
Enhancing efficiency of Hybrid Transactional Memory via Dynamic Data
Partitioning Schemes

Pedro Raminhas
Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal
Email: pedro.raminhas@tecnico.ulisboa.pt

Abstract—Multicore processors represent the de-facto stan-
dard architecture for a wide variety of devices, from high
performance computers to mobile devices. However, developing
concurrent programs to harness the capabilities of multicore
architectures using traditional lock-based synchronization is
known to be a complex and error prone task, as the fine-grained
locking approach is prone to deadlocks, livelocks and it is
difficult to debug, while coarse-grained locking does not provide
performance gains. Transactional Memory (TM) is a powerful
paradigm that promises to simplify the development of con-
current programs, while still achieving performance similar to
locking. With TM, programmers only need to specify which
parts of the code have to appear as executed atomically, and
not how atomicity should be achieved. This document proposes
a novel Hybrid TM algorithm, which we call DMP-TM, that
aims to minimise synchronization overheads between HTM
and STM by relying on a novel dynamic memory partitioning
scheme. The key novel idea underlying DMP-TM is to leverage
on operating system level memory protection mechanism to
enforce dynamic memory partitions, in which HTM and STM
can operate assuming no mutual interference. This design
contrasts with current state of the Hybrid TM designs that
incur extra-overheads by checking the metadata. We evaluated
DMP-TM using both synthetic and standard benchmarks for
Transactional Memory. Our experimental study highlights that
DMP-TM can achieve up to 4x time speedups when compared
to state of the art HTM and STM and up to 10x speedups
compared with state of the art Hybrid TM.

I. INTRODUCTION

Multicore processors have become the standard archi-
tecture in today’s computing systems, ranging from high-
end servers, to personal computers, as well as smartphones
and embedded systems, all have the multicore technology
and the trend is to increase the number of cores towards
many core architectures. Unfortunately, the development of
parallel applications that can fully exploit the advantages of
the multicore technology is far from being a trivial task.

Indeed, when using traditional lock-based synchronization
mechanisms, developers are faced with a major dilemma.
They can either opt for using coarse-grained locks, which
simplifies significantly reasoning on the correctness of con-
current applications, but can severely hinder parallelism or
hamper performance. Or they can opt for a second alternative
which is to use fine-grained locking. This approach allows

for extracting the most parallelism possible, avoiding the
inefficiency of coarse-grained locking, but it is harder to
devise and more prone to deadlocks and livelocks, which are
notoriously hard to debug [1]. In fact, fine grained locking is
considered difficult to use for the average programmer [1],
who may not be necessarily well trained for the development
of concurrent applications.

Transactional Memory (TM) [2] precisely answers this
urge by specifying a new programming paradigm that al-
leviates the complexity of classical locking mechanisms
while ensuring performance similar or even better than
complex fine-grained locking schemes. TM borrows the
concept of transactions from databases and applies it to
parallel programming: with TM, programmers devise code
into blocks that will be ensured by the TM system to run
atomically. The underlying system is responsible for either
committing the transactions, and making its modifications
globally visible, or to aborting the transactions and ensuring
that no modifications are observed out of the context of the
transaction. This approach leads to drastically simplifying
the development of parallel applications and abate their time
to market and costs.

Transactional Memory was initially proposed twenty years
ago as an extension to multi-processors’ cache coherence
protocols [2]. Due to the difficulty of rapid prototyping
in hardware environments, researchers resorted to Software
Transactional Memory to advance the state of the art [3], [4],
[5], [6]. Simultaneously, hardware-based implementations
have also been proposed, whose designs were validated
using simulators.

Hardware Transactional Memory (HTM) is currently sup-
ported by the mainstream Intel Haswell and the IBM Power8
processors. These implementations are best-effort, which
means that they always ensure correctness, but do not
provide any progress guarantee. This means that transactions
executing in hardware may never commit (even in absence of
concurrency) due to inherent limitations of hardware, such
as transaction exceeding capacity of hardware or running
prohibited instructions. This raises the need for a software
fallback path to ensure forward progress [7].

This fallback path can be either as simple as a global lock



or as complex as a Software Transactional Memory, which is
designated by Hybrid Transactional Memory (Hybrid TM)
[8], [9], [10], [11], [12]. The goal of Hybrid TM is to fully
exploit best-effort HTM as much as possible, and in the case
of abort, fall back to the more costly Software Transactional
Memory (STM), which provides progress guarantee.

A. Motivation

Despite the number of papers published in this area in
recent years, Hybrid TM still suffer from large overheads [7].
These overheads are particularly exacerbated on Hybrid TMs
which require HTM to manipulate the per-location metadata
(often referred to as Ownership Records, ORecs) used by
STM —and, as such, extend significantly the working set
of HTM transactions making them prone to capacity excep-
tions; but also in Hybrid TMs that use a software fallback
without per location metadata, as these Hybrid TMs suffer
from a scalability bottleneck as every transaction must read
a sequence lock. Further, they can induce spurious aborts of
HTM transactions if any concurrent, non-conflicting HTM
commits [7].

