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Resumo

O aparecimento de processadores com múltiplos núcleos levou a uma mudança significativa

de paradigma de desenvolvimento de software. Como tal, uma aplicação de software que seja

desenvolvida hoje só executará mais rapidamente nos processadores futuramente lançados, caso

seja devidamente paralelizada por via a tirar partido do crescente número de núcleos em cada

processador. O desenvolvimento de tais aplicações, ditas concorrentes, tem vindo a representar

um desafio considerável, nomeadamente pelas várias complexidades associadas à sincronização

correcta de acessos concorrentes aos dados mutáveis partilhados da aplicação.

Ao longo da última década, a Memória Transacional (MT) tem vindo a ser gradualmente

considerada como um dos paradigmas de programação mais promissores para facilitar o desen-

volvimento de aplicações concorrentes. A MT disponibiliza aos programadores uma interface

simples através da qual eles declaram porções do código da aplicação que devem executar de

forma atómica. A implementação da MT executa cada uma destas porções de código encap-

sulada numa transação, como tal, providenciando uma ilusão de que a aplicação executa todo

código apenas sequencialmente, apesar de as transações poderem (e deverem) ser efectivamente

executadas de forma concorrente.

Durante estes últimos anos pudemos testemunhar avanços tremendos na área de MT,

nomeadamente com a sua consagração em linguagens de programação amplamente utilizadas,

assim como na sua disponibilização em implementações de hardware em vários processadores de

múltiplos núcleos em milhões de computadores. De uma forma geral, a comunidade académica

tem vindo a aclamar a simplicidade da programação de aplicações concorrentes com recurso

a MT. No entanto, a outra promessa de alto desempenho e escalabilidade da MT, tem sido

frequentemente questionada como fracassada. De facto, as implementações de MT têm ainda

algumas falhas. Ao procurar obter o máximo de simplicidade possível, os sistemas de MT têm

vindo a sacrificar essa promessa, resultando tipicamente em sistemas cuja materialização de-

saponta em termos de desempenho e escalabilidade face ao potencial alto que lhe é reconhecido.

Exemplos destes problemas vão desde o excessivo número de recomeços de transações até à



rigidez dos algorithmos que tendem a obter bom desempenho nalgumas aplicações e desempenho

sub-óptimo noutras.

O objectivo principal desta dissertação é o de criar algoritmos inovadores que melhoram o de-

sempenho de sistemas de MT de forma robusta, i.e., com ganhos em diferentes cargas de trabalho

heterogéneas e sem a intervenção manual por parte do programador para a escolha de parâmetros

e configurações. A capacidade de obter desempenho robusto a mudanças é particularmente rel-

evante para resolver um dos maiores impedimentos na adoção de MT, como mencionado acima.

A garantia de total automatização e transparência para o programador é também da maior im-

portância, para que a facilidade de programação do paradigma de MT seja preservada. Este

aspeto distingue notoriamente este trabalho do estado da arte que tenta melhorar o desempenho

de sistemas de MT.



Abstract

The advent of multi-core processors has driven a major paradigm shift in the development

of software. An application that is developed today will only run faster with future processors

if it is parallelized to take advantage of the ever-growing number of cores of modern processors.

Developing concurrent applications, however, is a hard problem, especially due to the complexity

associated with correctly and effectively synchronizing concurrent accesses to the shared mutable

data.

Over the past decade, Transactional Memory (TM) has emerged as one of the most promis-

ing programming paradigms to ease the development of concurrent applications. TM provides

programmers with a simple interface, which simply requires them to declare the portions of their

code that should be executed atomically. The TM runtime executes atomic code blocks within

transactions, which provide the illusion that the application executes sequentially, even though

its transactions are actually processed concurrently.

The past few years have resulted in tremendous advances in the area of TM, with its stan-

dardization in mainstream languages, as well as hardware implementations in several commodity

multi-core processors. To a large extent, the research community has acknowledged the simplic-

ity of programming concurrent applications with TM. However, its performance and scalability

have been often disputed. Indeed, existing TM implementations are far from perfect, and they

often fall prey of several inefficiencies, which can ultimately lead TM to deliver unsatisfactory

performance and scalability levels. These issues range from unnecessary transaction aborts, to

the strictness of the algorithms that perform well in some workloads and sub-optimal in others.

The main goal of this dissertation is to create novel algorithms that improve the performance

of TM systems in a robust way, i.e., with gains across heterogeneous types of workloads and

without manual intervention from the programmer to tune parameters or choose configurations.

The ability to deliver robust performance is particularly relevant to address one of the main

concerns with the adoption of TM, as identified above. The use of fully automatized self-tuning



approaches is also of the utmost importance, so that the ease of programming of the TM paradigm

is preserved. This is an aspect that notably distinguishes this work from prior state of the art

also aimed to improve the performance of TM.
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1Introduction

1.1 Context

In 2004 the president of Intel announced a dramatic shift in the strategy of the company: “We

are dedicating all of our future product development to multi-core designs”. Over ten years later,

multi-core processors have become the reference architecture for modern computing systems,

with an uncontested ubiquity across many types of devices.

To fulfill the potential of such multi-core processors, programmers are now obliged to write

concurrent applications, as otherwise their applications will not scale with the new generations

of processors — which typically have more cores, but each one executes at the same speed of

past generations. As a consequence of this paradigm shift, today, the challenge of synchronizing

concurrent accesses to shared data held in-memory is no longer faced only by the specialists of

parallel programming, but also by the mass of common programmers, who wish to exploit in a

simple way the full potential of modern processor architectures.

The idea of Transactional Memory (TM) [Herlihy and Moss, 1993] is to provide an answer to

this challenge, namely to allow programmers to easily obtain correct programs, in which many

concurrent threads manipulate shared data, without sacrificing scalability or performance. To do

so, TM systems typically provide an illusion of a sequential application to the programmer, even

though she may exploit concurrency by issuing concurrent transactions encompassing atomic

blocks of code. Furthermore, TM systems often rely on optimistic concurrency control mecha-

nisms that allow to unveil much of the parallelism that gets neglected by conservative approaches

such as those based on coarse-grained locking.

Contrarily to the conventional lock-based synchronization methodologies, in which program-

mers identify shared data and specify how to synchronize concurrent accesses to it, the TM

paradigm requires only to identify which portions of the code have to execute atomically, and

not how atomicity should be achieved.
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Although the initial proposal of TM [Herlihy and Moss, 1993] was somewhat overlooked by

the research community, the advent of multi-core processors generated additional motivation to

explore simple concurrent programming paradigms to manage in-memory shared data, which

brought TM to the forefront [Herlihy et al., 2003b].

Many alternative TM systems have been proposed since then. One fundamental difference

among them is that some are pure Software TMs (STMs), which are implemented as user-level

libraries [Shavit and Touitou, 1995]. Others, referred to as Hardware TMs (HTMs), rely entirely

on the logic embedded in the hardware of the processor [Yoo et al., 2013]. Finally, others rely

on both software and hardware mechanisms, and are, therefore, referred to as Hybrid TMs

(HyTMs) [Calciu et al., 2014a].

The initial implementation proposed for TM was hardware-based (i.e., an HTM) and it relied

on an extension of the processor’s cache coherency protocol to support hardware transactions.

However, given the unavailability of commercial processors with HTM support, most of the

research in this area has initially focused on the development of STMs, as flexible prototypes

that allowed the exploration of many designs and implementations.

More recently, the relevance of TM in the industry has been significantly amplified by the

achievement of two main milestones. On the one hand, the standardization of programming

constructs for TM in popular programming languages (such as C/C++ [Ni et al., 2008]). On

the other hand, the launch of mainstream processors with HTM (namely, by Intel [Yoo et al.,

2013] and IBM [Adir et al., 2014, Cain et al., 2013, Nakaike et al., 2015,Wang et al., 2012a]).

These two technologies, embodying TM in compilers and processors, are now available to millions

of programmers across the globe, turning TM into a leading paradigm to simplify concurrent

programming.

1.2 Thesis Statement

TM systems have evolved superbly over the past decade, greatly compelled by the motiva-

tion to take advantage of the multi-core processors that become mainstream during this time.

At the same time, these TM systems are gaining increasing adoption, with their recent commer-

cialization and standardization.

Recall that the premise of TM is two-fold: 1) to enable easy development of concurrent
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applications, and 2) to unfold the potential to exploit as much parallelism as possible in the

workload and improve performance.

The former is possible thanks to the adoption of the familiar abstraction of transactions

to delimit portions of code that should execute atomically, i.e., appear to the programmer as a

single, instantaneously executable instruction — this allows the programmer to reason about the

application as if it executed sequentially, even though the atomic blocks are executed concur-

rently. The benefits of ease of programming stemming from the adoption of the TM paradigm,

when compared to conventional lock-based approaches, have garnered an undisputed consen-

sus [Lupei et al., 2010,Pankratius and Adl-Tabatabai, 2011,Rossbach et al., 2010]. One tangible

effect of this consensus was the aforementioned standardization of TM in popular programming

languages and its adoption in commercial processors.

The second premise of TM, i.e., enhancing performance, is enabled by speculatively exe-

cuting transactions in parallel and relying on optimistic concurrency control techniques that

transparently abort and restart the conflicting transactions.

Indeed, existing implementations of TM are far from perfect, and their actual performance

and efficiency has been questioned and criticized in the past [Cascaval et al., 2008]. While striving

for ease of usage, namely by running concurrent transactions in a way that provides an illusion of

a sequential execution, TM systems can fall prey of several inefficiencies. As a result, it is often

the case that a given TM delivers quite contrasting performance and scalability across varying

workloads, yielding high performance only in some restricted workloads. This lack of robust

performance is the key weakness factor that is still identified to existing TM systems — ideally,

the performance of TM would be robust, in the sense that it would perform consistently across

workloads and applications, without the need for manual tuning of parameters or careful choice

of the algorithms used. In practice, as it shall be demonstrated in this dissertation, a given TM

system tends to deliver high-performance for some cases and to perform sub-optimally, when

compared with alternative TMs.

Unfortunately, this issue has not been solved by the recently available commodity HTMs:

as we shall see in this work, it is often the case that STMs outperform HTMs, which defies the

assumption that hardware-based implementations should be faster than their counter-parts in

software. This is, in part, a result of the intense research in the area of STM, before the arrival

of commodity HTMs, which generated several robust software-based implementations over the
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years. However, it is also in part due to the unfortunate reality that current HTMs are faced

with significant restrictions, and thus their performance is also restricted in some cases.

This dissertation seeks to demonstrate the following thesis. It is possible to create TM

systems with robust performance across workloads and applications while preserving the

simplicity and ease of use of the TM abstraction.

Indeed, new paradigms — as is the case for the TM paradigm — often have to provide a

significant advantage in order to become widely adopted, as incremental changes are not appre-

ciated enough to justify the change. With this thesis, the intent is to pave the way to providing

one of the missing key factors in TM to turn it into a mainstream paradigm for concurrent pro-

gramming, i.e., performance that is robust to varying workloads and types of applications and

that scales with the available number of cores. An extremely significant aspect of the thesis is to

do so in ways that are fully automatic and transparent to the programmer. This is an aspect of

the utmost importance to preserve that significant feature of the TM paradigm, which notably

distinguishes this work from prior state of the art trying to improve the performance of TM.

1.3 Outline of the Contributions

In order to pursue the statement defined above, this dissertation follows two main approaches.

On one hand, new TM algorithms are proposed and implemented, whose results demonstrate

that it is possible to achieve robust performance in workloads that challenge previous state of

the art solutions. On the other hand, several self-tuning mechanisms are also proposed to enrich

the TM run-time and adapt several key mechanisms used in TM implementations, so that they

better fit the characteristics of the underlying workload being executed.

In the following we summarize the key contributions of this dissertation that achieve the

goal identified above:

• A comparison of existing TMs (Chapter 3): The advent of commodity HTMs, whose re-

lease by Intel and IBM was contemporary with the work conducted in this dissertation, raised

a compelling research question to quantitatively assess the efficiency of HTM implementations

with respect to alternative synchronization mechanisms, including software and hybrid TM im-

plementations as well as conventional lock-based mechanisms. Indeed, it was of the utmost
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importance to establish a fair comparison for the state of the art of TM implementations, when

framed under the availability of these new HTMs. We tackled this research question by carrying

out the largest experimental study on TM-based synchronization to date. As part of the results,

we showed for the first time that the commodity HTM released by Intel was not the providing

the robust performance that one would expect, as for more than half the workloads we tested it

performed similarly or worse than the best available STMs. At the same time, for workloads with

small transactions and low contention, HTM delivered unparalleled performance given that it

has negligible software instrumentation on the application code. Finally, the supposedly “best of

both worlds” idea behind HyTMs was also shown to fall significantly short, as combining HTM

and STMs safely to allow hardware and software transactions to run simultaneously ends up

polluting the fast path (of hardware transactions) with software instrumentation that generates

overhead and spurious aborts. These experimental findings motivated the pursue of performance

improvements on both fronts: both to improve existing — and well studied — STM algorithms,

as well as to propose new ideas to maximize the performance achievable with the new HTM

support.

• Time-Warp — Reduction of aborts in STMs (Chapter 4): In TM systems, transactions are

typically executed in parallel and regulated by an optimistic concurrency control mechanism that

rejects inconsistent executions by aborting some transactions. In the scope of TM, the reference

consistency criteria are strictly stronger than that of Serializability [Guerraoui and Kapalka,

2008, Imbs and Raynal, 2012], which, roughly speaking, ensure that the effects of concurrency

are not exposed to applications, which observe solely snapshots of shared data that are equivalent

to those of a serial execution. To also strive for high-performance, it is desirable to accept all

consistent executions, and thus avoiding spurious aborts. Classic literature has evidenced the

algorithmic complexity (and practical impossibility) of doing so [Papadimitriou, 1979]. Hence

the challenge is on how to reduce spurious aborts without incurring overheads so high that they

outweigh the gains stemming from the reduction of aborts. We tackle this challenge by devising

an STM algorithm that drastically reduces aborts in high contention scenarios while remaining

competitive with the most efficient state of the art STMs in low contention workloads. All of

this without imposing any additional burden on the programmer — i.e., it is fully automatic and

still ensures strong consistency as desirable and described above.

• Tuner — Improving the performance of HTM-based systems via self-tuning (Chapter 5):
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As established by the first contribution of this dissertation, HTM is not a panacea for the

challenges inherent to concurrent programming, mainly because those solutions are limited by

hardware constraints. As a result of these constraints, existing HTM implementations must have

a software fall-back path that correctly implements the TM abstraction when the HTM cannot do

so. Furthermore, both paths, namely the hardware and software ones, must execute correctly in

concurrency. In this work we shed light on a relevant issue with great impact on the performance

of such HTMs: the correct tuning of the logic that regulates how to cope with failed hardware

transactions. We show that the optimal tuning of this policy is strongly workload dependent,

and that the relative difference in performance among the various possible configurations can

be remarkable. We address this issue by introducing a simple and effective approach that aims

to identify the optimal fall-back configuration at runtime via lightweight reinforcement learning

techniques. The proposed technique requires no off-line sampling of the application, and can be

applied to optimize HTMs and HyTMs.

• Seer — Reduction of aborts in HTMs via scheduling (Chapter 6): Due to the optimistic

nature of TM implementations, transactions may have to be aborted and restarted, so that

correctness is ensured. This phenomenon is exacerbated by the limitations of HTM, which

generate more aborts when the working-set is too large to fit the hardware limits, and which

generate also more aborts due to conflicts than STMs due to the coarser conflict detection

granularity. As a result, it is up to the software library that regulates the HTM usage to ensure

progress and optimize performance. A well known technique in the literature to do so is that of

scheduling transactions: the scheduler allows transactions to start when it is confident that the

concurrently running transactions will not conflict with it. STM solutions can provide precise

information to feed the decisions of the scheduler, due to their instrumentation in the application

that collects data about the read and write accesses of each transaction. HTM solutions, however,

provide only coarse feedback regarding the type of abort (e.g., a data conflict abort versus a

forbidden instruction abort) and cannot therefore employ state of the art schedulers that were

designed with STM in mind. To address this crucial issue for HTMs, and consequently reduce

the aborts that they suffer, this dissertation proposes a software scheduler called Seer. Seer

leverages an on-line probabilistic inference technique that identifies the most likely conflicting

pairs of transactions, and establishes a dynamic (i.e., varying over time) locking scheme to

serialize transactions in a fine-grained manner.
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Figure 1.1: Summary of the contributions of this dissertation to the thesis of providing robust
high-performance for TM while preserving both its simple interface and correctness criteria.
Attached to each contribution, we list also the corresponding publications (by conference or
journal acronym and year), as well as the chapter where the respective work is presented.

• ProteusTM — An Adaptive High-Performance TM (Chapter 7): With the initial study

presented in this dissertation, we show that HTM and STM perform optimally in different work-

loads, with HyTM falling short of being the desirable way to reconcile the former two. To

tackle such cases, where the workload may change over time, we propose to adaptively choose

between HTM and STM algorithms. Furthermore, we show that the best possible performance

is also dependent on other configurations of the TM system — besides the algorithm itself, also

the number of active threads, and internal parameters such as the contention management are

also highly important — making this a multi-dimensional optimization problem. Imposing this

burden on developers is unacceptable, both for its intractability in terms of number of possible

configurations to explore manually, but also because no static solution can cope with workloads

varying over time. With ProteusTM, we address the challenge of automatically identifying the

best TM implementation and configuration for a given workload. Our proposed system hides,

behind the simple TM interface of atomic blocks, a large library of dynamically tunable (and

highly extensible) TM implementations. Under the hood, ProteusTM leverages an innovative,

multi-dimensional online optimization scheme, combining two popular machine learning tech-

niques: Collaborative Filtering and Bayesian Optimization. These black-box learning techniques

are used to dynamically drive, in a fully transparent way, the choice of underlying TM imple-

mentation and the tuning of several configuration parameters. ProteusTM has been integrated

in a leading open source compiler for C/C++ (GCC), and extensively evaluated using a suite
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of 11 applications and 4 micro-benchmarks. Our study shows that ProteusTM obtained average

performance that is < 3% from optimal, and gains up to 100× over static alternatives.

This set of challenges that we faced during the work for the dissertation, and corresponding

contributions, are summarized in Figure 1.1.

Before delving into each of these contributions, we first present, in Chapter 2, a contextual

background on the TM abstraction and its underlying implementations. Chapters 3-7 present

our contributions to improve the performance of state of the art TMs — in each of them, we

first present a statement of the problem, overview of the solution, and a contextual discussion

of the specific related work, before explaining the details of our proposal. Finally, Chapter 8

summarizes this work and identifies possible avenues for future research.



2Background on

Transactional Memory

The past decade has brought remarkable advances in the area of TM, including its progres-

sive adoption by the industry [Karnagel et al., 2014, Intel Corporation, 2009]. This has resulted

in a wide range of works, encompassing very different implementations of TM, which we review

in this chapter. First, we introduce the TM abstraction in Section 2.1, as an idea with a wide

applicability to help address the challenges posed by concurrent programming. Next, in Sec-

tion 2.2, we describe theoretical guarantees that are provided by TMs. Then, we proceed with

an overview of the various types of TM implementations in Sections 2.3-2.6. Finally, we present

the benchmarks and applications used in the various evaluations conducted in the course of this

work, in Section 2.7.

2.1 The Transactional Memory Abstraction

The idea underlying TM was proposed concurrently by [Stone et al., 1993] and [Herlihy

and Moss, 1993]. To some extent, both proposals sought to simplify concurrent programming

by providing a primitive that allowed multiple atomic reads and writes. Both proposals were

also quite system-centric, and proposed implementations that would extend the cache coherence

protocol available in processors.

Although the spotlight may have been more on the implementation side, in fact, these

two proposals had coined the TM abstraction, i.e., a concurrent programming paradigm. This

paradigm requires programmers to identify only which code portions need to be executed atom-

ically, and not how atomicity is to be enforced. Such atomic portions of code execute as trans-

actions, whose implementation may vary. They contrast with lower level primitives, such as

locks, that require the programmer to define how the actual synchronization will take place for

accessing each shared datum.

Consider for instance the sample of code shown in Listing 2.1. There we show some simple
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Listing 2.1: Example of C++ sample of code using the Transactional Memory abstraction to
synchronize accesses to shared memory.

1 bool transfer(const Account∗ source, const Account∗ dest, int amount) {
2 __transaction_atomic {
3 if (source−>balance < amount) {
4 return false;
5 }
6 source−>balance −= amount;
7 dest−>balance += amount;
8 return true;
9 }
10 }

logic in C++ to transfer an amount of money between two Account objects atomically. The

atomic block, delimiting the code to run in a transaction, provides an effective way to identify

that. Contrasting this with a lock-based implementation, one would have to devise a mapping

of locks to accounts, and ensure that they were acquired in a consistent order to avoid dead-

locks [Herlihy and Shavit, 2008]. Naturally, the programmer could use a single lock to protect

all accounts, but that would result in a sequential bottleneck for concurrent transfers between

independent pairs of accounts.

It is also worth highlighting that it is no coincidence that we use this specific “__transac-

tion_atomic” syntax for the atomic block: this matches exactly the only thing that a programmer

would have to write with the standard C++ programming constructs for TM [Adl-Tabatabai

et al., 2012]. Indeed, by raising the level of abstraction, TM has been shown to drastically

simplify the development of parallel applications [Pankratius and Adl-Tabatabai, 2011,Rossbach

et al., 2010].

Behind this abstraction, there is a myriad of possible implementations, which we overview

over several sections later in this chapter. All these implementations of TM have, in common,

the fact that the data being shared by different threads is held in main-memory, which explains

the name of the abstraction. A transaction is typically structured in three phases:

1. Start : this is used to prepare data-structures and meta-data that is private to the thread

that is about to execute the transaction. After a thread invokes this, it is usually said to

be running a transaction, and as such reads and writes will be performed transactionally.

2. Accessing data: to ensure the correctness of concurrent executions, reads and writes per-
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formed transactionally usually have to be redirected for handling by the TM system. Some

TMs may be completely transparent to applications, as is the case for HTMs, whereas

STMs, in contrast, require applications’ memory accesses (i.e., reads and writes) to be

intercepted via software wrappers (instrumented into the application) that redirect them

to a TM library implemented in software. This usually ensures that read- and write-sets

are maintained to track the addresses/objects of the program that were read or written

transactionally. Naturally, HTMs perform an analogous process, albeit it is embedded in

the micro-code of the processor and thus transparent to the application.

3. Commit : this phase attempts to consolidate the speculative writes that were recorded

during the transactional accesses, thus making them accessible to other transactions (should

the commit be successful). This operation may fail when the TM deems the transaction

to threaten the correctness criteria condition, in which case the transactional writes are

discarded, and the transaction is restarted.

2.2 Theoretical Guarantees

There are several interesting properties that characterize quite distinctively the various im-

plementations of TMs. These can often be analyzed from a theoretical, i.e., algorithmic point

of view, and thus provide important means of establishing comparisons between different TMs.

We focus on a few of them, whose understanding is crucial to the nature of the contributions of

this dissertation.

2.2.1 Correctness Criteria

The abstraction of transactions stems from the well known field of databases, which have

used transactions to reach similar goals to those of TM, although many times in sand-boxed

domains (e.g., such as Structured Query Language (SQL) statements) — whereas TM operates

on arbitrary programs — and with persistence and durability as crucial properties — whereas

in TM the shared data lies in-memory and is not concerned with those properties.

Despite those differences, the correctness criteria of TM are highly inspired by those of

databases. More specifically, the widely known idea of Serializability establishes that a concur-
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rent execution is safe if it is equivalent to one yielded by a serial execution of the system [Pa-

padimitriou, 1979]. However, the formal definition of Serializability enforces this condition only

for committed transactions, without specifying anything for transactions that eventually abort.

As we shall see, transactions that do not commit are still important for general purpose programs

— contrarily to database systems where the environment is much more constrained — and so

researchers in TM have identified stronger criteria to provide safer conditions.

By specifying safety only for committed transactions, Serializability allows other transactions

(that eventually get aborted) to perform inconsistent reads — that is, read operations may return

values that would not be possible in a sequential execution. As such, this allows threads to follow

execution paths in their code that the programmer would not have conceived or expected. For

instance, a thread running a transaction could read two shared variables x and y, which would

normally respect an invariant that x < y, and then execute a loop with those variables as lower

and upper bound (respectively). However, if the transaction obtains inconsistent values (for

instance x > y), then it may remain in an infinite loop or issue a memory access at an illegal

memory location causing an unrecoverable exception and the crash of the whole application.

Situations like this one have motivated the introduction of Opacity [Guerraoui and Kapalka,

2008] in which: 1) the definition of Serializability is preserved, 2) additionally, all transactions

— including live ones that may still abort — must always access a consistent state of the shared

data, i.e., a state that would be possible to obtain by a serial execution of committed transactions,

and 3) all committed transactions must respect the real-time order, i.e., if T1 finishes before T2

starts, then T1 must appear to have executed — that is, serialized — before T2.

There is another interesting correctness criterion called Virtual World Consistency

(VWC) [Imbs and Raynal, 2012], which is weaker than Opacity, and stronger than Serializability.

Whereas in Opacity all transactions must observe the same consistent state, the one resulting

from an equivalent serial order of committed transactions, in VWC this is only required for com-

mitted transactions. For a transaction that (eventually) aborts, the requirement is weakened

so that it must observe state consistent with its causal past (i.e., roughly transactions whose

presence it has witnessed via reads over memory they wrote); however this state and causal past

is not necessarily the same as that observed by other (eventually) aborted transactions. This

means that an aborted transaction may observe a different set of transactions to have committed

than the one that another aborted transaction observes.
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This subtle change makes VWC weaker than Opacity and, as such, imposes less constraints

on the potential concurrency of transactions. All of this while keeping the spirit that motivated

Opacity: that is, to ensure all transactions always observe a consistent state, to avoid hazardous

situations such as infinite loops and segmentation faults that would not occur in sequential runs

of the program.

2.2.2 The Need to Abort Transactions

Guaranteeing any of the correctness criteria identified above would be trivial in a TM imple-

mentation that simply aborts all transactions. This motivates the need to define conditions that

capture the scenarios in which a transaction cannot abort (and thus must progress and commit

successfully).

As a result, the concept of C-Permissiveness was defined [Guerraoui et al., 2008], where C

is a correctness criterion (e.g., Opacity): a TM is C-Permissive if it never aborts a transaction

unless there is no alternative to preserve the correctness of the concurrent execution according

to C. When a transaction is aborted, even though the resulting concurrent execution (if it was

committed) was safe with respect to C, then it is said that this was a spurious abort.

While being extremely appealing and desirable, ensuring C-Permissiveness turns out to be

impractical due to its algorithmic complexity [Keidar and Perelman, 2009]. To understand the

intuition behind this, one can consider a TM to be an online algorithm, in the sense that, on

each operation that it receives (e.g., a start, read, write or commit), it has to decide whether

to accept it or to abort the transaction. However, the TM has no knowledge on what future

operations it will have to execute, which complicate the reasoning that it has to do for every

operation.

This led to an alternative notion named Probabilistic C-Permissiveness [Guerraoui et al.,

2008], which requires a TM to ensure C-Permissiveness only with some probability. This means

that all C safe concurrent executions are acceptable by the TM, but they are not always accepted

with certainty (otherwise the TM would be in fact C-Permissive). This allows implementations

to use randomization when deciding the outcome of an operation, and thus achieve a meaningful

property — albeit a less interesting one — without incurring prohibitive costs. Another weaker,

but still similar property, is that of MV-Permissiveness [Perelman et al., 2010], which requires
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read-only transactions to never abort.

The notion of Permissiveness seems to capture the intent of a programmer with respect to

the need of aborting transactions in TM. However, by being too demanding, it has not been

particularly popular in terms of adoption: to the best of our knowledge the has only been one

(theoretical) Opaque-Permissive TM algorithm proposed [Keidar and Perelman, 2009].

As such, the idea of Input Acceptance [Gramoli et al., 2010] was proposed to allow to capture

the relative power of TMs to reduce the amount of spurious aborts. The key idea is to identify

input patterns, encompassing sequences of input TM operations (such as reads and writes) that,

when fed to a TM algorithm, cause the abort of at least one transaction. In that case it is said

that the TM does not accept that input pattern. Then, by comparing the patterns accepted (or

not) by different TMs, it becomes possible to define a hierarchy between them that captures their

relative ability to avoid spurious aborts: this is achieved by identifying inclusion (i.e., subset)

relationships also between those patterns. Intuitively, this means that if TMB accepts only a

subset of the patterns accepted by TMA, then TMA has a higher input acceptance than TMB

and so generates less spurious aborts.

2.2.3 Progress Guarantees

It is also important to define the guarantees of progress for concurrent threads. Namely,

because they contend to access shared data, and as such one would like to ensure that not all

threads in the program remain waiting for some condition that will never be verified. These

concerns are not specific for TM and, in fact, the following properties that we summarize have

originated from the literature of concurrent programming in general [Herlihy and Shavit, 2008].

Although the TM abstraction strives to get away from the concept of locking, it happens

that many TM implementations actually use locks to internally manage the concurrency be-

tween threads accessing shared data transactionally. As such, any practical TM has to ensure

at least Deadlock-freedom, which requires that, when trying to grab any lock, at least some

thread eventually manages to do so with success. This definition allows specific threads to never

succeed meaning that they can be stuck forever. In fact, many TMs have been proposed with

this guarantee only. To overcome this limitation, Starvation-freedom enforces that all threads

eventually manage to progress when trying to grab any lock.
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Other TMs do not actually use locks internally, and tend to resort to the Compare-And-

Swap (CAS) primitive or similar, or even have their implementation encoded in the micro-code

of the processor in the case of HTMs. For this non-blocking case, the guarantee of Lock-freedom

requires that at least one thread makes progress in the system, i.e., in the case of TM this entails

that some transaction finishes (note that it does not imply committing — it may be aborted).

Similarly, Wait-freedom requires that every thread eventually obtains progress.

2.3 Software Transactional Memory

Software TMs (STM) stemmed mostly from the need to rapidly prototype new ideas in

research. The inherent difficulty of doing so purely in hardware, or the inaccuracy of doing so

via hardware simulations, led to the creation of many STMs (the first one being [Shavit and

Touitou, 1995], curiously long before the multi-core era). More recently, HTMs turn out to be

somewhat limited in terms of applicability, which is another motivation for still relying on STMs.

In an STM, read and write transactional accesses are instrumented to be intercepted by

the STM library. Naturally, this can lead to large overheads, for which reason applications are

typically instrumented to trace only shared memory accesses. This can be achieved by relying

on the programmer to manually instrument the application, which is undesirable, even though it

was common practice for many researchers and prototypes. The less error-prone solution, which

has recently caught up some traction, is to rely on a compiler to perform the instrumentation:

the Gnu C Compiler (GCC) now implements the standard TM ABI [Ni et al., 2008] to address

this. However, this results in some instrumentation of non-shared data, which cannot be proven

statically as not being modified and accessed concurrently.

To better convey this transformation step, we show in Listing 2.2 the changes to the sample

code shown earlier, now corresponding to the instrumented code ready to use STM. The changes

introduced are analogous to those performed by GCC, which defers the logic of TM operations

to the STM library — note that, in fact, the compiler will often inline the logic instead of placing

the function calls that we used.

Behind this common interface, STM libraries can significantly vary the design choices of their

implementation. In the following we first present some relevant design choices that differentiate

contrasting STMs. Then we summarize the characteristics of several state of the art STMs that
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Listing 2.2: Example of possible instrumentation applied by an STM to the sample of code shown
in Listing 2.1.

1 bool transfer(const Account∗ source, const Account∗ dest, int amount) {
2 jmp_buf b; // used to record the instruction pointer and registers
3 setjmp(stm_buf); // record at this point so that the TM may restart the transaction back here
4 stm_start_tx(&stm_buf);
5 int tmp1 = stm_read(&source−>balance); // the STM library handles the reads...
6 bool res = true;
7 if (tmp1 < amount) {
8 res = false;
9 } else {
10 stm_write(&source−>balance, tmp1 − amount); // ...and the writes
11 int tmp2 = stm_read(&dest−>balance);
12 stm_write(&dest−>balance, tmp2 + amount);
13 }
14 stm_commit_tx(&stm_buf); // the STM commit may abort and restart to line 3
15 return res;
16 }

were used in the course of the work for this dissertation.

2.3.1 Update Policy

The update policy defines how the TM manages the transactional changes (i.e., updates) to

shared data.

One alternative, called the lazy or deferred approach, is to keep the writes of the transaction

in a separate memory region that is private to the thread executing it. This naturally ensures

the desirable property that the speculative writes of the transaction are not accessible to other

concurrent transactions until a successful commit is ensured. To implement this, STMs usually

maintain the write addresses and corresponding new speculative values in a per-thread write-set

data-structure.

In contrast, another alternative called eager or direct, applies directly the new speculative

values to the actual memory address that is intended in the original non-instrumented application.

However, because the transaction may still abort, some care must be taken. The previous values

are backed up, in what is called an undo-set, so that they can be placed back if the transaction is

aborted and the speculative writes are discarded. Furthermore, there must exist some meta-data

associated with the memory regions of shared data, so that transactions can register there the

fact that the associated values are still speculative and should not be accessed by concurrent
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transactions.

The lazy approach is aimed at scenarios where transaction aborts and restarts are common,

as in those cases the private write-set is easily discarded without changes to the shared memory,

whereas the eager approach should have a very efficient commit procedure as the writes are

already in-place.

In practice, implementations tend to use the lazy approach, as it turns out to be more

efficient. On one hand, it concentrates the changes to shared memory in the commit procedure,

which makes better use of batched messaging in the processor’s bus that allows to access memory.

On the other hand, the eager approach usually still needs to perform some shared memory changes

during the commit, to update STM meta-data associated with each of the writes. As such, these

two facts make the lazy approach more interesting, and hence why most high-performing STMs

use deferred writes [Dalessandro et al., 2010,Felber et al., 2008,Dragojević et al., 2009a].

2.3.2 Conflict Detection

The detection of conflicts, between transactions accessing the same shared data (where at

least one is modifying it), is enabled by the collection of the addresses read or written by the

transaction into, respectively, read- and write-sets.

One possibility is to perform the conflict detection and resolution in a lazy (or also called

commit-time) fashion. This means that the system detects conflicts when a transaction tries

to commit, i.e., the conflict itself and its detection occur at different points in time. To do so,

many STMs conduct the following verification: a committing transaction Ti must ensure that

no write-set of a concurrently committed transaction Tk intersects with Ti’s read- or write-set.

A transaction Tk is concurrently committed with regard to Ti if it is committed after Ti started

and before Ti committed.

If there is such an intersection, then it is said to exist a conflict: a read-write conflict or

write-write conflict, depending on whether the intersection was detected in Ti’s read- or write-set.

This strategy promotes more concurrency because not all read-write conflicts are harmful to the

correctness of the execution: if the transaction that is reading still commits before the writer

transaction, then the resulting serialization is correct. However, by detecting conflicts lazily,

this also generates situations where transactions perform many computations that are restarted,
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when in fact they could had been detected earlier.

In contrast, eager conflict detection performs checks immediately during the TM operations

(namely read and writes). In general, this entails modifying some meta-data associated with the

addresses written (sometimes also for the addresses read, in the case of visible reads [Spear et al.,

2006]), which is independent of the update policy (which may still be lazy even if the conflict

detection is eager).

An interesting choice is to also consider mixed strategies: for instance, it is possible to

perform eager conflict detection for writes, and lazy detection for reads. This makes sense in

cases where two concurrent writes cannot be accommodated (because the TM maintains a single

version for the shared memory, as most do).

Finally, some systems also vary the conflict detection granularity. Most STMs use the size

of a memory word (32 or 64 bits) as the unit to keep track of in the read- and write-sets. As

we shall see, in the case of HTMs, the natural unit of granularity is the cache line size of the

processor. In contrast with these, STMs for object-oriented languages such as Java or C++, also

adopt the object granularity, which is tightly related with programming language constructs.

2.3.3 Implementations

As a result of the ample design space for TM, the flexibility of implementing various ap-

proaches in software has led to the proposal of many STMs. In the following we mention the

most prominent ones, which constitute the state of the art. We also summarize the main char-

acteristics of these STMs in Table 2.1. Notably, we shall also use these STMs in the course of

this dissertation, for which reason we delve into some of their details.

In the NOrec [Dalessandro et al., 2010] STM there is a single-global lock, which is used to

regulate all the concurrency control, and is managed internally by the STM library. This lock

is acquired during the commit of a transaction that contains new updates to shared memory,

a so called update transaction. Furthermore, the lock also works as a logical clock, whose

monotonically increasing values are used to notify concurrent transactions about updates to

memory. As such, transactions keep a read- and write-set, and whenever they perform an

operation in which they notice the global lock to have increased — remember that it is also

a logical clock — they re-validate the read-set. This ensures that all memory locations read
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Table 2.1: Categorization of three representative — albeit quite different — state of the art STMs.
These STMs play an important role in this dissertation, as we often compare our contributions
to them, or use them as the starting point of our new algorithms.

STM NOrec SwissTM JVSTM

Correctness Criteria Opacity Opacity Opacity
Progress Guarantee Starvation-freedom Starvation-freedom Lock-freedom

Permissiveness None None MV-Permissiveness
Update Policy Lazy Lazy Lazy

Conflict Detection Lazy Mixed Lazy
Conflict Granularity Memory Word Memory Word Object

Programming Language C C++ Java

up to that point are still up to date, and, as such, the transaction is still serializable in that

moment. This same validation is performed at commit before writing the updates to shared

memory (while holding the global lock).

The global lock of NOrec has the advantage that commit operations perform only one ex-

pensive operation (i.e., acquiring the lock), in contrast with other STMs that may perform many

atomic operations as we shall see next. On the other hand, this has the disadvantage of requir-

ing transactions to validate the whole read-set when the global lock increases: as some memory

locations were updated, the transaction must review all its reads, as there is no clue as to which

locations may have been invalidated (if any). This mechanism is used to ensure the correctness

guarantee of opacity.

To explore the other side of this trade-off, many other STMs [Dice et al., 2006,Felber et al.,

2008,Dragojević et al., 2009a] have been designed to have a more fine-grained set of meta-data

and locks, which are referred as ownership records — in contrast with the “No Ownership records”

of NOrec. The idea with such STMs is to have some mapping of the addresses of shared memory

to their ownership record; a practical one is to have a small number of ownership records (e.g.,

some thousands), and then an address is mapped to its ownership record via a hash function. In

this way, the STM can register in an ownership record when the data, which is associated with

it, has changed.

To have a notion of time and to order events, these STMs use similar mechanisms to that

of NOrec: there is a global clock (that is not necessarily used as a lock anymore) which is

incremented by update transactions, and whose value is sampled at the start of a transaction to
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define the snapshot of visible shared memory. Then, a transaction T accessing shared memory

will typically be able to do so without a conflict if that piece of memory maps to an ownership

record that was last updated with a timestamp of the global clock that is earlier than the

timestamp obtained by T to define its snapshot.

This establishes the key differences between NOrec and, for instance, SwissTM [Dragojević

et al., 2009a]. Another relevant feature of SwissTM is that it uses mixed conflict detection, in

which the ownership records are eagerly modified and checked during a write, but lazily (i.e., at

commit-time) in case of reads. As a result, SwissTM is expected to perform better than NOrec

when the application runs with a sufficiently large number of threads.

However, for large number of threads, the likelihood of having a thread de-scheduled by the

operating system also increases — even more if there are more threads active in the application

than cores in the machine. As such these STMs that regulate concurrency with locks fall prey

of holding back progress in the system. This motivated the design of the JVSTM [Fernandes

and Cachopo, 2011], which ensures Lock-freedom. To achieve this, the JVSTM uses a commit

list of transactions, in which every transaction must be enqueued before committing; this list

is implemented in a thread-safe way by using a CAS. The order in the list establishes the

serialization order of the transactions. However, to avoid that a transaction waits for others

serialized before itself, the thread executing a transaction T can help to validate and commit the

transactions enqueued before T . This simple design ensures that no transaction is blocked from

progressing as long as its thread is executing.

Furthermore, the JVSTM also ensures MV-Permissiveness, by maintaining multiple versions

of the values written to an object over time. Then this STM erases old versions only when no

transaction that is active can read that version. The snapshot of accessible versions is computed

similarly as for SwissTM: there is a global clock, increased when a transaction is committed (in

a lock-free way), and transactions starting sample that clock and read versions of data that are

equal or older than the sampled clock. In this way, read-only transactions can always serialize

at the time defined by the clock that they sample during the start, thus never aborting. In fact,

all of this also means that the read-only transactions can always read the versions they need

without getting blocked, meaning they are Wait-free.

This design of the JVSTM is favourable for workloads with many read-only transactions —

to take advantage of the MV-Permissiveness — and with a large number of concurrent threads —
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in which case the Lock-freedom is an important guarantee over Starvation-freedom. The former

property results in a larger space utilization due to the multiple versions. The latter results in

a more complex commit protocol for the update transactions, whose cost can be a noticeable

overhead, mainly in cases in which there is not enough parallelism or de-scheduled transactions

that could harm the progress of Starvation-free STMs.

2.4 Hardware Transactional Memory

The origins of TM date back to two proposals that extend the cache coherence protocol of

multi-core processors [Stone et al., 1993,Herlihy and Moss, 1993]. This was the most natural way

to implement the TM abstraction because the cache coherence protocol is already responsible for

tracking reads and writes to memory; as such, HTMs build upon the cache coherency protocol

and use its knowledge to detect conflicts and guarantee that all transactions are serializable.

