is generally better on the energy side than on the performance side. However

as the contention and duration of the workload increases, TinySTM begins to

outperform TSX, as TSX deals worse with contention than TinySTM due to

the detection of conflicts at granularity of cache cache line (bytes). TSX scales

well up to four threads, however at eight threads, the L1 cache is shared between

two threads running on the same core. This cache sharing degrades performance

for the larger working set more than for the smaller working set because hyper-

threading effectively halves the write-set capacity of TSX. In contrast, TinySTM

scales well up to eight threads. In terms of energy efficiency, TSX proves to be

more energy-efficient than either TinySTM or the sequential runs.

Lazy Subscription To ensure that a critical section executed by a hardware

transaction does not observe partial effects of a critical section executed by

another thread that acquires the lock, the transaction subscribes the lock, by

reading it and confirming if it is available. Subscribing to the lock makes hardware

transactions vulnerable to abort if another thread acquires the lock. Typically,

transactions subscribe to the lock at the beginning of the critical section and are

thus vulnerable to such abort during the entire execution of the critical section.

Some papers [11,29] proposed the, so called, lazy subscription optimisation, which

delays lock subscription, in order to reduce the duration of this vulnerability.

Dice et. al in this study [15], reported a number of issues associated with

lazy subscription. Lazy subscription can cause a transaction to deviate from

the behaviour allowed by the original program, as it can result in the thread’s

registers containing values that could not occur in an execution of the original

program. This could result in an access by a transaction to memory that could

never be accessed in the original program. If transaction commits, it results in a

observably incorrect behaviour.

Compiler support suggested by other publications [9] for avoiding such issues

in single global lock-based transaction system is not sufficient to avoid all the

pitfalls associated with lazy subscription. Authors argue that the complexity

required to address these issues via static analysis is unlikely to be worthwhile,

as there are numerous pitfalls associated with lazy subscription, so manual

confirmation of it’s safety in specific cases is likely to be error prone.
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2.3 Hybrid Transactional Memory

The usage of a single global lock as a fallback mechanism in best-effort HTM

motivated the researchers of TM to create Hybrid Transactional Memory (HyTM).

The goal of HyTM is to exploit best-effort HTM whenever possible due to it’s

cheaper capabilities, and fallback to the more costly STM when a transaction

can not complete in hardware. This approach promises to scale well and incur

low latency, with the worst-case overhead and scalability comparable to the

underlying STM.

To perform as a coherent whole, the HyTM system must be able to detect

conflicts in hardware and software transactions simultaneously. This requirement

is usually achieved by logging additional metadata while executing hardware

transactions, so that the conflict detection system has access to both sides infor-

mation. Certain STM algorithms [19,20] required interaction with per-location

metadata, and hybrid versions of these algorithms wasted limited hardware

capacity on these metadata. The interaction of HTM with STM metadata could

lead to capacity aborts, or could lead to false sharing of cache lines that hold

the metadata, resulting in additional HTM aborts, and increased fallback to the

STM path. Table 1 summarises the key characteristics of state of the art STMs

and HTMs and compares with 5 state of the art HyTM implementations, Hybrid

NOrec [11], Hybrid-LSA [36], Hybrid NOrec-2 [36], Invyswell [8] and RH NOrec

[29].

Hybrid NOrec Dalessandro et al. [11] used NOrec STM [12] (see section 2.1)

as a fallback STM of their Hybrid NOrec to avoid per-access overheads. In this

algorithm, the commits of write transactions are executed sequentially, which

means that only one transaction can commit at a time. A shared global clock,

seqlock, is used to notify concurrent transactions about the updates to both

hardware and software.