Benchmarks’ tests indicate that the performance of state
of the art Hybrid TM cannot surpass HTM performance
for workloads characterized by short transactions with small
read and write-set, and that it cannot surpass the scalability
of STM for workloads characterized by long transactions
with large read and write-set. The results show that Hybrid
TM has costs incurred by synchronizing both the execution
of HTM and STM, as the memory locations accessed by one
TM has to be validated with the read and write-set of both
TMs. Results also show that the performance of Hybrid TM
is highly dependent on the workload.

B. Contributions

The goal of this document is to provide a new class
of Hybrid TM without the main drawback of state of the
art Hybrid TM: the overheads incurred by the synchroniza-
tion of transactions running HTM and transactions running
STM. To accomplish that, we rely on operating system’s
memory protection mechanism to dynamically establish a
memory partitioning scheme that ensures that HTM and
STM execute, at any time, on disjoint memory regions. By
delegating to the OS memory protection mechanism the task
of detecting violations of the currently established memory
partitioning scheme, DMP-TM investigates an interesting
trade-off, which has not currently explored in the litera-
ture: reducing the runtime overheads for detecting conflicts
among STM and HTM transactions, at the cost of a large
performance penalty in case conflicts between STM and
HTM transactions do materialize.

As it will be shown via an extensive experimental study,
this design choice allows DMP-TM to achieve up to 4x
speedups compared to HTM and STM, and 10x speedups
compared to Hybrid-NOrec [9], in workloads where the

memory regions accessed by HTM and STM transactions
are unlikely to overlap.

II. BACKGROUND

A. Background

Next, background on TM is provided. First, is presented
Software Transactional Memory which aims to deliver the
capabilities of Transactional Memory (STM) via software
library. Then, we present Hardware Transactional Memory
(HTM), an implementation of TM that implements TM in
hardware. Finally, we present Hybrid TM, which aims to
use HTM and then fallback to STM whenever HTM cannot
succeed.

The TM programming model relies on the assumption that
programmers demarcate portions of code that must execute
as atomic transactions. TM guarantees that safe concurrent
operations succeed and that transactions that have conflicts
with other, abort.

Many designs and solutions have been proposed in the
last years. Next, they will be presented and discussed their
advantages and trade-offs in comparison with Dynamic
Memory Partitioning (DMP-TM).

TM implementations. The TM abstraction has been
implemented in software (STM), hardware (HTM), or com-
binations thereof (Hybrid TM).

A wide variety of STMs have been proposed [3], [4], [5].
Mainly, because STM always grant correctness and progress,
however they require costly code instrumentation in order to
track transactional operations.

HTM [13], [?] does not need to add extra-instrumentation
to the code, however it is best-effort, i.e., it does not guaran-
tee that a transaction can succeed. A HTM transaction can
abort due to system calls performed during their execution,
exceeding cache capacities or even spurious aborts. In order
to guarantee progress, researchers used a single global lock
to provide synchronization. Whenever HTM transactions
abort more than a fixed threshold, it acquires a global lock,
that is subscribed by all transactions, that aborts all the
running transactions and avoid the start of new ones. The
single global lock is a mechanism that guarantees progress,
but is slow, as every HTM transaction aborts when it is
acquired.

The usage of a single global lock as a fallback mechanism
in best-effort HTM motivated the researchers of TM to
create a more complex fallback mechanism, called Hybrid
Transactional Memory (Hybrid TM). The goal of Hybrid
TM is to exploit best-effort HTM whenever possible due
to its cheaper capabilities, and fallback to the more costly
STM when a transaction cannot complete in hardware. This
approach promises to scale well and incur low latency, with
the worst-case overhead and scalability comparable to the
underlying STM.

To perform as a coherent whole, the Hybrid TM system
must be able to detect conflicts arising among concurrent



hardware and software transactions. This requirement is usu-
ally achieved by logging additional metadata while executing
hardware transactions, so that the conflict detection system
has access to both sides information. Certain STM algo-
rithms [4], [5] require interaction with per-location metadata,
and hybrid versions of these algorithms [12] wasted limited
hardware capacity on this metadata. The interaction of HTM
with STM metadata could lead to capacity aborts, or could
lead to false sharing of cache lines that hold the metadata,
resulting in additional HTM aborts, and increased fallback
to the STM path.

III. DYNAMIC MEMORY PARTITIONING HYBRID TM

The analysis of the state of the art conducted in the
subsection II-A highlighted that Hybrid TM still incurs an
overly large overhead, due to the need of synchronization of
concurrent transactions using HTM and STM.

The approach proposed is inspired by recent findings
[14], which verified that, in several reference TM bench-
marks, namely Genome, Vacation and K-Means of STAMP
benchmark [15], the memory layout can be partitioned in
a way that it is safe to use different concurrency control
mechanisms, optimized for different workloads, on different
partitions.

Based on that, this document proposes a new class of
Hybrid TM that takes advantage of the ”partitionability”
of workloads by minimizing the overheads due to the
synchronization between HTM and STM.