In principle, HTM is the most desirable approach to implement the TM abstraction, as it

heavily delegates its logic to the cache coherency protocol. This is in contrast with STMs, which

tend to duplicate all that effort in the software TM libraries. By revisiting the example of code

shown earlier, we now present its instrumentation in Listing 2.3 for the case of using an HTM

library. The most notable aspect is that reads and writes no longer have to be instrumented.

Also, as we shall see next, the implementation of the start and end procedures heavily relies on

the hardware support (and naturally those procedures can be inlined in the atomic block source

code). By leveraging on the cache coherence protocol, little additional logic is typically required

in the HTMs, which is an important factor due to the difficulty of changing micro-processors’

logic and conducting their verification [Adir et al., 2014].

However, even such a small change can take a significant effort to deploy in commercial

processors. As a result, for many years most developments in HTM were conducted on sim-

ulators, the most notable being the Transactional Cache Coherence (TCC) [Hammond et al.,

2004,McDonald et al., 2005] and AMD’s ASF [Christie et al., 2010].

There were some notable exceptions that went beyond simulations. For instance, Azul’s

multi-compare-and-swap, which was used for pauseless garbage collection in a customized Java

Virtual Machine in their processors, and that can be seen as a restricted form of HTM. Also

Oracle, formerly as Sun, developed the Rock processor with support for HTM [Dice et al., 2012a]
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Listing 2.3: Example of possible instrumentation applied by a TM library that relies on an HTM
(for Listing 2.1).

1 bool transfer(const Account∗ source, const Account∗ dest, int amount) {
2 htm_start();
3 if (source−>balance < amount) {
4 htm_end();
5 return false;
6 }
7 source−>balance −= amount;
8 dest−>balance += amount;
9 htm_end();
10 return true;
11 }

but that was cancelled before commercialization.

More recently, the maturing of TM research led to a breakthrough that changed drastically

the landscape of HTM: two major market players, IBM and Intel, launched HTM support in their

latest processors [Yoo et al., 2013,Wang et al., 2012a,Jacobi et al., 2012,Cain et al., 2013] (with

IBM’s being more aimed at high-performance computing). This represents a significant milestone

for TM due to the predictable widespread availability of these processors. In particular, in the

following, we overview in more detail the HTM from Intel, whose processors are substantially

less expensive than IBM’s (and thus more widespread).

2.4.1 Intel Restricted Transactional Memory

Intel augmented their instruction set for x86 with Transactional Synchronization Extensions

(TSX) [Yoo et al., 2013], which represents the first generation of mainstream and commodity

HTM: TSX is available onwards from the 4th generation Core processor, codenamed Haswell,

which has been deployed in millions of machines, ranging from tablets to servers.

It comprises two possible interfaces to software programs: Hardware Lock Elision (HLE)

and Restricted Transactional Memory (RTM). The former allows to elide locks and execute code

speculatively in a backwards-compatible manner. As such, its interface is designed to prefix

lock instructions, and does not allow for software control on how to regulate the speculation.

As such, for new applications written in the TM paradigm, it is much more interesting to use

RTM, which exposes a conventional TM abstraction to the programmer by simply requiring the

demarcation of code fragments within atomic blocks.
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These extensions include the key instructions xbegin and xend. This interface maps di-

rectly to the usual constructs of transactional programming by beginning and committing atomic

blocks. Although the details of Intel’s implementation are not disclosed, several researchers have

speculated on the most likely design [Nakaike et al., 2015,Li et al., 2014,Wang et al., 2014,Vik-

tor Leis, 2014,Karnagel et al., 2014,Yoo et al., 2013]. It is believed that Intel opted for a simple,

non-intrusive design, focused on adapting the L1 cache of each core to serve as a transactional

buffer. After a transaction has started, read and write accesses are placed in the L1 cache with

a special bit indicating that they are transactional. When the transaction ends, the writes are

atomically made visible, which means that the transactional bits are unset and this allows a

snooped share request — from the cache coherency protocol — to be served. In contrast, such

request would cause the abort of the transaction if it was still running: that is, in general during

the transaction execution, if any memory location accessed is concurrently written, the transac-

tion is aborted to ensure correctness; likewise for memory locations written that are concurrently

accessed.

This design inherently limits RTM transactions to the size of the L1 cache. Hardware

transactions are subject to abort also due to other not concurrency-related reasons, such as page

faults and system calls. This clearly highlights the fact that the first generation of commodity

HTM is restricted by the available hardware. In this sense, one cannot depend exclusively on

RTM to implement the TM abstraction, since a transaction is never guaranteed to commit, even

in absence of contention with other transactions (e.g., due to overflow of the L1 cache). This is

why such HTMs are often called best-effort. Virtualizing the hardware resources for unbounded

transactions is a possibility, and has been proposed already [Ananian et al., 2006], but deemed

as unrealistic in the near future due to the complexity of its implementation in processors [Yoo

et al., 2013,Adir et al., 2014].

As such, among the reasons for a transaction to abort in RTM, one can count page faults

and interrupts, system calls, forbidden instructions, capacity overflow, and naturally conflicts in

concurrent accesses to data. We summarize these in Table 2.2.

To deal with all these limitations, such best-effort HTMs require a fall-back software syn-

chronization mechanism to be provided, so that it ensures progress in case a transaction cannot

be committed with hardware support. Briefly, the idea is that upon each hardware transaction

abort a predicate is queried, which decides whether to retry or to fall-back to software; in the
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Table 2.2: On the left: possible bits that may be set by RTM in register EAX to indicate
reasons to abort a transaction. On the right: possible events that may be monitored during
RTM execution via model-specific registers.

Bit Reason (examples) Event Reason (examples)

retry transient failure MISC1 conflicts, capacity overflow
conflict contention to data Capacity specifically write-set overflow
capacity exceeded cache size MISC3 forbidden instructions, page faults
explicit xabort invoked MISC4 illegal memory accesses (I/O)
other faults, preemption MISC5 interrupts

latter case, that alternative fall-back path must ensure also correctness in the presence of concur-

rent threads running hardware transactions. This means that, in fact, practical HTMs that exist

in processors do not allow to implement the TM abstraction solely via hardware mechanisms,

thus requiring to execute atomic blocks synchronized both with hardware and software.

The simplest fall-back approach, as suggested by Intel’s optimization manual [Intel Corpo-

ration, 2012], is to use a single-global lock to protect the fall-back path for all atomic blocks.

The advantage of this approach is that it is still generic, and can be implemented inside the TM

library, without the programmer having to be aware of any of these concerns with the best-effort

nature of the HTM.

In Algorithm 1 we show a typical implementation of a TM library, which allows to start and

end an atomic block, and relies on Intel’s HTM to provide the concurrency control together with

the canonical single-global lock fall-back path [Yoo et al., 2013,Nakaike et al., 2015,Afek et al.,

2014].

The idea is that each transaction starts with a budget of attempts in hardware (as in line 2)

that is decremented upon each abort (in line 11). Note that hardware transactions started with

_xbegin() may, at any point of their execution, roll-back automatically to the same line where

it started. To distinguish between successful starts and aborted transactions the _xbegin() call

returns a status code that can be evaluated (that is the code whose bits are set to indicate the

errors of abort listed in Table 2.2).

When the budget of attempts is exhausted, the execution falls-back to the software path, and

uses a single-global lock that is maintained internally by the TM library (i.e., the programmer

is still using only atomic blocks in his code). For this lock to be correctly used, hardware
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Algorithm 1: Intel RTM usage to provide a TM abstraction.

1: HTM_START()
2: attempts ← MAX_ATTEMPTS
3: begin: . used to jump to and re-attempt with HTM
4: htmStatus ← _xbegin()
5: if htmStatus = _XBEGIN_STARTED
6: if is-locked(sgl) . ensure correctness with fall-back
7: _xabort()
8: else
9: return . hw transaction enabled, proceed to application code
10: . hw transaction aborted; decide on what to do next
11: attempts ← attempts - 1
12: if attempts = 0 . decision: give up on HTM, fall-back to lock
13: acquire-lock(sgl) . software fall-back with a single lock
14: return . software fall-back path taken, proceed to application code
15: . decision: try again to execute with hardware support
16: goto begin

17: HTM_END()
18: if _xtest() . returns true if inside a HW transaction
19: _xend() . tries to commit the HW transaction; jumps to line 4 when it fails
20: else
21: release-lock(sgl) . executed with lock-based fall-back

transactions verify that it is not locked as soon as they start (in line 6): if the lock changes

concurrently after this check, then the hardware transaction gets aborted, because the lock was

read transactionally and so the hardware detects any concurrent conflicting (i.e., write) access

to it.

Recently, it has been proposed to verify (i.e., subscribe) the lock lazily, before the commit

of the hardware transaction [Calciu et al., 2014b]. However, it is still open to debate whether

that approach is generalizable, as there are corner cases in which that can lead to an incorrect

execution [Dice et al., 2014a].

This eager subscription is required because a thread executing in the software fall-back path

has no monitoring in place that prevents inconsistent reads (i.e., no instrumentation). Consider

for instance the example shown in Figure 2.1 containing an application which preserves the

invariant x = y, and a thread that executes in the fall-back path and reads x : 0. If one allows

a concurrent hardware transaction — which does not eagerly subscribe to the lock — to write

x = y = 1 and commit, then the fall-back path thread could read y : 1 inside the atomic block

and violate the invariant. With the verification in line 6, pessimistic executions are safeguarded

from inconsistencies because hardware transactions abort preemptively to avoid any such hazard.
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Figure 2.1: Illustration of the relevance of subscribing to the single-global lock (SGL) when it
is used as the fall-back of an HTM. This concurrent execution, of a hardware transaction and
a fall-back path with the SGL, shows that the lack of the subscription (omitted in parenthesis)
can lead to an invariant being broken in the fall-back path of the atomic block of the application
(i.e., to inconsistent reads in general).

2.4.2 Other Hardware Implementations

IBM has released several other HTMs in their most recent processors. While all them share

the same best-effort nature of Intel’s RTM, IBM chose to change a handful of other design

choices, which we now briefly describe. Quite interestingly, IBM did not release a single HTM

implementation, but instead made three different implementations in their processors.

The Blue Gene/Q [Wang et al., 2012a] HTM offers two alternative modes to keep track

of transactional accesses. The short running mode performs this tracking in the L2 cache,

meaning that all accesses must bypass the L1 cache, thus adding some latency to the execution

in transactional mode. In contrast, the long running mode allows to monitor the transactional

accesses in the L1 cache, but for that to be possible the processor first evicts that cache before

starting the transaction. As such, there is trade-off in that it allows faster memory accesses at

the cost of a constant overhead in the transaction begin. As the L2 cache is shared by all cores,

the accesses of a given transaction are marked by a corresponding transaction identifier, which

is acquired automatically when the transaction starts. There are limited identifiers managed by

the processor, which are periodically reclaimed, but whose absence of availability can block the

transaction start (e.g., because the transactions are very short and the reclamation period is

large).

The zEC12 [Jacobi et al., 2012] HTM works similarly to Intel’s HTM, as it also marks the
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L1’s cache lines with read or write bits for transactional accesses, but the actual write values

are stored in a specific purpose cache. This HTM has the unique property of having constrained

transactions whose success is guaranteed (unless a data conflict happens or forbidden instructions

are found). It is, however, quite constrained: up to 32 instructions and 256 bytes of memory

accessed.

Finally, the Power8 [Adir et al., 2014] HTM uses another specific purpose cache that is

linked to the L2 cache. The specific purpose cache records the transactionally accessed addresses,

although the actual values are still stored in the L2 cache. As such, this specific cache serves the

purpose of the extra bits that other processors use for the tracking. A noteworthy feature of the

Power8 HTM is that it provides additional instructions to suspend a transaction and to resume

it. This allows to execute non-transactional operations, although one should bear in mind that

the suspend and resume operations have a constant overhead associated, which is roughly on the

order of magnitude of starting and committing a transaction. This is in contrast with AMD’s

ASF [Christie et al., 2010] proposal that allowed individual non-transactional operations to be

prefixed as such in the scope of a transaction. This Power8 HTM also provide the new type

of roll-back only transactions: they do not track reads, hence they do not guarantee isolation.

Yet, they still provide failure atomicity and their usage has been proposed in the domains of

debugging [Le et al., 2015], fault-tolerance [Kuvaiskii et al., 2016] or as alternative fall-back

paths [Felber et al., 2016].

2.5 Hybrid Transactional Memory

The pros and cons of both HTMs and STMs make them a perfect match. HTMs execute

transactional code with higher performance, but their nature is quite restricted as to which

transactions may succeed. STMs add some overhead to transactions, but are far more flexible in

terms of completing transactions successfully. Researchers recognized this synergy and proposed

Hybrid TM (HyTM) implementations.

As such, the idea is to execute concurrent transactions both in hardware and software, so that

we can effectively exploit the benefits of each of the underlying implementations: if a hardware

transaction fails often, then it is preferably executed with the STM, without stopping concurrent

hardware transactions as in the case of the single-global lock fall-back.
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However, the difficulty is in coupling both concurrent hardware and software transactions,

such that their respective concurrency control mechanisms can detect the actions of one another.

This can be solved as proposed by PhasedTM [Lev et al., 2007], in which all transactions exe-

cute either in software or hardware. This has the advantage of simplifying the logic to couple

both modes, but the disadvantage of a costly procedure to switch modes (that is, a stop the

world approach). As such, it is desirable to be able to run both HTM and STM transactions

concurrently.

The inherent challenge of such a HyTM, in which transactions run simultaneously in both

modes, is that the HTM side is usually agnostic of the presence of the STM transactions — and

while it may be quite feasible to change the STM implementation to be aware of the HTM, that

is not the case with hardware. As such, it is difficult to prevent a hardware transaction from

committing when it should not. The intuition is that a software transaction may be executing the

commit procedure, and it may have already been deemed as successful; yet, it is always possible

for a new hardware transaction to execute, commit, and invalidate the software transaction,

because its concurrency control is independent from the STM.

Therefore most HyTMs end up instrumenting the code that will run inside hardware trans-

actions too, in order to allow for the detection of conflicts with concurrent software transactions

(e.g., [Damron et al., 2006]). This has the clear disadvantage of slowing down the supposedly

fast-path of the hardware transactions in the HyTM.

In the following sections we present the most recent and notable exceptions to this claim,

which have given some prominence to HybridTMs in the scope of the recent best-effort HTMs.

2.5.1 The Hybrid NOrec Implementation

The NOrec STM [Dalessandro et al., 2010], which was presented earlier in Section 2.3.3, is

mostly known for its simple design that requires a small amount of software instrumentation in

the application. As a result, its potential for an efficient HyTM is very high, as it should be

possible to implement its interaction with the HTM also in a simple way that involves NOrec’s

global lock. Indeed, as we shall see, this is not very different from HTM’s canonical single-global

lock fall-back path.

Dalessandro et al. used this strategy when proposing HybridNOrec [Dalessandro et al., 2011].
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Some of HybridNOrec’s proposed optimizations, however, were designed for AMD’s ASF pro-

posal [Christie et al., 2010], which has not been commercialized, in which the non-transactional

loads and stores were used to reduce hardware transaction spurious aborts generated by the

coupling of the STM and HTM. These optimizations are thus not available in implementations

relying on the HTMs available from Intel and IBM.

The base idea of HybridNOrec is quite simple: to replace the typical software fall-back path,

which relies on a single-global lock for synchronization, with the NOrec software transactions.

To ensure correctness between concurrent hardware and software transactions, it is necessary to

have a mechanism similar to the lock subscription of pure HTM (as in line 6 of Algorithm 1). The

idea of HybridNOrec, which we summarize here, is to use NOrec’s single-global lock to manage

that interaction: hardware transactions are successful only when NOrec’s lock is not taken. As

we now may have hardware transactions running concurrently, we need to ensure that they are

safeguarded from the non-atomic writes of software transactions, which are published during the

write-back that takes place under NOrec’s commit procedure. So this is a very similar concern to

that explained earlier for the interaction of the single-global fall-back and hardware transactions.

We illustrate this in Figure 2.2, between transactions Tx1 and Tx2, where the hardware

Tx2 gets aborted because the NOrec single-global lock is acquired concurrently. This prevents

hazardous situations for Tx2, such as the inconsistent reads that are shown in the illustration

and that would happen if the lock had not been subscribed by the hardware transaction.

Note that this constrains concurrency less than the typical single-global lock used with HTM,

because NOrec’s single lock is taken only during the commit of a software transaction (and not

during the whole transaction); hence there is more room for parallelism between hardware and

software transactions as the single lock is held for smaller periods of time. Furthermore, read-only

transactions in NOrec do not need to acquire NOrec’s global lock.

So far we have seen how NOrec’s software transactions notify each other of new commits by

incrementing the global clock, which also serves to protect hardware transactions from observing

inconsistent states that do not generate aborts (such as the case hypothesized in Figure 2.2). It

is also the case that hardware transactions perform a similar task: namely, they warn software

transactions of the fact that a hardware commit has occurred, and that a read-set re-validation is

needed. For this, hardware transactions increment a separate counter, whose value is tracked also

by software transactions (similarly to the global clock). The motivation to use a separate counter
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Figure 2.2: Illustration of the relevance of HybridNOrec’s subscription mechanisms to ensure
correctness: NOrec’s SGL is used to notify software and hardware transactions of software com-
mits (as the case for Tx1 with respect to Tx2), and NOrec’s counter is used to notify software
transactions of hardware commits (as the case for Tx3 with respect to Tx4).

is that hardware transactions subscribe to the global clock right after they start, so incrementing

a different counter in the end avoids many spurious conflict aborts between hardware transactions

(that would happen with respect to the global clock).

We illustrate this in Figure 2.2 between transactions Tx3 and Tx4. The hardware transaction

Tx3 atomically publishes its writes for the application variables together with an increment of

NOrec’s counter. This allows the concurrent software transaction Tx4 to detect that something

has changed, by keeping track of NOrec’s counter value that was just changed, and thus to re-

validate its read-set and find a data conflict. Otherwise, Tx4 would read an inconsistent value

for y with respect to that of x, violating Opacity and an application invariant, which could lead

to unexpected results.

Furthermore, hardware transactions keep a thread-local flag to register whether they have

performed some write to shared memory. This entails that write operations are instrumented to

set that flag to true. If the flag is false, then the hardware transaction need not increment any
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counter, as its read-only commit shall be harmless to concurrent software transactions.

Another interesting optimization is to have software transactions announcing their presence,

by incrementing a counter when they begin, and decrementing it when they finish (with atomic

operations). This allows a hardware transaction to check whether there is any software transac-

tion alive. If not, then the hardware transactions need not increment any counter as well. Note

that this check is performed within a hardware transaction, so it is similar to the lock subscrip-

tion: if some software transaction appears after the check, it aborts the hardware transaction

with a conflict.

2.5.2 Reduced Hardware Transactions

Typical HyTMs, such as the HybridNOrec presented above, either execute atomic blocks

with the HTM or with the STM in case the first one fails often. The key insight for Reduced

Hardware Transactions [Matveev and Shavit, 2013] is that there is an in-between these two

extremes: if a hardware transaction fails, we may still use the HTM to help the subsequent

fall-back software transaction to execute with less instrumentation, by relying on the hardware

capability of tracking concurrent conflicts. However, this is only useful if we can use the HTM

in such a way that it generates smaller hardware transactions, which are less likely to trigger the

several limitations of HTM that cause aborts.

As such, the Reduced Hardware NOrec [Matveev and Shavit, 2015] HyTM proposes to use:

a fast-path with hardware transactions having minimal software instrumentation; a mixed-path

that uses the STM but that executes parts of the software transaction protected by the hardware

transaction (thus allowing to remove part of the software instrumentation); and a canonical slow-

path that uses the full STM as described for HybridNOrec above.

Hence, the term reduced comes from the fact that the fall-back will use the HTM for smaller

portions of code, and hopefully succeed more often. Naturally, there is always the case in which

even that mixed fall-back will cause the HTM to abort, in which case it resorts to the (typical)

slow fall-back.

The implementation of Reduced Hardware NOrec thus introduces this new mixed-path,

which consists of adding two hardware transactions to the mixed path. The first one, named

prefix, encapsulates the read-only initial part of the atomic block (which may not exist, if the
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atomic block begins right away by writing to the shared memory). As such, this allows to

rely on the HTM capability of conflict detection, instead of having the reads instrumented for

STM execution. Naturally, this may lead to capacity aborts due to too many reads, for which

reason the size of this prefix hardware transaction is adapted. Right before the prefix transaction

is committed, the global clock of NOrec is sampled to obtain the snapshot of the subsequent

software NOrec transaction that follows.

Due to the adaptivity of the prefix transaction size, an atomic block being executed in the

mixed-path may then run some reads with STM instrumentation.

The second hardware transaction that is added to the mixed-path, named postfix, encap-

sulates the atomic block from its first write on until the end. This means that all writes are

encapsulated in a hardware transaction, thus preventing concurrent threads from witnessing its

intermediate states. As such, this allows hardware transactions to subscribe lazily to the global

clock, i.e., right before they commit, in cases where there are no slow-path transactions running.

This can be verified similarly to the previous optimization described for HybridNOrec to track

software transactions that are active. Hence, in the case that transactions fall-back only to the

mixed-path, then hardware transactions can benefit from this optimization of subscribing lazily,

which improves concurrency between software and hardware transactions.

In summary, this technique allows to rely more on HTM, even in cases where its obvious

usage would result in aborts stemming from the hardware limits. Note, however, that managing

these paths entails placing verifications on the TM library to execute the correct logic for each

situation. Namely, the fast-path must not only synchronize with the mixed-path, but also with

the slow-path. As such, situations in which the slow-path is taken, even if rarely, can quickly

degenerate the executions to tend towards the slow-path instead of using the mixed-path. Ideal

workloads, where most improvements are observed, are those where the mixed-path can be used

effectively and without needing to execute in the slow-path.

2.6 Distributed Transactional Memory

While the focus of this dissertation is on the TM paradigm for developing concurrent ap-

plications in multi-core settings, during the past recent years we have also witnessed significant

changes in the development of distributed applications. The advent of the cloud computing
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paradigm has empowered programmers with the ability to scale out their applications easily to

hundreds of nodes. However, developing applications capable of effectively exploiting the compu-

tational capabilities of large scale distributed cloud platforms is, similarly to that of concurrent

applications, far from being a trivial task.

In this sense, the abstraction of TM with serializable (and distributed) transactions is equally

important to help programmers harness the power of large distributed systems, playing an anal-

ogous role to that of TMs in multi-core machines. Indeed, several distributed data platforms can

be seen as Distributed TMs (DTMs) as they provide distributed serializable transactions, with

shared data maintained in-memory, often implemented through optimistic concurrency control

techniques and without requiring the programmer to pre-declare the data accessed in the trans-

actions (i.e., no need for static transactions). Therefore, we briefly mention only some relevant

works in the area of DTMs, as the most significant part of our contributions are not focused on

DTMs.

In DTMs a group of servers maintains (and possibly replicates) data, to which clients perform

requests to execute transactions. Servers mostly synchronize only at the end of a transaction,

during the commit, to either atomically update data across the servers that replicate it or to abort

the transaction. From a high-level perspective, the steps followed are analogous to a centralized

TM, as described earlier. The key difference is that network communication is involved in

some of the steps, which entail higher costs, and thus may need to be performed with caution.

Furthermore, fault-tolerance needs to be ensured.

One key advantage of DTMs is that they preserve scalability and performance despite be-

ing fault-tolerant, when compared with traditional approaches: in state-machine replication,

every update transaction is executed in every server [Schneider, 1990], and in primary-backup

replication every update transaction is executed by the primary server; as such, throughput is

limited by the processing power of a single replica. In DTMs different replicas can process differ-

ent transactions, and thus provide scalable performance while remaining fault-tolerant. Despite

their differences, there have been proposals that exploit jointly DTMs with state-machine repli-

cation, so that some transactions can be executed deterministically/pessimistically for progress

guarantees and coping with irrevocable actions [Kobus et al., 2013].

We distinguish two types of DTMs with regard to their replication technique: fully replicated

DTMs in which every replica holds a copy of all shared memory, and partially replicated DTMs
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in which each replica holds a copy of a subset of all shared memory. In fully replicated DTMs

every access to the distributed shared memory can be processed locally during the transaction

execution, whereas in partially replicated DTMs this may entail network communication to other

replicas (which may be reduced with proper data placement [Paiva et al., 2013]). In contrast, in

fully replicated DTMs, updates produced by transactions must be committed in every replica,

whereas partially replicated DTMs reduce this to a subset of the replicas — this cost is significant

as it implies a consensus operation (such as total order primitives [Vale et al., 2013]). As such,

partially replicated DTMs typically perform worse for a small number of replicas [Hirve et al.,

2014], but have the potential to scale much more if provided with proper data placement [Schiper

et al., 2010,Peluso et al., 2012c,Peluso et al., 2012b].

Dependability in fully replicated DTMs is typically ensured by resorting to a group commu-

nication primitive to trigger the commit procedure in the replicas: for instance, several proposals

use Atomic Broadcast [Sciascia et al., 2012,Couceiro et al., 2009,Kotselidis et al., 2010] so that

concurrent commits are totally ordered and each replica can process them in parallel, with a

deterministic outcome. In general these protocols work similarly to centralized STMs, as reads

are served locally, writes buffered locally, and the validation is processed independently at each

replica after receiving the total order delivery.

DTMs typically employ multi-versioned concurrency control [Bernstein et al., 1987] because

it allow efficient read-only transactions, by sparing them from any aborts and remote validations,

as they can serialize in the past by reading old versions. This is analogous to the multi-versioned

STM described in the JVSTM implementation in Section 2.3.3. However, for DTMs, any mean-

ingful amount of update transactions in the workload shall prevent scalability in fully replicated

DTMs despite the efficiency of read-only transactions. To try to overcome the bottleneck on

the total order delivery across all replicas, several systems have exploited optimistic total order

delivery [Hirve et al., 2014,Carvalho et al., 2010,Peluso et al., 2012a]. They exploit the fact that

the first phase of the group communication protocol often delivers messages in the same order

as their final total order. Hence, they speculatively proceed with the validation and commit ear-

lier than the total order delivery, overlapping this processing with the network communication.

Naturally, this comes at the cost of potentially having to fix the commit order later.

As mentioned above, partially replicated DTMs take a different approach to enhance scal-

ability: there have been several proposals that explore a key property called genuine partial
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replication, according to which the execution of a transaction can only involve nodes that repli-

cate data items it accessed [Schiper et al., 2010]. This property is of the utmost importance to

enable high scalability in update-intensive workloads, as it rules out non-scalable solutions based

either on centralized components (which may turn into bottlenecks/single points of failure) or

on full-replication (which induces unacceptable overheads to propagate updates across the entire

system).

More recently, GMU [Peluso et al., 2012c] and SCORe [Peluso et al., 2012b] were the first

proposals to combine the following techniques to provide scalable DTMs: read-only transactions

benefiting from abort-freedom due to the availability of multi-versions, and update transactions

using a genuine protocol with partial replication. SCORe provides 1-Copy Serializability [Adya,

1999], whereas GMU provides a slightly more relaxed criteria, called Update Serializability [Adya,

1999]. This difference stems from trade-offs in the protocol design: GMU uses a vector clock

protocol in which read operations can exploit the benefit of caching, whereas SCORe uses a

single distributed clock abstraction. This scalar clock in SCORe reduces its book-keeping and

communication overheads with regard to GMU. On the other hand, by relying on a vector clock,

GMU can track conflict information at a finer granularity than SCORe. This allows GMU

to avoid spurious aborts that are instead incurred in by SCORe, and also to provide stronger

guarantees of accessing fresher data than with SCORe.

2.7 Benchmarks and Applications for Transactional Memory

To evaluate the contributions developed in the course of this dissertation, we have relied

on existing benchmarks and applications, which have been developed using atomic blocks and

the TM abstraction. Typically, these execute with a configurable number of threads, each of

which executes transactions. The fundamental metric that we use is then to measure how much

faster a concurrent execution is, when compared to a sequential one, which is often mentioned

as speedup.

In the next sections we briefly summarize each of these benchmarks and applications. We

also list them in Table 2.3 1.

1The number of lines of code reported is with respect to our C/C++ implementations. Some of these bench-
marks were also ported to Java to evaluate some of our contributions developed in that programming language.
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Table 2.3: TM applications used in our evaluation. These 15 benchmarks span a wide variety of
workloads and characteristics.

Benchmark Lines Atomic Descriptionof Code Blocks

Data-Structures 3702 12 Concurrent Red-Black Tree, Skip-List,
Linked-List and Hash-Map with workloads
varying contention and update ratio.

STAMP [Minh et al., 2008] 28803 35 Suite of 8 heterogeneous benchmarks with
a variety of workloads (genomics, graphs,
databases).

STMBench7 [Guerraoui
et al., 2007]

8623 45 Based on OO7 [Carey et al., 1993] with many
heterogeneous transactions over a large and
complex graph of objects.

Memcached [Spear et al.,
2014]

12693 120 Caching service with many short transactions
that are used to read and update the cache
coherently.

TPC-C [TPC Council, 2011] 6690 5 OLTP workload with in-memory storage
adapted to use one atomic block encompassing
each transaction.

2.7.1 Concurrent Data-Structures

Throughout our work we consider a red-black tree, a hashmap, a skip-list and linked-list,

as examples of concurrent data structures, which represent important building blocks of parallel

applications.

These data-structures have two interesting characteristics: they are very hard to parallelize

efficiently using locking schemes, and they are generally challenging for STMs as they tend to

generate small transactions that suffer from relatively large instrumentation overheads.

Traditionally, many TM proposals have been evaluated with some of these data-structures

(e.g., [Hammond et al., 2004, Dragojević et al., 2009a, Felber et al., 2008, Dalessandro et al.,

2010]. We based our implementations on those of Synchrobench [Gramoli, 2015], a recent work

that studies the performance of TM algorithms (among others) in concurrent-data structures.

These data-structures are also very flexible as they are highly parametrizable and allow to

generate various degrees of contention between concurrent threads. Each data-structure has

three atomic blocks in its source code, corresponding to the operations to insert an element,

delete an element, and verifying whether an element exists. This last operation is executed as

a read-only transaction, which can be optimized in the case of STMs, but is not relevant for
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HTMs.

2.7.2 The STAMP Suite

The STAMP suite [Minh et al., 2008] is a popular set of benchmarks for TM, encompassing

applications that are representative of various domains and that generate heterogeneous work-

loads. Each benchmark, among the 8 available, is quite homogeneous and has limited flexibility

to produce different workloads. However, the fact that they are all quite different, generates an

interesting suite of benchmarks. These benchmarks are ports of existing applications, or emu-

lations of typical tasks in different areas of computing (namely, Genome for genomics, Intruder

for intrusion detection, Labyrinth for circuitry routing, Vacation for online shopping, SSCA2 for

graph analysis, KMeans for clustering, and Yada for mesh refinement).

As a result, these benchmarks have a number of atomic blocks that varies from 3 to 10.

Some tend to have small transactions (Intruder, KMeans and SSCA2), while the rest have larger

transactions (that are less favourable to best-effort HTMs). Some are well suited for larger

concurrency degrees by having small contention levels between transactions (Genome, KMeans

and SSCA2), while the rest tends not to scale beyond some point because of too many conflicts.

We note that the STAMP benchmarks do not have read-only transactions identified in the

source code.

2.7.3 STMBench7

STMBench7 [Guerraoui et al., 2007] is a highly customizable benchmark, with three different

standard workloads that vary the percentage of read-only transactions: read-dominated (90%),

read-write (60%), and write-dominated (10%). Besides that, we may also control a series of other

parameters such as one that includes long, highly-conflicting transactions in all the workloads.

This benchmark is an adaptation of the OO7 benchmark [Carey et al., 1993] for object databases,

which makes it a nice fit for the new setting of in-memory data.

STMBench7 implements a shared data structure, consisting of a set of graphs and indexes,

which models the object structure of complex applications. It supports many different operations,

varying from simple to complex. Both short traversals and short operations access a small part of

the graph of objects, most of the time using the indexes to short cut the path. These operations
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are very fast, executing on average under one millisecond on a modern processor. On the other

hand, long traversals sweep most of the graph of objects. The execution of one of these traversals

is in the range of hundreds of milliseconds.

As a result of all this variety, the STMBench7 ends up having 45 different atomic blocks in

the source code, which is a sign of its complexity and size.

2.7.4 Memcached

Memcached is a popular object caching service that is often placed in front of application

servers powering web applications. It is notably known for its adoption at a massive scale inside

Facebook [Nishtala et al., 2013]. Each Memcached instance works as an in-memory store, with

limited storage space, which leads to the usual eviction procedures that govern caching policies.

As a result, there is often contention in accessing the data between lookup operations (that are

very frequent) and updates (that can generate more than one modification due to the evictions,

i.e., deletions).

This application has been widely deployed in its original form, which relies on locking to

correctly synchronize all the accesses. Thanks to a recent effort, Memcached has been ported to

have atomic blocks instead, and thus rely on a pluggable TM library [Spear et al., 2014]. As a

result, this became a realistic benchmark with 120 atomic blocks in its source code.

2.7.5 TPC-C

TPC-C is a well known benchmark to evaluate online transaction processing in

databases [TPC Council, 2011]. Its implementations follow a specification that was devised

to represent realistic operations. It mimics the activities of a whole-sale supplier, for instance

similar to Amazon, which owns different warehouses with corresponding products, stocks and

customers. The benchmark includes five possible transactions, which allow customers to pur-

chase and pay for items and the warehouse to deliver them, as well as checking up on available

stock levels and the status of an order.

We have ported an in-memory sequential implementation of TPC-C, which was written for

evaluating H-Store [Kallman et al., 2008], by protecting the TPC-C transactions with atomic

blocks that are then implemented by a pluggable TM library.
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During the past decade we have witnessed many proposals in the area of TM. Most of the

early ones focused on producing STMs, whereas in the most recent years there has been a gradual

shift to HTMs (and HyTMs also), given the availability of commodity processors with support for

HTM. As we have hinted in Chapter 2, despite the availability of recent HTMs, their best-effort

nature allows STMs to still play a relevant role when it comes to choosing which one is best for

a given workload.

Furthermore, for many years, locking has represented the de-facto standard approach to

synchronization in concurrent applications. However, as we argued for earlier, locks are associated

with an inherent complexity and error-proneness when aiming for high performance [Pankratius

and Adl-Tabatabai, 2011]. In fact, this is part of the motivation behind the intense research on

alternative methodologies, which has resulted in the paradigm of TM.

As such, we are posed with several questions with respect to the performance attainable by

TM, in particular when considering the novel processors with HTM, and in comparison also to the

more traditional approach with locks. In particular, how competitive are available HTMs when

compared with state of the art STMs? Will the performance of HTM be sufficiently alluring to

turn TM into a mainstream programming paradigm? What role will STM play now that HTM

is so widely available? How limiting are the architectural restrictions of existing best-effort HTM

designs?

These questions motivated us to conduct a comparative study of different synchronization

techniques for concurrent applications. In the following section we provide an overview of our

approach and results observed.
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3.1 Overview

To answer the previous questions, and to make a comparative assessment of the state of the

art that will help outline the rest of the work in this dissertation, we conducted the largest study

on TM-based synchronization to date.

We compared, from the two-fold perspective of performance and energy-efficiency, a range

of synchronization mechanisms: 6 lock based approaches with different granularities; 4 state of

the art STMs; 1 HTM; and 2 HyTMs. We used several of the TM benchmarks and applications

presented in Section 2.7, resulting in a highly heterogeneous set of workloads, encompassing 1) the

STAMP suite of benchmarks, 2) the in-memory caching system Memcached, and 3) concurrent

data structures that are widely used as building blocks of parallel applications (yet, hard to

parallelize efficiently).

While our study addressed both metrics of performance and energy-efficiency, which is some-

thing that had not been done in general in the scope of TM, we found that most of the time there

is a high correlation between them. That has also helped to steer the direction of the remaining

of this dissertation, as we later focus on improving performance, with the side-effect of equally

improving energy-efficiency.

The remaining results of our study allowed us to draw two main conclusions:

Lights and shadows for HTM: Approaches based on Intel RTM yielded outstanding perfor-

mance in workloads characterized by small transactions, such as concurrent data structures and

Memcached, but only with two of the STAMP benchmarks. RTM performance is strongly depen-

dent on the access patterns to L1 cache, and long running transactions can lead to frequent cache

capacity exceptions and spurious aborts. When transaction-intensity is medium (i.e., contention

and transaction length are up to medium levels), RTM is only the best choice for a limited degree

of parallelism, and it is slightly better on the energy side than on the performance side. The

impact of its hardware limitations are highlighted by several STAMP benchmarks that generate

long transactions, and in which RTM is outperformed by both locking and STM solutions. On

the other hand, RTM shines as a synchronization primitive for concurrent data structures, for

which it is by far the best choice in all considered workloads, with speed-ups up to 3.3× over the

best alternative scheme.



3.1. OVERVIEW 41

STM is still competitive: Our study also showed that STM is quite competitive as an all-

around solution across benchmarks, workloads, and parallelism degrees. Its evolution throughout

a decade of intense research has resulted in several highly-optimized mechanisms, which achieve

performance comparable to that of fine-grained locking. This does not mean that STMs embody

a perfect solution; instead, this result highlights the current limitations of HTM support, which

still allow STM to be the most robust solution to date.

Further, the results of our study unveiled a number of critical issues related with HTM

performance and allow for identifying several research problems, whose timely solution could

significantly enhance the chances for HTM to turn into a mainstream paradigm for concurrent

programming:

HyTMs: a missed opportunity? The outcome of our study for what concerns the efficiency of

HyTMs, when employed in conjunction with Intel’s HTM, is rather grim. The mechanisms cur-

rently adopted to support the simultaneous coexistence of HTM and STM induce high overheads

in terms of additional spurious aborts. Our study highlighted that these costs make HyTM gen-

erally less efficient than solutions based purely on STM or RTM with a locking-based fall-back.

This motivates further research in the design of architectural support (e.g., non-transactional

loads and stores in the scope of hardware transactions) capable of exploiting the potential syn-

ergies of HyTMs.

Complexity of HTM tuning. HTM performance can be significantly affected by the settings

of several parameters and mechanisms. Without proper tuning, Intel’s RTM suffered average

throughput losses of 72% and of 89% in power consumption. Also, the optimal configuration of

these parameters can vary significantly, depending on the characteristics of the workload. These

findings urge for novel approaches capable of removing from the shoulders of programmers the

burden of manually tuning HTM, by delegating this task to runtime or compiler based solutions.

Relevance of selective instrumentation. When using HTM, and also STMs with compiler-

based automatic instrumentation, the TM library ends up tracing every memory access performed

within a transaction. We showed that this can cause some increases in the transaction footprint’s

size, amplifying the instrumentation overheads in STM, and the chances of incurring in capacity

exceptions in HTM. These results motivate for research on cross-layer mechanisms operating at

the compiler and at the hardware level, aimed to achieve selective instrumentation in a way that
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is both convenient for the programmer and efficiently implementable in hardware.

In the following Section 3.2 we discuss specific works that have performed similar compar-

ative studies. Then, in Section 3.3 we present preliminary information to help understand the

techniques used in the study. We then present our study in Sections 3.4-3.5. In Section 3.6 we

identify several research questions suggested by the findings of our study. Finally, Section 3.7

summarizes this chapter.

3.2 Related Work

Often in the past we have seen many TM proposals that evaluate a novel algorithm by

comparing it with one or two previously well established TM systems in a small set of benchmarks.

That is the case for most the STMs overviewed in Section 2.3 (e.g., [Felber et al., 2008,Dragojević

et al., 2009a,Dalessandro et al., 2010]), but also for the recent HTM implementations released in

Intel [Yoo et al., 2013] and IBM processors [Wang et al., 2012a]. This study aims at addressing

the lack of a fair and uniform comparison among the broad range of alternative implementations

proposed so far in the vast literature on TM.

A notable exception to this gap was published concurrently to our work [Goel et al., 2014],

whose coincidental timing stems from the recent availability of the Intel processors with HTM,

which spurred this interest in establishing common grounds for comparing it with existing work.

In common, both our work and that of Goel et al. compare the performance and energy ex-

penditure of Intel RTM against that of an STM. On top of that, our work considers also other

STMs, HyTMs, and fine-grained locking approaches. Furthermore we test more benchmarks and

perform also a study to hand-tune the RTM-based approaches.

Another interesting work, which was published after our study, was conducted by

IBM [Nakaike et al., 2015]. That study focused only on HTMs, and compared the performance of

the three HTMs of IBM and that of Intel. In contrast, another more recent work focused exclu-

sively on studying the impact of contention management in the energy efficiency of STMs [Issa

et al., 2015].

Besides these two concurrent or more recent works, the concern for both performance and

power consumption metrics had only been marginally explored in the scope of TM, and mostly

relying on simulation studies that did not target Intel’s architecture (whose internals are only
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partially disclosed). In both [Gaona et al., 2013,Ferri et al., 2010] the authors assess the behaviour

of different HTM implementations via simulation (the latter focusing on embedded systems). The

approach was also taken by [Baldassin et al., 2009], where the power consumption of one STM was

studied via simulation. More recently, [Gautham et al., 2012] studied both power consumption

and performance in a non-simulated environment. Yet, this work considered a restricted set of

synchronization alternatives focusing mainly on one STM.

Before the recent release of Intel processors with HTM, researchers had already proposed

some theoretical improvements to best-effort HTMs [Afek et al., 2013,Matveev and Shavit, 2013].