The original Hybrid NOrec has each transaction start to execute in hardware,

and if repeatedly fails to commit, it falls back to executing the NOrec STM in

software. To coordinate the execution of hardware and software transactions, three

possible integrations between NOrec and HTM are proposed. In naive integration,

the same global clock from NOrec, seqlock, is used by hardware transactions to

subscribe to software transactions commits notifications. Upon the beginning

of hardware transactions, the global clock is read and if is already owned by a

software transaction, the hardware transaction spins until the owner completes

the writeback and releases the lock. Upon commit, both software and hardware

transactions update the global clock to signal their commits to other transactions,

which triggers a validation phase in all concurrent transactions. Unfortunately,

each hardware transaction conflicts with every software transaction due to the

early subscription of the global clock, and aborts when any software transaction

commits, regardless of actual data conflicts. Similarly, each hardware transaction

conflicts with every other hardware transaction and aborts when any hardware

transaction commits.
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The second integration approach is 2-Location, in this approach a second

shared location is added, counter, which decouples subscribing from signalling.

Hardware transactions still subscribe to software transactions by reading the

global clock but they use counter to signal their own commits to other hardware

transactions. The drawback of having a second shared counter is that software

transaction must have a snapshot for both the global counter and the second

shared counter and must perform additional validation by reading the second

shared counter.

The third approach is P-Location, which differs from 2-Location because

hardware transactions no longer conflict with other running hardware transactions,

as the counter is now distributed. With this approach, software transactions must

poll n + 1 counters, increasing the overheads. To mitigate that, the number of

counters is dynamically determined based on current system conditions.

In order to optimise the algorithm, it was proposed the usage of mechanisms

such as lazy subscription, sandboxing and communication filters. In Lazy sub-

scription, the read of the global clock is delayed prior to commit. This increase the

concurrency between hardware and software transactions, however it sacrifices

opacity [23], as nothing prevents a hardware transaction from reading inconsis-

tent data during software writeback. Authors re-establishes opacity by adding

a hardware read barrier that polls the seqlock nontransactionally and pauses

if it is locked. Sandboxing is also proposed as an alternative to opacity, rather

than instrumenting all loads for consistency, instructions are only instrumented

when it’s effects may expose a transaction inconsistency. With the SW-Exists

communication filter, a portion of shared memory is allocated in order to software

transactions make their presence visible. When there is no software transaction

running, hardware transactions have the possibility of eliding counter updates.

Hybrid-LSA Riegel et al. [36] presented two HyTM algorithms that can execute

HTM and STM transactions concurrently and can thus provide good performance

over a large spectrum of workloads. The algorithms exploit the concept of specu-

lative (transactional) and nonspeculative accesses, which are non-transactional

accesses to memory, i.e., without adding the memory addresses to the read and

write-set. This mechanism avoids conflicts with other running transactions, which

decreases the transactions’ runtime overhead, abort rate and hardware capacity

requirements compared with the versions that use speculative operations.

The paper assumes the availability of nonspeculative operations, which are

provided by AMD’s Advanced Synchronization Facility (ASF) specification [5],

however they are not available in any current HTM implementation, except

for IBM Power8, which supports them at a coarser granularity via the sus-

pend/resume mechanism.

The first algorithm, Hybrid-LSA, extends the lazy snapshot algorithm first

presented in [34] (overviewed in Section 2.1). LSA relies on the use of ownership

records (orecs) protecting regions of memory and a global time base to check

the consistency of transactions. Hybrid-LSA decides at runtime whether to use
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hardware or software transactions, which both use orecs in order to mediate the

access to regions of memory.

The eager variant of the Hybrid-LSA algorithm first performs a load of the

orec, this operation starts monitoring the orec for changes and will lead to an

abort if the orec is updated. If the orec is not locked, the transaction uses a

nonspeculative load operation to read the target value, the usage of nonspeculative

operation is an efficient way to get the value without adding the address to the

read-set.

The write operation is similar to the load operation, but before writing

speculatively to memory, the orec protecting the memory region is checked for

concurrent load and stores (via the PREFETCHW operation, provided by the

ASF assembly [5]).

