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Abstract

This thesis focuses on how to exploit Transactional Memory (TM) to accelerate applications that
target big spatio-temporal data. TM has emerged as a promising abstraction for parallel programming,
which aims at enhancing performance and simplify programming of concurrent applications. Specifi-
cally, we use Hardware Transactional Memory (HTM) as a synchronization alternative to conventional
locking for main-memory spatio-temporal indexing data structures and seek an answer to the following
research questions: i) what efficiency levels can be achieved by applying HTM to state of the art

single-threaded (i.e.,

non-thread safe) spatio-temporal indexes algorithms? In particular, how does

the performance of such HTM-based algorithms compare with state-of-the-art concurrent algorithms,
designed from scratch to cope with the consistency issues arising in multi-threaded environments? ii) to
what extent can HTM be applied to state-of-the-art concurrent indexing algorithms for spatio-temporal

data, in order to enhance their efficiency?
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Transactional Memory, Performance

Introduction

The problem addressed in my thesis is to study ef-
ficient ways to enable concurrent access to spatio-
temporal indexes, in order to take full advantage of
modern multi and many core architectures. More-
over, this thesis is framed in the context of a more
general trend, which has focused on how to exploit
recent hardware advances to accelerate big data
processing. In particular, we plan to study how to
exploit hardware implementations of Transactional
Memory (TM) to allow concurrent access to spatio-
temporal index in a multi-threaded environment.

TM has emerged as a promising abstraction for
parallel programming, which aims at enhancing per-
formance and simplifying programming of concur-
rent applications when deployed on modern paral-
lel systems. TM represents an alternative to the
traditional approach for regulating concurrency in
a multi-threaded program, i.e., locking. However,
the use of fine-grained locking is known to be quite
complex, even for experienced programmers [12, 3],
and to lack one important property that is funda-
mental in modern software engineering approaches:
composability [8].

In contrast, TM is a much more straightforward
approach to building concurrent software, since all
code that has to execute atomically has simply to

be wrapped within a transaction. The underlying
TM implementation transparently ensures atomic-
ity, making programmers life much easier. Further,
locks use a pessimistic approach, which ensures cor-
rectness by restricting parallelism. Conversely, TM
allows to fully untap the parallelism offered by mod-
ern multi-core architectures by adopting an opti-
mistic approach that allows atomic code blocks to
be executed in a speculative fashion, aborting exe-

cution only in case conflicts are actually detected.

More in detail my thesis seeks to answer two main

questions:

1. what efficiency levels can be achieved by applying HTM
to state of the art single-threaded (i.e., non-thread safe)
spatio-temporal indexes algorthms? In particular, how
does the performance of such HTM-based algorithms
compare with state-of-the-art concurrent algorithms,
which rely on complex, and carefully optimized, fine
grained locking schemes?

2. can HTM be applied to state-of-the-art concurrent
lock-based indexing algorithms for spatio-temporal
data, in order to enhance their efficiency?

We answer these questions by conducting an exten-
sive experimental evaluation considering 3 different
architectures: Intel Core [7] Haswell and Broad-
well, and IBM POWERS [17] CPUs. Hence, we are
able to use multiple HTM interfaces, which result in
multiple HTM implementations. Moreover, we con-
sider realistic workloads, generated using standard



benchmarking tools that allow to faithfully capture
the characteristic of real life workloads by simulat-
ing e.g., traffic, using a network where object can
move threw and oblige to its rules.

As a preliminary step, before addressing the two
aforementioned questions, we conduct a systematic
study on the tuning of some key parameters and
runtime libraries that are known to affect signifi-
cantly HTMs performance: transactional retry logic
and implementation of the dynamic memory allo-
cator (TCMalloc [5]). We come to the conclusion
the standard GNU C library (Glibc) [11] memory
allocator is the best when coupled with non-HTM
indexes. Moreover, its does not falter as TCMalloc
with PGrid with HTM (PGridHTM) [16], hence,
we conclude that in general the Glibc memory allo-
cator is the more well suited to handle our spatio-
temporal indexes. The optimal configuration for
the transactional retry logic is platform depended.
Nevertheless, our results show that a 20 retry value
is able to satisfy performance in all machines. This
study is aimed at ensuring the correct tuning of
these parameters, for the considered application do-
main/workloads, so to ensure a fair and represen-
tative comparison with other lock-based solutions,
which are conducted in the following.