We integrate these mechanisms in our HTM-based approaches, together with the optimizations

described in the scope of HybridNOrec in Section 2.5.1, to ensure that their performance is

maximally tuned.

Traditional lock-based synchronization techniques have been thoroughly studied for decades.

In [Ferri et al., 2009], the authors show that the power consumption of locking primitives can be

improved by exploring a trade-off between processor deep sleeping states, frequency downsizing

and busy waiting. We highlight a recent work [David et al., 2013], which studied the impact in

performance of different lock designs and hardware architectures (without however considering

TM).

3.3 Preliminaries for the Study

In the following sections we present several details of the synchronization techniques used. We

start, in Section 3.3.1, by describing the types of synchronization techniques considered. We then

explain the methodology used in the study, in Section 3.3.2. Finally, we provide a preliminary

study that showcases the limitations of the best-effort nature of Intel RTM in Section 3.3.3.

3.3.1 Synchronization Mechanisms Considered in the Study

In this comparative study we considered the following different synchronization mechanisms,

which are also listed in Table 3.1, and most of which have been presented in detail in Chapter 2:

Locks — Decades of research on lock-based synchronization have resulted in a plethora of differ-

ent implementations, many times trading off subtle changes with great impact in performance.
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Table 3.1: Synchronization mechanisms compared in our study.

Mechanism Description

Locks Coarse/fine-grained locking [David et al., 2013]: TTAS,
Spin, RW (pthreads), MCS, CLH, Ticket

STMs TL2 [Dice et al., 2006], TinySTM [Felber et al., 2008],
SwissTM [Dragojević et al., 2009a], NOrec [Dalessandro et al., 2010]

HTMs RTM-GL [Yoo et al., 2013] (global lock), RTM-FL (fine locks)

HyTMs RTM-TL2 [Matveev and Shavit, 2013], RTM-NOrec [Dalessandro et al., 2011]

We consider 6 different lock implementations [David et al., 2013] and apply both coarse and

fine-grained locking strategies. Contrarily to the other approaches employed in the study, fine-

grained locking requires a per-application lock allocation strategy, which is a non-generalizable

and error-prone task [Pankratius and Adl-Tabatabai, 2011].

STM — With STM, reads and writes to shared memory (inside atomic blocks) are instrumented

to detect conflicts between transactions. This instrumentation induces overheads that can have

a detrimental impact on the efficiency of STMs. Yet, much research has been devoted over the

last years to reduce STM’s overheads. For our study we selected four state of the art STMs,

which are representative of different choices in the design space of TM. These include an STM

optimized for validations at commit-time (TL2 [Dice et al., 2006]); to maximize performance at

low thread counts (NOrec [Dalessandro et al., 2010]); to maximize scalability (TinySTM [Felber

et al., 2008]); and to make a fair choice of aborts between long and small transactions via

contention management (SwissTM [Dragojević et al., 2009a]).

HTM — As we have seen, HTM implements a concurrency control scheme in hardware, avoid-

ing the overheads of STM instrumentation. In this study, and in the rest of this dissertation,

we use Intel RTM as our HTM implementation, greatly motivated by its ubiquity in modern

processors. For one of the approaches, we use it in co-operation with the single-global lock

fall-back path (RTM-GL). An obvious extension of this idea is to use fine-grained locks in the

fall-back path (RTM-FL). As the TM abstraction is motivated by the need of relieving pro-

grammers from the complexity of designing locking schemes, the usage of fine-grained locks as a

fall-back for HTM sounds somewhat contradictory. However, this choice allows us to assess to
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what extent a simplistic fall-back (using a single lock) can hinder parallelism. Also, fine-grained

locks may be automatically crafted, to some extent, by using recent techniques based on static

analysis [Mannarswamy et al., 2010].

HyTM — Another mechanism we have presented is the combination of STMs in the fall-back

path of HTM, also known as HyTMs. Its main advantage is to allow concurrent execution of

hardware transactions and software ones, used in the fall-back. However, during their concurrent

execution, both software and hardware transactions have to play along in order to preserve

correctness. In our study we considered two state of the art HyTM proposals [Matveev and

Shavit, 2013, Dalessandro et al., 2011], which we evaluated for the first time on a commodity

HTM from Intel. These two HyTMs were enhanced with the proposal of Reduced Hardware

Transactions that we have presented on Section 2.5.2.

3.3.2 Methodology and Testbed

The benchmarks used in this study were manually instrumented so that reads and writes

inside atomic blocks invoke the STM-based synchronization (when it is being used). Naturally,

this is not relevant for the case of pure HTM approaches, in which case such instrumentation is

void. We shall additionally present results for automatic compiler-based instrumentation in the

later Section 3.6.

All the benchmarks and synchronization techniques are implemented in C or C++. Each

experiment that we conduct is the average of 20 executions. We use the geometric mean whenever

we show an average of normalized results. We often show speedup results, which are relative to the

performance of sequential, non-instrumented executions, unless stated otherwise. The reported

measurements of power consumption were obtained via the Intel RAPL [David et al., 2010] facility

and are restricted to the processor and memory subsystems. Recent studies [Hackenberg et al.,

2013,Hähnel et al., 2012] show that the model used by Intel RAPL estimates quite accurately

the power consumption, when compared to a power meter attached to the machine.

We used a machine equipped with the first generation of Intel processors that were released

with HTM support, whose details are shown in Table 3.2. This choice was dictated by the

requirement of using a processor equipped with HTM, which was limited to 4 cores (and 8

hyper-threads) at the time at which this study was conducted.
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Table 3.2: Characteristics of the Haswell machine, with HTM support and 8 cores, which was
used in the comparative study.

Resource Description

Processor Xeon E3-1275 v3 3.5GHz
Cores 4 (each with hyper-threading)

L1 Cache 32KB 8-way (per core)
L2 Cache 256KB 8-way (per core)
L3 Cache 8MB (shared)
Cache Line 64B
RAM Size 32GB

Operating System Ubuntu 12.04

Application threads are bound to physical cores in a round-robin fashion: e.g., 4 threads

are allocated uniformly, one per core. As a result, hyper-threading is only used when 5 or more

threads are used. We used GCC 4.8.2 with all compiler optimizations enabled and Ubuntu 12.04.

3.3.3 Understanding and Tuning Intel RTM

Before comparing the considered synchronization mechanisms, we conduct a set of prelimi-

nary experiments to understand the limitations of Intel RTM due to its best-effort nature. We

also seek to assess several alternative configurations of the coupling between HTM and its fall-

back. That allows to demonstrate that there is a significant impact on the varying performance

and efficiency of different fall-back configurations. The settings identified during these prelimi-

nary experiments will be adopted in the remainder of the study to ensure that the comparison

is performed using an appropriately tuned HTM.

We begin in Section 3.3.3.1 by quantifying the limits and causes of aborts for Intel RTM.

Then, in Section 3.3.3.2, we compare the performance and energy efficiency when using six locks

implementations to implement the single-global fall-back mechanism of the HTM. This shall

allow us to narrow down the multitude of combinations of the HTM and lock implementations

assessed in our study. Next, in Section 3.3.3.3, we optimize RTM-GL with a recently proposed

technique [Afek et al., 2013] aimed at reducing spurious hardware aborts. Lastly, we investigate

when it is best to give up on hardware and trigger the fall-back path, in Section 3.3.3.4. As we

shall see, in fact this last optimization requires extensive trial and error testing, which motivated

our work, presented later in Chapter 5, aimed at automating the tuning of this configuration.
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Figure 3.1: Probability that a hardware transaction aborts as a function of the amount of data
written. We present this experiment when using a different number of threads.

3.3.3.1 Assessing the Limitations of Intel RTM

Although the hardware implementation details of Intel RTM are not formally available,

black-box experimental analysis allows to understand some of its characteristics. In the following

experiments, each data point corresponds to the average of 100 million transactions, to produce

statistically meaningful results. Whenever we use more than one thread, we allocate each one

to a different virtual core, and make sure we only use hyper-threads when all four physical cores

are already taken (i.e., for more than 4 threads).

We begin by showing that writes are bounded by the L1 cache size, which in this processor has

the size of 32KB per physical core. Figure 3.1 indicates the likelihood for a hardware transaction

to abort when varying the amount of data written (over subsequent addresses at a granularity

of the cache line size). We can see that no transaction is successful for a write set of the size of

the L1 cache. Furthermore, the abort probability increases significantly as we write more than

20KB. Note also that the abort probability is only affected by the number of threads once we use

hyper-threading (disabled up to 4 threads): this also strengthens the fact that writes are kept in

the L1 cache, because it is shared only by co-located hyper-threads in the same physical core.

These behaviours were independent of the word size being written (up to 64 bytes), which also

reinforces the idea that transactional accesses are tracked at the cache line granularity (possibly

by marking a bit associated to the cache line as being written transactionally). As such, this
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Figure 3.2: Probability that a hardware transaction aborts as a function of the amount of data
read. We present this experiment when using a different number of threads.

also explains the non-negligible abort probability before exhausting the full L1 capacity: since

the cache is 8-way associative, then more than 8 transactional writes that fall in the same cache

line lead to an eviction from the L1 to the L2 cache. Since writes are tracked only in the L1,

this also aborts the transaction.

We also study the limits associated to read accesses in Figure 3.2. The experiments reveal

that it is possible to read far more than to write: a transaction, running alone in the system,

was aborted consistently only for values larger than 5MB of data read. Hence, the read set

tracking is definitely different from the way writes are tracked. This exploits the fact that the

HTM need not recall the values that it read; it must only track the addresses, for instance with

an over-approximation using a Bloom Filter. This is in contrast with the writes of a transaction,

which must be recorded because at commit time we need to have exact information on both the

value to be written and the address where to write it, in order to execute the write-back phase

of the transaction and make the writes available for other threads.

We also show that the success of transactions, when reading, degrades gracefully with the

number of threads. This leads us to believe that the read-set tracking may overflow beyond the

L1 cache possibly into the L3 cache. Recalling the characteristics of this processor, described

in Table 3.2, we can see that the L3 is the only cache that is shared among the cores. Because

our experiments show an upper bound on the data that we may read, which changes with the

number of threads and is independent of hyper-threading, we can then conclude that the reads
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Figure 3.3: Probability that a hardware transaction aborts as a function of the length of a
transaction in terms of processor cycles.

must be tracked in the only shared resource (the L3 cache). As a consequence of this design, this

favours transactions that perform read operations earlier than write operations, because evicting

cache lines read from the L1 may not abort the transaction (contrarily to the case of cache lines

written).

Finally, we present Figure 3.3 where transactions run for an increasing amount of processor

cycles, without performing any memory access. We highlight that, at roughly 14M cycles of

length, all transactions abort. This corresponds to 4ms in our 3.5GHz processor, which is exactly

the value set for our Linux kernel interrupt timer. As such, these transactions are aborted due to

the periodic interrupt triggered by the kernel, which causes a control flow switch into privileged

mode (typically, to run the kernel scheduler).

In fact, we have experimented also by modifying the kernel and allowing threads to run

longer without getting interrupted, and verified experimentally that RTM transactions would

run longer without getting aborted. We also verified that this is, in general in our benchmarks,

not an issue because transactions are usually aborted for other reasons in long transactions (such

as capacity overflows in the caches) long before they last enough time to get interrupted by the

kernel.

To conclude this analysis, we summarize our findings with respect to Intel RTM in Table 3.3.
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Table 3.3: Inferred characteristics of Intel RTM through black-box experimentation.

Category Description

Conflicts Memory accesses tracked at cache line size granularity.

Writes
Write-set tracking bounded by 32KB (the L1

cache size private to each physical core). Hyper-threads in same
physical core contend for space to track writes.

Reads
Read-set tracking bounded by 5MB (order of magnitude

of shared L3 cache space). All threads contend for space to track
reads (when they are larger than 32KB, the L1 cache size).

Duration The length of transactions is bounded in time
by the Linux kernel periodic interrupt (default: 4ms).

3.3.3.2 The Impact of Locks on the Fall-back of HTM

The simpler way to use HTM is by relying on a single lock on the fall-back. Since the fall-

back may be triggered often — by some thread, even if not all at the same time — the choice of

which lock to use is quite important. Given the wide variety of lock proposals in the literature,

we studied the six locks listed in Table 3.1 to be used in the fall-back. These implementations

are representative of different design choices, and our goal is to understand if there is some

implementation that consistently performs above the average across all parallelism degrees and

benchmarks.

Table 3.4 shows the performance of Intel RTM given the backing lock implementation used in

the fall-back path. We show the average overhead with respect to the best performing lock in each

Table 3.4: Overhead (%) of each lock implementation (as the fall-back of RTM) with respect to
the optimal choice in each execution. We show both the overhead in terms of performance and
power consumption, and in terms of cache misses in accessing memory.

(Performance) Cache (Power)
Lock Overhead (%) Rank Misses (%) Overhead (%) Rank

Ticket 1.0 1.75 0.75 1.1 1.75
MCS 2.4 2.62 0.43 1.2 2.25
CLH 2.9 3.62 0.68 2.4 3.38
RW 14.2 4.89 5.71 17.4 3.88

TTAS 15.2 5.00 7.01 17.4 4.88
Spin 16.4 5.00 9.87 17.5 4.88
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experiment (i.e., an idealized lock, because it is not necessarily the same across experiments),

considering both time to complete the benchmark as well as power consumed. The reported

overhead is the average across all STAMP benchmarks and thread counts (1 to 8). Using this

metric, we can see that the Ticket, MCS and CLH locks perform best.

For each benchmark and thread count, we additionally sorted the considered lock implemen-

tations according to either their performance or power consumption, determining in this way

their rank for that benchmark/configuration. This shows that no lock implementation is always

the best or worse. However, we can see that the Ticket lock is consistently ranked higher, for

which reason we shall rely on it from now on whenever we require locking (both standalone, or in

the fall-back of RTM). Its performance is also tightly related with the overhead in terms of cache

misses (measured with the perf tool in Linux). The Ticket lock indeed seems to strike a bal-

ance between being lightweight (in contrast to MCS and CLH) and avoiding repeated expensive

synchronization operations (such as compare-and-swaps for the other implementations).

3.3.3.3 Improving the Single-lock Fall-back Path of HTM

The correct usage of the single-global lock fall-back requires hardware transactions to sub-

scribe to the lock. As such, transactions that abort often and trigger the fall-back cause aborts of

the hardware transactions, which can generate a chain effect, also known as lemming effect [Dice

et al., 2012a], where the aborted hardware transactions also try to acquire the lock, preventing

hardware speculation from ever resuming.

In [Afek et al., 2013], the authors use an auxiliary lock to prevent the lemming effect,

while at the same time trying to preserve some concurrency. The idea is to guard the global

lock acquisition by another lock. Aborted hardware transactions have to acquire this auxiliary

lock before restarting speculation, which effectively serializes them. However, this auxiliary

lock is not added to the read-set of hardware transactions, which avoids aborting concurrent

hardware transactions. If this procedure is attempted some times before actually giving up and

acquiring the global lock, then the chain reaction effect can be avoided: the auxiliary lock serves

as a manager preventing hardware aborts from continuously acquiring the fall-back lock and

preventing hardware speculations.

In Table 3.5 we compare Intel RTM using the auxiliary lock against the simple single-global

lock (RTM-GL). For this, we report values for time, energy, and Energy Delay Product (EDP),
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Table 3.5: Relative performance of RTM-GL over the auxiliary lock [Afek et al., 2013] across
benchmarks and threads (higher values meaning that auxiliary lock took less time or consumed
less energy).

Avg across Benchmarks Avg across Threads
benchmarks time energy edp threads time energy edp

genome 1.58 1.6 2.54 1 1.00 1.00 1.01
intruder 1.80 1.95 3.52 2 1.08 1.06 1.14
kmeans 1.20 1.17 1.40 3 1.14 1.12 1.28
labyrinth 1.01 1.01 1.01 4 1.29 1.26 1.62
ssca2 1.00 1.00 1.00 5 1.26 1.25 1.57

vacation 1.52 1.48 2.25 6 1.26 1.23 1.55
yada 0.96 0.96 0.92 8 1.26 1.23 1.55

normalized with respect to RTM-GL (analogously to traditional speedup metrics). We report the

average across either benchmarks or threads. Naturally, we can see that there is no difference with

1 thread because there is no concurrency and hence no problem resuming speculative execution.

But beyond that, and in particular at higher concurrency levels, this technique helps consistently

to improve the EDP. Some benchmarks do not show any difference because there are very little

aborts (SSCA2) or RTM is not able to execute speculatively most of the time (Labyrinth). Yada’s

workload is conflict-intensive, for which reason the non-optimized approach is slightly better due

to its inherent pessimism in following the fall-back path — that pays off since the high conflict

probability limits the effectiveness of optimistic transactions.

3.3.3.4 Retry Policy for the Fall-back

Given that RTM must always have a fall-back due to its best-effort nature, an important

decision is when to trigger that path. Upon a transaction abort, RTM provides an error code

that informs about the reason of the abort. An abort due to a capacity exception is typically a

good reason to trigger the fall-back path. However, hardware transactions may abort for various

micro-architectural conditions that are less deterministically prone to happen upon transaction

re-execution, and even capacity exceptions may not always be deterministic. Also, of course,

transactions may abort due to data contention. In these situations one may aggressively trigger

the fall-back, or opt to insist on using HTM.

As we will shall discuss in more detail in Section 3.6, the optimal choice of the retry policy

can vary significantly across workloads and degrees of parallelism. As it is impractical to assume
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Table 3.6: Summary of results according to the workload characterization of the STAMP suite.
In some cases we denote different characterizations according to the number of threads used.

Time in Tx (%) Contention Best Performing Least Power Consumption

kmeans low (7) low RTM-GL RTM-GL
ssca2 low (17) low RTM-GL RTM-GL

intruder medium (33) high ( RTM-GL ≤ 4threads ∧ ( RTM-GL ≤ 5threads ∧
TinySTM ≥ 5 threads ) TinySTM ≥ 6threads )

vacation high (89) low ( RTM-GL ≤ 2threads ∧ ( RTM-GL ≤ 4threads ∧
TinySTM ≥ 3threads ) TinySTM ≥ 5threads )

genome high (97) low TinySTM TinySTM
yada high (99) medium SwissTM TinySTM

labyrinth high (100) high STMs (except TL2) STMs (except TL2)

that the retry policy is ad-hoc tuned by programmers for each and single workload/application,

we set the number of retries to 5, which is the configuration reported to deliver best all-around

performance with RTM [Yoo et al., 2013,Karnagel et al., 2014] (a result that we have confirmed

with RTM-GL on our testbed). For the HyTMs, 4 times was found to be the best number of

retries on average.

3.4 Comparison in the STAMP Benchmark Suite

In this section we rely on the STAMP benchmark suite to assess the efficiency of all the

synchronization mechanisms listed in Section 3.3.1, namely HTM, STMs, and HyTMs. We defer

the comparison with fine-grained locking for Section 3.5.

We start by summarizing our results in Table 3.6. There, we list the STAMP benchmarks

sorted by two important characteristics of their workloads: the contention level between trans-

actions, and the percentage of the workload that is transactional. We then identify the TM

mechanism that takes the least time to complete and which one consumes the least power, given

the averaged results across threads.

This summarized perspective allows to highlight an interesting fact. It is possible to distin-

guish three categories in which RTM behaves differently, according to the transaction’s charac-

teristics. Kmeans and SSCA2 represent workloads with small transactions, medium frequency

and low contention; here, RTM-GL performs consistently better than the alternatives across all

threads. Intruder and Vacation exhibit medium profiles for what concerns the time spent in
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transactions and contention; in these cases, RTM-GL results in the best performing solution us-

ing up to 4, respectively 2, threads, and the most energy efficient up to 5, respectively 4, threads.

Finally, the other benchmarks spend almost all the time running transactions, encompassing

both low and high contention scenarios. In these settings, TinySTM emerges as the most robust

solution, both from the perspective of energy and performance.

This analysis allows to draw a set of guidelines to select which synchronization to use, at least

when considering applications having analogous characteristics to those included in the STAMP

suite. RTM-GL is desirable when transactions are small, generate low/medium contention, and

the application does not spend all the time executing transactions. When contention increases,

or the frequency of transactions is high, RTM-GL is competitive up to a medium degree of

parallelism. In the remaining cases, STM is often the best choice, even when compared with

fine-grained locking. The considered HyTMs perform poorly compared to the alternatives, never

clearly outperforming the competing schemes in any benchmark. In the following Sections 3.4.1-

3.4.2 we present our detailed experiments with STAMP.

3.4.1 Performance Study

In Figure 3.4 we show, for each benchmark and while varying the parallelism level, the

speedup of all the considered synchronization schemes (with the exception of schemes based on

fine-grained locking, which shall be presented in Section 3.5) with respect to a sequential, non-

instrumented execution, and the power consumption during the execution (in Kilo Joules). This

allows us to discuss in detail the differences between the mechanisms in different workloads.

Kmeans: This benchmark yields the biggest gap in performance between a RTM variant and

STMs. Namely, RTM-GL reaches 3.5× speedup over a sequential execution, beating every

other alternative both performance-wise and in terms of energy-efficiency. An interesting trend

concerning energy-efficiency is that the power consumption with RTM (and, to some extent,

also for all other synchronization schemes but GL) tends to slightly decrease as the parallelism

level grows, which is a symptom of efficient utilization of the available architecture resources

achievable using TM-based solutions. If we consider RTM-TL2 and RTM-NOrec, they are still

competitive and better than the corresponding STMs, but they are far from RTM-GL in both

metrics. It is worth noticing that the small and rare atomic blocks of this benchmark allow the

GL approach to scale up to 3 threads. This explains the considerable success of RTM-GL in this
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benchmark, as a transaction that resorts to the GL is still able to run concurrently with other

threads that are not under an atomic block at that time.

SSCA2: This benchmark shows a similar trend between RTM variants, but with the significant

difference that all STM approaches scale better as the degree of parallelism increases. Here,

RTM-GL is only slightly better than the best STM, and this is consistent across all the thread

counts. Also interestingly, RTM-TL2 improves little and fares rather bad on the energy side.

This, however, is not the case for TL2 or RTM on their own, and as such is an artefact of the

hybrid implementation integration. Finally, the reduced time within atomic blocks still allows

the GL approach to scale up to 2 threads, which justifies the advantage of RTM-GL. However,

this effect is smaller than in Kmeans, which also matches the fact that RTM-GL achieves less

improvements over other approaches.

Intruder: Here RTM-NOrec, and RTM-GL to some extent, are competitive and even better

(until 5 threads) than the best STMs (except for TL2). Since TL2 performs poorly in this

benchmark, this also drags RTM-TL2 behind in both metrics. Interestingly, both TL2 and RTM-

TL2 improve slightly performance with more threads, but TL2 consumes more power whereas

RTM-TL2 slightly decreases it.

Vacation: Once again we see that the performance of RTM-TL2 is quite disappointing, as

indeed TL2 itself performs poorly in this scenario. As we shall see throughout this study, TL2 is

by far the worst STM among those considered, which is a result of having a similar algorithmic

and synchronization complexity to that of SwissTM and TinySTM, while detecting conflicts

lazily at commit-time. This results in TL2 doing useless work more often, whereas SwissTM and

TinySTM restart the speculation faster when reacting to conflicts. On the other hand, NOrec

is simpler, both in algorithmic as well as synchronization terms, reducing its instrumentation

overheads and maximizing its performance at low thread counts. With regard to the other

approaches, RTM-GL and RTM-NOrec are competitive with STMs until 4 threads. At higher

parallelism degrees, their performance degrades due to contention on L1 caches caused by hyper-

threading. Analogous results are achieved for what regards power consumption. It is interesting

to note that RTM-GL performs worse than RTM-NOrec at 8 threads, but the two consume

approximately the same power. This is a result of the power savings that are achievable with

the lock acquisition in RTM-GL.

Genome: In the three last benchmarks we have either transaction-heavy or high-contention
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(b) Speedup in SSCA2.
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(c) Speedup in Intruder.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 1  2  3  4  5  6  7  8

S
pe

ed
up

threads

(d) Speedup in Vacation.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 1  2  3  4  5  6  7  8

S
pe

ed
up

threads

(e) Speedup in Genome.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

 1  2  3  4  5  6  7  8

S
pe

ed
up

threads

(f) Speedup in Yada.
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Figure 3.4: Speedup (relative to non-instrumented sequential execution) when varying the num-
ber of threads in the STAMP suite.
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Figure 3.5: Energy Consumption (in Kilo Joules) when varying the number of threads in the
STAMP suite.
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workloads, characterized by large transaction foot-prints. These conditions are clearly a much

more favourable playground for STMs. In this case, we see a clear (and consistent across bench-

marks) distinction between TL2 and NOrec, as these two lag behind in both metrics particularly

at higher thread counts. Interestingly, we can see that RTM-TL2 performs best among the RTM

variants at a higher concurrency degree, which is a singularity among all benchmarks. This

benchmark also shows a clear trend when the 5th thread is used: all approaches stabilize (or

even decrease) performance at that point, due to hyper-threading. Interestingly, this effect is not

so noticeable on the energy side, as STM approaches are still able to reduce the power consumed

as parallelism increases. This highlights an interesting trade-off of hyper-threading: it allows

sub-linear speed-ups only, but it also consumes little additional power. This fact is favourable

to STMs, as RTM approaches generate more transactional aborts when hyper-threading is used,

due the higher contention on the L1 cache.

Yada: This benchmark shows one scenario where RTM-GL performs poorly, with slowdowns

above 3 threads. HyTMs follow closely their fall-back STMs’ performance, as RTM is not able

to succeed. This is also a case where TinySTM and SwissTM perform better than the other two

STMs. This benchmark presents no surprises in the energy-efficiency, whose trends are highly

correlated with the performance.

Labyrinth: Here we see STMs performing best and very alike each other. RTM-GL does not

improve with thread count, simply because most transactions exceed the hardware cache capacity

and, as such, eventually follow the fall-back path which is a sequential bottleneck given the GL.

For this reason, RTM-TL2 and RTM-NOrec obtain some improvements, exactly because the fall-

back allows for concurrency, contrarily to the global lock on RTM-GL. This scenario highlights,

however, that HyTMs are capped by either RTM or the fall-back STM — as such, it is dubious

whether they are practical (at least when used with RTM), or if it would be preferable to

adaptively employ the most promising technique (RTM-GL or an STM) based on the workload.

3.4.2 Insights on TM Efficiency

In this section we shed some additional light on the factors dictating the trends observed

in the experiments above. To this end, in Table 3.7, we report the average abort rate across

benchmarks and threads for each synchronization mechanism. This represents the percentage of

transactions that do not complete. Since there are four STMs under evaluation, we show the
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minimum and maximum abort rates among them — typically the smallest abort rate belongs to

TinySTM and SwissTM, whereas TL2 yields the maximum abort rate.

Once again, we structure the table considering the different categories of workloads. As

we move right (more contended or transaction-intensive workloads) and down (higher degree of

parallelism), RTM-based mechanisms increase the abort rates, which causes the loss of efficiency

shown in the previous section. These results highlight that RTM has non-negligible aborts in

many occasions where STMs abort very little.

In Figure 3.6 we consider four different benchmarks, representative of scenarios that al-

low to derive insights on the efficiency of the considered RTM variants. In those plots we

present a breakdown of the reasons motivating transactional aborts, for each RTM mechanism.

We distinguish aborts caused by exceeding the capacity of the processor’s caches (as capacity);

micro-architectural instructions or states forbidden by RTM, such as some system calls (as ar-

chitectural); data contention resulting in conflicts (as conflict); and interaction between RTM

and the fall-back paths, such as checking if the GL is free in RTM-GL or more complex logic in

the case of HyTMs (as interaction).

Kmeans’ breakdown shows that, as expected, as concurrency increases, also abort rates

increase due mainly to data conflicts. It is worth mentioning that Kmeans is the benchmark

with the least average aborts for RTM variants. Half of the aborts are due to conflicts, whereas

the rest is motivated by a non-negligible percentage of aborts due to architectural instructions.

This is something intrinsic to RTM, which is common throughout different benchmarks. The fact

that these aborts occur less often in this benchmark allows RTM to obtain the most favourable

results among all benchmarks.

In Yada and Labyrinth, instead, the workloads are much more transaction-intensive with

non-negligible conflict rates. On top of this, the capacity of the caches is often exceeded by

the hardware transactions (this is particularly visible in Labyrinth, where this phenomena dom-

inates the aborts). This explains why the RTM variants followed up closely the performance

of their fall-backs (with some constant overhead). HyTMs have a reduced abort rate because

the fall-back’s software transactions are also taken into account in these statistics, on top of the

hardware transactions — since software transactions have little aborts due to the uncontended

workload, they amortize the overall abort rate. In RTM-GL, instead, the fall-back executes non-

speculatively due to the global lock, so we only count statistics for the hardware transactions
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Table 3.7: Transactional abort rate (%). For STM we show the lowest and highest abort rate
values obtained (across all considered STMs).

benchmark kmeans ssca2 intruder vacation genome yada labyrinth

1 thread

STM 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0
RTM-GL 0 0 7 49 11 46 95
RTM-TL2 0 0 36 94 35 19 53
RTM-NOrec 0 0 4 40 6 19 53

4 threads

STM 10 - 34 0 - 0 0 - 0 0 - 6 1 - 51 5 - 58 4 - 13
RTM-GL 26 0 22 69 31 48 100
RTM-TL2 50 74 74 100 45 84 60
RTM-NOrec 31 46 29 66 17 31 55

8 threads

STM 25 - 54 0 - 0 3 - 57 0 - 10 0 - 1 7 - 65 8 - 23
RTM-GL 42 1 33 72 48 47 100
RTM-TL2 60 99 92 100 53 92 69
RTM-NOrec 44 88 62 99 69 39 60

there.

Finally, SSCA2 shows a completely different scenario, in which RTM-GL generates almost no

aborts (in line with STMs’ behaviour), whereas HyTMs have enormous abort rates, dominated

by the interaction with the fall-back path.

This motivates to better understand the usage of the fall-back path in the HyTMs. Table 3.8

shows the percentage of transactions that were executed in the fall-back (i.e., not purely in

hardware). We show also, for those that triggered the fall-back, which percentage were able to

execute in a fast mode, i.e., a mode in which the transaction executes in software but whose

commit is boosted by using a reduced hardware transaction [Matveev and Shavit, 2013] (as

explained in Section 2.5.2). For every table cell we show the percentage corresponding to 1 and

8 threads. Overall, the percentages vary linearly from 1 to 8 threads, for which reason we omit

the intermediate values.

We start by highlighting in SSCA2 how both HyTMs are able to execute purely in hardware

with 1 thread (they trigger the fall-back < 1% of the transactions). However, a higher thread

count typically results in executing in the fall-back mode almost all the time, which matches the

idea conveyed by Figure 3.6(d). In particular, for this benchmark, the ability to rely on hardware

to speed up the software fall-back path is reduced from above 90% to 14% or even less.

These results for HyTMs show that RTM-TL2 triggers the fall-back more often, and is able

to execute in the fast mode less frequently than RTM-NOrec. This justifies the advantage of
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Figure 3.6: Ratio of aborted transactions, among all attempted, identified also by the type of
the abort for all RTM variants.

RTM-NOrec, which fared better across all benchmarks in Section 3.4: RTM-NOrec executes the

fall-back software transactions in fast mode for most of the time. The reason is that the much

simpler design of NOrec allows for a much easier integration with RTM in a HyTM.

Ideally one may want to also rely on more scalable STMs, like TinySTM or SwissTM, in

the fall-back of RTM. However, due to the higher complexity of their algorithms, coupling them

efficiently with HTM is a challenging task, and, in fact, we are not aware of any proposal in this

sense in literature.

Finally, it has been pointed out in [Dalessandro et al., 2011] that, in order to support

efficient HyTMs, it is desirable to have hardware support for selective non-transactional memory

accesses in the scope of transactions. Such a feature is not currently supported in RTM, whereas

its inclusion was planned for AMD’s HTM proposal [Christie et al., 2010] (which was never

commercialized). Hence, an interesting research direction suggested by this study is to investigate

the impact of supporting non-transactional accesses, not only in terms of performance and energy,

but also in terms of architectural intrusiveness.
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Table 3.8: Ratio (%) of triggering the fall-back on HyTMs. We also show, of those that triggered
the fall-back, which ratio executed fast, i.e., by using reduced hardware transactions. Intervals
of values are shown, ranging from 1 (lower) to 8 threads (upper bound).

RTM-TL2 RTM-NOrec
fall-back Fast fall-back Fast

kmeans < 1 - 77 92 - 32 < 1 - 78 100 - 23
ssca2 < 1 - 99 91 - 2 < 1 - 86 95 - 14

intruder 33 - 88 98 - 39 3 - 55 100 - 52
vacation 94 - 100 43 - 3 38 - 99 100 - 89
genome 50 - 100 97 - 71 6 - 67 100 - 94
yada 18 - 78 50 - 34 17 - 32 99 - 82

labyrinth 58 - 100 14 - 2 54 - 98 10 - 3

3.5 Benchmarks Using Fine-grained Locking

Most of the STAMP benchmarks have an irregular nature, which makes it very challenging to

derive fine-grained locking schemes. In this section we focus on benchmarks for which it is possible

to use (possibly very complex) fine-grained locking approaches. We start, in Section 3.5.1, by

focusing on a subset of three STAMP benchmarks, for which we could craft an ad-hoc fine grained

locking strategy. We then present results for Memcached in Section 3.5.2 and for two concurrent

data structures in Section 3.5.3.

3.5.1 Fine-grained Locking in STAMP

As already mentioned, implementing a fine-grained locking strategy is a complex task for

most of the STAMP benchmarks. We were still able to devise fine-grained locking strategies for

three of the STAMP benchmarks, whose results we report in Figure 3.7. Besides fine-grained locks

(FL), we also show results for RTM-FL, which combines hardware transactions with a fall-back

path that relies on FL. Naturally, the combination of both schemes in RTM-FL requires hardware

transactions to read (i.e., subscribe) all necessary locks as being free. We then compare these

two approaches with RTM-GL and TinySTM, which were the best mechanisms in our previous

experiments, and remove the others to improve the readability of the plots.

RTM-FL presents one advantage over RTM-GL, in that the fall-back path allows for threads

to proceed in parallel if they require different locks (which is highly likely if there is little data
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contention). However, this has the drawback that more locks have to be checked (during specu-

lative executions) or acquired (during the fall-back executions). Hence, there is a clear trade-off

that is subtle and difficult to manage.

Recall that Kmeans and SSCA2 were the two benchmarks with workload characteristics

more amenable to RTM-GL. This is justified by the low frequency of activation of the fall-back

path. As such, RTM-GL incurs minimal overhead thanks to the hardware speculation and to the

avoidance of any software-based instrumentation. Therefore, it is not a surprise that fine-grained

locking is of no advantage in this scenario: each lock acquisition represents a synchronization

point, whereas for RTM-GL there exists only explicit synchronization at the hardware level when

a transaction attempts to commit. Note, however, that FL is consistently better than the best

STM (TinySTM). This fact is even more relevant from the energy perspective, where the gap

between FL and TinySTM is larger. Since the RTM fall-back is not triggered often, then RTM-

FL goes through the additional verifications over more locks that are useless most of the time

(to ensure a correct integration of the fall-back with hardware transactions), which explains its

lower performance in this kind of workload.

In SSCA2 we see a different behaviour as both RTM variants perform quite similarly. This

is explained by the fact that the fine-grained scheme is not very efficient: its locks are relatively

coarse, which induces unnecessary serialization. This has the side-effect of making RTM-FL

competitive with RTM-GL, because both have a similar effort in checking the locks in the specu-

lative executions to ensure correct integration with the fall-back. Notice how the FL scheme still

performs better than GL, which is a consequence of the higher degrees of parallelism achievable

by reducing lock granularity. This confirms an expectable trade-off concerning lock granularity:

the more fine-grained, the best the fall-back performs; however this can have an impact on the

performance of the speculative executions as we saw for Kmeans.

Finally, Intruder spends a large fraction of time within atomic blocks. As already discussed,

this workload is more advantageous for STMs than for RTM. It is not surprising to see that

RTM-GL is no longer the most competitive choice (although it still fares best until 3 threads).

The interesting fact is that this kind of workload is more beneficial for FL. With more threads,

TinySTM degrades its scalability, and is surpassed by FL. From an energy perspective, it is even

clearer that FL is the best choice comparing to TinySTM, as it is almost always consuming less

energy. RTM-FL suffers from the overheads of checking additional locks, until 3 threads, for
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Figure 3.7: Experiment similar to that in Figure 3.4, using instead fine-grained locking, and
showing also results in Memcached.
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which reason it is not as good as RTM-GL. However, at that point RTM triggers the fall-back

more often, which justifies the use of fine locks and allows RTM-FL to perform substantially

better than RTM-GL. On the energy side, RTM-FL is closer to TinySTM, following the trend

of STMs that often fare worse on the energy side to obtain comparative levels of performance to

the other approaches.

3.5.2 Memcached

As presented earlier in Section 2.7, Memcached is a popular distributed object caching

system. In this study, we rely on a recent TM-based porting [Spear et al., 2014], and use the

original Memcached as the basis for FL. We used the memslap tool, configuring the workload

with 95% lookups and 5% insertions, 8 threads and a concurrency of 256.

In Memcached it is not really possible to measure, for reference purposes, the performance

of a sequential execution, because there is always concurrency due to the existence of a pool

of maintenance threads. Hence, we present the peak throughput obtained using the maximum

number of available hardware threads (see Figure 3.7(h)). The results show that FL has the best

performance, but RTM-GL is only 7% behind. This is a significant achievement as the effort

to devise such fine-grained locks is considerably higher than using RTM-GL. Also, since FL is

quite optimized, it is expectable that RTM-FL is not able to extract any further parallelism.

Interestingly, with this benchmark, TinySTM is not competitive because the instrumentation

overheads are amplified by the short and uncontended transactions.

3.5.3 Concurrent Data Structures

We now consider two concurrent data-structures, namely a Red-Black Tree and a Hash-Map,

which represent particularly relevant use cases for TM given the complexity of designing efficient

fine-grained locking strategies for these scenarios.

Figure 3.8 shows two different scenarios: we consider a small Hash-Map (512 buckets) with

only 10% transactions performing writes (the rest are lookup operations), and a large Red-Black

Tree (1 million items) with 90% transactions performing updates. In the former case, RTM-GL

achieves perfect linear scalability, which is a consequence of its negligible overheads and of the
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size and % of writes 10% 50% 90%

27 elements 3.30 1.79 1.21
214 elements 2.96 1.58 1.11
221 elements 1.86 1.33 1.06

(e) Normalized EDP of the best alternative to RTM-GL in Red-black Tree
(higher is favourable to RTM-GL).

Figure 3.8: Data Structures varying contention level.

very reduced abort rate. With larger transactions, the gains achievable by RTM tend to diminish,

although it still remains a very competitive solutions.

Table 3.8(e) shows a spectrum of workloads in Red-Black Tree, by considering the normalized

EDP of RTM-GL against the best alternative in each experiment. For this, we vary the size of the

tree and the percentage of write transactions. The trend is clear in this table: RTM behaves best

with light workloads, and loses advantage when transactions become larger or write-intensive.

This confirms the results of the analysis that we performed for STAMP, given that, also in this

case, RTM shines most when atomic blocks have little duration and the workload is not fully

transactional.
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Table 3.9: Improvement of configuring RTM-GL for each workload compared to the single con-
figuration used in our study.

Speedup % kmeans ssca2 intruder vacation genome yada labyrinth

4 threads 12 7 20 36 12 13 2
8 threads 5 8 80 21 2 55 39

3.6 Research Directions Suggested by our Study

We now identify some relevant research directions that emerged from the analysis of our

experimental study. In fact, some of the challenges mentioned intersect with those presented

earlier in the summary of this dissertation, as we explored them further in the scope of this

work.

• The overall performance of the tested HyTM solutions is quite disappointing. These findings

contradict the simulation results published in several previous works, e.g., [Matveev and Shavit,

2013]. Our analysis suggest that the root cause of the problem is related to the inefficiency of

the mechanisms used to couple hardware and software transactions, which is generating a large

number of spurious aborts. However, further research is due in order to understand what can be

done to address such a problem. An interesting research question, in this sense, is whether the

availability of support for enabling non-transactional memory accesses while executing hardware-

assisted atomic blocks could indeed allow for more efficient interplay between HTM and STM

(which has been assumed by other works in the area of HyTM, e.g. [Riegel et al., 2011]). A

related research question is how to support such a feature while minimizing the disruptiveness

of the changes required at the hardware level — an aspect that cannot be overlooked given the

complexity of modern processor architectures.

• As mentioned in Section 3.3.3, the performance of RTM is significantly affected by the retry

policy (e.g., the settings of the number of retries upon abort, and the choice of how to react to

capacity aborts). While in our study we used the configuration that performed best on average,

as shown in Table 3.9, significant speedups (up to 80%) with regard to the configuration used in

our study can be achieved by ad-hoc tuning the retry policy for the specific workload — even

more could be achieved by considering the specific concurrency degree as well. Unfortunately,

this is a tedious and error prone task that is not desirable to delegate to programmers. Hence,
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Figure 3.9: Impact of compiler instrumentation with GCC.

these findings highlight the relevance of devising solutions for adaptively tuning these parameters

in an automated manner. The key challenge is how to do it with minimal overhead, given

that the cost imposed by self-tuning approaches targeting STMs (based on complex machine-

learning [Rughetti et al., 2012] or analytical models [Di Sanzo et al., 2012]) is going to be strongly

amplified in HTM settings because there exists no instrumentation as in STMs. We pursue this

further in Chapter 5.