Dynamic Memory Partitioning (DMP-TM), avoids to
trace conflicts by forcing transactions to log additional
information during their execution, but rather to delegate
to the OS the function of detecting conflicts, which is done
at page-level.

A. Memory Mapping

DMP-TM manipulates the process virtual space in such
a way that the heap is mapped twice; one heap is used by
transactions running STM and the another one is used by
transactions HTM, this way is possible to either one of the
TM implementations to revoke the access to the other by
simply changing the protection of the corresponding page
in its heap. At any point in time, DMP-TM ensures, via OS
memory protection mechanism, that each memory page can
only be updated by either HTM or STM or that it can be
shared in read-only mode by both TM implementations.

This design was motivated by the goal of sparing HTM
from any instrumentation overhead in case it accesses mem-
ory regions that belong to its own areas. In case HTM
accesses a memory region that does not belong to its
own areas, we detect conflicts using the signal handling
of Unix and whenever a signal is detected we change the
memory protection according to the access being done. This
is fundamental to ensure that performance of HTM is not
hampered, since, as already discussed, HTM’s performance

Figure 1: Map of the address space in the HTM Heap and
in the STM Heap

is very sensitive to instrumentation, requiring additional
memory accesses given its limited capacity.

The revoke of access rights is achieved by using the
system call mprotect of Unix. This system call changes the
protection of calling process memory pages contained in
a given range of addresses. Mprotect() must be issued on
a piece of memory obtained using mmap() and the given
address must be aligned at the page boundary, which in
DMP-TM is. Otherwise, according to the POSIX standard,
its behavior is undefined.

The result is if a page’s access rights is revoked, there is
not a way to distinguish accesses performed by transactions
running STM, which are always enabled by this concept
from transactions running HTM, that must check the page
protection first, because the page’s access right is done at
the process level, which makes pages inaccessible for the
entire process.

In order to solve this, we organize the process virtual
space in a way that the heap is mapped twice (figure 1):
transactions running HTM access the corresponding pages
in a mapping of the heap reserved for them, called HTM
Heap, and in a similar way, transactions running STM access
the corresponding pages in a mapping of the memory called
STM Heap.

The result of this concept is that whenever transactions
running HTM try to access a page for which they do not
have the access, the operative system detects that the process
does not have the access rights to do it and triggers an AV
in the form of a SIGSEGV, which would be further treated
by a Unix signal handler.

B. HTM component

The HTM implementation used in this solution is the one
provided by IBM Power8. The leading cause that motivate
us to choose this specific processor instead of the more
common processor Intel’s Haswell is that in Intel’s Haswell
when a transaction running HTM performs an access on
a shared memory zone and triggers a Segmentation Fault
(SIGSEGV) signal, we have experimentally verified that
the signal handler is not executed and keeps retrying the
transaction.



If aborted by a capacity abort, transactions running HTM
immediately fallback to the one of the fallback mechanism
described more in detail in subsection , i.e., either acquiring
the fallback single global lock or run the transaction using
STM. In case of a conflict, the transaction is repeated up to
5 times - a standard value that has been recommended in
the study of Yoo et. al [16] - before activating the fallback
path.

C. Signal Handler and Contention Management

When a transaction running HTM tries to access the
data from a page to which it is not allowed, the operative
system raises a SIGSEGV signal. This signal is handled
by a Unix handler, where is possible to check the address
that originated the SIGSEGV and consequently calculate the
page that triggered it. The page protection is then restored
accordingly to the type of access that HTM was going to do,
this is an information passed specifically by the programmer,
if the programmer does not pass any information then it
is assumed that the transaction is an update one: if the
transaction running HTM is read-only, then the protection
of the page in the HTM Heap is changed to Read-mode,
because it is guaranteed that there will not exist any update
of memory in the future to cause a conflict with running
STM transactions; if the transaction running HTM is an
update transaction, then the memory protection is changed
to Read/Write-mode. In order to notify transactions running
STM that transactions running HTM now have Read/Write
access to one of the pages previously read, and possibly
have written to a page previously read, a special per-page
counter, named transition-count, is incremented in the signal
handler. If a transaction running STM transactions checks
during its execution that the transition count has changed,
then the transaction rollsback and restarts.

D. STM component

We opted to integrate in DMP-TM TinySTM, a very
efficient word-based STM, which has been shown to have
very robust performance across heterogeneous workloads
[7].

As mentioned before, we want to avoid instrumentation
on HTM, therefore in DMP-TM we opt for placing any
additional run-time check aimed to enforce correct synchro-
nization between HTM and STM, on the STM side. This is
motivated by the fact that STMs need anyway to perform
checks to detect conflicts, which allows amortizing the
additional costs associated with detecting access violations
to memory partitions. To this end, we associate with each
memory page the following metadata: 1) status field, that
encompasses the access rights that HTM currently has on
that page (read, read-write, none), 2) transition count that
encompasses how many times have the access rights for
HTM have been restored to read/write, 3) writer count that

Figure 2: Software read

encompasses how many STM transactions have written the
page.