In order to answer the first question, we con-
sider Update efficient Grid (u-Grid) [15] as the tar-
get single-threaded algorithm where to apply HTM.
Since this algorithm is not suited to handle con-
currency, we have to wrap the main operations
(update and query) with transactions, which may
not be ideal for performance. The other baseline
single-threaded algorithm is the Update efficient R-
tree (u-R-tree) [15], which we will not be applying
HTM to, however, it is a plain comparison with
u-Grid. Moreover, we include algorithms that pro-
vide concurrency with the same consistency levels
as single-threaded algorithms, and we include con-
current algorithms that lower the consistency level
in order to provide better parallelism and fresher
query results, respectively Serialized Grid (Serial)
[16] and Parallel Grid (PGrid). The results of this
study shows that u-Grid with HTM (u-GridHTM)
is able to achieve performance comparable to state
of the art concurrent algorithms that use complex
and carefully engineered fine-based locking schemes,
specifically Serial and PGrid.

As for the second question, we consider as base-
line PGrid, which as confirmed in the first study,
has very competitive performance. The main key
ideas used to enhance its parallelism via HTM are
the following: i) to replace the critical sections with
transactions by eliding the locks. ii) to maintain
its query semantics by reusing the already present
atomic instructions (OLFIT). iii) to deal with the
non-tx-friendly synchronization scheme (waiting for

readers to become 0). iv) to partition query trans-
actions as to avoid contention and transactional
memory overflow. With these implementations we
are able to make PGridHTM have better perfor-
mance over PGrid in query intensive workloads and
be the best performing index in update intensive
workloads.

The remainder of this document structures as fol-
lows. Section 2 provides a background on HTM and
its implementations on Intel Core [7] and POWERS
[17]. Section 3 describes the FGL solutions which
we intend to modify to HTM. Section 4 describes
our solutions. Section 5 presents the extensive ex-
perimental study made to our solutions. Finally,
Section 6 concludes the dissertation by summariz-
ing the results obtained in the previous section and
discusses possible future work.

Hardware Transactional Memory

HTM is a concurrency protocol, which provides the
use of atomic operations (transactions) at cache
level. This occurs via ad-hoc extensions of the
processor instruction set (e.g., TSX in Haswell
[18]). HTM can be implemented with the cache co-
herency protocol of multiple CPUs, with multiple
memory architectures as: Non-uniform memory ac-
cess (NUMA) and uniform memory access (UMA).
Thus, HTM may have an exponential performance
potential if it suits such architectures.

In commercial HTM implementations, HTM uses
the processors’ cache to store the meta-data gener-
ated by transactional read/writes, and the cache
coherence protocol to detect conflicts. Performance
is increased since memory operations are made in
cache and there is no need for software instrumen-
tation, which greatly reduces overheads. The conse-
quence of this design is the low amount of memory
(cache) available to store the metadata (read /writes
sets) of transactions. Workloads including big
transactions may exceed hardware memory capac-
ity, resulting in transactional aborts and inducing
a big overhead. Due to these (and other) lim-
itations, HTM transactions are never guaranteed
to complete (best-effort HTMs). A fall back plan
(usually resorting to locks) is required to maintain
at least serial performance in case a transaction
fails repeatedly (and potentially deterministically)
in hardware.

Intel Core

Intel Core [7] uses the L1 cache for conflict detec-
tion and store buffering. Further research from [14],
evaluate that the load and store capacities are 4MB
and 22KB, respectively, on Core i7-4770. Moreover,
they claim that the load capacity is larger because
it uses other resources to track the cache lines that
were evicted from the L1 cache. Moreover, transac-
tion capacity for the stores is within the size of the



L1 cache.

The latest Haswell processors made by Intel Core
come with a new extension of the instruction set
architecture (ISA) [18], which supports Hardware
Transactional Memory, called Transactional Syn-
chronization Extensions (TSX). TSX provides two
software interfaces to handle HTM, named, Hard-
ware Lock Elision (HLE) and Restricted Transac-
tional Memory (RTM).

HLE can be seen as subset of RTM, meant to be
backward compatible with processors without T'SX
support. HLE is able to replace lock implementa-
tions with two provided prefixes XAQUIRE and
_XREALEASE. These prefixes are used with locks.
When the software acquires the lock, the hardware
has the ability to check if a thread executing the
critical conflicts with other threads (speculatively).
Threads that will not generate conflicts may run
in parallel with others. Thus, the lock is elided and
threads may run without requiring any communica-
tion with the lock. However a conflict might happen
for various reasons, in that case threads get rolled
back and acquire the lock.

RTM provides three new prefixes XBEGIN,
XEND and XABORT to handle transactions (more
prefixes are available). The programmer can start,
end, or abort a transaction in any part of the pro-
gram. Another difference in RTM is that program-
mers must define a fall-back path for an aborted
transaction. RTM brings more flexibility to the
programmer as he can choose what to do when a
transaction aborts and explicitly start or end trans-
actions without requiring locks.