• Our study has used selective (i.e., manual) instrumentation when considering both STMs

and HyTMs, i.e. only the relevant subset of memory locations accessed in atomic blocks have

been traced. As an alternative, one could rely on the compiler to automatically instrument

atomic blocks with calls to the TM runtime. The plots in Figure 3.9, which were obtained

using the C++ TM extension integrated in GCC 4.8.2, show that non-selective instrumentations

can impact performance by approximately 20% when using TinySTM. This is a consequence of

the increase of the transaction footprint (up to 3x larger with SSCA2) caused by the “blind”

instrumentation performed by GCC.

Not only do these results unveil the possibility of optimizations in existing compiler’s sup-

port for STM, but also provide an additional compelling motivation to incorporate support for

selective instrumentation in HTM. Indeed, we have shown that capacity exceptions are one of

the key sources of aborts with HTM. Hence, techniques capable of achieving noticeable reduc-

tions of the transactions’ footprint are expected to strongly benefit HTM’s performance. These

considerations open interesting research avenues investigating cross-layer mechanisms operating

at the compiler and architectural level, and aimed at supporting selective instrumentation in a

way that is both convenient for the programmer (i.e., possibly fully transparent) and sufficiently
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non-intrusive to simplify integration in existing architectures.

3.7 Summary

In this chapter we analyzed extensively the performance and energy efficiency of several state

of the art TM systems. We compared different TM solutions (software, hardware and combina-

tions thereof) among each other and against lock based systems. Our study demonstrates that

the recent HTM implementation by Intel can strongly outperform any other synchronization

alternative in workloads with small transactional foot-prints (and sometimes in conjunction with

medium to low execution time spent transactionally). On the other hand, it also identified some

critical limitations of Intel RTM, and highlighted the robustness of state of the art STMs. These

software implementations achieve performance competitive with fine-grained locking, and out-

perform HTM in workloads encompassing long and contention-prone transactions. However, we

have also confirmed that different TMs tend to out-perform each other across different workloads

and applications.

Furthermore we have shown that the performance of HyTMs, when used in combination with

RTM, is normally quite disappointing; we determined that the root cause of this surprising result

lies in the inefficiency of the mechanisms used to couple software and hardware transactions. This

means that it is better to choose between either pure HTM or STM for each workload. However,

imposing that choice on the programmer is clearly a burden, which would be preferably avoided

— this is an issue that we revisit in Chapter 7. Finally, our study allowed to identify a set

of compelling research questions, which, we believe, should be timely addressed to increase the

chances of turning HTM into a mainstream paradigm for parallel programming.
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4Time-Warp: Reduction of

Conflicts in TM

As we have seen so far, mainly on the background provided on TM algorithms in Chapter 2,

TMs allow concurrent executions to remain correct by tracking which memory locations are

accessed transactionally. This information is then used to detect conflicts by the TM runtime,

and possibly abort transactions with the objective of guaranteeing a safe execution.

In the case of HTMs, this tracking is inherently coupled with the cache coherence proto-

col, which strongly limits the flexibility of implementing arbitrary concurrency control schemes

(that is, to minimize the cost of changes in the processor’s logic and the subsequent verification

procedures [Adir et al., 2014]).

As for STMs, instead, given their pure software nature, the access tracking and conflict

detection mechanisms can clearly be implemented in a much more flexible way. In fact, it is quite

often the case that STMs are designed to minimize the instrumentation overhead by relying on

simple concurrency control mechanisms — which are amenable of efficient implementations —

but that are also prone to suffer of spurious aborts, i.e., they abort transactions unnecessarily,

even when they do not threaten correctness.

Indeed, existing literature on STMs has highlighted an inherent trade-off between the effi-

ciency of a TM algorithm, and the number of spurious aborts it produces — that is the notion

of Permissiveness [Guerraoui et al., 2008], which we presented in Section 2.2.2. Recalling, a TM

is permissive if it aborts a transaction only when the resulting history (without the abort) does

not respect some target correctness criterion (e.g., Serializability or Opacity).

Achieving permissiveness, however, comes at a non-negligible cost, both theoretically [Keidar

and Perelman, 2009] and in practice [Gramoli et al., 2010]. Indeed, most state of the art TMs,

such as those studied in the previous chapter [Dice et al., 2006,Felber et al., 2008,Fernandes and

Cachopo, 2011,Dalessandro et al., 2010], are far from being permissive. They tend to resort to

concurrency control algorithms that generate a large number of spurious aborts, but which have

the advantage of allowing highly efficient implementations.
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4.1 The Problem

To illustrate the problem incurred by those STMs, consider an example consisting of a

sorted linked-list as shown in Figure 4.1. This list is accessed by update transactions that insert

or remove an element, and by read-only transactions that try to find out if a given element is in

the list. Let us consider three transactions: a read-only transaction T1 that seeks element D in

the list; an update transaction T2 that inserts item B; and an update transaction T3 that removes

item E. In the figure we also show a possible execution for the operations of each transaction,

and the corresponding result, in a typical STM.

One widely used form of reducing spurious aborts is by serializing a read-only transaction

R before any concurrent update transaction. The intuition is that read-only transactions do not

write to shared variables and, consequently, are not visible to other transactions. Thus T1 is

allowed to commit in the example — many STMs skip validation for read-only transactions at

commit-time [Dice et al., 2006,Felber et al., 2008,Fernandes and Cachopo, 2011] because they

can be safely serialized in the past. Hence, in the example, we obtain the serialization order of

T1 preceding T2, even though they execute the commit procedure in the opposite order.

Let us now consider T3, which is an update transaction that modifies shared variables.

The execution shown for T3 dictates its abort in state of the art, practical STM algorithms,

e.g., [Felber et al., 2010a,Dalessandro et al., 2010]. To minimize overheads, these STMs often

rely on a simple validation scheme, which allows update transactions to commit only if they

can be serialized at the present time, i.e., after every other transaction committed so far (in the

example, time 6). This validation mechanism has been systematically adopted by a number of

STM algorithms (and database concurrency control schemes [Bernstein et al., 1987,Adya, 1999]),

for which reason we refer it as classic validation rule.

According to this rule, a transaction T aborts when conducting the validation (possibly at

commit-time) if a concurrent transaction committed a new value to some variable, for which T

read a stale value. In the example, when T3 is validated at commit, the next pointer of element

A is found to have been updated after T3 read it, causing T3 to abort. Notice, however, that this

abort is spurious, given that T3 could have been safely serialized “in the past”, namely before T2,

yielding the equivalent sequential history T1 → T3 → T2.

On the other hand, serializing update transactions in the past is not always possible, as
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write A.next = B

head A D E

T2 inserts item B T3 removes item E

read head.next: A

read A.next = D

write B.next = D

read head.next: A

read A.next: D

read D.next: E

write D.next = E.next

rw

1
2
3
4
5

Linked List

commit: ok

read head.next: A

read A.next: D

T1 contains D?

...

commit: ok

rw

commit: abort6

......

Figure 4.1: Possible execution for three transactions with an STM when accessing a sorted list.

their effects could have been missed by concurrently committed update transactions. This would

be the case, for instance, if T3 had also attempted to insert element C, missing the concurrent

update of T2 and overwriting A.next (de facto removing B from the list). If one considers the

serialization graph [Adya, 1999], then in such a scenario the graph would be cyclic, for which the

serializability theorem dictates that T3 could not be spared from aborting [Bernstein et al., 1987].

The intuition is that it would be impossible to commit T3 without creating a contradiction of

dependencies between some committed transactions. We formally present these concepts, namely

that of the serializability graph, later in Section 4.4.1.

Overall, minimizing spurious aborts, in a practical way, requires designing algorithms ca-

pable of deciding efficiently (i.e., without checking the full serialization graph) when update

transactions can be serialized in the past.

4.2 Overview

In this chapter we present an algorithm to efficiently tackle the problem identified above: the

Time-Warp Multi-version (TWM) is a multi-versioned STM that strikes a new balance between

permissiveness and efficiency to reduce spurious aborts.

The key idea at the basis of TWM is to allow an update transaction, which missed some writes

produced by a concurrent committed transaction T ′, to be serialized “in the past”, namely before

T ′. Unlike TM algorithms that ensure permissiveness [Ramadan et al., 2009,Keidar and Perel-

man, 2009], TWM exclusively tracks the direct conflicts (more precisely, anti-dependencies [Adya,
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1999]) developed by a committing transaction, avoiding onerous validation of the entire conflict

graph. Thus, TWM’s novel validation is sufficiently lightweight to ensure efficiency, but it can

also accept far more histories than state of the art, efficient TM algorithms that only allow the

commit of update transactions “in the present” (using the classic validation rule).

We also contribute to the theoretical knowledge on the reduction of spurious aborts by

studying the Input Acceptance [Gramoli et al., 2010] of several STMs, including Time-Warp.

Furthermore, with respect to progress guarantees, we provide a detailed algorithm to implement

TWM with lock-freedom. Concerning safety properties, we prove that TWM ensures Virtual

World Consistency (VWC) [Imbs and Raynal, 2012] (see Section 2.2.1), which we recall also

provides consistency guarantees on the snapshots observed by transactions that abort (besides

Serializability for committed transactions). This means that TWM prevents typical problems

(such as infinite loops and run time exceptions) such as those that arise from observing incon-

sistent values, which would not be producible in any sequential execution.

We present an extensive experimental study comparing TWM with five other STMs repre-

sentative of different designs, guarantees and algorithmic complexities. This study was conducted

on a multi-core machine with 64 cores using a breadth of TM benchmarks. The results highlight

gains up to 9×, with average gains across all benchmarks and compared TMs of 65% in high

concurrency scenarios, thus contributing to improve the performance robustness in the scope of

STMs.

Finally, we highlight also the generality and extensibility of this idea, namely by applying

Time-Warping also to a Distributed TM (DTM) (such as those described in Section 2.6). We

believe this is noteworthy, as it illustrates the significance of this contribution to several domains,

hence increasing its relevance and widening its applicability.

The remainder of this chapter is structured as follows. In Section 4.3 we discuss related work.

Then we provide a high-level overview of Time-Warp, and a simple lock-based implementation,

in Section 4.4. Based on the rules that we present for Time-Warp, we then conduct a theoretical

analysis on the correctness criteria achievable by TWM, as well as on its ability to avoid spurious

aborts (Sections 4.5 and 4.6). Afterwards, we present an optimized algorithm for TWM in

Section 4.7, with the main key feature of ensuring lock-freedom. Section 4.8 introduces our

extensive experimental study. Finally we summarize the extension of Time-Warp to a DTM in

Section 4.9.
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4.3 Related Work

A well known technique to reduce conflicts is to design concurrency controls that ensure

that read-only transactions can never be aborted. This idea has been formally characterized

as MV-Permissiveness [Perelman et al., 2010], as explained in Section 2.2.2, which is typically

implemented with multi-versioned STM algorithms [Perelman et al., 2011,Diegues and Cachopo,

2013,Lu and Scott, 2013] (although a single-version algorithm has been proposed also to provide

it [Attiya and Hillel, 2011]). Here, we seek to reduce spurious aborts even further than MV-

Permissiveness.

Several TM proposals were designed with the main concern of reducing spurious aborts.

As presented earlier in the background on TM literature, there are works targeting different

consistency criteria (Serializability, VWC, and Opacity) and pursuing Permissiveness using both

probabilistic and deterministic techniques. These design decisions have a strong impact on several

important details of these algorithms. Nevertheless, it is still possible to coarsely distinguish them

into two classes:

1. Algorithms [Ramadan et al., 2009,Gramoli et al., 2010,Keidar and Perelman, 2009] that

instantiate the full transactions’ conflict graph and ensure consistency by ensuring its

acyclicity [Papadimitriou, 1979];

2. Algorithms [Guerraoui et al., 2008,Aydonat and Abdelrahman, 2012,Crain et al., 2011] that

determine the possible serialization points of transactions by using time intervals, whose

bounds are dynamically adjusted based on the conflicts developed with other concurrent

transactions (interval-based approaches).

Concerning the first class of algorithms, which rely on tracking the full conflict graph, these

are generally recognized (often by the same authors [Gramoli et al., 2010,Keidar and Perelman,

2009]) to introduce excessive overhead to be used in practical systems. Interval-based algorithms,

in the second class, have more efficient implementations but allow some spurious aborts. As such,

they tend to have somewhat costly commit procedures that are not advantageous all the time,

thus hindering their viability in various practical scenarios as we show in our evaluation.

In contrast, our Time-Warp proposal leverages on the lessons learnt from prior art and

identifies a sweet spot between efficiency (i.e., avoiding costly bookkeeping operations) and the
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ability to avoid spurious aborts: (1) TWM deterministically accepts many common patterns

rejected by practical TM algorithms, by tracking only direct conflicts between transactions; and

(2) it exploits multi-versioning to further reduce aborts and achieve MV-Permissiveness.

We summarize this comparison of Time-Warp, with other STMs that aim to reduce the

number of spurious aborts, in Table 4.1.

We highlight that the Online Permissive STMs, which perform tracking of the full conflict

graph, still yield some spurious aborts in practice (although less than other solutions) due to

the need for performing deadlock/cycle detection over the conflict graph in a practical way. To

do so, a practical implementation would typically resort to timeouts, which are thus responsible

for some spurious aborts. In comparison, Time-Warping is also able to reduce spurious aborts

with a decentralized approach — i.e., there is no single location for the whole meta-data of

the system to be maintained — and by monitoring only direct conflicts between transactions

— this is in contrast with the approaches that instantiate and maintain the whole graph of

conflicts. Furthermore, it ensures a correctness criteria that avoids inconsistent snapshots for

any transactions (as formally specified by the VWC criterion), and provides a strong progress

guarantee.

Another approach that may serve for reduction of conflicts is Transactional Boosting [Herlihy

and Koskinen, 2008]. Boosting creates a transactional object (namely, a collection) out of a black

box concurrent implementation of that object. This is performed by using an input definition of

the commutativity of each operation of the object specification (as well as inverse operations).

As a result, conflict detection can be performed using higher-level semantics rather than low-level

accesses to transactional variables. However, Boosting is not generalizable beyond objects whose

operations commute. Furthermore, it is also a pessimistic approach that relies on locking, and

can weaken the progress guarantees originally provided by the underlying STM.

TWM also shares commonalities with Serializable Snapshot Isolation (SSI) [Cahill et al.,

2008], a technique proposed for Database Management Systems, which enhances Snapshot Isola-

tion [Berenson et al., 1995] DBMSs to provide Serializability. In particular, both schemes track

direct (anti-dependency [Adya, 1999]) conflicts between transactions to detect possible Serializ-

ability violations. However, the two algorithms differ significantly both from a theoretical and a

pragmatic standpoint. First, unlike TWM, SSI does not ensure MV-Permissiveness (i.e., SSI can

abort read-only transactions). Further, SSI was designed to be layered on top, and guarantee
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inter-operability with, a Snapshot Isolation concurrency control mechanism designed to work

in disk-based DBMS environments. Hence, SSI relies on techniques (e.g., a global lock-table

that needs to be periodically garbage collected to avoid spurious aborts) that would have an

unbearable overhead in a disk-less environment, such as in TM.

Finally, TWM draws inspiration from Jefferson’s Virtual Time and Time-Warp concepts [Jef-

ferson, 1985], which also aim at decoupling the real-time ordering of events from their actual

serialization order. In Jefferson’s work, however, Time-Warp is used to reconstruct a safe global

state. In TWM, instead, the time-warp mechanism injects “back in time” the versions produced

by transactions that observed an obsolete snapshot, with the ultimate goal of reducing spurious

aborts.

4.4 Time-Warp

This section presents the Time-Warp Multi-version algorithm (TWM). We begin by intro-

ducing some preliminary notations and assumptions in Section 4.4.1. We then explain the idea

of Time-Warp in high-level terms in Section 4.4.2. Finally, in Section 4.4.3, we present a simple

lock-based implementation of our proposal. This allows us to focus on the core of the idea,

avoiding introducing, at least for the moment, additional optimizations that would make it more

complex to reason on its correctness. An optimized, lock-free version of TWM will be presented

later, in Section 4.7.

4.4.1 Preliminary Notations and Assumptions

We consider a conventional transaction execution model [Adya, 1999,Bernstein et al., 1987]

in which the transactions can generate the following set of operations: a transaction starts with

a begin operation, followed by a sequence of read and write operations on shared variables (i.e.,

data items), and can be finalized either with a commit or abort operation. The operations of a

transaction are totally ordered, and every transaction Ti is uniquely identified by their suffix i.

Furthermore, two operations from different transactions are said to conflict if they operate on

the same shared variable and at least one the operations is a write.

Given a set of transactions S produced by a run of a Multi-Versioning Concurrency Control

(MVCC) TM algorithm, a history H over S is defined by two parts: ≺H and �. The latter,
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�, is a total order on the set of committed data item versions for each shared variable. The

former, ≺H, is a partial order over the set of operations of all transactions in S, such that: 1) ≺H

preserves the total order among each operation of Ti ∈ S, and 2) every two conflicting operations

are ordered by ≺H.

We denote with DSG(H) a Direct Serialization Graph over a history H, i.e., a directed graph

containing: a vertex for each committed transaction in H; an edge from a vertex corresponding

to a transaction Ti to a vertex corresponding to transaction Tj , if there exists a read/write/anti-

dependency from Ti to Tj . These edges are labelled with the type of the dependency: (1)

A
wr−→ B when B read-depends on A because it read one of A’s updates; (2) A ww−−→ B when B

write-depends on A because it overwrote one of A’s updates; (3) A rw−→ B when B anti-depends

on A because A read a version of a variable for which B commits a fresher version (according to

the version order �). We also refer to DSG(H) as the conflict graph.

4.4.2 Algorithm Overview

Typical MVCC algorithms [Bernstein et al., 1987] allow read-only transactions to be serial-

ized “in the past”, i.e., before the commit event of any concurrent update transaction. Conversely,

they serialize an update transaction T committing at time t “in the present”, by: (1) ordering

versions produced by T after all versions created by transactions committed before t; (2) per-

forming the classic validation, which ensures that the snapshot observed by T is still up-to-date

considering the updates generated by all transactions that committed before t. We note that this

approach is conservative, as it guarantees serializability by systematically rejecting serializable

histories in which T might have been safely serialized before T ′.

The key idea in TWM is to allow an update transaction to sometimes commit “in the

past”, by ordering the data versions it produces before those generated by already committed,

concurrent transactions. In this case we say that T performs a time-warp commit. An example

illustrating the benefits of time-warp commits is shown in Figure 4.2(a): by adopting a classic

validation scheme, B would be aborted because it misses the writes issued by the two concurrent

transactions A1 and A2; however, B can be safely serialized before both transactions that anti-

depend on it, which is precisely what TWM allows for, by time-warp committing B.

To implement the time-warp abstraction efficiently, TWM orders the commit events of up-
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date transactions according to two totally ordered, but possibly diverging, time lines. The first

time line reflects the natural commit order of transactions (or, briefly, commit order), which is

obtained by monotonically increasing a shared logical (i.e., scalar) clock and assigning the corre-

sponding value to each committed transaction. TWM uses this time line to identify concurrent

transactions and to establish the visible snapshot for a transaction upon its start. The actual

transaction serialization order (and hence the version order) is instead determined by means of

a second time line, which reflects what we call the time-warp commit order and that diverges

from natural commit time order whenever a transaction performs a time-warp commit. TWM

keeps track of the two time lines by associating each version of a variable with two timestamps,

namely natOrder and twOrder, which reflect, respectively, the natural commit and the time-

warp commit order of the transaction that created it.

We denote as N (T ), respectively T W(T ), the function (having the set of transactions that

commit in H as domain, and N as co-domain) that defines the total order associated with

the natural, respectively time-warp, commit order. Further, we write T ≺N T ′, respectively

T ≺T W T ′, whenever N (T ) < N (T ′), respespectively T W(T ) < T W(T ′).

We start by discussing how to determine the serialization order of transactions that perform

a time-warp commit. Next we describe the transaction validation logic. Finally, we explain how

read and write operations are managed.

Time-warp Commit: TWM establishes the time-warp order of a committed update transaction

B (T W(B)) as follows:

Rule 1 Consider that B misses the writes of a set of committed transactions AS. This set of

transactions executed concurrently with B (i.e., the transactions in AS anti-depend on B) and

committed before B (i.e., max(N (AS)) ≺ B). Let A be the first transaction in AS according

to the natural commit order. Then T W(B) = N (A), which effectively orders B before the

transactions in AS, namely those whose execution B did not witness. The versions of each

variable updated by B are timestamped with T W(B) and added to the corresponding versions’

chains according to the time-warp order.

The above rule is exemplified by the history illustrated in Figure 4.2(a): as both A1 and

A2 perform a regular commit, their time-warp order T W and natural commit order N coincide;
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Figure 4.2: Example histories with three transactions each. The dependency edges are labelled
according to the operations they connect (nomenclature of [Adya, 1999]).

conversely, as B time-warp commits due to anti-dependency edges developed towards A1 and

A2, then B is serialized by TWM before A1 (which commits before A2 according to N ), and is

assigned a serialization order T W(B) = N (A1) = 1.

Validation Rule: As we will see shortly, the version visibility rule of read-only transactions

ensures that these can always be correctly serialized, without the need for any validation phase.

Update transactions, conversely, undergo a validation scheme that aims at detecting a specific

pattern in the DSG, named triad. A triad exists whenever there is transaction T that is both the

source and target of anti-dependency edges from two transactions T ′ and T ′′ that are concurrent

with T (where, possibly, T ′ = T ′′, i.e., there are only two mutually anti-dependent transactions).

We call T a pivot, and define the TWM validation scheme as follows:

Rule 2 A transaction fails its validation if, by committing, it would create a triad whose pivot

time-warp commits.

In other words, TWM deterministically rejects schedules in which two conditions must hap-

pen: 1) a pivot transaction T misses the updates of a concurrent transaction T ′; and 2) a

concurrent transaction T ′′ (possibly T ′) misses in its turn the updates of the pivot transaction
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T . Note that the first condition corresponds to the classic validation rule, and that the second

condition (which restricts the set of histories rejected by TWM) is what allows to reduce spu-

rious aborts with respect to state of the art STMs. Note also that a pivot must be an update

transaction because a read-only transactions cannot be the target of an anti-dependency.

Figure 4.2(c) exemplifies Rule 2: when B is validated during its commit phase, TWM

detects that B is the pivot of a triad including also A and C, and it would have to time-warp

commit before A. Consequently, B is aborted; this history is indeed non-serializable. Note that

B reaches that conclusion by checking solely the direct anti-dependencies it developed, which

means that TWM can still generate some spurious aborts, for instance in case C did not issue

r(y) in Figure 4.2(c)1. The TWM design choice of avoiding to check indirect dependencies (i.e.,

dependencies developed by transactions different from the one being validated) aims to seeks a

pragmatical trade-off between the cost of validating transactions and the number of serializable

histories that it rejects.

Read and Write operations: It remains to discuss how TWM regulates the execution of read

and write operations. Write operations are privately buffered during transaction’s execution

phase, and are applied only at commit time, in case the transaction is successfully validated.

To determine which versions of a variable a transaction should observe, TWM attributes to a

transaction, upon its start, the current value of the shared logical clock. We call this value the

start of a transaction, S(T ). TWM uses distinct version visibility rules for read-only and update

transactions:

Rule 3 If a read-only transaction T issues a read operation on a variable x, it returns the most

recent version of x (according to the time-warp order) created by a transaction T ′, such that

T W(T ′) ≤ S(T ). If T is an update transaction, it is additionally required that N (T ′) ≤ S(T ).

This prevents update transactions from observing versions produced by concurrently time-warp

committed transactions.

The rationale underlying the choice of using different visibility rules for read-only and update

transactions is of performance nature. TWM is designed to guarantee that read-only transactions

1This is unavoidable unless one performs expensive checks for cycles in the entire DSG. A detailed discussion
on the set of histories accepted by TWM, based on the Input Acceptance framework [Gramoli et al., 2010] can
be found in Section 4.6.
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are never aborted. As a consequence, in order to preserve correctness, TWM must ensure that

the snapshot observed by a read-only transaction T includes all transactions serialized before T ,

including time-warp committed ones (see transaction C in Figure 4.2(b)). The trade-off is that,

in order to be sheltered from the risk of abort, a read-only transaction T must perform visible

reads to ensure that concurrent update transactions can detect anti-dependencies originating

from T (necessary to implement Rule 2). The intuition is that the combination of the triad-

based validation rule and of the visible reads guarantees that an update transaction T can only

time-warp commit provided that no concurrent read-only transaction has read any of the items

that T wrote. Figure 4.2(c) shows a scenario in which the read-only transaction C commits and,

using visible reads, allows pivot B to detect a potential violation of Rule 2, and, hence, to abort.

On the other hand, adopting visible reads for update transactions would not render them

immune to aborts. Hence, TWM spares them from the cost of visible reads during their execution.

Conversely, TWM adopts a lightweight approach ensuring that the snapshot visible for an update

transaction T is determined upon its start, and prevent it from reading versions created by

concurrent transactions that time-warped. This guarantees that the snapshot observed by T is

equivalent to one producible by a serial history defined over a subset of the transactions in H,

even if T aborts. Note though that according to Rule 3 update transactions are also allowed to

read the versions committed by a transaction that time-warp committed, provided that the two

transactions are not concurrent.

4.4.3 Pseudo-Code Description

We now present an algorithm implementing the proposal of Time-Warp. In order to ease

presentation, we begin by showing a lock-based algorithm, which we later extend to guarantee

lock-freedom in Section 4.7. The pseudo-code of the lock-based algorithm is reported in Algo-

rithms 2-5. In Table 4.2 we describe the metadata and structures used in the pseudo-code for

ease of readability.

Any transaction tx starts by reading the global logical clock (globalClock), which defines

S(tx). In the read operation we first check for a read-after-write by the same transaction. Oth-

erwise, if the reader is a read-only transaction, it registers the read in the readers set associated

with the variable, see line 11. After that, the read-only transaction synchronizes with potential

concurrent writers, by checking the lock of the variable, with the objective of making sure that
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Table 4.2: Data-structures used in the TWM algorithms that follow.

Struct Attribute Description

Var
latestVersion pointer to the most recent Ver of this Var

readers set of Txs that read this variable
lock lock associated with the variable

Ver

value the value of the version
natOrder timestamp of the natural commit order of the version
twOrder timestamp of the time-warp order of the version

prevVersion pointer to the version overwritten by this one

Tx

writeTx false when this Tx is identified as read-only
readSet not used in read-only Tx
writeSet not used in read-only Tx
start timestamp of the globalClock when this Tx started
source true when another transaction anti-depends on Tx
target true when Tx anti-depends on another transaction

natOrder timestamp of the natural commit order of this Tx
twOrder timestamp of the time-warp order of this Tx

either the writer sees the visible read or that the read-only waits for the writer to conclude its

commit phase. To conclude the read operation, we iterate through the versions ordered by T W

until a condition is satisfied that reflects Rule 3.

Note that a read-only transaction that commits at time t can be removed from the readers

sets when there is no update transaction U alive that started at time t or after. This is a process

analogous to the garbage collection of multi-versions such as that employed in JVSTM [Fernandes

and Cachopo, 2011] and SMV [Perelman et al., 2011], which TWM implements as well, as

discussed in Section 4.4.4. This mechanism is not strictly needed for correctness and, as such, it

is not detailed in the pseudo-code to avoid unnecessarily cluttering its presentation.

As mentioned before, TWM avoids any validation for read-only transactions, which always

return immediately and successfully from the commit procedure. For update transactions, the

commit function starts by validating the writes and reads according to Rule 2 in lines 58-59.

To validate each write (function handleWrite), transaction tx checks whether there ex-

isted a concurrent transaction that read the variable since tx started, meaning there is an anti-

dependence from that reader to tx. When validating a read (function handleRead), the update

transaction first registers in the readers of the variable (similar to what read-only transactions

do during execution). Then tx is said to be the source of an edge if tx read a variable and there

exists a version for it that was committed after tx started. This means that such version was not
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Algorithm 2: Simple lock-based STM using TWM (1/4).
1: begin(Tx tx, boolean isWriteTx):
2: tx.start ← globalClock . corresponds to S(tx)
3: tx.natOrder ← ⊥ . transaction is alive
4: tx.writeTx ← isWriteTx

5: read(Tx tx, Var var):
6: if tx.writeTx
7: if ∃ ‹var, value› ∈ tx.writeSet
8: return value . tx had already written to var
9: tx.readSet ← tx.readSet ∪ var . performed by update txs

10: else
11: var.readers ← var.readers ∪ tx .executed by read-only txs
12: wait while is-locked(var.lock) . ensure a concurrent committer sees the visible read
13: Ver version ← var.latestVersion
14: while (version.twOrder > tx.start) ∨ . rule 3 for read-only tx

(tx.writeTx ∧ version.natOrder > tx.start) do . ...and for update tx
15: if (tx.writeTx ∧ version.natOrder 6= version.twOrder)
16: abort(tx) . early abort update tx due to rule 2
17: version ← version.prevVersion
18: return version.value

19: write(Tx tx, Var var, Value val):
20: tx.writeSet ← (tx.writeSet \ ‹var, _› ) ∪ ‹var, val›

in the snapshot of tx and thus an anti-dependency exists from tx to the transaction (say B) that

produced that version. In such case, tx tries to time-warp commit and serialize before B. In the

case that B had time-warp committed — that is known if B’s time-warp and natural commit

order differ from each other — then tx now fails to commit (as exemplified in Figure 4.2(d) with

transaction C conducting the validation). In that case, note that B had time-warp committed,

so if tx now committed as well, B would become a pivot breaking Rule 2. This check is also

performed for update transactions during the read operation (line 16) in order to early abort

them.

Also note that each anti-dependency, of which tx is the source, is stored locally during the

commit procedure (line 51). This is used to implement the time-warp commit according to

Rule 1 (see line 66). At this point tx aborts only if it raised both flags (source and target in

line 61 and exemplified by Figure 4.2(c) with B conducting the validation). Otherwise, N (tx)

is computed by atomically incrementing the global clock and reading it. The new writes are

committed and stamped with both T W(tx) (as its version) and N (tx) (as the time at which it

was created). Function createNewVersion places each committed write in the list of versions

by using T W(tx) to establish the order. Because this order is non-strict, there may occur time-
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Algorithm 3: Simple lock-based STM using TWM (2/4).
21: createNewVersion(Tx tx, Var var, Value val):
22: Ver newerVersion ← ⊥
23: Ver olderVersion ← var.latestVersion
24: while tx.twOrder < olderVersion.twOrder
25: newerVersion ← olderVersion
26: olderVersion ← olderVersion.prevVersion
27: if tx.twOrder = olderVersion.twOrder
28: return . no tx will ever read this value, skip it
29: Ver version ← ‹val, tx.natOrder, tx.twOrder, tx, olderVersion›
30: . insert according to time-warp order...
31: if newerVersion = ⊥
32: var.latestVersion ← version . ...as the latest version
33: else
34: newerVersion.prevVersion ← version . ...or as an older version

Algorithm 4: Simple lock-based STM using TWM (3/4).
35: handleWrite(Tx tx, Var var): . check if tx is the target of an edge
36: acquire-lock(var.lock)
37: . lines 11, 12 and 36 ensure readers are either visible to tx or blocked waiting
38: for all Ti ∈ var.readers
39: . detect concurrent transactions that read var
40: if Ti.natOrder ≥ tx.start ∨ Ti.natOrder = ⊥
41: tx.target ← true

warp clashes between transactions, i.e., A =T W B. For a set of transactions that time-warp

clash and write to the same variable k, createNewVersion keeps only the update to k of the

transaction T that has the least value for N (the other transactions execute line 28). In other

words, the transactions in a time-warp clash are serialized in the inverse order of N , because the

one that happened earlier according to the natural commit order was missed by all others in the

clash.

4.4.4 Garbage Collection and Privatization

Garbage Collection: The time-warp commit mechanism does not raise particular issues for

the garbage collection of versions. Indeed, it can rely on standard garbage collection algorithms

for MVCC schemes that maintain any version that can possibly be read by an active transaction

(as in different implementations in [Lu and Scott, 2013,Fernandes and Cachopo, 2011,Perelman

et al., 2011]). The key idea of those algorithms is the following: assume that T is the oldest active

transaction, with S(T ) = k; then versions up to (and excluding) k can be garbage collected —

note that the newest version is preserved regardless of this condition.



4.4. TIME-WARP 87

Algorithm 5: Simple lock-based STM using TWM (4/4).
42: handleRead(Tx tx, Var var): . check if tx is the source of an edge
43: . tx can now do visible reads without affecting its validation
44: var.readers ← var.readers ∪ tx
45: wait while is-locked(var.lock) by tx′ 6= tx
46: . check writes committed concurrently to tx’s execution
47: Ver version ← var.latestVersion
48: while version.natOrder > tx.start
49: if version.natOrder 6= version.twOrder
50: abort(tx) . rule 2
51: tx.antiDeps.add(version.natOrder) . used to compute T W(tx)
52: tx.source ← true
53: version ← version.prevVersion

54: commit(Tx tx):
55: if !tx.writeTx
56: return . read-only txs never abort
57: . check for rw edges from/to concurrent txs
58: ∀var ∈ tx.writeSet do: handleWrite(tx, var)
59: ∀var ∈ tx.readSet do: handleRead(tx, var)
60: if tx.target ∧ tx.source
61: abort(tx) . rule 2
62: tx.natOrder ← incAndFetch(globalClock) . compute N (tx)
63: if (tx.antiDeps = ∅)
64: tx.twOrder ← tx.natOrder . T W(tx) = N (tx)
65: else
66: tx.twOrder ← min(tx.antiDeps) . compute T W(tx)
67: ∀ ‹var, value› ∈ tx.writeSet do:
68: createNewVersion(tx, var, value)
69: release-lock(var.lock)

One may argue that a problematic scenario may arise if some update transaction U time-

warp committed such that T W(U) < k. For that to happen, there must exist some transaction Z

concurrent with U such that: U rw−→ Z andN (Z) < k. But this is impossible because we assumed

that T was the oldest active transaction, so Z could not be concurrent with U and obtain natural

commit order k. This clarifies the intuition behind the fact that garbage collection algorithms

remain unchanged even when using time-warp.

Privatization Safety: Another relevant concern is that of privatization safety [Marathe et al.,

2008]. This implies that a thread should be able to safely make some shared data only available

to it (i.e., to privatize it) by using a transaction P and work on it without transactional barriers

(i.e., instrumentation) after committing P . The challenge here is to ensure that concurrent

transactions do not interfere with the privatizing thread once is has committed P . Similarly

to the concern of garbage collection, time-warping does not present additional challenges to



88 CHAPTER 4. TIME-WARP: REDUCTION OF CONFLICTS IN TM

privatization.

Existing approaches to support privatization are based on the notion of quiescence, which

forces privatizing transactions such as P to wait for concurrent transactions to finish (using, if

possible, explicitly identified privatizing operations to avoid waiting when unnecessary). Such a

solution is adopted, for instance, in a recent multi-versioned STM [Lu and Scott, 2013]. The idea

at the basis of these techniques is to ensure that, once a privatizing transaction P has committed

at time t, then all concurrent transactions with P have also committed. As all transactions

starting after time t will be serialized after P (and will thus not be able to access the data

privatized by P ) and given that all transactions concurrent with P have concluded before P ’s

commit is finalized, any access to the data privatized by the tread that executed P can be

guaranteed to occur in absence of concurrency.

Note that these techniques are not affected by time-warping. The quiescence point defines

that P holds concurrent transactions from starting until all previous ones are finished. Whether

any of the running transaction time-warps only affects the serialization order. But regardless

of the serialization order, after the quiescence point, all new transactions will have a starting

timestamp ≥ t. As such, the quiescence still suffices for privatization safety in TWM.

4.5 Correctness Arguments

In this section we provide arguments on the safety of the Time-Warp proposal, according to

the Rules presented in Section 4.4.2, which were instantiated in the lock-based TWM algorithm

in Section 4.4.3.

We begin by discussing the serializability of committed transactions in TWM, by showing

that the serializability graph of histories accepted by the TWM algorithm is acyclic. Next, we

discuss the consistency guarantees provided also to non-committed transactions, namely Virtual

World Consistency [Imbs and Raynal, 2012].

4.5.1 Rejecting Non-Serializable Histories

In order to prove that TWM ensures serializability, we first define a strict total order (O)

on the transactions in the committed projection of H (noted H|C), and then we show that any



4.5. CORRECTNESS ARGUMENTS 89

edge between two transactions in DSG(H|C) is compliant with O. The strict total order O is

obtained from the non-strict total order defined by T W, which we recall can have ties in presence

of time-warp clashes, breaking ties as follows. We order update transactions in O using the time-

warp order and, whenever there is a time-warp clash, i.e., A =T W B, we use the natural commit

order N as a tie breaker and serialize B before A in O iff A ≺N B. This results in a strict total

order because N defines a strict total order as well. Any read-only transaction T is serialized in

O according to S(T ), which surely makes them coincide with some update transaction in O. To

tie-break, we place the read-only transactions always later than coinciding update transactions

in O. If two read-only transactions obtain the same value (because they started on the same

snapshot), any deterministic function suffices as a tie break (for instance, the identifier of the

thread that executed the transaction).

Lemma 4 TWM accepts only serializable histories.

Proof In order to prove the acyclicity of DSG(H|C), we show that for any committed trans-

actions A and B such that A ≺O B, there cannot be any edge from B to A in the DSG. We

demonstrate this claim by contradiction, considering individually each type of edge from A to

B.

First, let us assume that B ww−−→ A ∈ DSG(H|C). According to function createNewVer-

sion this is possible iff B ≺T W A. This, however, directly contradicts the initial assumption

A ≺O B, because it implies that A 4T W B.

Now let us consider that B wr−→ A. First suppose that A is an update transaction. Then,

according to line 14, A can read a version created by B iff N (B) ≤ S(A). However, the

time-warp commit timestamp of a transaction is always less or equal than its natural commit

timestamp (T W(B) ≤ N (B)); also, an update transaction A can only time-warp due to concur-

rent transactions, meaning they commit after S(A) and thus S(A) < T W(A). Hence, we obtain

T W(B) ≺ T W(A), contradicting the initial assumption. Now consider that A is a read-only

transaction. Then, according to line 14, A can read a version created by B (concurrent with A’s

execution) iff T W(B) ≤ S(A). Given that A is a read-only transaction, T W(A) = S(A), hence

T W(B) ≤ T W(A). The case T W(B) < T W(A) clearly contradicts the initial assumption. If

T W(B) = T W(A), then we note that A is a read-only transaction that clashes with B; accord-

ing to the rules we used to derive O then A is ordered after B in O, which again contradicts the
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initial assumption (A ≺O B).

Finally we consider that B rw−→ A. First assume that B is a read-only transaction. Then

the version written by A is not visible to B iff S(B) < T W(A). But since B is read-only, then

S(B) = T W(B), and we once again contradict the initial assumption. Assume now that B is an

update transaction, for which we have two possible cases depending on whether B commits before

or after A in the natural commit order. Consider the first case where B ≺N A. Then B performs

some visible read in line 44; later A triggers the condition in line 40 and sets A.target ← true.

Consequently A cannot time-warp commit or else both target and source flags would be true

and A would abort in line 61. Then T W(B) < N (A) = T W(A), which is a contradiction with

the initial assumed order. Lastly, consider the second case where A ≺N B. Then B triggers the

condition in line 48. If A time-warp commits, then B aborts in line 50. Otherwise, B adds A to

it’s antiDeps set which results in T W(B) ≤ (N (A) = T W(A)) (according to line 66). The case

where B ≺T W A trivially violates our initial assumption. The tie-break in the time-warp clash,

where B =T W A, is broken in the inverse natural commit order (recall that A ≺N B), which

also contradicts the initial assumption.

Hence, no matter which edge type we consider, it is always possible to reach a contradiction

with the assumption on the order O. Therefore TWM accepts only serializable histories.

4.5.2 Virtual World Consistency

So far we have argued that TWM ensures Serializability for committed transactions. But

running (or already aborted) transactions are equally important in TWM because certain phe-

nomena must be prevented with regard to them [Guerraoui and Kapalka, 2008,Imbs and Raynal,

2012]. The importance of this matter has also been highlighted in Section 2.2.1: if a transaction

executing alone is correct, then it should be correct when faced with concurrency under a TM

algorithm. This translates to a sense of consistency sufficiently strong in which hazards, such as

infinite loops or divisions by zero, are avoided even for transactions that need to be eventually

aborted.

The TWM algorithm guarantees such correctness, by ensuring Virtual World Consistency

(VWC), which we briefly recall as being stronger than Serializability, as it prevents transactions

(even those that abort) from observing snapshots that cannot be generated in any sequential
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history. More precisely, besides Serializability for committed transactions2, VWC also requires

that, for every aborted or running transaction T , there is a legal linear extension of the partial

order past(T), where past(T) is obtained from the sub-graph of DSG(H) containing all the

transactions on which T transitively depends, and removing any anti-dependencies. A legal linear

extension of past(T) is a linear extension Ŝ(T ) of past(T) where every transaction T ′ ∈ past(T )

observes values written by the most recent transaction that precedes T ′ in Ŝ(T ).

Theorem 5 TWM guarantees Virtual World Consistency.

Proof By Lemma 4 we proved the absence of cycles in DSG(H|C). Now we note that past(T) is

a subgraph of DSG(H), on which non-committed transactions are also considered; but they must

be sinks in that sub-graph (because anti-dependencies are removed) and thus we also argue that

past(T) is acyclic. It then follows that a linear extension Ŝ(T ) of past(T) must exist. Ŝ(T ) is

legal because transactions read the most recent version committed according to T W (see line 14).