E. Reads performed by STM transactions

When a transaction running STM issues a read (see figure
3). it first checks if the transition count of all the pages
previously read have been changed since the last time they
were read. If any of the transition count stored is different
than the present one, then the transaction is restarted since
an HTM transaction has restored the memory protection of
the page and possibly issue a write to an address previously
read by the STM transaction.

Then, it is checked the metadata of the page to which the
transaction running STM issued a read. If the protection of
the corresponding page in the HTM Heap is Read/Write,
which means that HTM transactions can write a value
whenever STM is reading, then the lock bit is grabbed using
the directive compare-and-swap, which guarantees that only
one transaction acquires the lock bit and issues a system
call mprotect in order to change the protection of the page
to Read.

We considered which change of page protection a read
done by STM should trigger and it is preferable that instead
of revoking, we opted for preserving read rights for HTM
transactions. This choice allows in fact concurrency between
STM and HTM transactions that read, without updating,
memory positions in that page. After altering the metadata
of the page, it is issued a transactional read recurring to the
function stm load() of TinySTM and it is checked again if
the transition count has changed. If it does, it means that the
read performed is not legal an consequently the transaction
is restarted. If not, the read has been successful.

F. Writes performed by STM transactions

When a transaction running STM issues a write operation,
it first checks the page’s metadata. Then, it checks the status
field of the page containing the address and if it finds that
the page that wants to be written is readable or writable by
transactions running HTM, it acquires the lock bit using the
compare-and-swap directive and revokes the access rights,
by issuing a mprotect call and changing the protection of



Figure 3: Software Write

the corresponding page in the HTM Heap to None, so that
no HTM transaction can read it or write it in middle of an
STM write. After changing the protection via mprotect() to
None and furthermore the update of the status field of the
page, the writer count for that page is increased. Finally, it
is released the lock bit and is performed the transactional
write of the value recurring to the function stm store() of
TinySTM.

G. Restart of an STM transaction

Whenever a software transaction finds the transition count
of a page previously read different from the one read by the
time the read is done, the transaction running software be-
gins the process to restart itself. This operation is performed
by first atomically decrease the number of writers that a page
has in the case the aborted transaction had written the page
and issue a restart of the transaction.

H. Commits performed by transactions running STM

By the time a Software transaction finishes its execu-
tion, it enters in the commit phase, in which it checks
if the transition count of the pages previously read have
changed meanwhile. Whenever a software transaction finds
the transition count of a page different than the one read by
the time the read is done, the software transaction begins
the process to restart itself: First, recurring to the function

sync sub and fetch(), it atomically decreases the number
of writers for all the pages that the transaction has written
before and finally issues a transactional restart recurring to
the function stm abort() provided by TinySTM.

IV. VARIANTS OF THE ALGORITHM

This section describes the variants of the algorithm devel-
oped in order to accommodate the cases when the solution
reach the point that it cannot succeed using hardware trans-
actions, either because of reaching the maximum number
of tries in hardware or reaching the maximum number of
page changes, thus having to fallback to other solutions. We
developed two main variants of the algorithm:

• DMP-SGL - Resorting to executing the transaction se-
quentially, i.e., without any other transaction executing
concurrently. This is the standard fall back approach for

HTM. In this case, though, it has to be extended to en-
sure that neither HTM nor STM transactions are active
concurrently to the transaction executing in the fallback
path. As we will discuss next, we have developed three
variants of this approach, which use different ways to
block the execution of STM transactions.

• DMP-STM - Stopping the execution of HTM transac-
tions (by acquiring the global lock they subscribe upon
begin), and running the transaction using a plain version
of TinySTM.

V. MEMORY ALLOCATION

Recall that our solution relies on mapping the memory
accessible via TM in specific memory regions of the ad-
dress space. This implies that the mechanism in charge for
allocating/deallocating memory dynamically (malloc/free in
C) should be made aware of the range of addresses from
which memory chunks should be allocated upon request of
the application.

In order to address this issue, we developed a custom
implementation of malloc that allocates memory from the
mapped STM heap. In the beginning of its execution, the
STM Heap is split in n equal parts aligned with the page’s
boundary, being n the number of threads. Then, when is
needed to allocate a new piece of memory, the allocator
returns one address of the split reserved for that thread and
increments the per-thread counter that indicates the point to
where, in the partition, memory is allocated.

The key benefit of this solution is that the memory
allocator does not have to deal with deallocation of memory,
as each thread consumes memory from different memory
regions. This approach, although simple, comes with a cost:
if a thread finishes its split, and even if the other splits are
empty, it cannot access those memory regions. However,
the development of an efficient malloc support is outside of
the scope of this dissertation and that the current, simple
approach was sufficient to carry out the evaluation of the
system.

VI. CORRECTNESS ARGUMENT

In this section, we provide a set of (informal) arguments
on the correctness of the proposed solution.