Upon commit, hardware transactions nonspeculatively acquire and increment

the clock. This operation sends a synchronisation message to software transactions,

notifying them that a hardware transaction is on commit phase and thus, they

might have to validate. Next, they speculatively write all updated orecs to memory

and try to commit. If transactions successfully commit, then is guaranteed that

no conflict with other transactions exists.

Hybrid NOrec-2 The second algorithm, Hybrid NOrec-2 [36], is an optimisa-

tion of the algorithm informally described in [12]. The main approach of Hybrid

NOrec proposed by [12] is to use a word-sized global sequence lock gsl and an extra

sequence lock esl. Software transactions acquire both locks and increment their

versions upon commit, whereas hardware transactions monitor esl for changes

and increment gsl only on commit. Thus, software transactions are notified about

data being concurrently modified by gsl, and use esl to abort concurrent transac-

tions and prevent them from executing during software transactions writeback.

The two major problems with this approach is that it does not scale well in

practice, as an update of esl will make every hardware transaction to abort, even

if both transactions have disjoint working sets. Also, every update of gsl done by

a hardware transaction cause every other hardware transactions to abort, even if

it is made close to the end of a transaction, as suggested by [12].

Authors proposed optimisations to this algorithm using both speculative and

nonspeculative operations, which results in a better performance than the original

algorithm, with shorter read and write-sets, using simple optimisations.

The first straightforward optimisation consists in having hardware transactions

to update gsl only if they will actually update shared state on commit, relieving

other hardware transactions from aborting due to the update of gsl. Also, in

order to provide more concurrency between hardware transactions that access

disjoint data, the write of gsl can be replaced by a nonspeculative atomic fetch-

and-increment operation, which allows the algorithm to scale better.

Additionally, hardware transactions do not monitor esl using speculative

accesses anymore. The purpose of esl is to prevent hardware transactions from

reading inconsistent state such as partial updates by software transactions.

To detect such cases and thus still obtain a consistent snapshot, hardware
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transactions first read the data speculatively and then wait until they observe with

nonspeculative loads that esl is not locked . If this succeeds and the transaction

reaches the end without being aborted, it is guaranteed that it had a consistent

snapshot valid.

Invyswell Calciu et al. [8] proposed Invyswell, a HyTM that combines Haswell

RTM [18,21] transactions with software transactions from a heavily modified

version of InvalSTM [22]. The main goal of this paper is to improve perfor-

mance of small to medium-sized transactions that are executed in STM, whose

instrumentation cost causes them to perform poorly.

InvalSTM [22] is based on commit-time invalidation. The read and write-sets

of a transaction are stored in transaction specific Bloom Filters and upon commit

the transaction has complete knowledge of the conflicting running transactions.

Authors state that for these reasons, InvalSTM works well with Haswell RTM.

RTM is used for short transactions and low thread counts, while InvalSTM is

used for large transactions and high thread counts. RTM can leverage InvalSTM

use of Bloom filters for conflict detection by augmenting Haswell’s hardware

transactions with Bloom filters to enable many hardware transactions to execute

concurrently with many software transactions. This enables RTM to perform

without interference when read-only software transactions are executing within

InvalSTM, regardless of their size.

To manage the shared-memory between RTM and InvalSTM, Invyswell

performs the conflict detection after the hardware transaction commits. This is

due to the constraints of Haswell RTM, since every write operation done by a

transaction is held until commit-time. RTM does not support escape actions,

hence when a hardware transaction conflicts with a software one, it aborts.

By combining invalidation and conflict detection after a hardware transaction

commits, this scheme minimises the chance to abort a hardware transaction due

to an in-flight software one.