In summary HLE is used for compatibility with
legacy processors. In contrast, RTM explicitly en-
ables the programmer to define the transactional
critical areas, thus bringing more flexibility. How-
ever it requires programmers to define a fall-back
path.

POWERS

POWERS [17] uses content addressable memory
(CAM) linked with the L2 cache for conflict detec-
tion [9]. This CAM is called the L2 TMCAM. The
L2 TMCAM records the cacheline addresses that
are accessed in the transactions with bits to rep-
resent read and write. Although the transactional
stored data is buffered in the L2 cache, the trans-
action capacity is bounded by the size of the L2
TMCAM. Since the number of the entries for the
L2 TMCAM is 64, the total transaction capacity
combined for loads and stores is 8 KB (=64*128
bytes), where each cache line size has 128 bytes.

POWERSs default HTM interface already al-
lows the user to specifically set the parameters,
__TM_abort and __TM_begin in the code, and de-
fine a fall-back path, as RTM. Therefore, allowing

a higher level of flexibility to programmers.

Another step towards HTM progress, is a new
technique proposed by Issa et al. [4], which uses
a hardware-software co-design, based on HTM, to
speculatively Read Write locks. Hardware Read-
Write Lock Elision (HRWLE) exploits two hard-
ware features of POWERS processors: suspend-
ing/resuming transaction execution and rollback-
only transactions (ROT). HRWLE provides two
major benefits with respect to existing HLE tech-
niques: i) eliding the read lock without resorting to
the use of hardware transactions, and ii) avoiding
to track read memory accesses issued in the write
critical section.

r-lock  r(x) r(?) r-unlock r-unlock

rlock rx)  rly)
Reader Reader *
Conflict o0

welock w(x) w(y) w-unlock welock w(x) w-unlock

Writer

Writer

Delayed commit suspend resume

(a) The write back of shared
variables updated by a writer
must be delayed until after all
readers have completed their
critical sections to preserve
consistency.

(b) A new reader accessing a
shared variable updated by a
suspended writer will abort
the suspended hardware spec-
ulation of the writer upon re-
sume.

Figure 1: Writers quiescence mechanism to ensure
consistency

Unlike read/write locks, in HRWLE reads and
writes are concurrent. In read critical sections,
transactions are completely free, lacking any instru-
mentation (non-speculative). They only flag their
state in shared memory, to indicate whenever a
read critical section starts. Since writers execute
within HTM transactions, they are protected from
any conflict developed with other writers. However,
it is still not safe to commit writers with concurrent
non-speculative readers, thus, they have to wait un-
til they can commit (Fig. 1 (a)).

To do so, writers use a quiescence call to ensure
correctness with readers. The quiescence call is im-
plemented with the suspend/resume hardware fea-
ture, which has two primary characteristics. First,
it drains all current readers that may touch a writer,
so that writers may commit. Second, any reader
that tries any memory position updated by a con-
current suspended writer will cause the abort of this
writer (Fig. 1 (b)).

Writes have several steps to follow. First, they
are issued as with plain HTM (speculative), if a
write cannot commit after several attempts, a ROT
is issued instead. ROTs lower the semantics of the
overall transaction in order to allow writers not
to track read memory access. Thus, this transac-
tions have nearly unlimited read capacity, which
increases their chances of surviving big transac-
tions. ROT’s benefit from read-dominated work-
loads since read memory accesses usually compro-
mise 80%-90% of the whole memory access [4].
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However, ROTs themselves can not be concur-
rent with each other, as they do not track their
reads. Nevertheless, here we are opting for a better
read/write concurrency scheme, at the cost of serial
writers. Finally, after several aborted attempts of
a ROT transaction, a lock is grabbed as the trans-
actions ultimate fall-back path.

Concurrent Indexing Algorithms for Spatio-
Temporal Data

In this section we focus on concurrent indexing data
structures for spatio-temporal data on parallel sys-
tems, which will represent the area of work of my
thesis. These solutions aim at taking maximum ad-
vantage from modern multi and many core architec-
tures, supporting concurrent execution of updates
and query operations. As such, they represent im-
portant building blocks for several of the distributed
platforms for spatio-temporal data.

Semantics and Parallelism

In order to ensure the correctness and efficiency of
concurrent data-structures, like the spatio-temporal
indexes considered in this work, it is crucial to ad-
equately synchronize the concurrent execution of
update and query operations. An ideal synchro-
nization scheme strives to maximize the parallelism
achievable when accessing the index, while preserv-
ing some target consistency criterion aimed at guar-
anteeing its correctness.