As for HTM transactions, they are effectively isolated
by concurrent updates by STM transactions as a HTM
transaction is aborted as soon as it attempts to access a
memory address for which it does not hold adequate (read
or Read/Write) permissions.

The cases where HTM transactions read a value from a
page and prior to their commit, a STM transaction begins
and writes to the same variable are straightforward: Because
cache coherence mechanism uses physical addresses to de-
tect conflicts, it ensures correctness even when the accesses
are issued on different virtual addresses that point to the
same physical address.



The case where pages have been written by software
transactions are straightforward: each transaction increments
the writer count atomically and revokes the access for HTM
transactions before issuing the transactional write. On the
signal handler side, if the transaction wants to revert to
Read/Write protection, the AV waits until there are no
writers active and then acquires the lock bit atomically which
guarantees that its the only transaction that can execute
system calls on that page.

The cases where pages have been read are handled in
the following manner: Before STM’s first read to a page,
it has to store the page’s transition count and also check if
the access protection for transactions running HTM is either
None or Read-only. In the negative case, it acquires lock bit
and issues a system call in order to change that protection
to Read. After it has performed the transactional read, the
transaction must check that the transition count read before
remained unchanged. This means that the page was never
written by HTM, because if it has changed the protection
meanwhile, the transition count would be different than the
one before.

Finally, at commit time, all the transition count of the
pages read are checked ,otherwise some HTM transaction
could write meanwhile and invalidate the values read by
STM transactions before. In order to ensure opacity, the
transition count of the pages read, so far, by an active STM
transaction are also checked. This ensures that no HTM can
have conflicted with the STM transaction, by overwriting
any of the values it read so far.

VII. EVALUATION

A. Performance Evaluation

This section presents an extensive evaluation of DMP-TM.
In subsection VII-B, we present the methodology and the
evaluation metrics used in this study. Then, subsection VII-C
presents the results obtained using synthetic benchmarks,
.i.e., benchmarks created by the authors. Finally, subsection
VII-D presents the results obtained in 3 benchmarks of the
STAMP benchmark suite [15].

B. Methodology and Evaluation Metrics

In this experimental evaluation, we used multiple work-
loads representative of real-life applications, such as the ones
contained STAMP benchmark suite, in order to stress the ad-
vantages of using DMP-TM in real life applications. In order
to compare all the implementations, we used the following
evaluation metrics: throughput, abort rate, breakdown of
aborts, breakdown of commits and Number of System calls.
The number of system calls is particularly important, since
DMP-TM relies on mprotect() to synchronize the execution
of transactions running HTM and transactions running STM,
is important to track the number of system calls issued, as
this is an evidence of how precise the initial partitioning is.

All the presented results were obtained by executing on an
80-way IBM Power8 8284-22A processor with 10 physical
cores, where each core can execute 8 hardware threads. The
OS installed is Fedora 24 with Linux 4.5.5 and the compiler
used is GCC 6.2.1 with -O2 optimization level. The reported
results represent the average of 5 runs.

For the cases that the number of threads exceed the num-
ber of physical cores, we start to pin more than one thread to
the same physical core, leading to have worse performance
because different threads share the same processor, thus the
same cache lines. If the memory is not aligned with the cache
line size, two different variables could end up on the same
cache line and if two threads read/write two variables on
the same cache line, then one of them is invalidated, further
aborting transactions running hardware and the processor
is forced to use concurrency mechanisms to access those
cache lines. By aligning the variables to the cache line size,
we avoid false sharing as two variables are guaranteed to
reside on different cache lines.

Also, we tuned the value of maximum changes of pro-
tection of 5. This way, the maximum partition’s change that
we allow is 5, after that, we use the fallback mechanism.

C. Experiments with Synthetic Benchmarks

In order to assess the effectiveness of DMP-TM in diverse,
yet identifiable workload settings, we rely on a synthetic
benchmark based on two pool of pages, HTM and STM
pool, where each page represents a set of buckets containing
various elements. Each page, depending on the pool that
it belongs, is composed by l buckets with each bucket
containing e elements. A page belonging to the HTM pool is
composed by l = 10 240 buckets with each bucket containing
e = 32 elements not ordered, being each element a long.
This way it is expected to be benefited the execution of
transactions running HTM in deterioration of transactions
running STM, since if a transaction have to go through all
the elements of the bucket the size of each bucket will not
exceed the cache capacity which is 8KB, i.e 1024, elements,
because each element is a 8 byte long. On opposite side, if
the page belongs to STM pool, then the page is composed
by l = 176 buckets with each bucket containing e = 1024
elements not ordered, this hashmap is expected to benefit
transactions running STM in deterioration of transactions
running HTM, since if a transaction reads all the elements
of the bucket will likely to exceed the cache’s capacity and
abort due to capacity aborts.