But, since past(T) respects the T W order, we get that T must be legal and so we prove that

TWM provides VWC.

Another similar, albeit stronger, correctness criterion is that of Opacity [Guerraoui and

Kapalka, 2008]. In the following we discuss why TWM does not guarantee Opacity, and then

explain how TWM might be adapted to ensure this property. Briefly, the Opacity specification

requires 2 properties: O.1) the existence of an equivalent serial history HS that preserves the

real-time order of H; O.2) that every transaction in HS is legal. In other words, it requires that

every transaction in HS (even if aborted) always observe, upon a read operation, the version

generated by the latest write that occurred before it in HS . In the following we show that TWM

guarantees O.1, but not O.2.

Lemma 6 TWM preserves the real-time order of H in the equivalent serial history HS that it

produces.

Proof Assume by contradiction that N (A) ≺ S(B), and that TWM serializes B before A.

Then it must be that B time-warp committed and was serialized before A, namely B 4T W A.

2In fact the definition of VWC [Imbs and Raynal, 2012] allows either Serializability or strict Serializability
for committed transactions. As we show in Lemma 6, TWM does indeed provide strict Serializability, as it
preserves the real-time order of transactions in the equivalent sequential order that it produces besides providing
Serializability (as shown in Lemma 4).
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In order for B to undergo such a time-warp commit, there must exists a transaction Z such

that B rw−→ Z ∧ Z ≺N A. In other words, B must anti-depend on Z, despite the fact that Z

finishes before B starts. In such a case, however, by Rule 3, since B started in real time order

after the commit event of Z, it cannot miss a value produced by Z, or, in other words, Z cannot

anti-depend on B. Consequently, we reach an absurd, and prove, by contradiction, the Lemma.

On the other hand, TWM does not guarantee property O.2, as it allows two concurrent

transactions R and W to perceive two different serialization orders — this is a consequence of

the different version visibility conditions in line 14 according to the nature of the transaction.

These two orders, denoted respectively as HRS and HWS for transactions R and W , exist in case

a third concurrent transaction A time-warp commits before R and W . In this case, A may be

included in HRS but not included in HWS . But then, in such case, TWM would abort W due to

line 50, thus not endangering Serializability. Then, this makes HWS a legal sequential history,

but it is incompatible with the serial history equivalent to H, which we denoted as HS .

We stress that, the fact that HRS and HWS may not be compatible, is acceptable by VWC.

This is because any transaction in HWS that is not compatible with HS aborts, and in VWC

aborted transactions can observe legal linear extensions of different causal pasts. We also re-

mark that it would be indeed relatively simple to adapt TWM to ensure property O.2, and

hence Opacity: it would be sufficient to homogenize the logic governing the execution of read

operations for both read-only and update transactions, allowing update transactions to observe

the snapshots generated by concurrent transactions and forcing them to use visible reads, just

like read-only transactions. As discussed in Section 4.4, the choice of using non-visible reads

for update transactions is motivated by performance considerations. Indeed, by adopting VWC

rather than Opacity as reference correctness criterion, it is possible to maximize its efficiency via

lightweight conflict tracking mechanisms, while still providing robust guarantees concerning the

avoidance of unexpected errors due to inconsistent/partial reads.

In fact, thanks to Lemma 6, we can actually prove a slightly stronger correctness criterion

for TWM, named Strong VWC (SVWC). This criterion differs from VWC in that it requires

Strict Serializability instead of Serializability for committed transactions (i.e., those transactions

must respect real-time order).

Theorem 7 TWM guarantees Strong Virtual World Consistency.
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Proof This follows straightforwardly from Theorem 5 and Lemma 6.

4.6 On the Power of TWM to Reduce Spurious Aborts

In this section we seek to assess theoretically the power of our TWM algorithm to reduce

spurious aborts. For this we shall use the theory of Input Acceptance [Gramoli et al., 2010], which

we first introduced in Section 2.2.2 and of which we provide a summary in the next Section 4.6.1.

Afterwards, we conduct our analysis in Sections 4.6.2-4.6.6, and present the respective conclusions

in Section 4.6.7.

4.6.1 Background on Input Acceptance

The key idea of input acceptance [Gramoli et al., 2010] is to establish the relative power

of TMs to reduce the amount of spurious aborts. To do so, we must work with sequences of

input events (composing input patterns) that, when fed to a TM, cause the abort of at least one

transaction. In such case the input pattern is rejected by the TM. If the pattern results in no

aborts, then it is accepted. An input class is a set of input patterns, which is rejected only when

all its input patterns are rejected. Conversely, a class is accepted only when all the patterns it

comprises are accepted.

We now briefly summarize the notation used in the Input Acceptance framework [Gramoli

et al., 2010]. Its idea is to describe sequences of transactional data accesses using events Γxt ,

where Γ denotes a read (r) or write (w) event of transaction t over datum x. Start and commit

input events are respectively denoted by s, c. Moreover, an event π∗ means any of the above

(including itself, π∗) and | is the choice operator allowing a set of alternative inputs. To simplify

the new classes that we present next, we add to the previous notation the following: we assume

the inputs are well formed, i.e., all the data access events of a transaction Ti are preceded by

a unique si event and followed by a unique ci event; this means that a commit event ci cannot

occur as an expansion of a π∗, if there is a later event Γxi in the input sequence. We also assume

that there are no redundant events, i.e., a transaction does not perform the same access twice: if

there are two reads to the same variable, only the first one is over shared memory, and the second

re-uses a cached value of the first read; if there are two writes to the same variable, the first is

cached locally and only the latter one is applied to the STM library call. Further, we use the
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permutation operator ε as a suffix for a sequence of events to indicate any possible permutation

of those events. This permutation operator cannot violate the well-formedness of expressions,

i.e., it cannot permute a ci event after a Γxi event. As such, (rxi w
x
j π
∗)ε means an input with at

least: Ti reading x and Tj writing x, possibly with other events (in replacement of π∗), and in

any order (due to the permutations allowed by ε).

By comparing the input class of different TM algorithms (also called designs, in this context),

it is possible to define a hierarchy of TMs that captures their relative ability of avoiding spurious

aborts. We note that, in contrast, it would not be possible to achieve such a fine-grained

classification by using solely the permissiveness concept [Guerraoui et al., 2008]. To the best of

our knowledge, the only opaque-permissive (online) TM is AbortsAvoider [Keidar and Perelman,

2009]. Every other online TM is simply not permissive. Yet, in practice there exist significant

performance differences between such non-permissive TMs.

In the following sections we shall devise input patterns that capture the sequences of opera-

tions that lead some class of STM to abort at least one transaction. Under the Input Acceptance

framework we can then create a partially ordered hierarchy of classes of STMs ≺IA in which

STMi ≺IA STMk if STMk rejects only a strict subset of the input patterns that STMi rejects.

In other words, to prove that STMi ≺IA STMk one needs to show that the input class rejected

by STMk, denoted as Ck, is strictly contained in the input class rejected by STMi, denoted as

Ci. To help understand the intuition between each inclusion step Ck ⊂ Ci in our proofs, we

present figures of executions instantiated from the patterns; it is generally easier to understand

the intuition behind the inclusion by looking at those examples. Note that, for the moment, we

shall use only update transactions. We consider also transactions pre-declared as read-only, for

optimization purposes of avoiding their aborts (such as in the case of TWM), in the last part in

Section 4.6.7.

4.6.2 Invisible Writes Invisible Reads (IWIR)

We now start to characterize different TM designs, beginning with the Invisible Writes

Invisible Reads (IWIR) design, which is characterized by read operations that do not modify

shared memory and by write operations that are buffered in private memory until the transaction

is deemed successful (e.g., in TL2 [Dice et al., 2006]).
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C3 = π∗(rxp w
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Figure 4.3: Class C3 and a history output by a IWIR TM for the pattern shown.

In the work of [Gramoli et al., 2010], it was shown that all the inputs rejected by IWIR are

captured in the patterns of a class named C3. We present this class in Figure 4.3, along with an

example of a possible history output by a IWIR TM when fed with an input pattern included

in the class C3. The essence of this class is to capture the classic validation that ensures data

items read are still up-to-date at commit time. As we can see, C3 enforces only the existence of

a single anti-dependence between concurrent transactions Tp
rw−→ Tj , where Tj commits before

Tp (i.e., Tj ≺N Tp).

The other designs corresponding to Visible Reads Visible Writes (VWVR) (e.g., SXM [Guer-

raoui et al., 2005a]), and Visible Writes Visible Reads (VWIR) (e.g., TinySTM [Felber et al.,

2008]), were shown to have a lower input acceptance than IWIR in [Gramoli et al., 2010], so we

use the latter as a baseline in our work.

4.6.3 Time-Warp Multi-version

To study TWM our approach is to identify all conditions that can cause a transaction to

abort. We then devise an input class that captures the patterns representing those conditions,

i.e., the patterns rejected by TWM.

To simplify the presentation of the input acceptance of TWM, we do not consider the abort in

line 16, because it is an optimization for an early detection of transactions that would, otherwise,

eventually abort at commit-time. In particular, transactions that abort in line 16 would also

abort in line 50 because the verified assertions are the same in both cases (i.e., version.natOrder

> tx.start ∧ version.natOrder 6= version.twOrder) and versions that existed in the former case

will also exist in the latter (due to the garbage collection assumption, as stated in Section 4.4.4).

As such, this does not change the input acceptance of the algorithm.

Definition The following three sets of conditions (A, B, C) characterize all possible aborts in
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TWM (as presented in Algs. 2-5):

• A) In line 50 of Algorithm 5 of TWM, an update transaction Ti is aborted if it previously

read some variable x and now it finds a version committed concurrently by a time-warped

transaction Tp. In other words, there is a triad Ti
rw−→ Tp

rw−→ Tj . Furthermore, because Tp

time-warp committed due to Tj , it follows from Rule 1 of TWM that Tj ≺N Tp. For the

same reason, it follows that Tp ≺N Ti. An example of a history for this input is shown in

Figure 4.4(a).

• In line 61 of Algorithm 5 an update transaction Tp aborts because it is the pivot of a triad

and would have to time-warp commit (note that in A the aborting transaction, Ti, is not

the pivot). This can happen in two cases:

– B) There is a triad Ti
rw−→ Tp

rw−→ Tj . Furthermore, because Tp would time-warp

commit due to Tj , then it follows from Rule 1 that Tj ≺N Tp. Also, Tp notices the

visible read of Ti to y in lines 38-41, meaning that ryi precedes cp. An example of a

history for this input is shown in Figure 4.4(b).

– C) Or there exists a degenerate triad Ti
rw−→ Tp

rw−→ Ti. For the same reason as

above, it follows that Ti ≺N Tp. An example of a history for this input is shown in

Figure 4.4(c).

�

To map these conditions into the notation used in the Input Acceptance framework we rely

on the following mechanical transformations:

Anti-Dependence Rule (ADj,p) Natural Commit Rule (NCj,p)

conditions Tp
rw−→ Tj Tj ≺N Tp

input expressions
(
rxp w

x
j π
∗)ε cj π

∗ cp

These two rules for transformations follow the definitions of the anti-dependence (Sec-

tion 4.4.1) and natural commit order (Section 4.4.2). In addition to that, we add a π∗ event

to each transformation to allow the generation of inputs with other arbitrary restrictions (i.e.,

events that are well-formed). The Rule AD assumes that the events cp and cj shall be explicit
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Figure 4.4: The three scenarios in which TWM aborts a transaction. For the sake of presentation,
we omit variants of each scenario, in which the read/write events within a transaction may occur
in different orders and moments.

CtwA =
(
rxp w

x
j π
∗)ε (cj ryi wyp π∗)ε cp π∗ ci

CtwB =
(
rxp w

x
j π
∗)ε (cj ryi wyp π∗)ε cp

CtwC = (rxp w
x
i r

y
i w

y
p π∗)ε ci π

∗ cp

Ctw = CtwA | CtwB | CtwC

Figure 4.5: Class Ctw is composed by three sub-classes, for each of which there is an instantiation
example in Figure 4.5, respectively.

in any input pattern/class that uses this transformation, which prevents π∗ from expanding as

neither of them, and thus ensures that rxp cannot take place after cj (because the two transactions

are concurrent). We also add the ε permutation operator to allow the operations to occur in any

order, which is irrelevant for the anti-dependence definition because writes are private until the

commit is performed successfully.

Using the previous Definition 4.6.3 on the aborts of TWM, and the mechanical transforma-

tion of conditions into the Input Acceptance language, we now synthesize the input class Ctw,

shown in Figure 4.5, and prove that it captures the three sets of conditions aforementioned.

Lemma 8 Class Ctw captures all the patterns rejected by TWM.

Proof To prove this we use the mechanical transformations introduced before to derive, for each

one of the sets A, B, and C presented in Definition 4.6.3, the corresponding transcription using

the notation of the Input Acceptance framework.

The conditions in A require the triad Ti
rw−→ Tp

rw−→ Tj and the natural order of commits

Tj ≺N Tp ≺N Ti. Using the transformation rules we obtain the input class CtwA :
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transformation rules ADj,p (NCj,p ADp,i ) ε NCj,p NCp,i

input class CtwA

(
rxp w

x
j π
∗)ε (

cj r
y
i w

y
p π∗

)ε
cp π

∗ ci

The conditions in B require the triad Ti
rw−→ Tp

rw−→ Tj , the natural commit order Tj ≺N Tp

and that ryi precedes cp. We capture this in the input class CtwB :

transformation rules ADj,p (NCj,p ADp,i ) ε NCj,p

input class CtwA

(
rxp w

x
j π
∗)ε (

cj r
y
i w

y
p π∗

)ε
cp

Finally set C requires the degenerated triad Ti
rw−→ Tp

rw−→ Ti and natural commit order of

Ti ≺N Tp. We capture this in the input class CtwC :

transformation rules (ADi,p ADp,i)ε NCi,p

input class CtwC (rxp w
x
i r

y
i w

y
p π∗)ε ci π

∗ cp

We can now use this result to start placing TWM in the hierarchy with respect to the IWIR

design.

Theorem 9 TWM has a larger input acceptance than the IWIR design.

Proof By Gramoli et al. [Gramoli et al., 2010] we have that C3 captures all inputs rejected by

the IWIR design. By Lemma 8 we have that Ctw captures all patterns rejected by TWM.

To prove this Theorem we are left with showing that Ctw ⊂ C3. To do so, we show that

each of the sub-classes of Ctw, namely CtwA , CtwB and CtwC , can be obtained by restricting C3.

Consequently, Ctw generates a strict subset of the input patterns of C3.

Let us start with CtwA :

original C3 π∗ (rxp w
x
j π
∗)ε (cj π

∗)ε cp π
∗

add restrictions to obtain CtwA (rxp w
x
j π
∗)ε

(
cj r

y
i w

y
p π

∗)ε cpπ
∗ci

We now repeat the application of the restrictions to obtain CtwB :
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original C3 π∗ (rxp w
x
j π
∗)ε (cj π

∗)ε cp π
∗

add restrictions to obtain CtwB (rxp w
x
j π
∗)ε

(
cj r

y
i w

y
p π

∗)ε cp

And finally perform the same to obtain CtwC :

original C3 π∗ (rxp w
x
j π
∗)ε (cj π

∗)ε cp π
∗

renamed j to i π∗ (rxp w
x
i π
∗)ε (ci π

∗)ε cp π
∗

added restrictions
(
rxp w

x
i r

y
i w

y
p π

∗)ε ci π
∗ cp

reordering of events within ε to obtain CtwC

(
ryi w

y
p r

x
p w

x
i π
∗)ε ci π

∗ cp

It follows that Ctw ⊂ C3 and that TWM has a larger input acceptance than IWIR.

4.6.4 Interval-based

Several STMs, e.g., AVSTM [Guerraoui et al., 2008], TSTM [Aydonat and Abdelrahman,

2012] and IR_VWC_P [Crain et al., 2011], have implemented different variants of the Interval-

Based (IB) design. In the following, rather than trying to capture all the details of an existing

IB STM implementation, we consider a slightly more abstract, yet reasonably detailed, design

that is common to such implementations. This is an approach employed also in previous works

that rely on the Input Acceptance framework to simplify presentation and avoid delving into

irrelevant implementation details.

The IB design maintains a lower and upper bound for each transaction T (T.lb and T.ub),

which denotes the interval of possible values for T.ser, i.e., the serialization point for T . These

bounds are initialized with T.lb = 0 and T.ub = ∞. This interval of serialization values reflects

the dependencies and anti-dependencies of T : (i) when T reads a value committed by transaction

B, the algorithm enforces T.lb← max(T.lb, B.ser) to reflect that B serializes before T ; (ii) when

some transaction A commits, for each T whose read- and write-sets intersect on (at least) a data

item, it enforces T.ub← min(T.ub,A.ser) to reflect that T serializes before A.

The choice of the serialization point, given an interval of possible values, is implementation

specific. To allow a concrete comparison under the Input Acceptance framework, we consider the

strategy of TSTM [Aydonat and Abdelrahman, 2012]: if T.ub =∞ then T.ser = T.lb+t, where t

is the number of concurrent threads (i.e., a parameter of the system); otherwise, T.ser = T.ub−1.
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The rationale of this strategy is to reserve enough space for concurrent transactions to serialize

before T , if needed.

We now define under which conditions an IB TM aborts a transaction:

Definition A transaction Ti is aborted in the IB design if Ti’s interval for serialization is empty

during the commit-time validation. Otherwise Ti can choose any value between [Ti.lb, Ti.ub]

using the rule described above.

More formally, the conditions that lead the IB design to abort Ti are the following:

1. ∃ Ta : Ta
wr−→ Ti ∨ Ta

ww−−→ Ti

2. ∃ Tj : Ti
rw−→ Tj

3. Tj .ser < Ta.ser

In other words: (1) requires Ti to depend on Ta, which implies both Ta ≺N Ti and Ta.ser <

Ti.ser; (2) requires Ti to anti-depend on Tj , which implies both Tj ≺N Ti and Ti.ser < Tj .ser.

Hence, together with (3), this would create a contradiction, namely Ta.ser < Ti.ser < Tj .ser <

Ta.ser, which is why Ti is aborted (as the other two have already been assigned serialization

points).

�

Next we prove an upper bound on the patterns rejected by the IB design, which will later

be used to compare the input acceptance of the IWIR design. To help with this we create a new

transformation rule in addition to the two others previously presented (Rules AD and NC):

Dependency Rule (DEPa,i)

conditions Ta
ww−−→ Ti ∨ Ta

wr−→ Ti

input expressions (wya ca π
∗)ε ((ryi |w

y
i ) ci π

∗)ε

Lemma 10 Class Cib is an upper bound on the patterns rejected by the IB design.
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Cib = (wya ca π
∗)ε
(
(ryi | w

y
i )r

x
i w

x
j π
∗)ε(cj π∗)ε ci

Tj

Ta XTi
r(x)w(y)

w(x)

r(y)

Figure 4.6: Class Cib and an example history output by a TM using the IB design for a pattern
included in the class.

Proof To prove this Lemma we show how the set of necessary conditions for aborting a trans-

action in IB (as presented in Definition 4.6.4) can be expressed using the notation of the Input

Acceptance framework.

We ignore condition (3), which is hard to capture precisely using the Input Acceptance

framework. Because of this, the result input class encompasses more patterns than the ones

actually aborted by IB, and is hence an upper bound.

Conditions (1) and (2) are summarized as follows: (Ta
wr−→ Ti ∨ Ta

ww−−→ Ti), and Ti
rw−→ Tj .

By using the two previous tables of transformation rules from conditions to input expressions,

we get the upper bound on the patterns rejected by IB:

transformation rules DEPa,i ADj,i NCj,i

input class Cib (wya ca π
∗)ε
(
(ryi | w

y
i ) rxi w

x
j π
∗)ε (cj π

∗)ε ci

Next, we prove that IB has a larger input acceptance than the IWIR design by showing that

Cib ⊂ C3, where we recall that C3 captures the patterns rejected by the IWIR design.

Theorem 11 The IB design has a larger input acceptance than the IWIR design.

Proof By Gramoli et al. [Gramoli et al., 2010] we have that C3 captures all inputs rejected by

the IWIR design. By Lemma 10 we have that Cib is an upper bound on the patterns rejected by

the IB design, hence capturing all (and possibly more than) the patterns rejected by IB.

To prove this Theorem we are thus left with showing that Cib ⊂ C3. To do so, we proceed

similarly to the proof of Theorem 9 and add restrictions to the input class C3 until it becomes

equal to Cib:
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original C3 π∗ (rxp w
x
j π
∗)ε (cj π

∗)ε cp π
∗

rename p to i π∗ (rxi w
x
j π
∗)ε (cj π

∗)ε ci π
∗

add restrictions (wy
a ca π

∗)ε
(
rxi w

x
j (ryi | wy

i ) π
∗)ε (cj π

∗)ε ci

reordering within ε to obtain Cib (wya ca π
∗)ε

(
(ryi | wy

i ) r
x
i w

x
j π
∗)ε (cj π

∗)ε ci

Therefore we show that Cib ⊂ C3 and thus conclude that IB has a larger input acceptance

than IWIR.

4.6.5 Comparing TWM and IB

Theorems 9 and 11 state that both the TWM and IB designs have a larger input acceptance

than IWIR. The question now is to assess the relative power of TWM and IB. In doing so, we

arrive at the conclusion that they are incomparable.

Lemma 12 The IB design does not have larger input acceptance than TWM.

Proof To prove this we use an input pattern, which we call Pib, and show that it is rejected by

the IB design while being accepted by TWM:

input pattern Pib sp w
y
p cp sa w

y
a ca si sj r

y
i r

x
i w

x
j cj ci

One can see that this patterns is reject by IB as it can be generated from Cib, while ad-

ditionally ensuring condition (3) from Definition 4.6.4. The figure below illustrates, in detail,

the execution of the IB design when fed with Pib, also showing how the rule described in Defini-

tion 4.6.4 (taken from TSTM [Aydonat and Abdelrahman, 2012]) is used to assign the transaction

serialization points. Without loss of generality, we assume that a special transaction T0 initially

writes every variable with a default value and serializes on point 0 before every other transaction.

Note that t is the number of concurrent transactions in the system (hence ≥ 0), i.e., a parameter

of the strategy for assigning serialization points. By the figure, we can see that condition (3)

(i.e., Tj .ser < Ta.ser) holds and, hence, Ti is aborted.

When this pattern is fed to TWM, however, no transaction is aborted: by Rule 1 of TWM

it is necessary for a triad to exist for a transaction to abort, and we note that Pib contains only
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Tj

XTi
r(x)

w(x)

r(y)Ta
w(y)Tp

w(y)

Tp.ser = 0 + t Ta.ser = t + t

Tp.lb = 0 Ta.lb = t Ti.lb = 2t
Ti.ub = t

Tj.ser = 0 + tTj.lb = 0

Ti.lb > Ti.ub

one anti-dependency, that of Ti
rw−→ Tj , which is insufficient to generate a triad. Consequently

TWM accepts Pib, and the Lemma is proved.

Lemma 13 TWM does not have a larger input acceptance than the IB design.

Proof We prove this analogously to the previous case: i.e., we find a pattern that is rejected by

TWM but that is accepted by IB. For that we use an input pattern PtwA , generated from CtwA ,

which was shown to be rejected by the TWM design in Lemma 8.

input pattern PtwA sp sj r
x
p w

x
j cj si r

y
i w

y
p cp ci

We now argue that PtwA is accepted by IB as it does not abort any transaction given that

input pattern (contrarily to TWM, which aborts Tp as it is the pivot of a triad and it would

have to time-warp commit). As in the previous Lemma, we assume that a special transaction

T0 initially writes every variable with a default value and serializes on point 0 before every other

transaction. Then, we show that, when fed with this input pattern PtwA , the IB design is able

to find a serialization point for each transaction and commit all of them (with serialization order

Ti ≺ Tp ≺ Tj).

Tp

Ti

r(x) w(y)

r(y)Tj
w(x) Tj.ser = 0 + t

Tj.lb = 0 Ti.lb = 0 Ti.ub = t - 1

Tp.ser = t - 1Tp.lb = 0Tp.lb = 0 Tp.ub = t

Ti.ser = t - 2

As a result, IB accepts PtwA , which is rejected by TWM and thus we prove the Lemma.

Theorem 14 TWM and the IB design are incomparable with regard to input acceptance.
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Visible Writes Visible 
Reads (VWVR)

Visible Writes Invisible
 Reads (VWIR)

Invisible Writes 
Invisible Reads (IWIR) Serializability Graph Testing (SGT)

SXM
2PL

AbortsAvoider
SSTM

Interval based (IB)

TWM
DSTM

TinySTM
SwissTM

WSTM
TL2

TSTM
IR_VWC_P

AVSTM

JVSTM
SMV

MV-IWIR

Figure 4.7: Comparison of the input acceptance of Time-Warp with other TM designs.

Proof This follows trivially from Lemmas 12 and 13, as neither approach has larger input

acceptance than the other.

4.6.6 Serializability Graph Testing

Finally, we describe a design with higher input acceptance than TWM and IB. To do so,

we identify a design called Serializability Graph Testing (SGT). This design draws its key idea

from the Serializability Theorem [Bernstein et al., 1987]. This theorem states that a history H is

serializable if and only if the corresponding Direct Serialization Graph DSG(H) is acyclic. The

AbortsAvoider TM [Keidar and Perelman, 2009] explores this technique to ensure online-opaque-

permissiveness by maintaining an explicit DSG. On the other hand, SSTM [Gramoli et al., 2010]

also uses SGT, albeit it scatters the corresponding metadata across transactions. This means

there is no centralized (or even explicit) DSG; but this is an implementation detail that has no

impact from the perspective of input acceptance.

4.6.7 Revised Input Acceptance Hierarchy

We can finally revise the hierarchy originally presented in [Gramoli et al., 2010] according to

our results, as shown in Figure 4.7. By Theorems 9 and 11 we place TWM and IB above IWIR,

and by Theorem 14 we place them side by side.

So far, in our analysis, we considered solely update transactions. This was done because we

compare both single-versioned and multi-versioned TM designs, where the latter can determin-

istically avoid aborting read-only transactions [Perelman et al., 2010]. By accounting also for

read-only transactions in our input acceptance analysis, we introduce an additional design called

MV-IWIR. This design includes mv-permissive TMs based on IWIR algorithms and, aside from

this, uses the same validation rule to commit update transactions. Both JVSTM [Fernandes and
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Cachopo, 2011] and SMV [Perelman et al., 2011] exploit this design by using invisible reads,

deferred writes, and multi-versions to guarantee that read-only transactions never abort.

The only difference from IWIR to MV-IWIR is that read-only transactions do not abort.

This means that, by considering only update transactions, MV-IWIR also rejects all the patterns

included in C3. If read-only transactions are identified a priori, i.e., the start event of a read-only

transaction is annotated, then MV-IWIR achieves a larger input acceptance than IWIR. The

reason why TWM has a larger input acceptance than MW-IWIR is that, despite both being

mv-permissive, the class of update transactions rejected by TWM is a subset of that rejected by

(MV-)IWIR.

We additionally observe that IB is incomparable with MV-IWIR. On one hand, IB accepts

the example execution in Figure 4.3, which is rejected by MV-IWIR if Ti is a write transaction.

On the other hand, MV-IWIR accepts the example execution in Figure 4.6 if Ti is a read-only

transaction, which was shown to be rejected by IB. TWM remains incomparable with IB even

with read-only transactions, as the considerations concerning the existence of input patterns

accepted by IB and rejected by TWM (and vice versa) still apply.

This concludes our theoretical analysis of TWM, with the resulting hierarchy justifying

(together with our experimental study, which we shall present in Section 4.8) the ability of

time-warping of reducing spurious aborts in TM applications.

Q: 
isCommitted

: True
isCommitted

: True
isCommitted

: False

isCommitted
: False

isCommitted
: False

null

nullnull

E C A

D B

N(E) = 1 N(C) = 2 N(A) = 3

N(D) = 4 N(B) = 4

lastCommit lastEnqueued

next

active transactions
trying to commit/enqueue

CAS
CAS

Figure 4.8: Transactions D and B trying to commit with N = 4.
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4.7 A Lock-Free Optimized Algorithm

Recent work has motivated the adoption of lock-free synchronization schemes to enhance

scalability [Guerraoui et al., 2008, Fernandes and Cachopo, 2011] of TM implementations, for

which reason we now devise a practical and efficient algorithm that instantiate the rules described

in Section 4.4.2. The two main differences consist of the adoption of lock-free mechanisms to

ensure progress in our STM, as well as an efficient technique to replace the readers set of every

variable.

To make TWM lock-free we leveraged on the techniques presented in [Fernandes and Ca-

chopo, 2011] and adapted them to fit TWM. The main idea is that the commit of a transaction

T now considers three phases: (1) validate T ; (2) enqueue T in Q, a queue of committed (and

eventually finished) transactions; and (3) ensure that every transaction in Q (up to and including

T ) finishes by applying their write-sets to shared memory. As we shall see, the queue Q is at the

core of the lock-free commit procedure and, naturally, is implemented as a lock-free queue.

In fact, we do not use a shared global clock but, instead, use the queue to derive the natural

commit order : when a transaction T enqueues successfully (after some transaction P ) then T

computes N (T ) simply as N (P ) + 1. In other words, the natural commit order stems from the

order acquired by each transaction in Q. Figure 4.8 shows an example for this procedure, where

transactions D and B have conducted a validation successfully and attempt concurrently to

enqueue in Q — which explains why both tentatively compute 4 as their natural commit order.

Naturally, only one of the enqueues shall succeed, as the other compare-and-swap will fail and

the corresponding transaction shall restart the procedure.

To complement the pseudo-code description we rely on Table 4.3, which contains the struc-

tures used in our pseudo-code. In the following sections we shall walk through the Algorithms 6-10

that compose the lock-free TWM. To ease the understanding of these more complex algorithms,

we highlight the line numbers that correspond to additional logic with regard to the earlier

lock-based implementation.

4.7.1 Begin, Read and Write in a Transaction

Every transaction tx starts by computing its S(tx) during the begin function, i.e., obtains

a logical time that maps to a consistent snapshot of the shared memory that it can read. This
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Table 4.3: Updated data structures used in the lock-free TWM, with regard to Table 4.2 — the
new attributes, not used in the simple lock-based algorithm, are highlighted.

Struct Attribute Description

Var
readStamp timestamp when this Var was last read
latestVersion pointer to the most recent Ver of this Var

committingTx pointer to a Tx attempting to commit to this Var

Ver

value the value of the version
natOrder timestamp of the natural commit order of the version
twOrder timestamp of the time-warp order of the version

prevVersion pointer to the version overwritten by this one

Tx

writeTx false when this Tx is identified as read-only
readSet not used in read-only Tx
writeSet not used in read-only Tx
start timestamp of the when this Tx started
source true when another transaction anti-depends on Tx
target true when Tx anti-depends on another transacton

natOrder timestamp of the natural commit order of this Tx
twOrder timestamp of the time-warp order of this Tx

isCommitted true when the transaction is written-back
next pointer to the next (more recent) Tx enqueued in Q after this Tx

Q lastCommit pointer to Tx that was written-back (may not be the last, due to a race)
lastEnqueued pointer to Tx that was last enqueued for commit (head of the queue)

is simply derived from the natural commit order of the latest committed transaction in Q. The

logic embedded in lines 23-28 reflects the fact that the lastCommit pointer of Q may not be

up-to-date — it may not be pointing actually to the latest committed transaction. This is due

to performance reasons that shall be explained later in this document.

In the read function we replaced the usage of the readers set by a semi-visible readers

scheme. The semi-visible read procedure relies on a scalar associated with each variable (the

attribute readStamp) to capture the latest global clock at which some transaction read the

variable. Conceptually adding a transaction to the set of readers is implemented by applying

the current clock only if it is larger than the latest visible read (line 33). This corresponds to

a semi-visible read scheme because we do not track individually each reader (contrarily to more

onerous approaches [Gramoli et al., 2010, Aydonat and Abdelrahman, 2012, Guerraoui et al.,

2008,Keidar and Perelman, 2009]).

We also removed the lock associated with each variable. Instead, each variable has a com-

mittingTx attribute that may point to an update transaction attempting to commit a new value

to that variable. This part of the algorithm guarantees synchronization between the read-only



108 CHAPTER 4. TIME-WARP: REDUCTION OF CONFLICTS IN TM

Algorithm 6: Begin transaction, write and read functions for lock-free TWM.
1: begin(Tx tx, boolean isWriteTx):
2| tx.start ← getLatestCommit() . corresponds to S(tx)
3: tx.writeTx ← isWriteTx

4: write(Tx tx, Var var, Value val):
5: tx.writeSet ← (tx.writeSet \ ‹var, _› ) ∪ ‹var, val›

6: read(Tx tx, Var var):
7: if tx.writeTx
8: if ∃ ‹var, value› ∈ tx.writeSet
9: return value . tx had already written to var

10: tx.readSet ← tx.readSet ∪ var . performed by update txs
11: else
12| semiVisibleRead(tx, var) . performed by read-only txs
13| Tx writer ← var.committingTx
14| if writer 6= ⊥ ∧ not writer.isCommitted
15| Commit(writer) . help commit the writer
16: Ver version ← var.latestVersion
17: while (version.twOrder > tx.start) ∨ . rule 2 for read-only tx

(tx.writeTx ∧ version.natOrder > tx.start) do . ...and for update tx
18: if (tx.writeTx ∧ version.natOrder 6= version.twOrder)
19: abort(tx) . early abort update tx due to rule 2
20: version ← version.prevVersion
21: return version.value

22| getLatestCommit():
23| Tx lastCommitted ← Q.lastCommit
24| while lastCommitted.next 6= ⊥ do
25| Tx moreRecent ← lastCommitted.next . obtain the actual last committed tx
26| if moreRecent.isCommitted
27| lastCommitted ← moreRecent
28| return lastCommitted.natOrder

29| semiVisibleRead(Tx tx, Var var):
30| repeat
31| long ts ← getLatestCommit()
32| long lastRead ← var.readStamp
33| until lastRead ≥ ts ∨ CAS (var.readStamp, lastRead, ts) = success
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transaction tx and any such possible concurrent writer to the variable being read. As such, tx

invokes function semiVisibleRead, after which it checks for a possible writer transaction that

may have concurrently missed the semi-visible read.

If tx finds some writer transaction trying to commit an update to var, it helps the commit

of writer before proceeding with the read. We must now consider what a read-only R has to do

when faced with a variable undergoing commit by T (line 14). To preserve this procedure with

a non-blocking nature, we make R help decide the fate of T — this is implemented as invoking

Commit for T , which, naturally, is tailored to have concurrent threads attempting to commit

the same transaction. This is the fundamental idea of transactions helping each other, which is

typical in lock-free algorithms. This allows R to ensure progress for T and decide if the write of

T is visible to the snapshot of R or not, and in the positive case, safely read it.

The rest of the read function remains the same. We highlight that the condition for write

transactions is more demanding, as it may iterate over more versions than read-only transactions:

this is a consequence of the fact that read-only transactions perform the semi-visible read scheme,

which enables them to read fresher values with the guarantee of a consistent snapshot. This

avoids the need for a commit time validation, and is crucial in preserving the abort-freedom of

read-only transactions.

4.7.2 Lock-Free Commit Procedure

We now enhance the commit procedure of TWM to be lock-free. For this, we highlight

that the commit procedure may be invoked by different threads attempting to commit the

same transaction. For instance: read-only transactions that need to decide the fate of a writer,

to decide on which version to read; also write transactions that try to commit, need to help

transactions that obtained an earlier natural commit order.

This pattern of allowing transactions to help those that would impede progress is common

in the literature to guarantee lock-freedom [Herlihy et al., 2003a,Herlihy, 1991, Fernandes and

Cachopo, 2011]. As a result, we end up having several compare-and-swap instructions in which

the outcome is not relevant: the idea is that some helper transaction will execute it successfully,

for which reason these compare-and-swaps are not used in the typical ‘loop until succeed’ fashion.

It should be noted that, in order to simplify presentation, in the pseudo-code we are assuming
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Algorithm 7: Commit procedure for lock-free TWM.
34: commit(Tx tx):
35: if !tx.writeTx
36: return . read-only txs never abort
37| Tx lastCommit ← helpCommitAll()
38| tx.natOrder ← lastCommit.natOrder . not the final value for N (tx)
39: ∀var ∈ tx.writeSet do: handleWrite(tx, var)
40: ∀var ∈ tx.readSet do: handleRead(tx, var)
41| computeCommit(tx)
42| if tx.isCommitted ∨ Q contains tx
43| return . some helper succeeded first
44| while not CAS (Q.lastEnqueued, lastCommit, tx)
45| lastCommit ← incrementalValidation(tx, lastCommit)
46| tx.natOrder ← lastCommit.natOrder
47| computeCommit(tx)
48| if tx.isCommitted ∨ Q contains tx
49| return . some helper succeeded first
50| helpCommitAll() . ensure tx is written-back

51| computeCommit(Tx tx):
52: if tx.target ∧ tx.source
53: abort(tx) . rule 3
54| tx.natOrder ← tx.natOrder + 1 . compute N (tx)
55: if (tx.antiDeps = ∅)
56: tx.twOrder ← tx.natOrder . T W(tx) = N (tx)
57: else
58: tx.twOrder ← min(tx.antiDeps) . compute T W(tx)

that a helping thread alters directly the attributes of the Tx structure, whereas in an actual

implementation several of the writes performed by a helping thread are issued to thread-local

memory. This is simply so that concurrent helpers to the same transaction do not have to

synchronize on accesses to memory that is logically private to the transaction.

At the start of the commit the thread starts by helping finalize the commit of every trans-

action enqueued in Q but not yet committed. As a result, it returns the most recently known

committed transaction, which will be used as the expected value for the head ofQ in the compare-

and-swap operation in line 44. Line 38 setsN (tx) ephemerally to the value ofN of the last known

committed transaction — this is merely a temporary value, and will be re-computed in line 54

before the transaction commits.

This commit procedure implements two different parts: lines 39-43 validate transaction tx

against the most recently known committed transaction; after that the transaction is enqueued in

Q; however, if that fails, due to some concurrent transactions that got enqueued in the meantime,

then an extra validation (lines 45-49) is necessary to ensure that the newly enqueued transactions
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do not invalidate tx.

During the normal validation handleWrite contains an additional step that helps en-

sure lock-freedom. In lines 60-63 the committing thread tries to acquire ownership of the

var.committingTx attribute for the variables written during the speculative execution (to pre-

serve lock-freedom, this step is performed over an ordered write-set). Recall that the attribute

committingTx is used by read-only transactions, so that they can synchronize with a potential

committing writer transaction. If a helping thread fails to set the ownership to transaction T in

some variable k, it must be because of a concurrent helper committing some T ′ with intersect-

ing writes. In such case, T helps T ′ validate and enqueue in Q before proceeding with its own

commit (line 63). As we will discuss shortly, these pointers are cleared when the variables are

written-back, to allow more transactions to commit new versions of those variables.

Inserting a transaction in the queue is simply a compare-and-swap operation, in line 44, to the

next attribute of the last transaction seen as committed (resulting from the helping mechanism).

This step may fail when some (possibly set of) concurrent transaction(s) enqueued instead in

that position (one at a time). In such event, T has to guarantee it is still valid, by taking into

account the transactions that won the race to Q. This is achieved by using the read- and write-

sets of the transactions that enqueued concurrently (function incrementalValidation, see

Algorithm 7). We perform a selective validation between T and each Ci ∈ {C1, ..., CN} among

the N transactions that won the race for the enqueue:

• Ci
rw−→ T exists when T.writeSet ∩ Ci.readSet 6= ∅.

• T rw−→ Ci exists when T.readSet ∩ Ci.writeSet 6= ∅

Note that the first check may be skipped if T was already known to be the target of a similar

edge. Besides the implementation nature, we can see that the logic governing these validations

is the same as presented for the normal validation. For the second verification, we note that

typically the write-set is much smaller than the read-set, which makes these verifications efficient

if the contains operation of the set data structure used to implement read-set and write-set has

a complexity bounded by O(1).

At this point, in line 50, a lock-free helping mechanism is used to commit each transaction

in Q that is pending finalization (which is the case for T ).
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Algorithm 8: Auxiliary functions for the commit in the lock-free TWM (1/3).
59: handleWrite(Tx tx, Var var): . check if tx is the target of an edge
60| while not CAS (var.committingTx, ⊥, tx)
61| Tx otherWriter ← var.committingTx
62| if otherWriter 6= ⊥
63| commit(otherWriter)
64: if var.readStamp ≥ tx.start
65: . detect concurrent transactions that read var
66: tx.target ← true

67: handleRead(Tx tx, Var var): . check if tx is the source of an edge
68| semiVisibleRead(tx, var)
69: . check writes committed concurrently to tx’s execution
70: Ver version ← var.latestVersion
71: while version.natOrder > tx.start
72: if version.natOrder 6= version.twOrder
73: abort(tx) . rule 3
74: tx.antiDeps.add(version.natOrder) . used to compute T W(tx)
75: tx.source ← true
76: version ← version.prevVersion

4.7.3 Finishing a Transaction

The helpCommitAll function simply traverses the transactions in Q not yet committed

and attempts to help each one. The implementation of helpCommit resembles that of [Fer-

nandes and Cachopo, 2011]. Briefly, this entails applying the contents of the write-set of tx to

the respective variables, and this is performed in parallel by any transaction that concurrently

tries to help by splitting the write-set in buckets — note that the pseudo-code omit these details

for ease of presentation. Moreover, each helper verifies that all the buckets are processed before

considering T as finished. This idea of splitting the write-set in buckets is in fact shown here by

iterating over the whole write-set in line 100.