In order to adapt to different types of workloads, Invyswell support 5 types

of different transactions, each one with different characteristics:

– Speculative Software Transactions (SpecSW ), which is a type of transactions

similar to an InvalSTM transaction, i.e, uses Bloom filters to track the read

and write-sets of the memory addresses accessed. The invalidation is done

after the commit of hardware transactions.
– Bloom filter Hardware Transaction (BFHW ), which uses Bloom filters in order

to handle conflicts with SpecSW transactions. After the BFHW transactions

commit, it invalidates concurrent SpecSW transactions.
– LiteHW transactions, which are lightweight hardware transactions that

execute without read or write instrumentation. These transactions can only

commit if there are no in-flight software transaction when they begin their

commit phase. Because LiteHWs do not maintain read or write-set metadata,

if a software transaction is in-flight when a LiteHW enters it’s commit phase,

Invyswell must assume a conflict exists between the LiteHW and the software

transaction and, therefore, must abort the LiteHW.
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– IrrevocSW transactions, which is a software transaction that by being repeat-

edly aborted, gets a higher priority and acquire a global lock in the beginning

of the execution. IrrevocSWs transactions write directly to memory, thus

there is no commit phase.
– SglSW transactions, which are small software transactions that execute

instructions not supported by Haswell RTM, thus need to be executed in

software. This transaction type does not use metadata as it writes directly

to memory.

Transactions are scheduled in a performance descending order: first the high-

risk hardware transactions, then the low-risk software transaction. The transitions

between the types of transactions are decided at runtime, based on an application

dependent heuristic.

Invyswell has been tested with STAMP benhmark [31] and results show that

it performs better in a range of benchmarks than state of the art NOrec [12].

Reduced Hardware NOrec The most recent approach in HyTM is the reduced

hardware (RH) proposed by Matveev et. al [28]. The authors applied it to the

Hybrid NOrec algorithm, resulting in a new HyTM that overcomes the scalability

limitations of Hybrid NOrec [11].

In order to eliminate Hybrid NOrec’s scalability problems, two hardware

transactions are added to the software transactions resulting in a mixed-slow

path. Both of these bottlenecks are caused by reading of the shared clock too

early by software and hardware transactions. The first hardware transaction

added to the mixed-slow path, called HTM postfix, encapsulates all the slow

path writes at commit point and executes them all together. This change to

the mixed-slow path enables the hardware transactions to delay the read of the

clock to just before committing, avoiding the frequent false-aborts of the original

Hybrid NOrec. The other hardware transaction added to the mixed-slow path,

called HTM prefix, executes the largest possible prefix of slow-path reads in a

hardware transaction, this is done by starting the mixed-slow path as a hardware

transaction and executing within it as much reads as possible, or until the first

write is encountered. This hardware prefix allows deferring the read of the global

clock to after the reads, which significantly reduces the chances of aborting.

Authors state that the algorithm preserves opacity and privatization, as

the original Hybrid NOrec. Finally if the mixed-slow path fails to commit, the

algorithm reverts to the original Hybrid NOrec.

The results of Reduced Hardware NOrec with STAMP benchmark suite [31]

indicate that RH NOrec is able to reduce the number of HTM conflicts comparing

to Hybrid NOrec [11].

Table 1 summarises all TM implementations presented on the document.

First, it is characterised the type of TM as STM, HTM or HyTM. Second, it is

described the existence of metadata and their usage by the TM implementation.

Next, it overviews the existence of spurious aborts, i.e. transactions that were

aborted unnecessarily, even when they did not threaten correctness. Then, it

overviews the usage of hardware capacity, which is only available on HTM and
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HyTM. Finally, it overviews if the TM implementation has privatisation safety,

and also the existence of invisible reads, i.e. reads made by one transaction that

are not visible to the other active transactions.