There are two main parameters that we use to tune the
benchmark in order to exert precise control over the work-
load characteristics and gain deeper understanding over the
behavior of DMP-TM over certain workload characteristics
in comparison with the state of the art TM implementations.
The parameters are the following:

• p bias - indicates the percentage of operations issued
on pages that belong to the STM pool, if p bias equals



to 0% , then all operations will be issued to pages
belonging to HTM pool and by opposition, if p bias
equals to 100% then all the operations will be issued to
pages belonging to the STM pool. This way is possible
to control the transaction length, since the upper limit
is 32 elements for transactions issuing operations on
pages belonging to the HTM pool and 1024 elements
for transactions issuing operations on pages belonging
to the STM pool, being the former case beneficial
for transactions running HTM, because they are faster
than transactions running STM by not incurring extra
instrumentation, and the latter for transactions running
STM because the number of elements will likely induce
capacity aborts by overflowing the cache’s capacity.

• p op - indicates the percentage of the update operations
issued, if p op equals 0% then all the operations issued
are reads and by opposition, if p op equals to 100%,
then all the operations issued are writes.

Then, according to the random numbers obtained and the
p bias and p op defined at the beginning, the thread will
pick a random page from either the HTM or STM pool and
issue a read or write operation in it. If it is a read operation,
it will choose a random number between the range of [0-
Pool Population], being Pool Population the possible number
of values present in the bucket. We use Pool Population
100 times the number of elements in a bucket. Then, it
will calculate the bucket in which the element would be
present, by simply using the formula bucket to search =
value to find % total number of buckets in page and go
through all the elements in the bucket, if it finds the value
that it is looking for, it stops, if not it continues until the
end of the bucket.

If it is a write operation, it will generate two random
numbers between the range of [0-Pool Population], then it
will find the bucket which is supposed to be the first value
by using the formula stated before and will read through
all the elements, if it finds the element, it writes the second
value instead of the first, if not, it continues until the end of
the bucket. By reaching the end of the bucket, it writes the
second value in a random position.

Figure 4 captures the results obtained by adjusting the
parameter p bias equals to 2%. In all the workloads obtained
by varying the probability of writes, HTM-SGL scales up
to 32 threads, being the best TM implementation in the
comparison up to 8 threads, then after 8 threads it begins
to have a decrease in the throughput. Behind the loss of
throughput is that the number of transactions that active the
fallback increases, in the case of HTM-SGL, after 8 threads.
Surprisingly, Hybrid-NOrec achieves the worst throughput
in comparison with all the TM implementations present in
the experiment, this is explained by the fact that Hybrid-
NOrec also has the highest abort rate of the experiment.
The algorithms presented in this paper shined in this specific
workload by using the correct TM implementation according

to the pool of the page accessed, this granted average
speedups of 1.7x after 16 threads for p op = 10%, average
speedups of 2x in p op = 50%, and average speedups of 1.5x
in the case of p op = 90%. Following a similar trend as last
experiment, DMP-SGL begins to have performance penalties
after 32, due to the fact that some transactions begins to
commit using the fallback mechanism, however DMP-STM
uses this mechanism in its favor and can maintain the same
throughput from 32 to 80 threads.

(a) Throughput of experiment on hashmap with
p bias=2% and p op=10%

(b) Throughput of experiment on hashmap with
p bias=2% and p op=50%

(c) Throughput of experiment on hashmap with
p bias=2% and p op=90%

Figure 4: Comparison between state of the art TM imple-
mentations, DMP-STM and DMP-SGL using probability of
accessing the STM pool = 2%



D. STAMP benchmark
In this subsection we present three different experiments

conducted with STAMP benchmark. These experiments are
intended to stress the benefits of using DMP-STM and
DMP-SGL in real-world applications, first we analyzed three
scenarios in Vacation, a online travel agency, then, we tested
with Genome, a process of taking a large number of DNA
segments and matching them to reconstruct the original
source genome and Intruder, a Signature-based network
intrusion detection systems (NIDS).

It should be noted that we incorporated the mechanism
for allocating new memory described in subsection V in
every TM implementation described in this subsection with
the goal of having a fair comparison between all the imple-
mentations and also to stress the usability of the partition
mechanism proposed in this dissertation.

1) Vacation: Vacation implements an online transaction
processing system that intends to emulate a travel reservation
system. The system is composed by a set of trees that
keep track of customers and their reservations for various
time travels items. There are three types of operations:
reservations, cancellations and updates and each operation
is enclosed in a transaction that guarantees the consistency
of the database, since multiple threads can read and update
reservations.

Minh et. al [15] proposed two different scenarios, by
using different parameters that generates different work-
loads: vacation low, a workload with low contention, and
vacation high, a workload with high contention. In addition
to vacation low and vacation high workloads we generated
a third one using the following parameters: -n5 -q60
-u90 -r16384 -t4096. The generated workload has
higher number of queries per client, which tests the work-
loads with more contention than vacation high.

In this subsection we present three different experiments
conducted with STAMP benchmark. This experiments are
intended to stress the benefits of using DMP-STM and
DMP-SGL in real-world applications, first we analyzed three
scenarios in Vacation, a online travel agency, then, we tested
with Genome, process of taking a large number of DNA
segments and matching them to reconstruct the original
source genome and Intruder, a Signature-based network
intrusion detection systems (NIDS).