The procedure of committing a buffered value to a variable is reified in createNewVer-

sion, and contains a subtle change only. We note that there may exist concurrent threads insert-

ing committed values into the same version list. Hence, they may not be committing the same

transaction, as it can happen that a thread t1 helps commit T , which is finished concurrently;

then some other thread committing another transaction will be concurrent with t1 committing T .

Therefore the placement of the version in the list of versions uses a compare-and-swap operation

(lines 116 and 119).

Finally, the set of new versions of a commit are atomically available to new transactions
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Algorithm 9: Auxiliary functions for the commit in the lock-free TWM (2/3).
77| incrementalValidation(Tx tx, Tx lastCommit):
78| Tx toCommit ← lastCommit.next
79| . consider each new transaction
80| while toCommit 6= ⊥
81| if tx.writeSet ∩ lastCommit.readSet 6= ∅
82| tx.target ← true
83| if tx.readSet ∩ lastCommit.writeSet 6= ∅
84| if toCommit.source
85| abort(tx)
86| tx.source ← true
87| lastCommit ← toCommit
88| toCommit ← toCommit.next
89| return lastCommit

90| helpCommitAll():
91| Tx lastCommit ← Q.lastCommit
92| Tx toCommit ← lastCommit.next
93| while toCommit 6= ⊥
94| helpCommit(toCommit)
95| lastCommit ← toCommit
96| toCommit ← toCommit.next
97| return lastCommit

98| helpCommit(Tx toCommit):
99| if not toCommit.isCommitted
100| for all ‹var, value› ∈ toCommit.writeSet
101| createNewVersion(toCommit, var, val)
102| CAS (var.committingTx, toCommit, ⊥)
103| toCommit.isCommitted ← true
104| Q.lastCommit ← toCommit

after line 103 is processed by at least one helper. Note that Q.lastCommit acts merely as a

shortcut to speed the start of transactions.

4.7.4 Discussion on Lock-Freedom

In this section, we provide insights on the ability of the previous algorithms to ensure progress

guarantees. In the following analysis we show that this algorithm makes TWM lock-free because

it ensures that a thread only fails to achieve forward progress if some other thread does so. Also,

progress guarantees are ensured independently of whether the execution of any thread in the

system is suspended for arbitrary long periods of time.

The begin operation may repeat the operation to obtain the latest committed snapshot only

in the event that concurrent transactions are committing. The write operation executes indepen-
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Algorithm 10: Auxiliary functions for the commit in the lock-free TWM (3/3).
104: createNewVersion(Tx tx, Var var, Value val):
105: Ver newerVersion ← ⊥
106: Ver olderVersion ← var.latestVersion
107: while tx.twOrder < olderVersion.twOrder
108: newerVersion ← olderVersion
109: olderVersion ← olderVersion.prevVersion
110: if tx.twOrder = olderVersion.twOrder
111: return
112: Ver version ← ‹val, tx.natOrder, tx.twOrder, tx, olderVersion›
113: . insert according to time-warp order...
114: if newerVersion = ⊥
115: . ...as the latest version
116| CAS (var.latestVersion, olderVersion, version)
117: else
118: . ...or as an older version
119| CAS (newerVersion.prevVersion, olderVersion, version)

dently of concurrent events. For the read operation, we must consider several cases. The semi-

visible read may repeat only if a concurrent transaction updated the timestamp concurrently,

and if it updated it to a more recent timestamp. This means that some concurrent transaction

must have committed, or otherwise no concurrent transaction could update the timestamp to a

more recent one. Then, the reader may help a commit operation, which we argue next is also a

lock-free procedure. Finally, the reader also eventually finds a version to read, or aborts. Hence,

all these procedures eventually conclude, or only repeat when faced with a concurrent transaction

that committed, meaning the system progressed.

Concerning the commit operation, this may repeat when another write transaction succeeds

on enqueuing concurrently in Q; but that means there was global progress. T may also repeat

the commit procedure if it fails to place itself as the writer of some variable k, because it is

already being written by some T ′. But in such case, T retreats by removing itself from the writer

of variables, and helps T ′ with validation and enqueue. Because the write-sets are canonically

ordered, it is impossible for a cycle of helping dependencies to exist. Therefore there will always

exist some write transaction T enqueuing successfully and ensuring global progress.

With regard to read-only transactions, they never block, and do not have to execute any

commit (and of course write) procedure. The read operation of a read-only transaction R helps at

most the validation and enqueue of a write transaction, and, as explained in the last paragraph,

a helping operation can only fail and repeat in the presence of global progress.



4.8. EVALUATION 115

4.8 Evaluation

In this section we experimentally evaluate the performance of a Java-based implementation of

the lock-free algorithm of TWM presented in Section 4.7. To access its merit, we compare it with

five other STMs representative of different designs, most of which we discussed in Section 2.3:

• JVSTM [Fernandes and Cachopo, 2011] is multi-versioned and guarantees abort-freedom

for read-only transactions;

• TL2 [Dice et al., 2006] is a simpler TM based on timestamps and locks;

• NOrec [Dalessandro et al., 2010] uses a single word for metadata (a global lock), thus being

even simpler than TL2;

• TSTM [Aydonat and Abdelrahman, 2012] is lock-based and relies on the interval-based

approach (see Section 4.6);

• AVSTM [Guerraoui et al., 2008] is also single-version, but on top of that it is also proba-

bilistically permissive with regard to Opacity.

This allows to contrast TWM directly against two different designs that minimize spurious

aborts (AVSTM and TSTM); against TM algorithms designed to optimize efficiency at low thread

counts (TL2 and NOrec); and against a multi-versioned TM (JVSTM). Note that both JVSTM

and AVSTM are lock-free (similarly to our prototype of TWM, as explained in Section 4.7),

whereas TL2 and NOrec are lock-based. Finally, TWM, AVSTM and TSTM exploit alternative

mechanisms to validate transactions, whereas the others rely on the classic validation rule.

We used Java implementations for all the STMs, by obtaining the code for JVSTM from its

public repository, TL2 and NOrec from their respective ports to the Deuce framework [Felber

et al., 2010b], and by porting AVSTM and TSTM to Java. All implementations share a common

interface that uses selective instrumentation of shared variables in the benchmarks (akin to the

STAMP benchmarks) relying on a concept similar to that of VBoxes [Fernandes and Cachopo,

2011]. This means that the benchmarks were manually instrumented to identify shared variables

and transactions, resulting in an equal and fair environment for comparison of all TMs. We

also identified read-only transactions in the benchmarks, and allowed implementations to take

advantage of this when possible. This means that TWM, JVSTM, TL2 and TSTM do not
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Table 4.4: Characteristics of the Opteron machine, with a large number of cores, which was used
to evaluate TWM.

Resource Description

Processors 4 × AMD Opteron 6272 2.1GHz
Cores 64 (16 on each processor)

L1 Cache 16KB 4-way (per core)
L2 Cache 2MB 16-way (per 2 cores)
L3 Cache 8MB 64-way (per 8 cores)
Cache Line 64B
RAM Size 32GB

Operating System Ubuntu 12.04
NUMA distances 60% more latency to any remote NUMA bank than to a local one

maintain read-sets for such transactions and their commit procedure needs no validation. NOrec

requires the read-set for re-validation of a transaction T when the global clock has changed, and

AVSTM requires it for an update transaction T that is committing to update the validity interval

of concurrent transactions T ′ that read items committed by T .

In the following experimental study we seek to answer the following questions:

1. What is the performance difference of TWM to each of the other design class of STM?

2. Where does the difference in performance come from?

3. What is the overhead in reducing aborts with respect to the classic validation?

To answer the above questions, we conducted experiments on a variety of benchmarks and

workloads. We first present results with a classic micro-benchmark for TM, namely Skip List,

which allows us to study and understand in detail the differences among the STMs considered.

Next we test other more complex and realistic benchmarks, namely STMBench7 [Guerraoui

et al., 2007] and the STAMP suite of benchmarks [Minh et al., 2008]. STAMP typically contains

smaller and less conflicting transactions than STMBench7, although every transaction contains

writes (i.e., it does not contain read-only transactions), which is a disadvantage particularly for

the multi-versioned TM algorithms.

The following results were obtained on a machine with four AMD Opteron 6272 processors

(64 total cores), 32GB of RAM, running Ubuntu 12.04 and Oracle’s JVM 1.7.0_15, which we

also present in Table 4.4. Each data point corresponds to the average of 10 executions. We
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use the geometric mean when we show averages over normalized result and use as abort rate

metric the ratio of number of restarts to the number of executions (encompassing committed

and restarted transactions).

4.8.1 Skip List

We begin by studying the behavior of time-warping in a traditional data-structure. As

described in Section 4.1, concurrent traversals and modifications in data-structures, such as a

skip-list, are perfect examples of the advantages of time-warping: a transaction T1 modifying

an element near the end of the list need not abort only because a concurrent transaction T2

modified an element in the beginning of the list and committed; TWM can automatically, and

safely, commit T1 before T2, whereas classic validation would have precluded the commit of T1.

For this micro-benchmark we used the source code available in the IntSet benchmark in the

Deuce framework. We set up a skip-list with 100 thousand elements and 25% update transactions

that either insert or remove an element. Figure 4.9(a) shows the scalability results for this

workload, where TWM performs best after 8 threads, and below that is competitive with the

other TMs. At 64 cores TWM achieves the following speedups: 2.8× over TL2; 9.4× over

NOrec; 4.3× over JVSTM; 1.8× over AVSTM; and 2.1× over TSTM. It is actually interesting to

assess that, at a low thread count, NOrec performs best. However, this difference quickly fades

as the number of threads increases and its performance plunges due to the overly pessimistic

validation procedure — this is visible on Figure 4.9(b) where its abort rate quickly grows to

approximately 70%. Note that JVSTM’s update transactions incur significant costs due to the

multi-version maintenance — this cost is amplified by the non-negligible percentage of update

transactions, which take no advantage from the availability of multiple versions. TWM, instead,

takes advantage of multi-versioning even for update transactions thanks to time-warping.

Overall, as we can see in Figure 4.9(b), the source of our gains is two-fold: TWM clearly

aborts much less transactions than TM algorithms relying on classic validation; on the other

hand, despite TWM aborting slightly more than AVSTM, it introduces a much lower overhead,

as we shall discuss in detail in the next section.

But before that, in Figure 4.10, we show the mean speedup (averaged over degree of paral-

lelism) of TWM against the other STMs when varying the percentage of update transactions.
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Figure 4.9: Skip List with 25% modifications.

This summarized perspective over this set of experiments allows us to see different trends of

improvement. Against JVSTM, our approach continuously improves as the workload becomes

more write-intensive. This is a consequence of the fact that, despite both algorithms guarantee

that read-only transactions never abort, TWM further avoids spurious aborts for update trans-

actions. For TL2 and NOrec, the trend is similar as for JVSTM, except that in write-heavy

workloads TWM loses some advantage. This can be explained considering that multi-versioning

no longer pays off, but, conversely, becomes a burden, in scenarios encompassing a very reduced

percentage of read-only transactions. Finally, both AVSTM and TSTM become increasingly

similar to TWM when increasing the ratio of update transactions, because they all reduce spu-

rious aborts similarly and the advantage of abort-free read-only transactions is gradually lost

by TWM. Among these two, TSTM seems to have a more efficient algorithm. Notably, TWM

does not add any benefit against the TM algorithms using classic validation in absence of up-
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varying the percentage of update transactions in Skip List.
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date transactions, because of the added complexity that it introduces in order to reduce spurious

aborts, which is clearly useless in abort-free scenarios.

4.8.1.1 Overhead Assessment in the Skip List

In order to better understand the concomitant tradeoffs of each design, we designed worst-

case experiments aimed to assess the cost of reducing spurious aborts. We also provide in these

experiments variant with a single-global lock (SGL) to protect all transactions; this illustrates

the overhead of instrumentation that STMs impose, which is mostly visible with low threads.

We first conducted an experiment with two shared variables, both incremented once by every

transaction, to create a scenario with very high contention and whose conflict patterns cannot

be accommodated by the TWM algorithm (as well as by the other considered TMs).

We can see the throughput for this experiment in Figure 4.11(a), where the slowdown of

TWM is comparable to that of JVSTM and TL2, being 7% and 12% worse with respect to those

two TMs. The others perform worse beyond 8 threads due to the internal validation procedures

— we shall discuss this phenomenon in detail next.

We also modified the Skip List micro-benchmark to have each thread modify an independent

skip-list. Consequently, no transaction ever runs into conflicts, although they still activate the

validation procedures as every transaction performs some writes. The results of this experiment

are shown in Figure 4.11(b). As expected, every TM is able to scale as this scenario is conflict-

free. The notable exception is TSTM, whose global readers table induces spurious failed compare-

and-swaps in the read operations at high degrees of parallelism. Overall, the relative trends are

consistent with those observed for the highly-contended scenario with the shared counters.

To gain deeper insights on these results, we instrumented the prototypes to collect the time

spent by transactions in each phase of the TM algorithm. Figure 4.12 shows the results relative to

the previous experiment. We considered four different phases: the read corresponds to time spent

in read barriers; readSet-val and writeSet-val are the validations conducted by the transaction,

including those at a commit-time and when executed during the transaction execution in the

case of NOrec — note that the write-set validation only exists in the case of TWM, AVSTM and

TSTM; and finally commit corresponds to the rest of the time spent in the commit phase (for

instance, writing-back, or helping other transactions in the case of lock-free schemes).
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Figure 4.11: Overhead assessment with 100% writes.

In this plot, we see that the commit is generally the main source of overhead as the thread

count increases. TL2 obtains the least overhead because transactions are conflict-free and the

workload is write-intensive, which implies extra costs for schemes that minimize aborts and for

multi-version algorithms. Initially, NOrec also benefits from these circumstances to yield the

least overhead. However, it quickly becomes less efficient as the global commit lock becomes

a bottleneck and the commit time increases significantly due to threads waiting to commit.

Moreover, its read-set validation time also increases because transactions re-validate the read-set

when they notice that the global clock has changed (due to the concurrent commit of an update

transaction).

On the other hand, the lock-free schemes also incur in some overhead right from the start.

Both TWM and AVSTM conduct additional validations that are useless in this scenario, as

it is conflict-free, and are noticeably making them more expensive. Yet, TWM preserves the
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overheads rather low as the scale increases, whereas AVSTM suffers considerably as we reach 64

threads, making it the most expensive TM at that scale, slightly above TSTM. The main culprit

for this cost in AVSTM is the fact that a committing update transaction must possibly update

metadata of every concurrent transaction. As a result of this onerous check, the commit and

validation costs grow considerably with the number of threads. The same happens for TSTM,

as both algorithms explore similar interval-based approaches, with the difference that TSTM is

lock-based.

TWM, similarly to JVSTM, is a multi-versioned STM. In fact, they both use the same

garbage collection infrastructure, as described in Section 4.4.4, in which a version is kept in

memory as long as some transaction may be able to read it. To provide a better insight into the

memory cost of supporting multi-versions, we plot in Figure 4.13 the average number of versions

available to a read operation over a shared variable in the Skip List benchmark. We show these

numbers for varying write ratios and two levels of concurrency. In every scenario we had the

garbage collection mechanism configured to run every 500ms, which is a conservative figure, so

that it does not interfere with the execution of the application code.

This profiling over the multi-versions shows that the number of versions grows, as expected,

with the percentage of write transactions. Furthermore, the more concurrent threads we have

running transactions, the more versions we end up with until the garbage collection threads

execute. This is an inherent cost for MVCC algorithms. However, as also corroborated by

our experimental results, such cost is often outweighed by the benefits that multi-versioning

brings about in terms of abort reduction both for read-only transactions (for conventional MVCC

algorithms [Fernandes and Cachopo, 2011,Perelman et al., 2011]) and update transactions (for
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TWM).

Finally, we highlight that TWM’s overheads are consistently close to those of JVSTM. They

are also both higher than those of TL2 due to the management of multi-versions and lock-freedom

guarantees. Yet, TWM manages to reduce spurious aborts with respect to both JVSTM and

TL2. This illustrates the key appealing feature of TWM, namely its ability to reduce spurious

aborts while incurring low instrumentation overheads even in low contention scenarios.

4.8.2 Macro-Benchmarks

In this section we present additional experiments using a set of larger and more complex

benchmarks. This allows us to determine whether the TWM performance gains that we high-

lighted in the previous section using micro-benchmarks, are still confirmed when considering

more complex (and arguably more realistic) applications.

STMBench7. We begin with STMBench7 with structural modifications enabled and two work-

loads, with 90 and 50% read-only transactions. This benchmark, and in particular the latter

configuration, leads to a significant amount of contention.

We start by looking at the read-dominated workload shown in Figure 4.14(a). At a minimum

of 8 threads, we can already see the difference that it makes to reduce spurious aborts. Abort

reduction is imputable to two reasons: read-only transactions that do not abort, as is the case

for JVSTM and TWM; as well as update transactions that abort less, which happens for TWM,

AVSTM and TSTM. Naturally, the joint reduction in both dimensions allows TWM to obtain

the best performance. Figure 4.14(b) shows the abort rate for this scenario, where we can see

that TWM has the lowest abort rate across all degrees of parallelism. Given the dominance of

read-only transactions, this also justifies the good performance of JVSTM, contrasting with that

of the other TMs that reduce spurious aborts for update transactions at the cost of aborting

read-only transactions (AVSTM and TSTM).

For the balanced workload, in Figure 4.14(c), the landscape changes considerably. Despite

the presence of read-only transactions, the high contention makes it very difficult for any TM to

scale. This is clear from the very high abort rates that the considered TM algorithms generally

experience. Namely, for the TM algorithms that use classic validation we can see that perfor-

mance starts dropping at 8 threads. TWM and AVSTM, instead, scale further to 16 threads.
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Figure 4.14: STMBench7 workloads.

TWM achieves an average speedup of 1.37×, 1.46×, 1.57×, 1.26×, and 1.9× with respect to

TL2, NOrec, JVSTM, AVSTM, and TSTM. As shown in Figure 4.14(b), the gains obtained by

TWM versus the other considered STM algorithms are due to reduced spurious aborts. The only

exception being AVSTM, which achieves abort rates similar to TWM, but which suffers from a

more costly algorithm as shown in the previous section.

STAMP. We have also studied the performance of these TM algorithms in STAMP, for which

we used an existing port to Java that is available in the Deuce framework. Figure 4.15 presents

the speedup relatively to a sequential execution of NOrec, which is consistently the fastest one

with a single thread. We have excluded the benchmarks Yada (not available in the Java porting)

and Bayes (excluded given its non-determinism).

TWM behaves slightly worse than JVSTM and TL2 in both Intruder and Kmeans with an

average slowdown of 7%. On the other benchmarks, it is either on par with the best TM (Genome,

SSCA2, Vacation-low) or it obtains improvements over all TMs (Labyrinth and Vacation-high).

We have manually inspected each benchmark to understand if there are opportunities for time-
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Figure 4.15: Scalability in the STAMP benchmarks.
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Figure 4.16: Average speedup of TWM relatively to each STM for all STAMP benchmarks across
different numbers of threads.

warp to reduce spurious aborts: this is the case for Genome, Labyrinth and Vacation. The other

three only generate simple conflict patterns that cannot be avoided with time-warping. Yet,

TWM manages to perform among the best TM algorithms in every benchmark.

Conversely, AVSTM only obtains considerable improvements in Vacation (high), although

it still performs worse than TWM. TSTM usually obtains a good initial performance, but its

blocking nature and the overhead of a global readers table prevent its scalability. The latter is

in contrast with the semi-visible readers scheme used by TWM.

Next, we present a plot summarizing these experiments in Figure 4.16. There, we show

the geometric mean of the speedup of TWM relative to the other TM algorithms across all the

STAMP benchmarks. Notice that we are varying the degree of parallelism in each bar of the plot.

The overall trend is that TWM is more beneficial than TM algorithms that use classic validation

as the thread count increases. The average improvement across all the benchmarks is 31% over

JVSTM, 12% over TL2, 16% over NOrec, 21% over AVSTM and 25% over TSTM. Additionally,

if we only consider the benchmarks with possibility of time-warping, TWM obtains an average

improvement of 36% over JVSTM, 37% over TL2, 41% over NOrec, 37% over AVSTM, and 35%

over TSTM.

Note that the gains over AVSTM and TSTM are mostly due to the fact that time-warp based

validation mechanism allows for reducing spurious aborts in a more efficient way than interval-

based schemes, as for most benchmarks these TM algorithms achieve a very similar abort rate

(as shown in Table 4.5). In order to back this claim, we additionally present Table 4.5, where

we show the average abort rate per thread count (averaging all benchmarks) and per benchmark
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Table 4.5: Average abort rate (%) across each STAMP benchmark (above) and each thread count
(below).

Benchmark
STM genome intruder kmeans-l kmeans-h labyrinth ssca2 vac-l vac-h

TWM 3.8 3.8 1.4 4.2 8.8 10.5 6.4 17.8
JVSTM 15.4 3.2 1.6 4.9 12.3 11.3 12.1 41.1
TL2 12.1 4.8 3.8 3.4 13.8 11.7 10.0 41.4
NOrec 21.1 6.0 3.8 6.4 27.6 14.9 19.9 55.0
AVSTM 13.0 3.5 2.6 4.8 10.4 11.5 9.4 18.9
TSTM 12.1 3.2 0.9 4.1 9.9 9.1 5.1 18.2

Threads
STM 4 8 16 32 64

TWM 1.2 4.4 6.6 9.9 15.7
JVSTM 1.8 7.0 10.2 15.7 21.2
TL2 2.6 6.5 11.4 16.1 20.9
NOrec 3.4 9.6 18.6 24.9 34.0
AVSTM 2.5 5.5 8.6 12.7 17.6
TSTM 1.0 5.1 7.4 11.4 20.3

(averaging all thread counts). Generally, we can see that the abort rate of TWM, AVSTM and

TSTM are similar. Finally, these data confirm that not all STAMP benchmarks can actually

benefit from the time-warping mechanism to reduce spurious aborts.

4.8.2.1 Overhead assessment in the Application Benchmarks

The previous evaluation has shown that TWM is quite competitive for most scenarios but it

shines particularly when there is high contention and a high number of threads. One of the ap-

plications where this is most visible is Vacation, from the STAMP benchmark, whose contrasting

scenarios illustrate this in Figs. 4.15(g) and 4.15(h): in low contention, TWM outperforms TL2

only when using 64 threads, whereas in high contention it yields the best performance starting

from 4 threads.

In order to shed lights on the reasons underlying these performance figures, we report in

Figure 4.17 the execution times of successfully committed transactions with TWM and TL2 in

both Vacation scenarios. We additionally show the abort ratios of each STM in each configuration

under evaluation.

In general, across almost all the scenarios, we can see that the difference in the transaction

execution time of TWM and TL2 is roughly constant (similarly to what we had shown before
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Figure 4.17: Overhead breakdown with abort ratios for TWM and TL2 in Vacation.

in Figure 4.12) and around 10%. The only exception to this rule is the case of high contention

in Vacation, in which the transaction execution in TL2 is worse than in TWM at high levels of

concurrency. Although the difference is small, it is visible in Figure 4.17(b), where essentially

TL2’s commit increases slightly due to the memory contention to acquire the same locks. TWM

is not subject to this issue do its lock-free implementation in which a thread committing cannot

hold the others back.

More relevant are instead the differences between the two TM implementation in terms of

abort ratio. In fact, we can see that TWM takes the lead in performance as the abort rate in

TL2 reaches at least 20% -this happens at 64 threads for low contention and when using at least

4 threads for high contention. In these scenarios, we can see that the abort rate with TWM is at

least 10% lower than for TL2. Hence, in these scenarios the benefits achieved by TWM in terms

of abort reduction outweigh the additional overheads that it introduces - which, as discussed

above, can be also approximately quantified around 10%.

4.9 Distributed Time-Warping

As described earlier, in Sections 2.3 and 2.6, the ideas behind STMs translate quite naturally

to a distributed setting (where they are called DTMs). In this section we succinctly describe

how we applied the core ideas of Time-Warp to a genuine partially replicated DTM (i.e., a type

of DTMs that scale to large settings — recall Section 2.6) and complement this with a summary

of the evaluation study that we conducted on this new setting.
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4.9.1 Overview of the Distributed Time-Warping Protocol

The motivation in this setting is very similar to that of STMs, as DTMs operate in a

similar way to ensure correctness of concurrent transactions, in practice using also the classic

validation rule. This is indeed the case for SCORe [Peluso et al., 2012b], a state of the art 1-Copy

Serializable [Adya, 1999] DTM that we extended with Distributed Time-Warping (DTW). We

recall that SCORe was initially described in Section 2.6.

In SCORe each transaction executes only in nodes (i.e., independent processes possibly in

distributed machines) that replicate data accessed, so that it preserves the genuineness property,

and thus allows to scale performance as more machines are added — assuming that each trans-

action accesses only a small portion of data replicated in a sub-set of the nodes. As such this is

an important property that we seek to preserve. This is a perfect matching to the core idea of

time-warping, as it keeps track only of the direct conflicts of each transaction: as such, we must

only add the metadata necessary for time-warping, which in this case will execute distributed,

on each node where the transaction ran, to identify conflicts on the sub-set of the data accessed

there.

In this way, the key mechanisms underlying Time-Warping are ported to operate in a dis-

tributed fashion, and are executed by the nodes that host the partially replicated data, when

processing incoming transactional read and write operations. Then, when an update transac-

tion requests to commit, a consensus procedure is executed to conduct the commit — this is a

Two-Phase Commit (2PC) in the case of SCORe, but we could use other alternatives such as

an Atomic Broadcast that delivers commit requests in total-order to the processes where they

executed [Ruivo et al., 2011].

In the commit procedure each involved node executes read- and write-set validations, in-

cluding those of Time-Warp, in an individual fashion. As such, each node will check whether

the transaction is locally known to be a source or a target of an anti-dependency. Furthermore,

it finds the minimum serialization point to which it may time-warp (in case it is the source of

some anti-dependency). The semi-visible readers scheme is also applied at this point for update

transactions, whereas read-only transactions perform it immediately during the read operation,

similarly to what we did with TWM.

Given all of this, when each node concludes the validation, it decides on the fate of the
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Table 4.6: Description of data-structures used in the DTW algorithms. The underlined fields
are additions of DTW with respect to the original SCORe.

type field description

T
ra
ns
ac
ti
on

id unique identifier for the transaction
ro whether the transaction is read-only
tsS timestamp for the snapshot visible to read operations
tsC timestamp reflecting the commit order of the transaction
tsW timestamp reflecting the serialization order of the transaction

mustTW whether the transaction must time-warp to commit
cannotTW whether the transaction cannot time-warp to commit
writeSet the set of keys and values written by the transaction
readSet the set of keys and timestamps read by the transaction

K
ey versions set of committed versions for the key

readStamp timestamp for the last time the key was read

V
er
si
on

tsC timestamp that reflects the commit order
of the transaction that committed this version of the key

tsW timestamp that reflects the serialization order of the
transaction that committed this version of the key

timeWarped whether it was committed by a time-warped transaction

transaction locally — that is, whether it should commit or abort — and sends its vote to the

node that is coordinating the transaction (i.e., the one that initiated it). Then, the coordinating

node makes the final decision by checking whether, among all the nodes involved, there were

identified both source and target anti-dependences (in which case it decides to abort). Else, if

any source anti-dependency has been identified, it performs a time-warp commit to the minimum

serialization timestamp among all those that were sent back by the nodes.

As hinted above, for what concerns Time-Warping, its applicability in a distributed setting is

quite straightforward. Most of the changes are adaptations of the TW mechanisms to the settings

of partially replicated DTM. A transaction T accesses data residing at independent (distributed)

nodes, which are later responsible for validating different subsets of the data items accessed by

T . Hence, the validation outcome for T has to be determined at the coordinator node, after

having gathered information from those various nodes replicating the data it accessed.

In the following we present the pseudo code for the implementation of DTW on top of

SCORe, for which we describe the data-structures used for the metadata in Table 4.6. We also

resort to some functions to improve the readability of the code:
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Algorithm 11: Distributed Time-Warping pseudo code for accessing data.
1: begin(Transaction tx, bool ro) in nodei = origin(tx)
2| tx.mustTW ← tx.cannotTW ← false
3| tx.ro ← ro . optimize for read-only txs
4| tx.id ← getUniqueId()
5| tx.tsS ← nodei.lastCommit . obtain the snapshot of visible versions
6| tx.tsW ← ⊥ . initialize special value: no time-warp

7: write(Transaction tx, Key k, Value v) in nodei = origin(tx)
8: tx.writeSet ← tx.writeSet ∪ 〈k, v〉 . defer write to commit-time

9: read(Transaction tx, Key k) in nodei = origin(tx)
10: if k ∈ tx.writeSet
11: return tx.writeSet.get(tx) . read-after-write case: return deferred write
12: send ReadReq[k, tx] to all nj ∈ owners(k)
13: wait ReadReply[val] from any nj ∈ owners(k)
14: return val

15: upon receive ReadReq[k, tx] in nodej ∈ owners(k)
16| if tx.ro then updateReadStamp(tx, k) . make the read access visible
17: acquireLock(k, Shared)
18: val ← localReadSCORe(k, tx) . delegate the local read to SCORe
19: releaseLock(k)
20: reply ReadReply[val]

21| updateReadStamp(Transaction tx, Key k) in nodei ∈ owners(k)
22| atomically do {
23| 〈 stamp, id 〉 ← k.readStamp
24| newStamp ← nodei.lastCommit . make read visible at present time
25| if newStamp > stamp
26| k.readStamp ← 〈 newStamp, tx.id 〉 . update timestamp for one tx
27| else k.readStamp ← 〈 stamp, φ 〉 . φ = several readers
28| }

• owners(k) returns the nodes that replicate item k.

• origin(T ) returns the node where transaction T originates from.

• participants(T ) returns the nodes that replicate items written or read by transaction T .

• local(k) returns whether the data item k is replicated at the local node.

Then, in Algorithm 11 we present the functions to deal with the beginning of a transac-

tion and read/write operations that it performs during its execution. The steps to execute are

analogous to those of TWM, in the sense that writes are deferred and reads are performed with

possibly updating the read timestamp — which happens for read-only transactions, as those skip

the commit procedure given that they are always valid.
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Algorithm 12: Distributed Time-Warping pseudo code for managing the commit of a transaction.
. commit procedure: join votes of the participants and decide

31: commit(Transaction tx) in nodei = origin(tx)
32: send prepare[tx] to all nj ∈ participants(tx)
33: for all nj ∈ participants(tx)
34: wait vote[_, votej ] from nj . _ may be YES or NO
35| tx.tsW ← min(votej .tsW , tx.tsW ) . possibly time-warp to the past
36| if votej .mustTW
37| tx.mustTW ← true
38| if votej .cannotTW
39| tx.cannotTW ← true
40: if (∃ vote[no, votej]) ∨ (tx.mustTW ∧ tx.cannotTW)
41: send abort[tx] to all nj ∈ participants(tx)
42: return abort
43: tx.tsC ← max(votes.tsC) . use the "most" recent timestamp known (SCORe rule)
44| if not tx.mustTW then . if tx does not have to time-warp
45| tx.tsW = tx.tsC . then tx serializes at the present
46: send commit[tx] to all nj ∈ participants(tx)

47: upon receive prepare[tx] in nodei ∈ participants(tx)
48: for all k ∈ tx.writeSet : local(k)
49: acquireLock(k, Exclusive)
50| 〈 stamp, id 〉 ← k.readStamp
51| . check if any concurrent transaction B read data item k
52| if stamp ≥ tx.tsS ∧ id 6= tx.id then . if tx does not have to time-warp
53| tx.cannotTW ← true . the concurrent B missed this tx (B 99K tx)
54: for all 〈k, ts〉 ∈ tx.readSet : local(k)
55: acquireLock(k, Shared)
56: . check concurrently installed versions missed by tx (i.e., ∃A : tx 99K A)
57| for all V ∈ k.versions : V.tsC > tx.tsS ∧ V.ts 6= ts
58| if V.timeWarped ∨ k ∈ tx.writeSet then . if tx does not have to time-warp
59| reply vote[no, tx] . completes a triad; may not be serializable
60| return
61| tx.mustTW ← true . tx missed some A (i.e., ∃A : tx 99K A)
62| tx.tsW ← min(tx.tsW , V.tsC) . compute time-warp timestamp for tx
63| updateReadStamp(tx, k) . update txs make reads visible at commit-time
64: tx.tsC ← fetchAndInc(nodei.nextId) . increment logical present time
65: reply vote[yes, tx]

66: upon receive commit[tx] in nodei ∈ participants(tx)
67: atomically do {
68: finalizeSCORe(tx) .eventually invokes writeBack function described next
69: }

. invoked for each write of tx when it is ready to commit
70: writeBack(Transaction tx, Key k) in nodei : local(k)
71| newVersion.ts ← tx.tsW .version the write with the serialization timestamp
72| newVersion.tsC ← tx.tsC
73| newVersion.timeWarped ← tx.mustTW
74| k.prependNewV ersion(newVersion) .newer versions are in the head of the list
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In Algorithm 12 we present the functions to manage a commit request for an update trans-

action. This follows the protocol overviewed above, in which the coordinator of the transaction

requests each participant (i.e., each node replicating data that the transaction accessed) to is-

sue a validation and corresponding vote for the transaction. The logic of this validation follows

closely that of time-warping. Finally, for successfully committed transactions, their writes are

placed at the head of the list of the versions of each transactional datum3.

4.9.2 Evaluation for Distributed Time-Warping

We conducted experiments on top of OpenStack, a cloud computing infrastructure, deployed

in a dedicated cluster of 20 physical machines. Each such machine is equipped with two 2.13

GHz Quad-Core Intel Xeon E5506 processors, 40 GB of RAM, and is interconnected via a private

Gigabit Ethernet.

We then deployed DTW and SCORe as Java processes on Virtual Machines (VMs) on top of

this infrastructure via OpenStack. Each VM was provided with 1 physical core and 4 GB RAM.

This represents a common scenario of deployment in cloud infrastructures, where customers

acquire several virtual machines equipped with relatively small physical resources. For all tests

we varied the number of VMs from 10 to 160, such that they were always uniformly distributed

across the physical machines. As such we allocate up to 8 VMs per machine, allowing 8 GB of

RAM left to the host operating system. Finally, the virtualized operating system was Ubuntu

12.04 and our prototype ran on Java HotSpot version 1.6.0_38.

We measure both overall throughput and abort probability (note that read-only transactions

do not abort). Every run uses replication degree of 2 for fault-tolerance — hence data is consid-

ered durable once a transaction is committed. We then compare the performance of DTW with

the DTM that it extends, namely, SCORe.

In Figure 4.18 we show the results for two benchmarks that we ported from the previous

evaluation to a distributed setting, namely the Skip List and Vacation. The idea is that they are

still written in a similar way, with accesses to shared data encapsulated in atomic blocks, but

now the data resides in distributed machines and is partially replicated for fault-tolerance.

3Note that, in this implementation, we assume no blind-writes (i.e., a transaction always issues a read to datum
k before writing to k). This has the effect of simplifying the write back procedure as there cannot exist a situation
in which a more version exists without having created a triad (in contrast with what we had implemented in
TWM, where blind-writes are allowed).
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Figure 4.18: Performance and abort ratio of DTW compared to its baseline DTM.

As expected, the reduction of conflicts achieved by DTW is analogous to that of our initial

proposal of Time-Warping with TWM. In Skip List, with a workload of 50% read-only transac-

tions, we achieve a peak improvement of 2.23× over SCORe when using the maximum number of

VMs, thanks to a consistent reduction of aborts for the update transactions from an average of

15% to 1%. All of this is achieved by DTW without sacrificing the genuineness property, which is

evident in the scalability unfolded by it. With Vacation we witness a similar scenario, although

the gains are smaller due to the lower amount of aborts that SCORe yields: 1.9× performance

improvement with 160 VMs.

4.10 Summary

In this chapter we proposed the idea of Time-Warping, with its implementation in TWM,

a novel multi-version algorithm that aims at striking a balance between permissiveness and effi-

ciency. TWM exploits the key idea of allowing update transactions to be serialized “in the past”,

according to what we called a time-warp time line. This time line diverges from the natural com-

mit order of transactions in order to allow update transactions to commit successfully (but in the

past) despite having performed stale reads. Past solutions have tried to avoid spurious aborts by

introducing costly and inefficient transaction validation procedures. TWM explored a new valida-

tion strategy that results in less aborts, without hindering efficiency (e.g., by avoiding expensive

checks of the transactions’ dependency graph). Furthermore, TWM ensures mv-permissiveness

(abort-free read-only transactions) and VWC (a strong and practical correctness criterion).

We conducted a broad experimental study aimed to empirically quantify: (1) what abort
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reduction rate can be achieved by TWM, and (2) whether TWM is sufficiently lightweight to

actually benefit from the abort reduction that it can yield. The study encompassed a variety

of benchmarks, and alternative TM algorithms, optimized to minimize either bookkeeping over-

heads or spurious aborts. Our experimental data evidenced the merits of time-warping, which

achieved an average improvement of 65% in high concurrency scenarios and gains extending

up to 9×. Further, we showed that TWM introduces very limited overheads when faced with

contention patterns that cannot be optimized using TWM.

Finally, we also extended the idea of Time-Warping to distributed settings, namely to reduce

the conflicts generated by the implementations of DTMs. The ease of applicability of this idea

to that setting improves also the significance of this work.
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HTM Fall-back

As highlighted by our study in Chapter 3, the best-effort nature of HTMs (namely, of Intel

RTM) can have a profound impact on performance. The limitations of current HTMs are quite

pragmatic, greatly motivated by the reliance on the processors’ hardware caches, which have

limited space, to track transactional accesses.

Indeed, although solutions providing stronger progress guarantees for HTM have been pro-

posed in literature, the changes required to existing processor architectures are currently per-

ceived as overly invasive and risky [Adir et al., 2014]1, and it appears unlikely that alternative

designs will be pursued in the near term future.

With such HTMs, which require software to manage their usage, programmers need to set up

retry policies for when to use hardware transactions or an alternative synchronization mechanism

(the fall-back path). Choosing these policies can not only be cumbersome, contradicting the

simplicity advocated in the TM paradigm, but it may also lead to sub-optimal situations in

which the programmer chose a retry policy that is not adequate to all possible workloads of the

application. This is, indeed, one of the results that we obtained in the initial study of the current

state-of-the-art in TM in Chapter 3.

In this chapter we shall address this issue via a self-tuning algorithm that manages the usage

of the HTM with respect to an alternative synchronization mechanism (we used both a single-

global lock and an STM). To achieve this, our novel algorithm — called Tuner — uses lightweight

reinforcement learning techniques that seek the optimal configuration to use. Similarly to the

approach taken in the previous Chapter 4, this allows to preserve the simple TM abstraction and

avoids imposing any burden on the programmer.

1IBM System Z processors represent a notable exception: they guarantee transactions to commit if they abide
certain constraints in terms of footprint and instructions, provided that they do not conflict. However, we note
that those requirements are quite strict (at most 32 instructions, accessing up to 256 bytes of memory).
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5.1 Problem

Using such best-effort HTMs, however, entails providing a software fall-back path such as

those that we studied in Chapter 3 in co-operation with Intel RTM. As such, a programmer

who is responsible for a TM library using hardware transactions in RTM must decide what

should be done upon the abort of that hardware transaction: under which circumstances should

an aborted transaction be re-executed using RTM, or when should it resort to an alternative

fall-back software-based synchronization scheme?

In this chapter we show that there is no definite answer to this question: indeed, there is no

one-size fits all solution that yields the best performance across all possible workloads. In fact,

this is something that we had also conveyed when conducting the comparison of synchronization

techniques, namely in Section 3.6, which we seek to improve with this dissertation to obtain

better performance robustness for TM.

To better support this important claim, we provide experimental evidence summarized in

Figure 5.1. This figure shows the performance of three example configurations, using Intel RTM,

across several TM benchmarks. A detailed description of these configurations will be provided

in Section 5.5. These results show the relative performance of each configuration, with respect

to the optimal one that we found for each benchmark. The outcome of this data supports our

claim: no configuration performs consistently better than all the others, and they all perform

excellently in some benchmarks and poorly in others.

This important fact means that the programmer is left with the responsibility of finding out

the best choice of configuration for his application - a problem that is cumbersome and time

consuming to tackle via off-line profiling, given that there are many available configurations.

Even worse, in fact, there may not exist a single optimal solution to be found statically, in the

cases where dynamic workloads are present. These facts have also been recently acknowledged

by Intel researchers, highlighting the importance of developing adaptive techniques to simplify

the tuning of RTM [Kleen, 2014].
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Figure 5.1: Relative performance of three example RTM configurations with respect to the best
static configuration in each benchmark with 8 threads (we show 9 different benchmarks). The
configurations used differ in the number of retries allowed for hardware transactions and in how
they deal with different types of aborts. This experimental data highlights that no configuration
performs consistently better than the others, and that all static configurations can be far from
the optimal performance at least for certain workloads.

5.2 Overview

With this work we contribute to addressing the aforementioned challenge by studying the

problem of automatically tuning the policies used to regulate the activation of the fall-back path

of RTM. In more detail, our contributions are structured as follows:

• In Section 5.5, we show that self-tuning is essential to achieve robust performance across

different workloads. In particular, we present evidence showing that no single configuration

exists that outperforms all others. Furthermore, we find that the performance of any static

configuration can deliver losses up to 10× when compared to the optimal solution for each

individual workload.