TM implementation Type Metadata
Spurious

Aborts

HW capacity

used for
Invisible Reads

Privatisation

Safety

TinySTM [20] STM Yes, orecs No - No Yes

SwissTM [19] STM
Yes, four-word

lock granularity
No - No Yes

NOrec [12] STM No No - Yes Yes

TSX HLE HTM No Yes
Read and

write-set
Yes Yes

TSX RTM with Global

lock
HTM No Yes

Read and

write-set
Yes Yes

IBM Power8 HTM No Yes
Read and

write-set

No, because of

pause/resume
instructions

Yes

Hybrid NOrec [11] HyTM lock counters Less frequent
Data and lock

counters
Yes Yes

Hybrid-LSA [36] HyTM Yes, Orecs Yes
Orecs and

Data updates
Yes No

Hybrid NOrec-2 [36] HyTM Yes, Orecs Yes
Orecs and

Data updates
Yes No

Invyswell [8] HyTM
Read and Write

Bloom-Filters
Yes

Depends on

the state of

the system

No Yes

RH NOrec [29] HyTM
Yes, Lock

counters
Yes

Data and

locks
Yes Yes

Table 1: Comparison of various TM state of the art implementations: TinySTM,

SwissTM, NOrec, TSX HLE, TSX RTM with global lock, IBM Power8, Hybrid

NOrec, Hybrid-LSA, Hybrid NOrec-2, Invyswell and Reduced Hardware NOrec.

2.4 Benchmarks for TM

While several TM systems have been proposed in the literature, there was an urge

to develop benchmarks that can correct analyse and compare the proposals. Most

TM systems have been evaluated using microbenchmarks, such as linkedlists or

red-black trees, which may not be representative of any real-world behaviour, or

individual applications, which do not stress a wide range of execution scenarios.

Consequently, it has been argued that non-trivial, or realistic, benchmarks are

needed to further TM research and to present the "real" benefits of TM.

Some desirable features of non-trivial TM benchmarks are the existence of

large amounts of parallelism, executed by code difficult to parallelize using locks,
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which makes TM more attractive than fine-grain locking. The existence of real-

world applications are also desirable because it gives confidence to programmers

to use it. Several types of workloads can stress the TM implementations, from

long to short transactions, high to low level of contention and different sizes of

read and write-set.

STMBench7 Guerraoui et. al proposed STMBench7 [24], a benchmark for

evaluating STM implementations. The underlying data structure of STMBench7

consists of a set of graphs and indexes intended to be suggestive of more complex

applications like CAD, CAM and CASE. A collection of operations is supported

to model a wide range of workloads and concurrency patterns. There are long

traversals, which go through all the assemblies and/or all atomic parts and update

some of them. Second, there are short traversal that traverse via a randomly

chosen path. Third, there are short operations, which randomly chose some object

(or a few objects) in the structure and perform an operation on the object or it’s

local neighbourhood. Finally, there are structure modification operations, which

are operations that create or delete elements of the structure or links between

elements randomly.

STMBench7 is likely to benefit STM over HTM and HyTM, as transactions

will likely have larger read and write-sets to keep track of objects visited, thus

causing capacity aborts on HTM. STM is expected to perform better as the size

of read and write-set does not degrade the performance of it.

Lee-TM Ansari et al. proposed Lee-TM [7], a benchmark based on Lee’s

routing algorithm, which consists in circuit routing, the process of automatically

producing an interconnection between electronic components. This is achieved

based on two phases of the algorithm, expansion and backtracking. Lee-TM

has five implementations of Lee’s routing algorithm, which generates a very

heterogeneous workload encompassing a wide range of transactions’ duration

and length. The benchmark starts by routing the shortest junction in the circuit,

generating transactions whose local processing lasts just a few milliseconds.

HTM is highly probable to have better performance in this first phase than

STM as transactions are shorter, and so the read and write-set, which lead to

overheads due to instrumentation in STM that are avoided by the pure hardware

execution of HTM. The benchmark progressively lays junctions of increasing

length, generating workloads whose local processing lasts up to a few seconds,

which in turn is likely benefit STM over HTM, due to the capacity aborts of

HTM incurred by the size of the read and write-set.

STAMP Minh et al. proposed STAMP [31], a benchmark suite, which enable

the analysis of a wide range of TM systems through the use of a wide range of

transactional characteristics such as transaction lengths and sizes of read and

write-sets.