In literature, 4 different levels of consistency are
usually considered for spatio-temporal indexes; Se-
rializable (also called Degree 3), Snapshot Isola-
tion (SI), Freshness Isolation and Degree 2.

Degree 3 is full serializabilty. A transaction
schedule is serializable if its outcome (e.g., the re-
sulting state of the system) is equal to the outcome
of its transactions executed serially, i.e., without
overlapping in time.

HTM provides degree 3 consistency. Even though
transactions may be concurrent, their execution is
equivalent to a serial one. The cache coherency pro-
tocol ensures conflicts are detected, while transac-
tions ensure correctness, hence, it is possible to or-
der transactions as an equivalent serial execution.

The next lower level of consistency is SI. How-

ever, we will not make a description of SI since it is
not used it the considered indexes, and the extend

abstract space is limited.

Finally, Freshness Isolation is a consistency cri-
terion weaker than SI that allows various concur-
rency anomalies, called phantoms in the literature
[6], which are illustrated in the following. Consider
a CC scheme where updates are atomic and where
queries are able to execute reads “freely”, i.e., with-
out synchronizing with any concurrent writer. Let
us consider the execution illustrated in Figure 3,
which depicts a query whose execution spans the
[ts,te] time interval, and which is assumed to be
now scanning a specific region at some time t in
the interval %tl,t?. The figure shows concurrent
updates affecting objects, white dots represent ob-
jects initial positions and black dots represent their
updated positions. We can identify four phantoms
(concurrency anomalies):

il : Object A is in the query range at ts. However, it exits
the range before being seen by the query and therefore
is not reported. With timeslice semantics, A would be
reported as it could not be updated after the query
started. Note that B also exits the range during [t1,
t2], but is captured in both CC schemes.

i2 : Object C is not within the query range at ts. However,
it is reported because it enters the range during [t1, t2].
With timeslice semantics, C would not be reported.
Note that D also enters the range during [t1, t2], but
is not reported in either CC scheme.

i3 : Some of the reported object positions are fresher than
others. For example, objects E and F are both in the
query range before and after being updated. However,
only F’s updated position is reported. With timeslice
semantics both objects initial positions would be re-
ported.

i4 : Both of object G’s positions are in the range, but
the query fails to capture G because the update moves
from the yet unscanned to the already scanned query
region. This does not occur with timeslice semantics.
Of all of the phantoms, only i4 phantoms must be
avoided to ensure freshness semantics. i4 phantoms
happen when an object, yet to be scanned, updates
its position to an already scanned area (object G).
Thus, the object is still in the query range but it
seems to have disappeared. It has been argued by
[16] that this type of anomaly is strongly undesir-
able for typical applications. The resolution of this
problem is made in the description of PGrid, in Sec-
tion 3.2.2.
With freshness semantics, a query processed from
ts to te returns all objects that have their last re-
ported positions before ts in the query range, and it

Already scanned % :‘r,et unscanned
query region T— EE = N A guery region
LY q- q‘\

Initial object ¥ W *F |Updated object
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Figure 3: Parallel updating and querying [16]



reports some (fresher) objects that have their last
reported positions after ts (and before te) in the
query range.

Indexes Implementation

In this section we review several existing indexes
for spatio-temporal data. The considered algo-
rithms all target in-memory data structures, but
differ across multiple dimensions. While presenting
the various algorithms, we shall focus in particu-
lar on u-Grid and PGrid, as, in Section 4, we will
use them as starting point to derive HTM-enhanced
versions. The remaining algorithms will instead be
overviewed at a higher level of abstraction.

All indexes presented in the following use two
different structures. The primary structure is the
grid, Figure 4. The primary index is used to allow
efficient retrieval of objects based on their spatial
position during query operations.

A secondary index structure is also used, an
hashtable, which stores objects using their id’s as
key. This index is used by update operations, to
efficiently locate the corresponding entry to be up-
dated in the primary index. This technique, which
aims to accelerate access to objects in the primary
index, is called bottom-up fashion update.

All the indexes reviewed in the following sup-
port the same set of operations, namely the Update
(Object_id, oldx, old_y, x, y), and the RangeQuery
(Rectangle q).

u-Grid

u-Grid is a single-threaded index structure that of-
fers high performance for traffic monitoring appli-
cations in single-threaded settings [15]. Queries are
serviced using a uniform grid [1], while updates
are facilitated via a secondary index in bottom-
up fashion. A uniform grid (Figure 4) is a space-
partitioning index where a defined area is divided
into cells (grid), whose resolution can be statically
set based on the expected data density. However,
no grid refinement or re-balancing is made during
the execution of the system. Objects within a par-
ticular cell grid belong to that cell. Grid cells are
stored as a two-dimensional array. Each grid cell
within the array stores a pointer to the linked list
of buckets that contain the object data. Objects are
incrementally stored in buckets following no specific
order. Thus, the grid is defined by three parame-
ters: grid.area, grid_cell_size (gcs), and bucket_size
(bs).