• In Section 5.6 we present a novel solution that relies on lightweight reinforcement learning

techniques to perform runtime adaptation based on the online monitoring of applications’

performance. For this to be possible, it is crucial to reduce any overhead of the profiling

and to strike a good balance between exploring new configurations and exploiting available

knowledge on already sampled configurations. In Section 5.7 we also discuss different

designs for our solution, and their inherent trade-offs. We then explain, in Section 5.8,

how our algorithms have been integrated in the GCC compiler in order to achieve full
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transparency for programmers. This is an important contribution as we preserve the simple

abstraction of TM, and effectively conceal our self-tuning mechanisms for adapting the TM

configuration given the current workload characteristics.

• Finally, we instantiate our TM adaptive approach considering two distinct RTM fall-back

paths: namely with a fall-back based on a single-global lock, as well as an STM-based fall-

back (i.e., a HyTM). We study their performance, in Section 5.10, by using a large set of TM

benchmarks, in which we obtain average gains of 60% over the best static alternatives and

up to two-fold improvements in specific benchmarks. This is obtained also while achieving

a performance gap, with respect to the optimal configuration in each benchmark, that is

< 5%.

5.3 Related Work

Works that studied the performance of RTM [Yoo et al., 2013, Karnagel et al., 2014] —

including that in Chapter 3 — have so far used static configurations, which were found to

have the best average performance for the considered workloads after extensive manual explo-

rations. Similar studies were performed for IBM processors, also lacking workload-oblivious

and application-independent mechanisms for tuning the HTM usage [Jacobi et al., 2012,Su and

Heisig, 2013, Odaira et al., 2014]. However, as highlighted in the previous sections, and dis-

cussed in more detail in Section 5.5, the choice of the optimal configuration is strongly workload

dependent.

Another recent work, called Adaptive Lock Elision (ALE) [Dice et al., 2014b], proposed to

regulate the choice of when to switch from HTM to software fall-back paths, by relying on an

ad-hoc adaptive approach that samples different configurations and interpolates the estimated

performance of those not tested. As such, a fundamental difference between our approaches is

that we explore the whole space of configurations, via reinforcement learning techniques that

aim to identify a sweet-spot between exploration and exploitation.

Additionally, there have been other proposals for self-tuning STMs. Adaptive Locks [Usui

et al., 2009], VOTM [Leung et al., 2013], and Dynamic Pessimism [Sonmez et al., 2009] adapt

between optimistic (with STM) and pessimistic (via locking) execution of atomic blocks. Unfor-

tunately, these approaches are not tailored to the specific problem studied in this chapter, and
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as such the resulting performance is disappointing as we show in our evaluation (by considering

Adaptive Locks, as the authors kindly provided us with their code, and whose high-level ap-

proach is similar to the other mentioned works). More complex adaptation schemes have been

proposed to self-tune the choice between different STM algorithms in AutoTM [Wang et al.,

2012b]. The main drawback of this kind of works, with regard to the HTM setting studied in

this dissertation, is that these self-tuning proposals require knowledge that is not available from

the HTM support that we have, such as the footprint of transactions (their read- and write-sets).

That is, unless we instrument reads and writes to obtain it, which would defeat the purpose of

HTM in avoiding the instrumentation overheads that are inherent to STMs.

We summarize the comparison with the related work in Table 5.1. There, we highlight the

target of each self-tuning algorithm and the approach taken in each work.

Finally, there is also a large body of work that has focused on adapting orthogonal aspects

of TM algorithms, namely: the ideal mapping of locks to shared memory addresses [Felber et al.,

2008]; the optimal parallelism degree, in terms of application threads, in both STM [Didona

et al., 2013] and HTMs [Rughetti et al., 2014,Mohamedin et al., 2015a]; and searching for the

optimal mapping of threads to processor cores, so that they benefit the most from the cache

usage and avoid mutual interference with one another [Castro et al., 2014]. In contrast with

these works, we focused on dealing with the emerging challenges posed by best-effort HTMs,

such as Intel RTM, i.e., self-tuning the policies that govern the retry logic and the usage of the

software fall-back path in best effort HTMs.

5.4 Preliminaries

In the course of this chapter we focus on self-tuning RTM when coupled with a single-global

lock or alternatively the NOrec STM. We have presented and studied these two approaches in

Chapter 3, under the name of, respectively, RTM-GL and RTM-NOrec.

In both cases we extend the base Algorithm 1 that was initially introduced to explain how

RTM can be used to execute atomic blocks in co-operation with a software fall-back path (a

global lock in that specific case). We augment that base algorithm in all our approaches —

baselines included — to avoid the lemming effect [Dice et al., 2008], by having the thread wait

for the fall-back path not to be under use, before every attempt to start the transaction.
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As stated in the overview of the contributions, we propose to integrate our improvements

in the TM implementation that is used by GCC, which is applied by the compiler to programs

written with atomic blocks. As such, we use the base GCC algorithm as one of the baselines

to motivate our work, as its performance is highly affected by the static configuration that is

hard-coded in its source-code. Its RTM usage is very similar to our base Algorithm 1, with two

differences: hardware transactions are only used as long as the status returned by RTM has

the retry bit set (recall Table 2.2), and the wait to avoid the lemming effect occurs only if the

transaction has already aborted once.

We also point out that we use RTM-GL as the driving example for the presentation of this

chapter, due to its simplicity when compared to RTM-NOrec. Still, the core ideas are analogous,

and we consider both approaches in the full evaluation study in Section 5.10.

Finally, all the evaluation conducted in this chapter uses the machine previously described

in Table 3.2 (and used in our comparative study in Chapter 3), which, we recall, has 4 physical

cores and 8 hardware threads with support for Intel RTM.

5.5 Making the Case For Adaptation: No One-size Fits All

The software-based transaction retry logic, regardless of being backed by a single-global lock

or STM fall-back, can be governed via two main tuning knobs: 1) the budget (i.e., the total

number) of attempts available for hardware transactions, before resorting to the fall-back path,

and 2) how to consume such budget depending on the causes of transactions’ aborts.

In order to assess the performance impact that these configuration options can have in

practice, we conducted an experimental study in which we considered a configuration’s space

containing all possible combinations of feasible values of the following two parameters:

• Budget of attempts — Varying from 0 to 20. This means that the software handler may

choose to avoid at all to use RTM, or to insist up to 20 times before stop calling it to

execute a transaction successfully.

• Capacity aborts — From our early Table 2.2, we can see that it is possible to obtain

feedback from RTM about capacity overflow aborts. In such cases we allow three possible

configurations: GiveUp exhausts all attempts upon a capacity abort; Halven drops half
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of the attempts on a capacity abort; and Stubborn decreases one attempt only. The

objective is to have different behaviours according to how serious the impediments are to

commit successfully in hardware 2.

We tested all the possible combinations of the above configuration space in our suite of

benchmarks, with varying concurrency degrees, reaching the conclusion that there is no one-size

fits all solution. In Table 5.2 we show some of the results from these experiments. For the sake

of brevity, we focus on the scenario of 4 threads.

We show the speedups (of the whole benchmark duration, relative to a non-instrumented

sequential execution) of:

• The best configuration found via exhaustive off-line search.

• A policy which we call GiveUp-5 (see Algorithm 13).

• And of the TM algorithm used by the GCC compiler, which we name GCC, as described

in the previous Section 5.4.

The GiveUp-5 policy is inspired by recent works, which have used a static value of 5 attempts

in their configuration [Yoo et al., 2013,Karnagel et al., 2014]. Also, as the name suggests, this

policy resorts to the fall-back path upon the first occurrence of a capacity abort. We consider

this configuration in our study in order to include a static policy that takes reasonable choices

regarding the setting of the retry budget and the management of capacity exceptions.

In general, the GiveUp-5 algorithm yields some considerable improvements over GCC.

However, the most important results are on the rightmost column, where we can see that the

best performing variant varies significantly in its characteristics. For instance, in the SSCA2

benchmark there are very few aborts due to the limitations of RTM, so the best configuration

is stubborn with respect to capacity aborts and uses up to 10 hardware transaction retries. In

contrast, Yada does trigger many deterministic capacity aborts, so it is best to desist immediately

upon their occurrence; however, if the transaction aborts for other reasons, it is actually better

to retry 7 times.

2We focus on capacity aborts because this is the only specific reason placed in the EAX register that may
represent a deterministic impediment for a hardware transaction to succeed. In our experience, abort reasons
captured by events in Model Specific Registers (MSRs) are too expensive to monitor online in a fine-grained
fashion because reading them implies issuing system calls.
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Figure 5.2: Speedups — across all benchmarks and number of threads evaluated in this chapter
— of different RTM configurations with respect to the optimal configuration for the considered
experiment. For each data point we consider four statistical metrics over the speedups: the best,
median, average and worst speedups that each configuration obtained across all the experiments
(benchmarks and number of threads).

Overall we can see that the optimal configuration varies significantly across different bench-

marks. The complexity of identifying a single static configuration emerges even more clearly

when considering Figure 5.2, which reports speedups across all benchmarks considered (several

data-structures and the STAMP benchmarks, described further in Section 5.10) and number of

the threads (from 1 to 8). Each speedup point corresponds to the performance of some RTM

configuration, relative to the optimal configuration for the considered experiment (identified off-

line via an exhaustive exploration). The tested configurations result from the cross product of

Table 5.2: Speedup of static configurations with 4 threads relatively to a sequential execution in
some of the benchmarks used in our evaluation.

Benchmark GCC GiveUp-5 Best Configuration

Genome 0.65 2.64 2.84 Halven-9
Intruder 0.73 2.48 3.05 Stubborn-4
Kmeans-high 2.74 2.85 2.99 Halven-3
Labyrinth 0.99 0.99 1.00 GiveUp-9
SSCA2 2.81 2.88 3.27 Stubborn-10
Vacation-high 0.74 1.76 2.64 Stubborn-19
Yada 0.79 0.87 0.92 GiveUp-7
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the three aforementioned ways to deal with capacity aborts and by varying the number of retries

from 1 to 20 (described in the previous Section 5.5).

By analyzing the experimental data reported in Figure 5.2, it is possible to see that the

performance loss with respect to the optimum for any configuration can range from 0.4× to 10×.

Furthermore, all configurations performed quasi-optimally in some benchmark and parallelism

degree, as evidenced by the data points of the Best line shown. Overall, this experimental data,

together with the additional data reported in Sections 5.1 and 5.10, provide strong arguments on

the lack of a one-size-fits-all configuration and represent a compelling motivation for the proposed

self-tuning schemes.

The bottom line of this section is that static configurations of RTM can deliver suboptimal

performance as a consequence of the high heterogeneity of the workloads generated by TM ap-

plications. The experiments above illustrate how much one could gain in the considered set of

benchmarks, workloads and concurrency degree, by using an approach that adapted dynamically

the RTM configuration to the workloads’ characteristics. Naturally, it is undesirable to require

the programmer to identify an optimal configuration for each workload, in particular because

workloads may be unpredictable or even vary over time. In fact, we highlight that, in principle,

adaptive approaches may yield even results better than the single, static best performing config-

uration for a given benchmark, e.g., in case its workload changes over the course of execution (as

it is the case in Intruder), or because different atomic blocks have very different characteristics

(as in Labyrinth).

5.6 Self-tuning Intel Restricted Transactional Memory

Our approach to tackle the problem of “no one-size fits all” in the RTM software fall-back

is to perform online lightweight profiling and adaptation. We use a simple self-tuning feedback

loop based on a target performance metric and instantiate reinforcement learning algorithms

that guide the exploration of the possible configurations towards the optimal one. This allows to

better fit the workloads of typical irregular applications that benefit most from synchronization

with TM [Dragojević et al., 2011], for which fully offline optimizations are likely to fall prey

of the over-approximations of solutions based on static analysis techniques. Another appealing

characteristic of the proposed approach is that it does not necessitate any preliminary training
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Algorithm 13: Possible static configuration of RTM (we call it GiveUp-5).
1: HTM_START()
2: attempts ← 5 . increased budget of attempts to sustain spurious aborts
3: begin:
4: while(is-locked(sgl)) do x86_pause . avoid the lemming effect
5: htmStatus ← _xbegin()
6: if htmStatus 6= _XBEGIN_STARTED
7: if attempts = 0
8: acquire-lock(sgl)
9: return
10: else
11: if htmStatus = capacity
12: attempts ← 0 . give up, likely to always fail due to capacity overflow
13: goto line 8
14: else
15: attempts ← attempts - 1
16: goto begin
17: if is-locked(sgl)
18: _xabort()
19: return

20: HTM_END()
21: if _xtest()
22: _xend()
23: else
24: release-lock(sgl)

phase, unlike other self-tuning mechanisms for Software TM (STM) based on off-line machine-

learning techniques [Rughetti et al., 2012,Didona et al., 2014].

Clearly, keeping the overhead of our techniques very low is a crucial requirement, as other-

wise any gain is easily shadowed, for instance due to profiling inefficiencies or repeated decision-

making. Another challenge is the constant trade-off between exploring alternative configurations

versus exploiting the current one, with the risk of getting stuck in a possibly sub-optimal con-

figuration.

The proposed solution seeks to minimize overhead in a twofold way. First, it avoids any syn-

chronization among concurrent threads, and it employs simple metrics for performance sampling

— such as x86’s Time Stamp Counter (TSC) cycle counter. Besides that, it employs a com-

bination of lightweight techniques, borrowed from the literature on reinforcement learning and

hill climbing algorithms, which were selected, over more complex techniques, precisely because

of their high efficiency.

Another noteworthy feature of the proposed self-tuning mechanism is that it allows for



146 CHAPTER 5. TUNER: SELF-TUNING THE HTM FALL-BACK

individually tuning the configuration parameters of each application’s atomic block, rather than

using a single global configuration. This feature is particularly relevant in programs that include

transactions with heterogeneous characteristics (e.g., large vs small working sets, are contention-

prone or not, etc.), which could benefit from using radically different configurations.

Before detailing the proposed solution, we first overview a state of the art solution [Auer

et al., 2002] for a classical reinforcement learning problem, the multi-armed bandit [Sutton and

Barto, 1998]. This reinforcement learning technique is the key building block of the mechanism

that we use to adapt the policy used to deal with capacity aborts, which will be described in

Section 5.6.2. We then explain the adaptation of how stubborn should one be in using RTM,

i.e., the budget of attempts, in Section 5.6.3. The combination of those techniques is presented

in Section 5.6.4.

5.6.1 Bandit Problem and UCB

The "bandit" problem (also known as "multi-armed bandit") is a classic reinforcement learn-

ing problem that states that a gambling agent is faced with a bandit (a slot machine) with K

independent arms, each associated with an unknown reward distribution. The gambler itera-

tively plays one arm per round and observes the associated reward, adapting its strategy to

maximize the average reward. Formally, each arm i (0 ≤ i < K) — where K is the number of

arms — is associated with a sequence of random variables Xi,n representing the reward of the

arm i, where n is the number of times the lever has been used. The goal is to learn which arm i

maximizes the average reward (µi) computed as:

µi =

∞∑
n=1

1

n
Xi,n (5.1)

To this purpose, the learning algorithm needs to try different arms to estimate their average

reward. On the other hand, each suboptimal choice of an arm i costs, on average, µ∗ − µi,

where µ∗ is the average obtained by the optimal lever. Several algorithms have been studied to

minimize this regret (i.e., loss with respect to the optimal), defined as:

µ∗n− µi
K∑
i=1

E[ni] (5.2)
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where ni is the number of times arm i has been chosen, given that there are K total arms.

Building on the idea of confidence bounds, the technique of Upper Confidence Bounds (UCB)

creates an overestimation of the reward of each possible decision, and lowers it as more samples

are drawn. Implementing the principle of optimism in the face of uncertainty, the algorithm

picks the option with the highest current bound. Interestingly, this allows UCB to achieve a

logarithmic bound on the regret value not only asymptotically, but also for any finite sequence

of trials. In more detail, UCB assumes that rewards are distributed in the [0,1] interval, and

associates each arm i with a value:

µ̄i = x̄i +

√
2
log n
ni

(5.3)

where µ̄i is the current estimated reward for lever i; n is the number of the current trial; x̄i is

the reward for lever i; and ni is the number of times the lever i has been tried. The right-hand

part of the sum is an upper confidence bound that decreases as more information is acquired.

By choosing, at any time, the option with maximum µ̄i, the algorithm searches for the option

with the highest reward, while minimizing the regret along the way.

As such, the intuition behind UCB is to balance the trade-off between exploring new choices

versus exploiting those already known. The advantage of UCB is in providing bounds on the

errors committed over time when searching for the optimal choice.

5.6.2 Using UCB learning

We applied UCB by considering that each atomic block of the application is associated with

a bandit, i.e., a corresponding UCB instance. With it, we seek to optimize the choice of what to

do when a capacity abort occurs in a hardware transaction. In some sense, this models a belief

on whether the capacity aborts witnessed are transient or deterministic, a fact that cannot be

established correctly based only on the error codes returned by aborted transactions.

We tackle the issue of how to manage capacity aborts by gathering feedback on the per-

formance yielded when using the three options identified in Section 5.5, i.e., 1) decrementing

linearly the number of retries, 2) halving the number retries, and 3) using the fall-back path

upon the occurrence of the first capacity abort. We associate each option with a bandit lever

and use the UCB algorithm to solve the trade-off between exploration and exploitation, i.e.,
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testing strategies that appear to be sub-optimal based on available evidence, versus selecting the

strategy that, so far, yielded on average the best performance.

The rationale that motivates the choice of using only these three alternative strategies is

to keep the number of UCB levers low. This is a relevant design, as the higher the number of

bandit’s levers, the longer time UCB will spend exploring sub-optimal solutions.

In order to instantiate Equation (5.3), we associate with n the number of decisions taken so

far for the atomic block, and with ni the number of times the UCB instance chose lever i. As

for the reward function associated with the levers (represented by x̄i), we consider the number

of processor cycles that it takes to execute (i.e., commit, after possibly some retries) the atomic

block using each different lever/strategy. To this end, we associate a counter ci with each lever

that we use to track how many cycles were consumed so far, i.e., to execute ni times the atomic

block using lever i. We also keep track of the best (i.e., lowest) number of cycles so far to process

atomic block i as besti. Then, we compute the reward x̄i for lever i with:

x̄i =
besti
ci/ni

(5.4)

which means that we normalize the cycles of lever i, giving us a reward in the interval [0,1]. If a

given configuration leads to executing an atomic block fast enough (i.e., close to the best number

of cycles spent so far) then this produces a high reward. In contrast, for slow executions, the

average number of cycles in the denominator will be larger than the best recorded value on the

numerator, and thus the reward will be low.

5.6.3 Using Hill Climbing Exploration

The other space of configurations that we want to optimize is the number of retries to use in

hardware transactions before triggering the fall-back software path. The optimization problem

that we want to solve here is illustrated by the experiments in Figure 5.3, where we show the

performance improvement of using RTM with 8 threads relative to a sequential version of the

code (with no instrumentation), in the STAMP benchmark Vacation, when varying the number

of attempts for the configuration. In the plot we show two workloads for Vacation that generate

low and high contention, for which there are significantly different number of attempts yielding

maximum values of improvement (namely, 12 and 16).
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Figure 5.3: Speedup in Vacation when varying budget of attempts for RTM usage, 8 threads, and
two contrasting workloads varying contention to shared memory (using the GiveUp strategy to
deal with capacity aborts).

In order to optimize the number of attempts configured for each atomic block, we use an

exploration technique, similar to hill climbing search [Russell and Norvig, 2009]. Its idea is to

perform an iterative search, in which each step consists of evaluating some gain function: if

the last change (i.e., increment or decrement by one unit) of the budget of retries produced an

improvement, then the same change is applied again.

The alternative of using UCB was dismissed because the parameter — number of attempts

— has a large space of search that makes UCB quite cumbersome (e.g., UCB requires an initial,

uniform sampling of every possible configuration).

To implement the function that measures the gain we use also the processor cycles that it

takes to execute the atomic block. We augmented the classical hill climbing with probabilistic

jumps to avoid getting trapped in local maxima during the exploration. This is because these

classical techniques end up exploring neighbourly configurations and may not be able to escape

a local maxima that is surrounded by worse configurations — even though a global optimal

configuration may exist elsewhere. Furthermore, we memorize the best configuration seen so far

to recover from unfortunate probabilistic jumps that yield excessive performance degradation.

To implement all of this, we store in our library: the best configuration and performance

seen so far (best); the last configuration and corresponding performance (last); and the current

configuration (current). Note that the configuration means simply the number of attempts.
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Then we use the following rules to guide exploration (strategy called hc):

1. With probability 1-pjump play according to classic hill climbing; if performance improved

along the current direction of exploration, keep exploring along that direction; otherwise

reverse the direction of exploration.

2. With pjump probability, select randomly the attempts with uniform probability for the next

configuration. If after the jump performance decreased by more thanmaxLoss, then revert

to the best known configuration. As we shall see in the next section, when merging the

usage of hc (to configure the number of retries) with that of ucb (to configure the reaction

to capacity aborts), we actually create a rule to decide better the extent and direction of

these probabilistic jumps.

As we shall see, in the implementation of these techniques in Section 5.8, we perform this

search/optimization step with some periodicity of a number of transactions. That is, we do not

explore a new configuration on every new transaction but, instead, let several (e.g., a hundred)

transactions execute before triggering a new exploration.

Further, in order to enhance stability and avoid useless oscillations once identified the optimal

solution, if, after a configuration change, performance did not change by more than min∆, we

block the hill climbing exploration and allow only probabilistic jumps (to minimize the risk of

getting stuck in sub-optimal configurations).

Concerning the settings of the pjump, maxLoss, and min∆, we set them respectively to 1%,

40% and 5%, which are typical values for this type of algorithms [Sutton and Barto, 1998] and

whose appropriateness in the considered context will be assessed in Section 5.10.

5.6.4 Merging the Learning Techniques

So far we have presented: 1) ucb to optimize the consumption of attempts upon capacity

aborts (Section 5.6.2); and 2) hc to optimize the allocation of the budget of attempts (Sec-

tion 5.6.3). We now present their integration in our algorithm called Tuner.

The concern with the integration in Tuner is that the two optimization strategies overlap

partially in their responsibilities. The advantage is that this allows to simultaneously optimize

the configuration accurately for atomic blocks that sometimes exceed capacity in a deterministic
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way, whereas, in other scenarios, can execute efficiently using RTM. This may be, for instance,

dependent on the current state of shared memory, or some input parameter used in the atomic

block. It is possible to achieve this because ucb shall decide to short-cut the attempts when

capacity aborts happen, whereas hc can keep the attempts’ budget high to allow successful RTM

execution when capacity aborts are rare.

One problematic scenario arises when an atomic block is not suitable for execution in hard-

ware: either hc can reduce the attempts to 0, or ucb can choose the GiveUp mode. However,

we may be unlucky and get an inter-play of the two optimizers such that they affect each other

and prevent convergence of the decisions.

To solve this problem with their integration, we create a hierarchy among the two optimizers,

in which ucb can force hc to explore in some direction and avoid ping-pong optimizations

between the two. For this, we create a rule that is activated when the attempts’ budget is

exhausted: in such event we trigger a random jump to force hc to explore in the direction that is

most suitable according to ucb, that is, explore more attempts if the UCB belief is Stubborn

and less attempts otherwise.

We compute the extension of the random jump for hc (based on the direction decided by

ucb), by taking into account information about the types of aborts incurred so far. Namely,

we collect the number of aborts due to capacity (ab-cap) and due to other reasons (ab-other).

Then, if UCB suggests exploring more attempts (i.e., UCB belief is Stubbborn), we choose the

length of the jump, noted J , proportionally to the relative frequency of ab-other :

J =
ab-other

ab-cap + ab-other
· (maxTries− cur)

where cur is the current configuration of the budget of attempts and maxTries = 20. If UCB is

different from Stubborn, the jump has negative direction, and length:

J =
ab-cap

ab-cap + ab-other
· cur

We now assess the efficiency of each of the optimization techniques alone, and their joint

approach described above as Tuner. In this joint strategy we seek to understand if the two

optimization techniques work well together: Figure 5.4 shows the speedup of Tuner relatively

to ucb and hc individually, with each individual strategy using the respective static configuration
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from GiveUp-5 (i.e., ucb uses 5 attempts and hc uses GiveUp) — we average the results across

benchmarks since they yielded consistent results.

We can see from our experiments that the joint strategy provided average results that are

always better than at least one of the approaches alone. More than that, for most cases Tuner

improved over both individual strategies, which shows that employing them in synergy provides

better results than the best approach alone. This is an encouraging result because tuning the

attempts and dealing with capacity aborts is not entirely a disjoint concern. Overall, the results

show that the joint approach yielded up to 20% improvement. Notice that each technique

individually already improves over the baselines presented earlier, so any improvement when

merged further reduces the gap with respect to the optimal result.

5.7 Granularity of Tuning

We now consider the trade-offs in possible designs of our proposal for self-tuning RTM.

On one extreme, it is possible to self-tune RTM for each atomic block defined in the appli-

cation. This fits better applications with high heterogeneity of atomic blocks: it is conceivable

to imagine that one atomic block a1 defined by the programmer may execute very fast and with

a small footprint, whereas another one a2 in the same application is very large and often exceeds

the capacity of RTM. As such, a1 may be optimized to have a high budget of attempts and not

to insist upon capacity aborts, whereas a2 may immediately give up RTM when faced with a

capacity abort.

On the other extreme, we may self-tune the application as a whole, independently of its

atomic blocks. In contrast with the alternative above, this has the advantage of requiring less
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Figure 5.4: Geometric mean speedup of Tuner over ucb and hc across benchmarks and threads.
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metadata: a single UCB and hill climbing instances, instead of one per atomic block. As such, it

also takes less executions of each atomic block to gather statistically meaningful data to conduct

the reinforcement learning procedures, as they are all gathered into the same metadata.

By avoiding multiple concurrent optimizations, this design has the benefit of avoiding pos-

sible interference. As an example, atomic block a1 may be experimenting with a strategy that

causes it to give up and acquire the global lock often (in the case of RTM-SGL). As a result, now

atomic block a2 — often executed concurrently with a1 — gets aborted in hardware frequently

due to the lock being taken by a1, and this may mislead the optimizer used by a2. Due to

the interference of a1’s optimizer, in fact, a2’s optimizer may associate a low reward with the

strategy, say s, currently in use for a2. However, if a1 eventually were to converge to a different

strategy, strategy s may eventually become optimal for a2 and have, at steady state, a higher

reward. Indeed, by performing self-tuning at the granularity of the whole application (and not

of the individual atomic blocks), we avoid this sort of interferences, although at the cost of a

reduced tuning flexibility.

Finally, it is also possible to perform the optimizations on a per-thread basis, or globally

across threads. This raises similar trade-offs to those above, as multiple concurrent optimizations

may have undesirable side-effects that mislead the other reinforcement learners. Conversely, a

single global optimization across all threads may fail to capture heterogeneity in the threads:

it is conceivable to imagine an application in which some threads execute atomic block a1 with

different parameters that cause them to have heterogeneous access patterns for the same code

in a1. As such, different threads may have very different behaviors within a1, for which different

RTM usages are optimal.

To capture the different trade-offs of these designs, we create two versions of our proposal.

We call the algorithm that optimizes each atomic block independently in a per-thread fashion

Tuner, which . In contrast, we call the global version of the algorithm G-Tuner, as it optimizes

the whole application (considering all atomic blocks as one) and with all threads using the same

learner and following the same optimization.
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Figure 5.5: Workload-Oblivious tuning of RTM.

5.8 Implementation Details

In this section we provide additional details on our implementations. We focus on the case

of RTM-SGL, for its simplicity, although the principles that we explain are the same for the

application of the proposed tuning strategies to RTM-NOrec. We begin by explaining how we

integrated our algorithms in the latest stable version of the Gnu C Compiler (GCC version 4.8.2),

inside its libitm component. This component is responsible for implementing the C++ TM Spec-

ification [Adl-Tabatabai et al., 2012] in GCC that allows programmers to write atomic constructs

in their programs, which are compiled to contain calls to our TM runtime library. Therefore,

this allows programmers to benefit from the improvements of our proposal fully transparently.

We now consider our Tuner, which uses per atomic block statistics and configurations. For

this, we modified GCC to uniquely identify each atomic block, and to pass that information to

calls to the TM runtime. We begin by laying out a high-level description of Tuner in Figure 5.5.

To the purpose of this presentation, G-Tuner shares most of its implementation with Tuner,

thus, despite their antagonistic design choices, we describe mostly how to integrate Tuner. We

then describe the details that differ among the two.

The flow in Figure 5.5 starts every time a thread enters an atomic block, at which point the

corresponding metadata of the atomic block is fetched, by using its unique id. Every per atomic

block metadata is maintained in thread-local variables: hence threads perform self-tuning in an

independent fashion. This has the advantage of avoiding synchronization and allowing threads
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Algorithm 14: Tuner applied to RTM-SGL.
1: HTM_START()
2: ucbBelief ← . retrieve from the last configuration used
3: attempts ← . retrieve from the last configuration used
4: if reoptimize()
5: initCycles ← obtainRDTSC()
6: begin:
7: while is-locked(sgl) do x86_pause
8: htmStatus ← _xbegin()
9: if htmStatus 6= _XBEGIN_STARTED
10: if attempts = 0
11: if reoptimize() then tuneAttempts(ucbBelief)
12: acquire-lock(sgl)
13: return
14: else
15: if htmStatus = capacity
16: . set the attempts of the next configuration according to ucbBelief; rules of Section 5.6.4
17: else
18: attempts ← attempts - 1
19: if attempts = 0
20: goto line 11
21: goto begin
22: if is-locked(sgl)
23: _xabort()
24: return

25: HTM_END()
26: if _xtest()
27: _xend()
28: else
29: release-lock(sgl)
30: if reoptimize()
31: totalCycles ← obtainRDTSC() - initCycles
32: ucbBelief ← ucb(totalCycles) . rules of Section 5.6.2
33: attempts ← hc(totalCycles) . rules of Section 5.6.3

to reach different configurations, which can be useful in case the various application threads are

specialized to process different tasks (and generate different workloads).

After fetching the metadata, we check whether it is time to re-optimize the configuration

for that atomic block. This condition is a result of the sampling that we use to profile the

application. For this, we keep a counter of executions in the metadata of the atomic block (recall

that it is thread local) so that we only re-optimize periodically — we set this period to 100

transactions in our evaluation. This classic technique allows to keep the overheads low without

missing noticeable accuracy in the decisions taken [Leung et al., 2013, Usui et al., 2009,Wang

et al., 2012b]. Hence we place the check for re-optimization in the begin and end of the atomic

block. In the negative case, we simply execute the atomic block with the last configuration set
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up for it and proceed without any extra logic or profiling.

In the case that we re-optimize, this enables profiling of the cycles that it takes to execute the

atomic block. For this, we use the RDTSC instruction in x86, which we use as a lightweight profiling

tool to measure the relative cost of executing the block in different configurations. After this we

attempt to start the transaction itself, which is better described in Algorithm 14. Lines 10-21

describe the retry management policy. During a re-optimization period, if the attempts’ budget is

exhausted, this triggers the forced random jump over hc according to the description of Tuner

in Section 5.6.4 (line 11), before proceeding to the fall-back path. Note also that upon a capacity

abort we adequately reduce the available budget according to the belief of UCB set in the current

configuration (line 16).

After the application executed the atomic block, it calls back to libitm, and Tuner executes

the usual procedure to finish the transaction. After this, it checks whether it is re-optimizing

the atomic block, and in the positive case it runs hc and ucb to adapt the configuration for the

next executions. To do so, it uses the processor cycles consumed, and applies the rules described

throughout Sections 5.6.2 and 5.6.3 to configure the budget and consumption of attempts in the

metadata of the atomic block.

Similarly to other metrics, assessing performance via processor cycles is also subject to thread

preemption, which may inflate the actual cost of executing the atomic block. We mitigate this

issue by binding threads to logical cores 3, and evaluating scenarios with up to as many threads

as logical cores, as more than those typically deteriorates performance anyway.

To conclude this section, we highlight how G-Tuner differs from the above description of

the implementation of Tuner. In this case, we did not require the unique numbering of each

atomic block, given that G-Tuner does not distinguish between atomic blocks, and instead

optimizes the application as a whole. For this, every thread keeps the metadata of the executed

atomic blocks, commits and the different number and type of aborts that it witnessed, in per-

thread variables. An additional adapter thread, spawned by our runtime in libitm, periodically

collects that profiled data and conducts the optimizations of ucb and hc. As such, it is no

longer responsibility of the application threads to do that procedure when they begin and end

3We note that in our evaluation setup, which has 8 hardware threads, we have confirmed that not binding
threads to cores does not produce a statistically measurable difference in performance. This, however, may not
remain true in machines with architectures different from the one used in this work.
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and atomic block, as we explained for Tuner. The resulting configuration, obtained by the

adapter thread, is published in a global structure, which every application thread queries before

executing atomic blocks. This leads to all threads to follow the same optimized strategy.

5.9 Opportunities for Optimizations and Extensions

We now discuss possible extensions to our work that would optimize it in different scenarios

that are not addressed in the TM benchmarks that are typically used in the literature and in our

following evaluation. That is to say, while they should improve performance in some scenarios,

that would not be evident in the set of benchmarks on which we perform the evaluation.

5.9.1 Granularity of the Self-tuning

In this work we presented self-tuning proposals that adapt the choice of the RTM fall-back

for a given (or all) atomic blocks presented in the source-code. This works best in the case

each atomic block is often invoked from the same context, i.e., its call stack and relevant scoped

variables are the same.

Let us present a contrasting example to explain why that is the case. Suppose that a

concurrent red-black tree is written with an atomic block around an insert operation (as is the

case in our evaluation following up). Then, an application may instance two such red-black trees

in the same piece of code and then populates them with contrasting workloads: one tree may be

very small and the other very large. As a result, the same insert operation will now be invoked

over these different trees, and the resulting workload will be dramatically different as one will

typically run fine in RTM whereas the other may fail deterministically due to capacity aborts.

While this limitation motivates for a different granularity for the self-tuning — for instance,

atomic blocks that consider also the call-stack — we note that this kind of behaviour does not

occur in a measurable way on the reference benchmarks for TM systems that are used in the

literature (and in our evaluation). Namely, it is often the case that an atomic block is invoked

from the same code location, generating identical workloads in subsequent invocations. Even if

the workload changes, as is the case for some STAMP benchmarks, this happens gradually and

not with concurrent inter-leaved requests exhibiting different workload characteristics as was the

case for the example given above.
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A possible solution to address this issue is to use the approach of ALE proposed by Dice

et al. [Dice et al., 2014b], which consists of labeling atomic blocks with context identifiers that

capture invocations from different contexts in the code. This allows a given static atomic block

— i.e., at the source code level — to be seen as different instances at runtime. The integration

of this technique with Tuner is perfectly viable, and would enable different optimizations of the

same atomic block depending on the context in which it is invoked.

5.9.2 Bootstrapping the Self-Tuning Process

When presenting Tuner we argued for the use of thread-local variables to maintain the

metadata necessary for the self-tuning process. This approach has two main advantages. First,

it allows threads to perform self-tuning in an independent fashion. This can be beneficial for

applications in which threads generate heterogeneous workloads and, consequently, have different

optimal configurations. Second, our distributed self-tuning approach is designed to avoid any

inter-thread synchronization.

However, for applications that often spawn new threads, this poses the problem that such

threads basically restart the learning process by collecting statistics from scratch. For such cases,

which are not encompassed in our evaluation test-bed, we propose a simple idea borrowed from

G-Tuner: we can periodically gather statistics across the threads into a centralized metadata,

and a new thread may use that to bootstrap its self-tuning.

5.9.3 Workload Changes

The self-tuning approach taken here is theoretically tailored to stationary workloads. This

is because the UCB solution, which we employed to decide what to do upon capacity aborts,

assumes a constant reward function. In fact, some of the STAMP benchmarks that we evaluate

our solution with, have dynamic workloads that change over time. As we shall see, our solution

performs efficiently (compared to any static solution) even in those cases.

Regardless, it is worth highlighting other alternatives that have the potential to perform

as good (or even better) with more suitable theoretical guarantees. One alternative would be

to use a different solution to the bandit problem that accounts for possible changes in the

workload [Kaufmann et al., 2012,Garivier and Moulines, 2011]. The idea there is to consider the
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data collected on the levers of the bandit over a sliding window of time. Alternatively, we could

use a workload change detector, such as CUSUM [Basseville and Nikiforov, 1993], and reset the

UCB statistics upon a workload change.

5.10 Evaluation Study

We now present our final experimental study, in which we assess the effectiveness of our

self-tuning proposal Tuner. In addition to RTM-SGL, which we have discussed extensively in

this chapter, we consider also the HyTM RTM-NOrec that we used in Chapter 3 (that is, the

Hybrid NOrec of Section 2.5.1 with several optimizations and Reduced Hardware Transactions).

We enhance each of these two approaches with both Tuner and G-Tuner, as described in the

previous Sections 5.5 and 5.8.

We note that we have only implemented the RTM-SGL approaches (both for Tuner and

G-Tuner) in GCC. For approaches with RTM-NOrec, instead, we resorted to a macro-based

library that the applications invoke directly. The main reason being the lack of support in libitm

for HyTMs as they require two instrumentation paths — besides the non-instrumented one —

whereas libitm provides support only for one instrumented path. We highlight that our RTM-

SGL implementations yield equivalent performance both when used in GCC (by optimizing for

the non-instrumented path when possible) and also in a macro-based library. As such, we believe

that the same would be apply for RTM-NOrec, should libitm be optimized also for HyTMs.

We compare to the baselines that were described throughout this dissertation, together with

a state of the art approach that was designed in the scope of STMs:

• GCC: as described in Section 5.4, corresponding to the implementation available in libitm

in GCC 4.8.2.

• AdaptiveLocks: was proposed to decide between locks and TM for atomic blocks [Usui

et al., 2009]; an analytical model is used and fed with statistics sampled at runtime (sim-

ilarly to Tuner). We adapted their code (using CIL) to our environment integrated in

GCC.

• GiveUp-5: corresponding to Algorithm 13, which embodies the best practices described

in the literature to statically tune RTM with heuristics. We applied this baseline to both
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RTM-SGL and RTM-NOrec.

• Stubborn-10: unlike GiveUp-5, this heuristic insists on using RTM for 10 times inde-

pendently of the exception type that caused the transaction to abort. Then, it switches

to using the fall-back path. Also in this case we consider two fall-back paths, namely SGL

and NOrec.

• Best Static: an idealized upper bound on the best result possible, obtained by picking the

best configuration among all those possible for each benchmark and degree of parallelism.

As such, this alternative does not correspond to a real tuning algorithm, but rather to an

optimal, static configuration specifically tailored for each workload/benchmark. We show

the results using this ideal variant both for the case of RTM-SGL and RTM-NOrec.

Similarly to all the results shown already, we shall present speedup values that are computed

with respect to a sequential, non-synchronized execution of each benchmark. Every experiment

was repeated ten times to achieve statistically meaningful results.

We begin by summarizing our findings across all benchmarks in the following Section 5.10.1.

Then, in Section 5.10.2, we study the performance of the different solutions in a set of concurrent

data-structures, which are widely used to study TM algorithms. Afterwards, in Section 5.10.3,

we extend our study to a variety of popular TM standard applications. Finally, we also evaluate

the algorithms from an energy-efficiency perspective in Section 5.10.4.

5.10.1 Summary of Evaluation

To ease the interpretation of all our results in this extensive study, we begin by summa-

rizing our findings across all the benchmarks that we use (namely, concurrent data-structures

in Section 5.10.2 and the STAMP benchmarks in Section 5.10.3), whose detailed description is

provided later in the following sections.

First of all, we sought to understand the overhead of our self-tuning approaches. For that,

we created variants of our Tuner and G-Tuner (applied to both RTM-SGL and RTM-NOrec)

that executed all the profiling and optimization procedures, even though the atomic blocks were

always executed with a static configuration. We compared the performance of these stripped

down tuning algorithms with a baseline that used that same static configuration and had none
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Figure 5.6: Overhead of the self-tuning algorithms. For each algorithm, we used a stripped down
version in which all the profiling and optimizations are performed, but the RTM configuration
used is always the same. We compare the performance with a baseline that uses that same static
configuration and show the geometric mean speedup across all benchmarks (data-structures and
STAMP).

of the added procedures. The results, which illustrate the overheads of our proposed solution,

are shown in Figure 5.6.

This experiment shows that the overhead of G-Tuner is slightly less than Tuner, although

in any case the values amount at most to an average of roughly 5%. This is an inspiringly low

value, which we hope to capitalize with the self-tuning produced by these algorithms.

We then present the average speedup across all benchmarks, for each approach, relative to

that of Best Static. As such, values closer to 1 are optimal. The results for RTM-SGL and

RTM-NOrec are presented, respectively in Tables 5.3 and 5.4. The main result that we highlight

here is two-fold: 1) there is a large gap between the performance of the baselines and that of the

Best Static variant, regardless of the used fall-back path; and 2) both Tuner and G-Tuner are

capable of effectively minimizing that gap, yielding an average performance that is very close to

that of the Best Static variant.

Note that the worst performing approaches (namely, GCC and AdaptiveLocks) tend

to have higher standard deviation, because in some benchmarks they perform closer to the

optimal (e.g., Labyrinth and SSCA2) and in others they can perform much worse (e.g., Vacation

and Intruder). In contrast, the best performing approaches tend to perform more consistently

throughout the benchmarks.
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Table 5.3: Speedup of each approach in RTM-SGL relative to the Best Static (with standard
deviation) averaged across all benchmarks.