STAMP consists in eight applications with 30 different sets of configurations

and input data that recreate applications from diverse domains, such as e-
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commerce, Delaunay triangulation, graph processing and circuit routing. The

workloads produced by the benchmarks variate from short to long transactions,

small to large read and write-set, low to high time spent on the transaction and

different levels of contention.

STAMP is portable across different TM implementations, i.e. HTM, STM

and HyTM. However, STAMP generally does not work as expected on existing

HTM, as it causes nonessential transaction aborts in some of the programs, which

motivated researchers to propose a modified version that can fairly compare the

intrinsic performance of HTM systems [32].

Memcached Memcached [37] is a distributed in-memory software cache, where

multiple clients place key-value pairs on multiple servers. Memcached uses an

in-memory hash table that stores key-value pairs. It provides operations such as

get,replace,delete and compare-and-swap on these keys. Clients can also request

the current status cache, and related statistics.

Tests made by Holla et al. [26] indicate that cache locks and stats have

high contention but not the data, and propose the use of lock elision [16,26].

Authors find that lock elision can provide non-trivial benefits to both power and

performance, although not all hardware configurations were beneficial due to the

existence of false conflicts.

Memcached workload is characterised by small transactions, which should

benefit HyTM and HTM, as normally transactions read and write-set fit in cache.

Kyoto Cabinet Kyoto Cabinet [1] is a benchmark suite of Data Base Manage-

ment data stores written in C++ and produced by Fal Labs. The in-memory

component of the suite, Kyoto CacheDB, splits the database into slots, where

each slot is a hash table of binary search trees. Each key is hashed into a slot

and then hashed again into a hash table of the slot. Kyoto CacheDB first fills

the database to a fixed initial size, and then executes operations, e.g. gets, puts

or deletes, with random keys. This benchmark will be likely to benefit STM and

HyTM, as with the available operations (gets, puts and deletes) it will search

through the index and increase the length of the transaction, and also the size of

read and write-set, which consequently cause HTM to abort.

3 Solution architecture

The analysis of the state of the art conducted in the previous section highlights

that in the literature there are no solutions that can efficiently handle various types

of workloads. HTM has good performance for short transactions with small read

and write-set, however it’s performance degrades when transaction size increase.

STM has good performance for workloads characterised by long transactions

with various types of read and write-set yet, in presence of transactions with

small length it’s performance is inferior than HTM. HyTM has non-negligible

costs incurred by synchronising HTM and STM in order to work as a coherent
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whole. Consequently, the performance of HyTM is not as good as HTM for short

transactions and not as good as STM for long transactions.

This dissertation aims to fill this relevant gap by proposing a dynamic memory

partitioning mechanism that will allow HTM and STM to execute concurrently

on disjoint memory partitions without incurring any instrumentation overhead.

Preliminary tests were made in order to study the execution of HyTM on

disjoint data with no synchronisation over HTM and STM. The HyTM imple-

mentation used is composed by Intel TSX (see section 2.2) and TinySTM (see

section 2.1) with no synchronisation done between the two backends. A synthetic

benchmark was generated, composed of two disjoint linked lists, one shorter

(prone to benefit HTM) and one larger (prone to benefit STM). Whenever an

operation is issued to the shorter linkedlist, it is used the HTM implementation

to handle the execution of the operation. And similarly, whenever an operation is

issued to the larger linkedlist, STM executes the operation. The same experiment

was made with state of the art Hybrid NOrec [11], Intel Haswell using a single

global lock as the fallback path, TinySTM [20] and NOrec [12].