PGrid
PGrid (Fig. 4) is a multi-threaded version of u-Grid

with a fine-grained 2 phase locking [2] scheme.
PGrid avoids acquiring locks on the entire set of

cells to be accessed by a query before starting scan-
ning such cells. Conversely, queries that need to
scan multiple cells acquire at most a cell lock at a
time, and only to enlist the reader into the cell,
i.e. for a very short duration. This allows up-
dates to manipulate the position of objects in the
cell concurrently with queries. In order to en-
sure freshness semantics, PGrid uses two additional
ideas/mechanism:

1. whenever an update alters the position of an object it
always preserves the object’s previous position. This
allows queries to detect and fix situations where the i4
phantom may arise (which would cause objects to be
missed due to concurrent updates moving the object
from a cell yet to be scanned to an already scanned
cell, see Fig 3) by letting queries return the position of
objects not reflecting the updates issued by concurrent
updates.

2. in order to ensure that concurrent execution of updates
does not jeopardize the correctness of queries, the atom-
icity of each object read is carried out using lock-free
mechanisms (possibly exploiting specialized hardware
support).

With the execution of multiple concurrent updates,
both the primary (Grid directory) and secondary
index (hashtable) are going to be manipulated con-
currently. The changes made in one have to be re-
flected in the other. To guarantee consistency be-
tween the two, PGrid’s Concurrency Control (CC)
scheme includes two types of locks: object locks and
cell locks.

The main purpose of object locks is to provide
synchronized, single-object updates between the
two structures. After an object lock is acquired,
the updater is sure that the object-related data is
not changed in either index by concurrent updates.
Since an object lock blocks write accesses just to
one particular object, it has only a modest effect
on the potential parallelism. As mentioned before,
concurrent updates to the same object are rare if
ever encountered.

The main purpose of a cell lock is to prevent
concurrent cell modifications, i.e., physical dele-
tion/insertion of new objects in a cell and, con-
sequently, deletion/insertion of new buckets in the
cell. For example, when a bucket becomes full, the
cell lock guarantees that only one thread at a time
allocates a new bucket and modifies the pointers
so that the new bucket becomes the first (bucket
pointed by cell).

Accelerated Spatio-Temporal Data Indexes

In this chapter we present several HTM-based
spatio-temporal indexes. The starting point to de-
rived such algorithms are two state of the art so-
lutions, namely u-Grid and PGrid (see Section 3).
For u-Grid we consider implementations based both
on plain HTM interface, as well as on HRWLE (see
Section 2). For PGrid, we consider how to inte-
grate HTM in the OLFIT-based version, and con-
sider the possibility of ensuring atomicity of the ob-
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Name Base Alg. HTM Inter. | # U Txs | # Q Txs

u-GridHTM u-Grid HTM 1 1
PGridOHTM PGridOLFIT HTM 1 | Partitioned
u-GridHRWLE u-Grid HRWLE 1 0

Table 1: Spatio-temporal indexes HTM solutions

jects scanned during the query operations via HTM
transactions spanning a tunable number of objects.
Table 1 depicts all of our solutions distinguished
by base algorithms, interfaces used and number of
transactions used in their main operations. These
solutions will be experimentally evaluated in Chap-
ter 5.

u-GridHTM and u-GridHRWLE

Our first approach was to straightforwardly apply
HTM to a state of the art single-threaded index,
u-Grid [15], by wrapping all of its operations with
HTM transactions. The modifications made to the
original u-Grid’s algorithms are marked with a yel-
low shading. Note that these algorithms use HTM
with a SGL fall-back path.

However, wrapping the two main operations in
a single transaction, respectively, may not be ideal
in terms of performance. If on the one hand, up-
date transactions are small and unlike to conflict
with other update operations. On the other hand,
queries access a much larger number of memory lo-
cations. Wrapping them within a single hardware
transaction makes them prone both to suffer from
capacity exceptions and to contention with concur-
rent update transactions.

A similar approach was used to derive u-Grid
with Hardware HRWLE (u-GridHRWLE). In this
case, query transactions are mapped to a read-
only transaction/critical section, whereas updates
are mapped to a write critical section. HRWLE
is expected to make HTM capacity issues negli-
gible, by allowing queries to run uninstrumented
and, hence, without any capacity limitation. Nev-
ertheless, contention between updates and queries
still exists. Further, HRWLE induces extra costs to
update transactions, by forcing them to undergo a

quiescence phase to wait for any active reader. As
such, HRWLE is expected to be better fitted for
query (read) intensive workload scenarios.