It should be noted that we incorporated the mechanism
for allocating new memory described in subsection V in
every TM implementation described in this subsection with
the goal of having a fair comparison between all the imple-
mentations and also to stress the usability of the partition
mechanism proposed in this dissertation.

2) Vacation: Vacation implements an online transaction
processing system that intends to emulate a travel reservation
system. The system is composed by a set of trees that
keep track of customers and their reservations for various
time travels items. There are three types of operations:

Figure 5: Vacation Low Throughput

reservations, cancellations and updates and each operation
is enclosed in a transaction that guarantees the consistency
of the database, since multiple threads can read and update
reservations.

Minh et. al [15] proposed two different scenarios, by
using different parameters that generates different work-
loads: vacation low, a workload with low contention, and
vacation high, a workload with high contention. In addition
to vacation low and vacation high workloads we generated
a third one using the following parameters: -n5 -q60
-u90 -r16384 -t4096. The generated workload has
higher number of queries per client, which tests the work-
loads with more contention than vacation high.

By analysing figure 5 is possible to infer that in vacation
low, HTM-SGL scales up to 4 threads, closely followed by
NOrec, that has higher throughput due to the low contention
present in this workload, with average throughput difference
of 5%. Then, after 4 threads, both HTM-SGL and NOrec
have performance penalties due to the increase of the abort
rate, which goes from roughly 0.017 with 8 threads to
almost 0.025 with 8 threads, and continue to decrease their
throughput up to 80 threads. At 16 threads, DMP-SGL,
TinySTM and DMP-STM begin to outperform all the other
TM implementations and remain that way for the rest of
the thread counts; DMP-SGL achieves the best throughput
of the test after 16 threads, having average 1.13x speedups
in comparison with TinySTM, we achieve this by running
software transactions whenever are done reservations or
whenever the administrator add a new item to the database,
all other operations, namely the delete of a customer and
the calculation of a bill of a certain client are calculated by
using transactions running HTM. DMP-STM achieves the
third best throughput in the study, having 0.12x throughput
penalty compared with the second best, TinySTM.

By analysing figure 6 is possible to infer that in vacation
high, the workload is prone to benefit HTM-SGL and NOrec
up to 4 threads, which after that thread count begin to
have some performance penalties. DMP-SGL has the worst



Figure 6: Vacation High Throughput

throughput in this experiment, since the average commit
of 30% of transactions executing the fallback mechanism
hinder the throughput. DMP-STM achieves the second
best throughput in the experiment, because of the higher
abort rate, transactions revert to the execution of TinySTM,
which greatly improves the performance of this experiment.
TinySTM achieves the best throughput in this experiment
with 1.3x speedups in comparison with the second best,
DMP-STM. Hybrid NOrec achieves a medium performance
in this experiment, being better than HTM-SGL and DMP-
SGL but being worse than TinySTM, DMP-STM and NOrec.
DMP-STM and DMP-SGL issue an average of 200 system
calls during their execution to synchronize the execution of
transactions running STM and transactions running HTM.

By analysing figure 7 is possible to infer that in the
proposed scenario of vacation with more queries per-client,
NOrec achieves the best throughput up to 8 threads and after
it, the workload is dominated by the proposed solutions that,
in the case of DMP-SGL, achieve on average 1.3x speedups
in comparison with TinySTM and Hybrid-NOrec and on
average 3.25x speedups in comparison with HTM-SGL.

3) Genome: Genome represents the process of taking
a large number of DNA segments and matching them to
reconstruct the original source genome. This benchmark has
two phases: the first phase uses a hash-set on the pool
of duplicate DNA segments in order to create a set of
unique segments. In the second phase, it tries to take a
segment from the pool and try to add it to a set of currently
matched segments. Transactions are used in both phases of
the algorithm to guarantee that the changes to the pool are
coherent.

By checking figure 8 is possible to check that HTM-SGL
has higher throughput up to 2 threads and after that DMP-
STM achieves the best throughput in all the study, achieving
speedup gains in the order of 1.2x until 64 threads, where it
begins to have similar throughput of TinySTM. DMP-SGL
is not competitive, achieving the third best throughput due
to the fact that it has roughly 0.3 abort rate and 1% of

Figure 7: Vacation with more queries per-client Throughput

transactions using the fallback mechanism, which hinders
the performance. Hybrid-NOrec has the worst throughput in
this experiment, mainly because of its high abort rate, which
causes falling back to NOrec and consequently the abort
of other transactions running HTM. DMP-SGL commits
using 97% of transactions running HTM, 2% of transactions
running STM and 1% of transactions using the fallback
mechanism. DMP-STM commits using 95% of transactions
running HTM, 4% of transactions running STM and 1% of
transactions using the fallback mechanism; we achieve this
by running transactions executing STM in the first phase of
the algorithm and running transactions executing HTM in
the second phase of the algorithm.