The results of all experiments are shown on Figure 1 and on Figure 2, on

the throughput side the prototype scaled better than the other TMs, as longer

transactions are handled by the STM fallback (TinySTM), and the shorter by

HTM. TinySTM had the second best performance, due to it’s scalability and

the design approach of reducing instrumentation. NOrec had better performance

than both HTM-SGL and Hybrid-NOrec, as HTM-SGL has overheads due to

capacity aborts incurred. Hybrid-NOrec had worse performance due to the read

of the global clock by transactions, which causes transactions to abort upon

commit of any transaction. The results of the energy spent on the execution

of the workload show that the prototype consume less energy on the execution

of the workload than the other TM implementations. HTM had similar energy

consumption to the prototype until 2 threads, however with the increase of the

number of threads, the energy consumption increases. TinySTM has the second

lowest energy consumption at both four threads and eight followed by NOrec.

Hybrid-NOrec had the highest consumption of energy because of high abort-rate,

mainly due to the read of the global clock.

As discussed in Section 2.1, the idea of partitioning memory and to use

different TM algorithms has first been introduced by Riegel et al. [35]. This work

has showed that for several STAMP benchmarks, memory can be statically

partitioned in an effective way, i.e., so to use in each partition different software

TM algorithms tailored for different workload characteristics.

However, this work has also highlighted that static memory partitioning can

often be inadequate, in particular with applications that use pointers extensively

(as it is often the case in practice). Further, this work considered, as alternative

TM mechanism, only software-based implementations. This leaves open the

question of whether approaches based on memory partitions remain practically

viable also when considering hybrid TM systems encompassing both hardware

and software implementations.
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Figure 1: Throughput comparison on

the synthetic benchmark
Figure2: Energy comparison on the

synthetic benchmark

In my dissertation, I plan to address these shortcomings by proposing a

dynamic memory partitioning mechanism specifically targeted to tackle the

challenges raised by the need of supporting concurrent execution of hardware

and software TM implementations.

The idea is to exploit the output of an initial static code analysis to determine

an initial set of disjoint memory partitions, analogously to what is proposed

by Riegel et al. [35]. Unlike in this solution, though, the assignment of data

partitions to different TM algorithms does not require to be perfect. Conversely,

accesses to memory partitions not assigned to a given TM mechanism shall be

detected at run-time and trigger either: a) the reassignment of the transaction

to a different TM implementation (in case one exists given the current memory

partitioning scheme), or b) the alteration of the memory partitioning scheme and

the remapping of the accessed memory region (in case this is deemed as beneficial

for the system as a whole), or c) the switch to a state of the art, conventional

HyTM implementation, which can support concurrent execution of both HTM

and STM, although with additional overheads/instrumentation.

One key challenge that shall be addressed in order to make the proposed

solution viable in practice is how to detect illegal accesses to shared memory

regions in an efficient way, i.e., without requiring checking additional metadata.

This could be very problematic in particular for HTM, which would consume

valuable cache capacity just to load these additional metadata (as discussed in

Section 2.3).

The key idea that I plan to exploit to tackle this issue is to exploit conventional

virtual memory protection mechanisms in an innovative way. The idea is to

partition threads into two classes, one allowed solely to use HTM and one STM.

In order to enforce access of each class of threads to their assigned memory

regions, the mprotect system call will be used: this system call can be used to

assign different access rights to different threads (within the same process) at the

page granularity. This way, any violation of the intended memory partitioning

scheme will be detected at the operating system level, by exploiting the dedicated
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hardware mechanisms for memory protection, without requiring any additional

application level checks. The runtime library will be notified of possible violations

of the memory partitioning via a SIGSEV signal, and will be able to react

implementing the different reconfiguration strategies sketched above.

Clearly, there are a set of challenges and of potential pitfalls involved with

this design that shall be assessed and evaluated during the following phases of

my work.

The first challenge is associated with the costs associated with the usage of

system calls to dynamically redefine the memory mapping, as well as of signal

handlers to react to violations of the expected memory partitioning.

Another relevant issue that deserves further study is how to avoid the risk

of frequent "ping-ponging" memory pages between different partitions. In fact,

reconfiguring the memory partitions has a non-negligible cost, given that it entails

the execution of one or more system calls. The dynamic partitioning scheme

should therefore minimise the frequency of relocation of a given memory page.