In terms of consistency, u-GridHTM and
u-GridHRWLE deliver Degree 3 consistency level,
which provides serializability and timeslice query
semantics.

PGridHTM

PGridHTM uses a complex and carefully op-
timized algorithm, based on the joint use of
fine-grained locking, atomic operations and non-
blocking synchronization techniques (e.g. OLFIT).
Further, in order to boost performance, PGridHTM
adopts a mnon-serializable consistency criterion,
namely freshness semantics (see section 3.1). In
the following we depict the main changes brought
by PGridHTM:

1. HTM is used to elide objects and cells locks,
Which provides a higher degree of parallelism.
Specifically, in object insert and delete opera-
tions, and in the query subscription to a cell.
These operations were previously protected by
a cell lock, which forced the serialization of
these operations.

2. Since PGrid relies on a fine-grained locking
scheme, in the moment in which HTM is used
to elide its locks, one is left with the deci-
sion on how to regulate the fall-back path of
HTM. The simplest method is to use a sin-
gle global lock (SGL), however, in doing so we
are restricting the original parallelism offered
in PGrid. Hence in order to provide a fall-back
path, which ensured the same parallelism as
PGrid, we used the fine-grained locking mech-
anism of PGrid as our fall-back path.

3. We maintain freshness semantics by reusing
the already present atomic instructions
(OLFIT), which allow atomicity between
updates and queries, whether running trans-
actionally or in the fall-back path. In order to
allow concurrent updates and queries, PGrid
resorts to atomic operations (e.g. Optimistic
Lock-Free Index Traversal (OLFIT)) to ensure
queries do not read corrupted object data,
concurrently modified by updates. In order
to allow the same mechanism with lock eli-
sion, the fall-back path uses these operations
to ensure atomic operations.  Conversely,
transactions provide atomicity, hence, they
do not require any instrumentation. In
fact, PGridHTM allows concurrency between
transactions and OLFIT.

4. We provide the possibility of performing query
scans in multiple transactions, which we call



transactional partitioned queries. In PGrid,
these were made using atomic operations (e.g
OLFIT) without resorting to locks. Neverthe-
less, we want to evaluate if issuing transactions
in query scans (instead of using OLFIT), can
improve performance.

We implement PGridHTM with two different fall-
back paths. The first version, uses the SGL as
its fall-back path, whereas the second version, uses
the FGL system of PGrid as its fall-back path.
They are respectively named PGridHTM-SGL and
PGridHTM-FGL.

Evaluation

Our evaluation is split among 3 different platforms,
which were used to make an extensive study of
HTMs behaviour in different architectures. Each
platform is described as follows:

1. Broadwell: Intel(R) Xeon(R) CPU E5-2648L v4 @
1.80GHz processor with 2 sockets, connected with
UMA, 14 physical cores per socket, where each core
can execute 2 hardware threads (hyper-threading [13]).
The operative system (OS) is Ubuntu 16.04.4 and uses
GCC version 5.4.0.

2. Haswell: Intel(R) Xeon(R) CPU E3-1275 v3 @
3.50GHz processor with 1 socket, 4 physical cores,
where each core can execute 2 hardware threads (hyper-
threading [13]). The OS is Ubuntu 12.04.2 LTS and
uses GCC version 4.8.1.

3. POWERS: 80-way IBM POWERS 8247-21L @ 3.42
GHz processor with 2 sockets, connected with NUMA
5 physical cores per socket, where each core can execute
8 hardware threads. The OS is Fedora 24 with Linux
4.7.4 and uses GCC version 6.2.1.

Finally, we consider the following algorithms in our
evaluation:

1. Single-threaded algorithms which we only report per-
formance achieved in single-threaded configurations,
namely u-Grid and u-R-tree.

2. Multi-threaded algorithms with a fine-grained locking
concurrency scheme, namely Serial and PGrid.

3. Multi-threaded algorithms with an HTM-based concur-
rency scheme, namely u-GridHTM, u-GridHRWLE and
PGridHTM.

Haswell

In query intensive workloads (top plots of Fig. 5),
Serial is clearly the best performing index. Mainly
due to the relatively low frequency of update op-
erations, which contribute to the rare existence of
hotspots. Moreover, recall that Serial relies on read
locks to protect queries’ execution, while ensuring
that these can be processed concurrently.