VIII. CONCLUSION

This paper proposes a novel Hybrid TM implementation
called Dynamic Memory Partitioning (DMP-TM), which
relies on the hardware’s memory protection mechanism to
synchronize the shared accesses by HTM and STM. DMP-
TM divides the memory layout in pages and those pages
are either accessed by HTM with no instrumentation, which
minimizes the probability of incurring aborts, or using STM,
which incurs an extra-overhead by changing the protection
via system call for transactions running HTM. That way
whenever one implementation accesses data in a page to
which its access is not allowed it receives an SIGSEGV
that indicates that the page could be accessed by the other
implementation and possibly causing a conflict and wrong
behavior. We designed an algorithm intended to minimize
the costs of having to issue system calls and evaluated
several fallback mechanisms. In the light of this study, this
paper proposes two variants of the algorithm: DMP-SGL and
DMP-STM. DMP-TM has been evaluated in an extensive
study recurring to a synthetic benchmark composed by two
disjoint hashmaps, one more prone to benefit transactions
running HTM and another one more to benefit transactions
running STM. DMP-TM demonstrated to be competitive
when accesses are done only to one of the hashmaps, a test



Figure 8: Genome Throughput

that is expected to be beneficial for respectively HTM and
STM, depending on the hashmap accessed. Also DMP-TM
demonstrated to achieve average performance gains of 1.5x
(and up to 4x) in comparison to TinySTM whenever the
larger hashmap is used with probability less than 10%. As
for HTM, throughput gains in these workloads average 1.33x
with peak gains that extend up to 4x. Finally, when compared
with Hybrid NOrec, DMP-TM achieves throughput gains up
to 10x. When considering workloads that are designed to be
optimally managed by either STM or HTM, the proposed
solution remains very competitive, achieving indistinguish-
able performance when compared to HTM, and averages
overheads of 20 (and maximum of 30) vs TinySTM. This
way, we proved that Hybrid TM is still a promising concept
and that for workloads characterized by accesses performed
on disjoint pages, Hybrid TM proves to be better than HTM
and STM by using the best of both implementations.

REFERENCES

[1] V. Pankratius and A.-R. Adl-Tabatabai, “A study of trans-
actional memory vs. locks in practice,” in Proceedings of
the Twenty-third Annual ACM Symposium on Parallelism in
Algorithms and Architectures, ser. SPAA ’11, 2011, pp. 43–
52.

[2] M. Herlihy and J. E. B. Moss, “Transactional memory: Archi-
tectural support for lock-free data structures,” in Proceedings
of the 20th Annual International Symposium on Computer
Architecture, ser. ISCA ’93, 1993, pp. 289–300.

[3] L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec:
streamlining STM by abolishing ownership records,” ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pp. 67–78, 2010.

[4] A. Dragojević, R. Guerraoui, and M. Kapalka, “Stretching
transactional memory,” ACM SIGPLAN Notices, vol. 44, p.
155, 2009.

[5] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance
tuning of word-based software transactional memory,” in Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, ser. PPoPP ’08, 2008,
pp. 237–246.

[6] J. E. Gottschlich, M. Vachharajani, and J. G. Siek, “An
efficient software transactional memory using commit-time
invalidation,” in Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optimiza-
tion, ser. CGO ’10, 2010, pp. 101–110.

[7] N. Diegues, P. Romano, and L. Rodrigues, “Virtues and
limitations of commodity hardware transactional memory,” in
Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, ser. PACT ’14, 2014, pp. 3–
14.

[8] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and
M. Herlihy, “Invyswell: A hybrid transactional memory for
haswell’s restricted transactional memory,” in Proceedings of
the 23rd International Conference on Parallel Architectures
and Compilation, ser. PACT ’14, 2014, pp. 187–200.

[9] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L.
Scott, and M. F. Spear, “Hybrid norec: A case study in the
effectiveness of best effort hardware transactional memory,”
SIGPLAN Not., vol. 46, no. 3, pp. 39–52, Mar. 2011.

[10] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum, “Hybrid transactional memory,” in Proceedings
of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS XII, 2006, pp. 336–346.

[11] A. Matveev and N. Shavit, “Reduced hardware norec: A safe
and scalable hybrid transactional memory,” in Proceedings
of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS ’15, 2015, pp. 59–71.

[12] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer,
“Optimizing hybrid transactional memory: The importance
of nonspeculative operations,” in Proceedings of the Twenty-
third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA ’11, 2011, pp. 53–64.

[13] “Power ISATM Version 2.07,” 2013.
[Online]. Available: https://www.power.org/wp-
content/uploads/2013/05/PowerISAV 2.07PUBLIC.pdf

[14] T. Riegel, C. Fetzer, and P. Felber, “Automatic data partitioning
in software transactional memories,” in Proceedings of the
Twentieth Annual Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA ’08, 2008, pp. 152–159.

[15] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp:
Stanford transactional applications for multi-processing.” in IISWC.
IEEE Computer Society, 2008, pp. 35–46.

[16] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of intel R© transactional synchronization extensions for
high-performance computing,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’13, 2013, pp. 19:1–19:11.