Conversely, when such problematic situations are detected, the system should

fallback to using a conventional hybrid TM. The challenge here lies in detecting

such scenarios in an timely, yet efficient way, as well as to support the fast switch

to the fallback synchronisation mechanism.

4 Evaluation

The proposed system will be evaluated and compared to state of the art TM imple-

mentations, namely Intel TSX, TinySTM [20], SwissTM [19], NOrec [12], Hybrid

NOrec [11], Hybrid-LSA [36], Reduced Hardware NOrec [29] and coarse/fine-

grained locking solutions. The key metrics that will be used to evaluate the

solutions are the following :

– Throughput

– Abort Rate

– Response Time

– Energy Consumption

– Energy Delay Product

– Exponential Energy Delay Product

– Reconfiguration Latency

Throughput and Abort Rate are used to measure respectively the number of

transactions committed and aborted per second, this metrics are indicators of the

TM’s performance, as less aborted transactions and more committed transactions

represent a primary goal of this work. Response Time represents the time spent

by a transaction since the beginning until the commit. Energy Consumption is

measured via Intel’s RAPL [14] interface and represents the Joules consumed by

the execution of the solution; Energy Delay Product, as the name suggests, is

the product of energy by time expended in execution; Exponential Energy Delay

Product, or ExpEDP is instead given by the product of the energy spent times

the square of the execution time, and, hence, gives more emphasis to time.
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The system will be tested in a wide variety of workloads, from short to long

transactions, high to low contention, and various types of read and write-sets

sizes. Different number of threads will be used and different hardware, namely

Intel Haswell and IBM Power8, to stress the solution and highlight the advantage

of running different TMs on disjoint data partitions.

In the evaluation of the implementation it will be used the redblack tree and

linkedlist microbenchmarks, as well as the following benchmarks: STMBench7

[24], Lee-TM [7], STAMP [31], Memcached [26] and Kyoto Cabinet [1].

5 Scheduling of Future Work

– 15 January - 15 February: Implementation of a preliminary prototype that

uses a simple initial static partitioning, and exploits the mprotect system

call to detect violations of the expected partitioning. Also, porting of the

microbenchmarks to use the APIs exposed by current prototype.
– 15 February - 15 April: Extension of the preliminary prototype to support

dynamic remapping of the memory regions between HTM and STM depending

on the applications access pattern. Also, benchmarking and profiling of the

costs associated with the use of system calls to dynamically re-map the

memory regions to different threads.
– 15 April - 15 June: Porting of STAMP benchmarks and of Kyoto Cabinet

to use the APIs exposed by the current prototype. Also, analysis of the

effectiveness of the partitioning, via either static and dynamic methods, of

the STAMP benchmarks and investigation and experimentation of various

dynamic memory partitioning schemes.
– 15 June - 15 August: Integration with fallback path based on a conventional

Hybrid TM. Also Profiling, benchmarking and performance optimisations of

the solution.
– 1 September - 1 October: Thesis and paper preparation.

6 Conclusions

In this document I conducted a study on state of the art of Transactional Memory,

focusing on the problem of enhancing efficiency of HyTM. The analysis of the

state of the art highlighted different approaches on implementing TM: software

(STM), Hardware (HTM) and a hybrid of hardware and software (HyTM). My

analysis highlighted that none of these approaches successfully delivers a constant

performance for all types of workloads, i.e. HTM has high performance for

workloads characterised by short transactions with read and write-sets that can

fit in cache, yet STM has high performance for long transactions with various

types of read and write-sets, while HyTM has a performance in between of HTM

and STM but with the incurring costs of synchronising HTM and STM.

During the next phase of my dissertation I aim at addressing precisely this

issue as in this document I have already identified some of the key design choices

and challenges that I will have in implementing a hybrid solution that can
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partition data and execute HTM and STM without any instrumentation cost.

Further, I have described a detailed roadmap of my future research activities.
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