The u-R-tree has a competitive performance even
though it is a single-threaded index. This occurs
due to the efficient queries performed in it. In con-
trast the u-Grid is better suited for update intensive
workloads, hence, it has a considerably lower per-
formance than the u-R-tree. Finally, u-GridHTMs
performance is very poor, as previously explained,
capacity and conflict aborts are abundant due to
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the need of wrapping the entire update and query
functions in single transactions.

Update intensive workloads originate completely
different results (bottom plots of Fig. 6). Serial’s
performance drastically diminishes due to the
hotspots generated by updates. Hence, it be-
comes the worst performing multi-threaded index.
In contrast, u-GridHTM performance drastically
improves, becoming competitive with PGrid and
PGridHTM indexes. It is interesting to observe
that in the 16000u:1g-250m workload u-GridHTM,
which is obtained by straightforwardly applying
HTM to a single threaded index, achieves perfor-
mance on par (or even better) than the lock-based
PGrid variants, which rely on complex and highly
optimized synchronization strategies.

The best performing index is PGridOHTM-SGL,
achieving 25% speedups in comparison with PGrid-
SIMD. Again, PGridOHTM-FGL extra instrumen-
tation hiders performance since the fall-back path
is rarely acquired. u-Grid’s throughput is able to
surpass the u-R-tree’s, due to the update efficient
grid structure.

The obtained results answer the fundamental
questions this thesis proposes. First, we are able
to achieve on par (or even better) with a sin-



gle threaded index made concurrent with HTM, in
comparison with a state-of-the art lock-based multi-
threaded indexes, specifically designed to support
multi-threading. Second, we achieve better per-
formance using HTM against lock-based multi-
threaded indexes. Using HTM in ways that im-
proves parallelism and performance of these in-
dexes. Finally, there seems to be potential to im-
prove by using HTM, but the degree of parallelism is
too small to emphasize the gains, in Haswell. There-
fore, we will be answering these question when con-
sidering Broadwell and P8 architectures, which do
support a higher degree of parallelism.

Broadwell

Figure 7 depicts the performance of all indexes
in the Broadwell architecture. In query intensive
workloads, Serial is again the index with the best
performance. We attribute this performance due
to the low frequency of hotspots generated in these
workload scenarios, and due to the lightweight in-
strumentation imposed to queries in Serial. Never-
theless, PGridHTM is able to outperform PGrid.
In the 16km query range scenario, PGridHTM-
FGL is the index with the higher throughput dur-
ing the entire thread spectrum. At maximum
thread count, the two highest throughput indexes
are PGridHTM-FGL and PGridSIMD. In contrast,
in the 250m query range scenario PGridHTMs
(SGL/FGL) achieves 5% speedups over PGrid
(OLFIT/SIMD). Figure 8 depicts the abort break-
down, where we can see that the FGL version
has less aborts than the SGL version. Finally,
u-GridHTM throughput is lower than the single
threaded indexes, due the earlier explained con-
tention and capacity overflow. The u-R-tree is
again able to have better performance over u-Grid
in query intensive workloads. In update inten-
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PGridHTM’s versions. However, the SGL version
achieves a higher throughput over the FGL version.
As previously explained, the extra instrumentation
of FGL, plus, the lack of lock acquisition in update
intensive workloads, hinder its performance. Most
importantly, PGridOHTM is able to achieve 25%
speedups over PGridSIMD and 40% over PGri-
dOLFIT.

Serial’s performance is again drastically affected
due to the contention generated by updates. In
contrast, u-GridHTM drastically improves due to
the much lower frequency of queries, which gen-
erate contention and capacity issues. In the
250m scenario, it is even capable of out-performing
PGridHTM (OLFIT version), due to its lack of
instrumentation. Finally, u-Grid is able to out-
perform u-R-tree, due to the more conflict prone
update processing of the u-R-tree.

u-GridHTM’s results confirm the first question
proposed in this thesis, thanks to HTM, it is pos-
sible to achieve performance competitive to com-
plex lock-based algorithms at a fraction of the com-
plexity. This is only true, though, if the workload
characteristics fit the architectural restrictions (e.g.,
transactional capacity). The architectural restric-
tions imposed to current HTM implementations re-
strict their usage. In this sense, these results sug-
gest that ad-hoc locking strategies, despite more
complex and error prone, represent currently a more
robust and general solution that HTM.

As for the second question, PGridHTM is able
to achieve 25% speed-ups over PGrid. The fact
that HTM can further improve over complex locking
scheme, in realistic workloads, confirms the poten-
tial and relevance of HTM.

POWERS
In query intensive workloads (top plots of Fig.9),
Serial is the best performing index. As previously
explained, due to the low contention between up-
dates, a few amount of hotspots is generated, which
are the source of bad performance in Serial.
PGridHTM-FGL is able to achieve performance
equal or better than PGridOLFIT. Being able to
achieve 25% speedups in the 1u:1q-16km workload

scenario. As we can see in Figure 10, both ver-



sions of PGridHTM (SGL and FGL) have a negli-
gible abort count, this relates to the OLFIT mech-
anism used to perform query scans. We find this a
great discovery for architectures with small transac-
tional capacities, which have issues with the amount
of memory used in query scans. This occurs by
exploiting concurrency between non-bockable syn-
chronization techniques (i.e., OLFIT) and atomic
operations (transactions). Interestingly, the FGL
version is able to achieve a higher throughput over
the SGL version, hence, the overhead of using mul-
tiple locks (FGL) is favourable to the overhead
of blocking all transactions when an abort occurs
(SGL).

Next, u-GridHTM performance is still worse
than the single-threaded indexes. Due to con-
tention and capacity issues, it is even more ex-
plicit in POWERSs environment. In contrast,
u-GridHRWLE is able to begin with a competi-
tive performance until the 16 thread mark, since it
does not exceed capacity with its non-speculative
queries. Nevertheless, after the 16 thread mark
contention starts to rise, conflict aborts become
excessive and throughput drops below the single-
threaded indexes throughput. Finally, as previously
mentioned, the u-R-tree has a faster query scan-
ning algorithm, which allows it to have a superior
throughput over u-GridHTM.
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Update intensive workload scenarios force a com-
pletely different behaviour on indexes. In these sce-
narios, PGrid is the best performing index. In con-
trast, Serial’s performance is drastically affected,
mostly due to the contention between updates. Se-
rial only allows serializable updates in the same cell,
which does not favour update intensive scenarios.
u-Grid is able to outperform the u-R-tree in this
scenario. Mostly, due to the already discussed inef-
ficiency of u-R-tree in handling update operations.

PGridHTM is only able to achieve the second
best throughput. Moreover, the SGL version is
capable to achieve a higher throughput due to its
lightweight instrumentation, which is especially no-
ticeable in high throughput workloads. u-GridHTM
has a bad performance on the 16km range query
workload, which forces capacity and conflict aborts.
Conversely, in the 250m scenario it has competitive
performance with PGridHTM. u-GridHRWLE has
competitive throughput until the 32 thread mark,
however, due to the few queries present in theses
scenarios, contention between updates and queries
still occurs, and performance drops lower than the
single-threaded indexes.

Conclusions

The relevance of spatio-temporal data applications
and the volume and velocity of such type of data
has dramatically increased, over the last few years,
thanks to the proliferation of GPS equipped de-
vices. The problems of developing indexes for
spatio-temporal queries is well-known and several
have been proposed in literature [16, 10]. In this
thesis, we study efficient ways to enable concurrent
access to spatio-temporal data indexes, in order to
take advantage of modern multi and many core ar-
chitectures.

TM has emerged as a promising abstraction for
parallel programming. Specifically, we use HTM as
a synchronization alternative to conventional lock-
ing for main-memory spatio-temporal indexing data
structures and seek an answer to the following re-
search questions: i) what efficiency levels can be
achieved by applying HTM to state of the art single-
threaded (i.e., non-thread safe) spatio-temporal in-
dexes algorithms? In particular, how does the
performance of such HTM-based algorithms com-
pare with state-of-the-art concurrent algorithms,
designed from scratch to cope with the consistency
issues arising in multi-threaded environments? ii)
to what extent can HTM be applied to state-of-
the-art concurrent indexing algorithms for spatio-
temporal data, in order to enhance their efficiency?

To answer the first question we apply HTM to
u-Grid, a state of the art single threaded index
that is well known for its high efficiency in deal-
ing with update operations. Our results show that



u-GridHTM is able to achieve performance compa-
rable to state of the art concurrent algorithms that
use complex and carefully engineered fine-based
locking schemes.

To answer the second question we study how
HTM can be used to execute in a speculative fashion
the critical sections used in the PGrid concurrent al-
gorithm. Our results demonstrate that PGridHTM
is able to achieve 25% speedups over PGrid in query
intensive scenarios, and up to 40% speedups over its
rival, PGridOLFIT, in update intensive workload
scenarios.

Evaluation was performed considering 3 different
parallel machines, equipped with processors that
adopt different architectures and HTM implemen-
tations. In particular the Intel Haswell and Broad-
well and IBM POWERS8 CPUs. Moreover, we con-
sidered a data set of 4 different realistic workloads,
generated using Moving Objects Trace generatOr
(MOTO).
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