Speedup to Best Static threads
2 4 6 8

GCC 0.61 ± 0.31 0.39 ± 0.34 0.31 ± 0.33 0.25 ± 0.34

AdaptiveLocks 0.67 ± 0.25 0.54 ± 0.29 0.45 ± 0.31 0.40 ± 0.32

GiveUp-5 0.90 ± 0.13 0.86 ± 0.11 0.81 ± 0.18 0.76 ± 0.24

Stubborn-10 0.88 ± 0.12 0.83 ± 0.12 0.80 ± 0.16 0.74 ± 0.21

Tuner 0.95 ± 0.05 0.95 ± 0.07 0.97 ± 0.07 0.97 ± 0.12

G-Tuner 0.96 ± 0.04 0.95 ± 0.06 0.96 ± 0.06 0.96 ± 0.10

Table 5.4: Speedup of each approach in RTM-NOrec relative to the Best Static (with standard
deviation) averaged across all benchmarks.

Speedup to Best Static threads
2 4 6 8

NOrec 0.53 ± 0.31 0.53 ± 0.30 0.55 ± 0.31 0.53 ± 0.32

GiveUp-5 0.85 ± 0.12 0.83 ± 0.13 0.76 ± 0.18 0.70 ± 0.21

Stubborn-10 0.81 ± 0.18 0.78 ± 0.19 0.70 ± 0.20 0.61 ± 0.24

Tuner 0.92 ± 0.05 0.93 ± 0.05 0.95 ± 0.10 0.95 ± 0.14

G-Tuner 0.94 ± 0.05 0.95 ± 0.04 0.96 ± 0.10 0.97 ± 0.12

In fact, for 8 threads, we can see that our self-tuning proposals achieve performance within

5% of the Best Static across both types of fall-backs. The data appears to suggest that Tuner

performs slightly better in RTM-SGL and G-Tuner in RTM-NOrec. We argue that this may

depend on the inherent trade-offs that exist between the two proposed solutions:

• In RTM-SGL, bad configurations for triggering the fall-back are more catastrophic, because

dictating the usage of the fall-back imposes heavy serialization on the single-global lock.

As such, it pays off more to have a finer-grained optimization with Tuner, even though

the overhead of doing so is higher.

• In RTM-NOrec, the fall-back is less aggressive in constraining concurrency as it uses an

STM rather than a global lock. As such, it better to have a more coarse-grained (and

lighter) optimization, by relying on G-Tuner instead.

Although these antagonistic design choices pose a trade-off, the aggregated performance

values are fairly close to each other. In the following sections we shall delve into detailed results

for each benchmark, where the differences become noticeable. Furthermore, it is important
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Table 5.5: Parameters used in the data-structures tested. The low (and respectively high)
contended workloads across data-structures were chosen in a way such that they generate ap-
proximately the same degree of contention.

Benchmarks (contention) Size Insert / Remove / Contains

linked-list (low) 1000 1% / 1% / 98%
linked-list (high) 1000 37% / 37% / 26%
skip-list (low) 5000 1% / 1% / 98%
skip-list (high) 10000 45% / 45% / 10%

red-black tree (low) 100000 5% / 5% / 90%
red-black tree (high) 1000 45% / 45% / 10%

hash-map (low) 10000 5% / 5% / 90%
hash-map (high) 100 45% / 45% / 10%

to recall that Tuner allows for self-tuning workloads that are heterogeneous across threads,

which does not happen in these typical TM benchmarks. We have verified this in synthesized

benchmarks: for instance, one benchmark where some threads manipulate a low contended hash-

map and others a contended linked-list; in such case Tuner obtained about 20% improvement

over G-Tuner for 8 threads. However, for cases where this heterogeneity between threads

is not expected, then the simpler algorithm for G-Tuner provides approximately the same

performance, which makes it more appealing.

Finally, we do not specifically aim to adapt between the different fall-backs — namely be-

tween using both the SGL and NOrec — for which reason it is out of scope to compare directly

their performance here. In fact, others have proposed and evaluated the trade-offs between such

approaches in the scope of Hybrid TMs [Matveev and Shavit, 2013,Dalessandro et al., 2011,Riegel

et al., 2011,Dice et al., 2014b].

5.10.2 Concurrent Data-Structures

We tested the set of four representative data-structures that we presented in Section 2.7,

which are typically used to study the performance of TM algorithms [Dalessandro et al., 2010,

Hammond et al., 2004, Felber et al., 2008, Dragojević et al., 2009a]. We used two workloads

for each data-structure, respectively with low and high contention. The parameters used are

described in Table 5.5, and were chosen such that the low (and respectively high) contention

across data-structures generated approximately the same ratio of aborted transactions (less than

10% for low contended, and more than 50% for high contended).
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Figure 5.7: Speedups relative to sequential execution in the data-structures benchmarks when
tuning RTM-SGL with different approaches.
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Figure 5.8: Speedups relative to sequential execution in the data-structure benchmarks when
tuning RTM-NOrec with different approaches.
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We present our results concerning RTM-SGL in Figure 5.7 and RTM-NOrec in Figure 5.8.

The highlight of most of our evaluation is that our self-tuning approaches are generally the

closest ones to the idealized Best Static variant; not only that, but the gap between the optimal

performance and our solution is typically very small.

In general, the static baselines can perform significantly worse than the Best variant. This

is an expected result, as we have already shown how difficult it is for a static approach to

perform optimally across workloads. The performance of Adaptive Locks, on the other hand,

are largely unsatisfactory due to the large, constant, overheads that it entails. This approach,

in fact, requires manipulating shared memory locations to store metadata associated with the

atomic blocks. These manipulations require costly synchronization that hampers performance

significantly and shadows the gains achievable via dynamic adaptation.

If we consider the two heuristics GiveUp-5 and Stubborn-10, we can see that they usually

have contrasting results. That is, whenever one is closer to the Best Static, the other performs

worse, and vice-versa. This is a consequence of their antagonistic heuristics for budget of attempts

and to deal with capacity aborts.

If we compare our two tuning approaches, we can see across all the plots that they perform

very similarly in general. There are some sporadic advantages towards G-Tuner that yield a

geometric mean improvement of 5% over Tuner, which happens for two main reasons. Firstly,

there are three atomic blocks only in these data-structures, one for each type of operation (and

two of which are very similar, mutation operations). As such, the G-Tuner approach to opti-

mize the application globally does not lose much with respect to the specialization of Tuner

because there are few and homogeneous atomic blocks. Secondly, these atomic blocks are very

small compared to those of some applications that we test later. Consequently, Tuner’s main

disadvantage, i.e., replicating the tuning procedure across different threads, becomes more no-

ticeable. This is mainly a result of measuring the processor cycles spent, which adds a constant

overhead of roughly 65 cycles in our machine, and is thus visible in such small and dominant

atomic blocks.

While it is not our intention to compare the different RTM fall-backs, we can see between

the two sets of plots that the scalability and performance trends are very similar. This is a

result of the fact that the best performing algorithms allow both RTM approaches to rely on

hardware transactions and, indeed, we have already assessed in Chapter 3 that the concurrent
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Table 5.6: Configurations to which Tuner and G-Tuner converge when using RTM-SGL and
running with 8 threads.

Benchmarks (contention)
RTM-SGL

Tuner G-TunerInsert Remove Contains

linked-list (low) GiveUp-4 GiveUp-2 GiveUp-9 GiveUp-8

linked-list (high) GiveUp-6 Halven-4 Halven-5 Halven-7

skip-list (low) Halven-6 Halven-5 Stubborn-5 Halven-8

skip-list (high) GiveUp-8 GiveUp-6 Halven-15 GiveUp-15

red-black tree (low) Halven-7 Halven-7 Stubborn-6 Halven-8

red-black tree (high) GiveUp-8 GiveUp-8 Stubborn-8 Halven-9

hash-map (low) Halven-8 Halven-7 Stubborn-9 Halven-9

hash-map (high) GiveUp-6 GiveUp-6 Halven-5 GiveUp-8

data-structures are very well suited for hardware transactions.

As the last set of experiments that use the data-structures, we also present the configurations

for which our Tuner approaches converged to. This is a particularly interesting opportunity

to delve into such details because these data-structures have stationary workloads and a small

number of atomic blocks when comparing to the benchmarks evaluated later.

Because each thread in Tuner may choose a different configuration, we present the con-

figuration that is chosen by most threads in a given run. In practice, given the homogeneous

workload of these micro-benchmarks, we noticed that most configurations were similar across the

threads. Furthermore, we present the configurations that were used for the longest time in the

benchmark, as our self-tuning algorithms regularly re-optimize, and may change their decision

over time. Finally, these results correspond to the case of running with 8 threads, as that is the

case where the gains were generally larger with our self-tuning proposals.

The results are shown in Tables 5.6 and 5.7, respectively for RTM-SGL and RTM-NOrec.

Note that, as explained above, we show three configurations for Tuner corresponding to the three

atomic blocks used in the data-structures (the canonical insert, remove and contains operations).

In the case of G-Tuner, a single configuration is chosen globally for the application.

Starting with RTM-SGL and Tuner, it is possible to identify several trends. First, the

low contended workloads are generally more conservative when dealing with capacity aborts, by

halving or remaining stubborn most of the time, when compared to their high contented counter-
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Table 5.7: Configurations to which Tuner and G-Tuner converge to when using RTM-NOrec
and running with 8 threads.

Benchmarks (contention)
RTM-NOrec

Tuner G-TunerInsert Remove Contains

linked-list (low) GiveUp-9 GiveUp-6 Stubborn-10 Stubborn-6

linked-list (high) GiveUp-6 GiveUp-6 GiveUp-15 GiveUp-8

skip-list (low) Halven-4 Halven-5 Halven-6 Halven-6

skip-list (high) GiveUp-1 GiveUp-6 Halven-4 GiveUp-16

red-black tree (low) GiveUp-6 Halven-6 Stubborn-7 Halven-12

red-black tree (high) GiveUp-6 Halven-6 Stubborn-5 GiveUp-6

hash-map (low) Halven-7 Halven-7 Stubborn-8 Stubborn-6

hash-map (high) GiveUp-16 Halven-7 Stubborn-6 GiveUp-12

parts. We can also see that the Skip-List and Linked-List, which generate longer footprints for

the transactions, lead Tuner to use a lower budget of attempts and to give up more frequently

upon capacity aborts.

As for the configurations selected by G-Tuner, also in RTM-SGL, in most scenarios they

appear to roughly approximate the average of the configurations identified by Tuner for each

atomic block. Furthermore, also G-Tuner, in 3 of the 4 considered benchmarks, converges to

more conservative policies for dealing with capacity aborts (i.e., it does not give up immediately)

when faced with low contention workloads.

The data reported in Table 5.7, which refers to the RTM-NOrec case, exhibits analogous

trends to the ones observed for the RTM-SGL case. If we compare each configuration individually,

the trend here is that RTM-NOrec is more prone to giving up on RTM— i.e., after a lower number

of attempts — which should be a result of the fall-back being much more efficient than the SGL

used in the case of RTM-SGL.

5.10.3 Application Benchmarks

For representative application benchmarks we relied on the STAMP suite. We used the

standard parameters for the STAMP benchmarks and show workloads for low and high contention

when available.
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Figure 5.9: Speedups relative to sequential execution in the STAMP benchmarks when tuning
RTM-SGL with different approaches (1/2).
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Figure 5.10: Speedups relative to sequential execution in the STAMP benchmarks when tuning
RTM-SGL with different approaches (2/2).

Once again, we present our study with respect to both RTM-SGL (in Figures 5.9 and 5.10)4

and RTM-NOrec (in Figures 5.11 and 5.12). In general this large set of experiments indicates

a consistent gap in performance between the static configurations and the best possible variant.

This gap is usually more noticeable as the concurrency degree increases — as we can see for

instance in Intruder (in Figure 5.9(e)) — which is expected, since that is when the configuration

parameters matter most to decide when it is profitable to insist on the hardware transactions of

RTM. In short, these gaps in performance between the static alternatives and the best variant

possible correspond exactly to the room of improvement that we try to explore with our self-

tuning approaches in this dissertation.

In fact, both Tuner and G-Tuner are able to achieve performance improvements in all

benchmarks with the exception Labyrinth, in which it yields roughly the same performance as

4Note that in Labyrinth (Figure 5.9(f)) the GCC and Best Static lines are overlapping, as the GCC heuristic
gives up very easily, making it a nice fit for the long running transactions of this benchmark that lead to regular
hardware capacity aborts.
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Figure 5.11: Speedups relative to sequential execution in the STAMP benchmarks when tuning
RTM-NOrec with different approaches (1/2).
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Figure 5.12: Speedups relative to sequential execution in the STAMP benchmarks when tuning
RTM-NOrec with different approaches (2/2).

the static approaches. Note that, in Labyrinth, transactions are always too large to execute in

hardware, and the benchmark executes about five hundred such large operations, which means

the length of the transaction dominates the benchmark and no noticeable performance changes

exist with regard to different configurations that do not insist too much on the hardware.

It is also interesting to see that there are some experiments where the self-tuning approaches

perform better than what we call the Best configuration. This is a consequence of the Best con-

figuration being devised from static configurations; we choose the one that performs best among

all those that are possible. In contrast, our self-tuning approaches change the configuration dur-

ing the execution, possibly obtaining a combination of configurations at runtime that performs

better than any single configuration. We can observe this phenomenon in Kmeans, Vacation and

Yada.

Finally, we present an example of the adaptation performed by Tuner in Figure 5.13 in

the Yada benchmark (we show the adaptation of one thread among 8 running concurrently).



5.10. EVALUATION STUDY 173

0

4

8

12

16

a
t
t
e
m

p
t
s

giveup

halven

stubborn

t t

re-optimization rounds

 
 
 
u
c
b

d
e
c
i
s
i
o
n

(a) Yada atomic block A.

0

4

8

12

16

a
t
t
e
m

p
t
s

giveup

halven

stubborn

t t

re-optimization rounds

 
 
 
u
c
b

d
e
c
i
s
i
o
n

(b) Yada atomic block B.

Figure 5.13: Exploration and adaptation of Tuner on two different atomic blocks.
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Figure 5.14: Throughput variance of each algorithm during the execution of 2 benchmarks.

There, we can see the configuration of two atomic blocks being re-optimized, and converging

to two drastically different configurations: the left block executes efficiently with RTM whereas

the right one does not. This illustrates the advantages that we have previously mentioned

for Tuner: 1) the adaptation allows heterogeneous threads and atomic blocks to converge

to different configurations; 2) an atomic block, such as that in Figure 5.13(b), can still insist

moderately on using RTM as long as capacity aborts do not occur, but react quickly in case

they appear. In contrast, G-Tuner uses a slightly more efficient profiling approach (with less

redundant work across the threads) at the cost of having a single optimizer for all the application.

As such, this results in less performance in cases such as Yada, where it is possible to benefit

from the heterogeneity of the atomic blocks.

To better show this duality among our self-tuning approaches we show, in Figure 5.14,

the throughput of the different algorithms over time in two benchmarks for a sample of time

in their initial execution (with 8 threads). It is interesting to see that G-Tuner tends to
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stabilize quicker than Tuner, although possibly at a lower throughput rate. Tuner produces a

spikier throughput due to the interactions among different threads and different atomic blocks

exploring the different configurations, which has an impact in the stabilization of the algorithm.

Nevertheless, this has the advantage that, in some cases, it may achieve an average performance

that is higher than G-Tuner (as is the case for Vacation in Figure 5.10(a)).

In contrast, we can see that the static baselines have a steady performance, albeit far worse

in absolute terms. Adaptive Locks acts accordingly to an analytical model, whose impact in the

configuration choice is visible as performance varies. However, its constant overheads are too

high for those explorations to pay off.

5.10.4 Evaluating Energy Consumption

To conclude our evaluation study, we also assessed the energy efficiency of the different

algorithms. So far we have focused on optimizing performance, but shifting the focus towards

energy saving may, at least in principle, dictate a different optimization. To a large extent, the

trade-off between optimizing for energy or time is a consequence of the trade-off between the

usage of locks in the software fall-back and their absence in the hardware path.

However, optimizing for energy consumption is not an easy task to implement. There are

commodity facilities in recent Intel processors, called RAPL [David et al., 2010], which we

previously used in our comparative study in Chapter 3.

One problem is that the refresh rate of RAPL is not very high — on the order of milliseconds.

Adding to this, RAPL uses model specific registers, which are exposed through the file system and

require expensive calls to read and compute the energy consumed. As a result, these problems

mean that measurements must be conducted over large periods of time, so that the limitations are

avoided and costs are amortized, when compared to the exploration/exploitation optimizations

that we propose in this dissertation.

In fact, we had seen that performance and energy followed similar trends, during the com-

parison in Chapter 3. We now seek to assess that correlation in more detail, and considering

also the full space of possible configurations for the fall-back of RTM (whereas before we had

considered only a static configuration for our comparative study).

Given these challenges, which seem hard to overcome with current commodity hardware, we
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Table 5.8: Distance correlation between performance and energy consumption averaged over the
runs with different number of threads for each benchmark. Values closer to 1 show dependence
between performance and energy consumption.

Benchmark Correlation Benchmark Correlation

genome 0.74 linked-list low 0.91
intruder 0.84 linked-list high 0.87
labyrinth 0.82 skip-list low 0.94

kmeans high 0.76 skip-list high 0.81
kmeans low 0.92 hash-map low 0.98

ssca2 0.97 hash-map high 0.72
vacation high 0.55 rbt-low 0.95
vacation low 0.74 rbt-high 0.73

yada 0.77 average 0.81

hypothesized the following: can we optimize a TM application in terms of performance and, as

a side effect, also optimize the application in terms of energy efficiency?

To answer this question, we conducted a series of experiments. As a first experiment, we took

every execution in all our benchmarks and measured the distance correlation between the time

to complete the benchmark and the energy spent in doing so. These executions encompass all

the possible configurations, benchmarks and parallelism degree, which amounts to almost twenty

five thousand runs. We used a state of the art distance correlation metric [Székely et al., 2007]

in which two random variables are considered dependent if the distance is 1, and independent if

the distance is 0.

In Table 5.8 we show the computed distance correlation between time and energy. The

objective is to assess the extent to which these two variables are related. The results are shown

for each benchmark, and averaged across all the configurations and degrees of parallelism. As

a result, we obtain an average correlation of 0.81, with an outlier in Vacation High with 0.55

and all others above 0.70. This suggests a relatively strong correlation between the energy and

performance achievable by any configuration considered in the study.

The data in Table 5.9 provides an alternative, interesting perspective from which to analyze

the correlation between energy and performance. The experiment whose results are reported

in this table was designed to answer the following question: how distant is energy consumption

from the optimum in the configuration selected by (G)-Tuner, which, we recall, uses as target

metric for the self-tuning process a performance-related metric?
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Table 5.9: Relative energy of the best configurations, aimed for performance, with respect to the
best configuration in terms of energy. Values closer to 1 show that optimizing for performance
also optimizes for energy consumption. We show the geometric mean across different number of
threads for each benchmark.

Benchmark Relative Energy Benchmark Relative Energy

genome 0.99 linked-list low 1.00
intruder 1.00 linked-list high 1.00
labyrinth 0.92 skip-list low 1.00

kmeans high 1.00 skip-list high 0.98
kmeans low 1.00 hash-map low 0.99

ssca2 1.00 hash-map high 0.99
vacation high 0.99 rbt-low 1.00
vacation low 1.00 rbt-high 1.00

yada 0.89 average 0.98

For each benchmark and parallelism degree, we took the best performing configuration in

terms of time (configuration T ) and energy (configuration E), which are typically different (i.e.,

we verified that normally T 6= E). Then, we compare the relative energy obtained with T with

respect to that of E (i.e., the optimal one). As such, we obtain the relative loss in terms of

energy when optimizing for time compared to that if we optimized for energy.

The results, shown in Table 5.9, show with an outstanding consistency that the loss is

negligible. The average relative energy consumption (i.e., a metric akin to that of speedup that

we used earlier) shows a value of 0.98, which means that for the most part we obtain the optimal

energy when focusing on performance alone.

This allows us to conclude also that our self-tuning proposals benefit both metrics of time

and energy together, while only focusing on the former.

5.11 Summary

In this chapter we shed light on one issue that can have a great impact on the performance of

the recent Intel RTM: the interplay with the software fall-back that regulates how to cope with

failed hardware transactions. We showed that the optimal tuning of the software policy that

regulates the re-execution of hardware transaction is strongly workload dependent, and that the

relative difference in performance among the various possible configurations can be remarkable
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(up to 10×).

Motivated by these findings, we presented a novel self-tuning approach that combines rein-

forcement learning techniques and hill climbing exploration-based algorithms to self-tune RTM

in a workload-oblivious manner. This means that our proposal does not require a priori knowl-

edge of the application, and executes fully online, based on the feedback on system’s performance

gathered by means of lightweight profiling techniques.

We proposed two designs, called Tuner and G-Tuner, which we integrated with the well

known GCC compiler, thus achieving total transparency for the programmer. The two designs

obtain similar average results, although our study highlighted interesting trade-offs that make

Tuner best fit for RTM with a single-global lock fall-back, and G-Tuner for RTM with an

STM as the fall-back.

Our extensive evaluation study also showed consistent average gains of 60% over the best

static alternative suggested by previous studies to regulate the RTM’s retry policy. Furthermore,

our proposed solutions had performance averaging 5% less from the optimal performance among

all possible configurations of RTM within the ranges that we considered. Finally, we concluded

also that our proposals benefit equally energy-consumption, as energy efficiency and performance

appear to be strongly correlated in the large majority of the workloads encompassed by our

benchmarks’ test-bed.
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6Seer: A Probabilistic

Scheduler for HTM

In the previous chapter we have addressed the correct tuning of the retry policy for best-

effort HTMs, using as driving case study the Intel RTM. However, the retry policy can only

provide benefits so long as the hardware transactions abort up to a limit, as otherwise they are

prone to eventually triggering the fall-back path.

In this chapter we take a different look at the challenges underlying concurrency control with

the recent best-effort HTMs. The key idea here is to attempt to reduce the aborts of hardware

transactions, i.e., an objective similar to that of Time-Warp in Chapter 4, yet using a different

technique: restricting the parallelism of transactions that have a high risk of aborting due to

concurrent interactions with each other, by scheduling them in mutual exclusion.

As such, this complements the previous proposal of Tuner, as aborts are reduced in a

best-effort fashion, thus still causing HTM to have widely varying optimal retry policies.

The technique presented in this chapter augments the software that manages the HTM

invocations (whose internal logic remains the same; i.e., that of commodity processors such as

Intel’s Haswell), similarly to Tuner, which means that the idea is not to change or propose

a new HTM per se. This contrasts with Time-Warp, which reduced aborts by using a new

STM algorithm, whose concurrency control was changed with respect to other more traditional

approaches.

6.1 The Problem

Due to the speculative nature of TM implementations, transactions are likely to be restarted

and aborted multiple times in conflict prone workloads. This has motivated a large body of

research on schedulers (e.g., [Yoo and Lee, 2008,Dragojević et al., 2009b,Dolev et al., 2008]),

whose key idea is to serialize the execution of transactions that are known to generate frequent

aborts. To enable this, the application is typically instrumented to provide identifiers associated
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Figure 6.1: Two transactions causing a conflict. The information returned by the TM varies
depending on its nature: STMs are able to precisely identify the source of the abort, whereas
commodity HTMs provide only a coarse categorization of the abort.

with the call to start and end a transaction, thus mapping them to atomic blocks in the source

code. Then the scheduler acts at the level of such atomic blocks, by allowing (or not) instances

of transactions of different types (i.e., atomic blocks) to proceed in parallel.

However, most existing scheduling techniques were designed to operate with STMs: they

rely on specific support provided by the STM to gather knowledge on the conflicts that occurred

between transactions. Typically, upon a transaction abort, the STM library can report back to

the scheduler which specific memory access and concurrent transaction dictated the abort [Rito

and Cachopo, 2014,Dragojević et al., 2009b]. This happens because that software library has

full knowledge of the read and write-sets of the transactions, and can be easily extended to

externalize such information back to the scheduler. This is illustrated in Figure 6.1, where we

depict transaction T1 aborting due to a read-write conflict with a concurrent transaction T2. An

STM library is able to report this precise information back to a TM scheduler.

With the adoption of HTMs such as that of Intel RTM, however, we lose much of this

ability. When a hardware transaction is aborted, the feedback is limited and insufficient to

pinpoint which transaction caused the abort. As shown already in Chapter 3, and exemplified

in Figure 6.1, these HTMs merely distinguish between a data conflict and other abort causes

(e.g., exceeding hardware buffers). As seen also in Section 2.1, this means that calls to begin a

transaction either report that the transaction is started, or that some error occurred and caused

it to abort (namely, capacity overflow of the processor caches, conflict with another undisclosed

transaction, or some other problem due to the limitations of HTM).

For this reason, schedulers for STMs, which assume exact knowledge on the conflict patterns
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among transactions, cannot be straightforwardly employed with HTM, which are instead only

capable of providing imprecise information. The problem is then how to devise a scheduler that

can work with that very limited information and still make accurate decisions. This challenge is

exacerbated by the strong impact that schedulers can have on performance: while appropriate

scheduling decisions can provide better performance, the contrary is also true, in that erroneous

scheduling (e.g., caused by inaccurate/incomplete knowledge) can degrade performance severely

by unnecessarily restricting the available parallelism.

6.2 Overview

In this chapter we propose Seer, the first scheduler (to the best of our knowledge) to address

the HTM limitations discussed above. The key idea of our proposal is to gather statistics at

runtime to detect, in a lightweight but possibly imprecise way, the set of concurrently active

transactions upon abort and commit events.

This information is used as input for an on-line inference technique that uses probabilistic

arguments to identify conflict patterns between different atomic blocks of the application in

a reliable way, despite the imprecise nature of the input statistics. The final step consists in

exploiting probabilistic knowledge on the existence of conflict relations to synthesize a fine-

grained, dynamic (i.e., possibly varying over time) locking scheme that serializes “sufficiently”

conflict-prone transactions.

A noteworthy feature of Seer is that it relies on reinforcement learning techniques to self-

tune the parameters of the probabilistic inference model. To this end, Seer relies on a probabilis-

tic hill climbing technique that explores the configuration space of the model’s parameter, while

gathering feedback at runtime about the application’s performance and accordingly adjusting

the granularity of the locking scheme. Indeed, an appealing characteristic of this dynamically

inferred locking scheme is that it does not need to be perfect (e.g., it can suffer of false negatives)

in capturing conflicts between atomic blocks of the application, since correctness for transactions

is still enforced by the underlying HTM.

Seer includes also an additional novel mechanism that is designed to address another per-

formance pathology of existing HTM systems: when multiple hardware threads are concurrently

active on the same physical core, the likelihood of incurring aborts due to capacity exceptions



182 CHAPTER 6. SEER: A PROBABILISTIC SCHEDULER FOR HTM

can grow to such an extent that it can eventually cripple performance. This is a direct con-

sequence of the fact that the information used by the HTM concurrency control algorithm is

entirely stored in the CPU caches, which may be shared by hardware threads running on the

same core. Seer copes with this issue by introducing a simple, yet effective abstraction, the core

lock, which serializes the execution of hardware threads that share the same core when capacity

exceptions are detected.

Besides reducing aborts due to conflicts over the accessed memory regions, Seer achieves

also a drastic reduction of the frequency of activation of the software fall-back path of the HTM

system, whose sequential nature is known to hamper HTM performance [Yoo et al., 2013,Jacobi

et al., 2012].

Overall, our experimental study shows that, by applying Seer to standard TM benchmarks,

one can obtain gains up to 3.6× and average speedups of 65% across various degrees of parallelism

in a processor with 28 cores and HTM support. We also confirmed that our design yields more

accurate probabilities than if we used other alternative calculations that use the same input data.

The rest of this chapter is organized as follows. In the following section we discuss the state

of the art in TM schedulers and identify the key factors that make our proposal novel. Then, in

Sections 6.4-6.5, we present the details of our Seer implementation. We then validate its design

choices for the probabilistic inference scheme in Section 6.6. Finally, we evaluate our proposal

in Section 6.7 by comparing it with several alternatives, and conclude in Section 6.8.

6.3 Related Work

There is a rich body of work on TM schedulers. Next, we survey the state of the art in

this area, and then summarize the characteristics of existing systems, contrasting them with our

novel proposal Seer.

Roughly speaking, the objective of a TM scheduler is to decide when it is best to execute

a transaction, possibly deciding to serialize concurrent transactions based on their likelihood

of contending with each other, with the ultimate goal of maximizing performance (typically

throughput).

Most of the existing schedulers target STM systems, which are assumed to be able to provide
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precise information on the conflicts that caused the abort of a transaction. This is the case for

CAR-STM [Dolev et al., 2008] and Steal-On-Abort [Ansari et al., 2009], where there are N

serialization queues (one for each thread), and an aborting transaction Ti is placed in the queue

of Tj that caused its abort. The idea is that Ti is serialized after Tj because it shall be executed

by the thread currently running Tj , with which it conflicted. Both these schedulers were proposed

in the scope of STMs, which were extended to obtain precise information on aborts.

Steal-On-Abort, although initially implemented in software, was later also proposed for an

HTM simulator [Ansari et al., 2010] by extending LogTM-SE [Yen et al., 2007] and running

on a SPARC simulated machine. However, this work assumed hardware extensions to support

enqueuing the serialized transactions in each core of the processor. The current expectation is

that manufacturers, such as Intel and IBM, will be quite resistant to changes in the hardware

due to its complexity [Jacobi et al., 2012] and cost of verification [Adir et al., 2014]. Hence, it

is particularly relevant to devise a scheduling solution for current HTMs: one that operates in

absence of accurate information on the conflict patterns among transactions, like Seer does.

More recently, ProPS [Rito and Cachopo, 2014] followed a similar approach to the ones above

but, instead, focused on long running transactions: each abort event is used to accumulate a

contention probability between every pair of transaction types (i.e., atomic blocks); whenever a

transaction T is about to start, it may have to wait in case there is an atomic block being executed

in a concurrent transaction that is expected to conflict with T with high probability. This

approach also requires precise information to guide the scheduling decision, which is not the case

for HTMs such as Intel’s HTM. Shrink [Dragojević et al., 2009b] was originally published before

ProPS, but its idea is the same, with the addition that it is fed with past history of transactions’

read- and write-sets: assuming there is some data accesses locality between transactions’ restarts,

the scheduler uses this information to predict conflicts that would happen if the transaction were

allowed to run against current concurrent transactions. Such fine-grained information is not

available in HTMs, and could only be made available via additional software instrumentation,

yielding considerable overheads.

TxLinux [Rossbach et al., 2007] and SER [Maldonado et al., 2010] both changed the Linux

scheduler to be transaction-aware, the difference being that the former was integrated in a

simulated HTM called MetaTM and the latter was fully in software. Similarly to the other

works, these proposals also require precise information.
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Contrarily to the schedulers above, ATS [Yoo and Lee, 2008] works with imprecise informa-

tion, i.e., coping with the lack of knowledge on which pairs of transactions conflict during their

execution. ATS maintains a contention factor in each thread, updated when transactions abort

and commit, such that a single lock is acquired when contention exceeds a specified threshold.

This simple approach is agnostic of the atomic blocks being executed, as the whole problem is

subsumed by a single contention factor. The positive side is that it works with currently avail-

able HTMs. In fact, this is the de facto technique used with commodity HTMs due to their

best-effort nature, discussed in earlier chapters, and for which we recall: because no transaction

is guaranteed to commit, a software fall-back must be provided to ensure progress; the single lock

fall-back that is typically used [Yoo et al., 2013,Jacobi et al., 2012,Matveev and Shavit, 2013] is,

in essence, akin to ATS. Since ATS relies on a single contention factor and one lock for serializa-

tion, it alternates between serializing all transactions or letting them all execute concurrently;

hence, that is why we characterize it as a a coarse-grained scheduler.

To overcome the very simplistic approach of ATS, there is the recent proposal of the Oc-

tonauts scheduler [Mohamedin et al., 2015b], in which there are fine-grained locks (in the form

of serialization queues) for different objects/variables in the program (or, conceptually, different

memory regions). To achieve this, Octonauts requires a priori static information about the ap-

plication/workload: to schedule a transaction, it uses static knowledge about the working-set of

a transaction (i.e., its read- and write-sets), so that it can place the transaction in the queues for

the objects to which it will read and write. This effectively serializes the transaction with concur-

rent conflicting transactions. To cope with incorrect static information, Octonauts still uses the

HTM support to enforce correctness — similarly to our approach with Seer, in which our devised

locking scheme need not be safe in terms of the concurrency control. Evidently, this approach

suffers from the major drawback in that the programmers must provide this static information

about the transactions’ working set. This represents a non-negligible source of complexity for

programmers, hence contradicting one of the main motivations of TM, i.e., to simplify concurrent

programming. Conversely, Seer extracts any necessary information regarding conflict patterns

among transactions in a runtime and completely transparent fashion to the programmers.

We summarize the above state of the art in Table 6.1. Briefly, we can see that most schedulers

cannot cope with imprecise information, as they rely on knowledge about the pair of transactions

that are involved in a data conflict, possibly along with information about the memory address
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Table 6.1: Comparison of TM schedulers in terms of: regulating an STM and/or HTM, working
without precise information on which transaction caused the abort, whether it uses multiple
fine-grained locks to schedule transactions’ execution, and whether it does not require static
information from the workload. Seer, our proposal, is the only scheduler that provides all the
following properties: 1) works with HTM; 2) does not require precise feedback on aborts; 3)
adopts a fine-grained serialization mechanism; and 4) does not require static information about
the workload.

Scheduler SW HW Imprecise Fine No Static
Information Grained Information

ATS [Yoo and Lee, 2008] X X X χ X
CAR-STM [Dolev et al., 2008] X χ χ X X
Shrink [Dragojević et al., 2009b] X χ χ X X
ProPS [Rito and Cachopo, 2014] X χ χ X X
SER [Maldonado et al., 2010] X χ χ X X
TxLinux [Rossbach et al., 2007] χ X χ X X

SOA [Ansari et al., 2009,Ansari et al., 2010] X X χ X X
Octonauts [Mohamedin et al., 2015b] X X X X χ

Seer χ 4 4 4 4

that generate a conflict. To the best of our knowledge, ATS and Octonauts are the only two

schedulers that can cope with that limitation inherent to commodity HTMs. On one hand ATS

provides only a coarse serialization via a global lock. On the other hand, Octonauts assumes

static information about transactions’ working set. As such, our contribution Seer is unique

by being applicable to commodity HTMs (i.e., it works with imprecise input) and allowing to

serialize multiple transactions concurrently in a fine-grained manner without assuming any a

priori knowledge on the application’s workload.

6.4 Scheduling HTM Transactions with Seer

Schedulers for TM systems, independently of their software or hardware nature, benefit

particularly from the availability of fine-grained precise information about what causes the abort

of a transaction. This means that if we are executing a transaction for an atomic block of our

program, and we know that it aborted due to a concurrent transaction executing another specific

atomic block, then it is probably better to avoid executing transactions for those atomic blocks

concurrently.
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Figure 6.2: Architecture of the components used in Seer. The idea is to assess the probability
of conflicts between transactions, without requiring precise information by the HTM. To do
so, transactions are announced right before they are executed on a given core, and then this
information is sampled upon commits and aborts, to compensate for the lack of feedback from the
HTM. While not totally accurate, this information allows to probabilistically infer the relevant
conflict patterns among transactions over time, and then to produce a dynamic locking scheme
that serves to schedule transactions (by preventing some transactions from running concurrently).

Having access to such information is typically trivial in STMs. However, as discussed earlier

in this chapter, mainstream HTMs provide little to no feedback with respect to this matter. In

particular for Intel’s HTM, upon the abort of a hardware transaction, it is possible to know

only a rough categorization: for instance, whether it was a data conflict; or whether the space

available for the read- or write-set buffers in the hardware caches was exhausted; or whether

there was an interrupt that caused a context switch or a ring transition. As such, no information

is given about which transaction was the cause for the abort. This is the challenge that prevents

existing schedulers from being effectively applicable to existing HTMs.

The high level idea of our solution is to take a probabilistic approach. While we do not know

what exactly causes a transaction Ti to abort, because the HTM provides no such information,

we can try to infer the answer by observing enough times which transactions were active when

Ti aborted. By repeating this observation over time, we can gather probabilistic knowledge on

the likelihood of conflicts between pairs of transactions. This knowledge can then be exploited

to decide, when a transaction starts, whether to schedule it or not depending on the conflict

probabilities with the currently active transactions.
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The probabilistic inference mechanism of Seer is based on three key ideas: (1) we con-

tinuously collect runtime information about the transactions concurrently active upon commit

and abort events, by means of a lightweight, synchronization-free monitoring mechanism; (2) we

periodically analyze this information and estimate probabilities of aborting/committing in the

presence of other specific transactions; and (3) this information is used to periodically devise

a fine-grained locking-scheme, whose locks are acquired upon the start of a transaction and al-

low for serializing the execution of conflict prone-pairs of transactions (without blocking other

transactions not likely to incur any conflict).

Figure 6.2 portraits the life-cycle of transactions within our scheduler. The objective of this

life-cycle is to populate a global table that reifies the automatically inferred locking scheme. Seer

uses one lock for each transaction in the target application (identified in the columns). Each row

i of the table specifies the locks that transaction Ti should acquire, indicating that Ti conflicts

often with the transactions associated with these locks, and that these transactions should not

be executed concurrently. We associate each atomic block in the application source code to a

different transaction Ti: this way, we seek to serialize transactions with a fine granularity, con-

trarily to other approaches that work with HTM and that use a single lock for serialization [Yoo

and Lee, 2008].

To understand how to reach that objective, we begin by describing the life-cycle of Seer.

In step 1 , a transaction T3 is about to be executed on core C1. Before doing so, it acquires

the locks defined by Seer in a global table: in this case, lock L1. Then, it announces that C1

is executing T3 in the list of active transactions in step 2 . Step 7 shows that transactions are

removed from that list when they are finished.

By acquiring lock L1 in the lock table, this means that transaction T3 was deemed to contend

with T1. Although instances of T1 do not acquire lock L1, because they do not contend with

‘themselves’, they do co-operate with contending transactions (such as T2 and T3) by waiting for

their completion, before starting executing, if lock L1 is found to be taken. In general:

1. A transaction Tx waits for its lock Lx to be free before proceeding, which serves to respect

our scheduling policy.

2. It locks Ly if it contends with Ty (we allow x = y, in which case Tx contends with instances

of itself).
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We are left with describing how the locking scheme is generated. Step 3 illustrates that,

upon a commit or abort of a transaction Tn running on core Cn, the active transactions list is

sampled 1 and the transactions found there are incremented in two per-thread matrices, namely

commitStats and abortStats, which are stored as thread-local variables (step 4 ). An entry

x, y in commitStats (resp. abortStats) tracks the frequency of commit (resp. abort) events for

transaction Tx, in which Ty was found to be running (in the active transactions list), after the

commit (resp. abort) of Tx.

Consider for instance that T1 only conflicts often with T3. Such fact is unknown beforehand

and our approach aims to infer it in runtime: as we gather statistics, over time, recurrent events

emerge and become identifiable using probabilistic inference.

Periodically, these statistics are merged, across all per-thread’s matrices, into two global

matrices in step 5 . These are used to calculate and update the locking scheme to reduce aborts

of transactions. The intuition is to use the information about how often Tx committed and

aborted in the presence of each different transaction. The challenge in doing so is to identify,

among all captured conflicts, which ones occur frequently enough to benefit from throttling

down concurrency. The ability to extract these decisions using solely the imprecise information

provided by commodity HTMs is what makes Seer novel with respect to other schedulers.

As a result, we are able to periodically generate a dynamic locking scheme, as depicted in

step 6 . As explained above, these locks are used to serialize transactions with a fine granular-

ity. This is a key feature that allows Seer to yield substantial performance improvements as we

later show in Section 6.7. Another noteworthy feature of Seer is that it works in a completely

transparent fashion to the programmer. We require only minimalist compiler support, by enu-

merating the atomic blocks in the program, and passing their unique identifier (one per source

code atomic block) into the TM library calls. The scheduler itself is implemented in the TM

library that regulates the software fall-back management. Further, Seer fully automates the

tuning of internal parameters in the probabilistic inference, via a self-optimization mechanism

that is driven by the feedback gathered at runtime on the throughput of the TM system.

Finally, Seer introduces the abstraction of core locks, i.e., locks that prevent the concurrent

execution of multiple hardware threads on the same physical core. The idea of core locks is based

1As we shall see, this sampling may range from scanning a full snapshot of the list, to obtaining only one
uniformly random concurrent transaction.
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Table 6.2: Characterization of the data-structures used in Seer. Some of these are visible in the
architecture shown in Figure 6.2, whereas the rest is used in Algorithms 15-19.

Variable Description

thread Per-thread structure to hold metadata during the execution of a transaction.

sgl Single-global lock used in the software fall-back path of the HTM.

activeTxs Global array where threads announce the transactions they are executing.

commitStats
Global matrix where, each line for transaction Ti, reports the transactions that
were concurrently running whenever Ti committed. This matrix is periodically

built by summing the per-thread equivalent matrices kept in each thread variable.

abortStats Similar to commitStats, but for abort statistics.

executions Array with total number of executions (commits and aborts) of each transaction.

locksToAcquire Global matrix where each line corresponds to a transaction and the columns
define the locks that should be acquired for the transaction according to Seer.

txLocks Global array of locks, one per transaction (i.e., atomic block) of the program.

coreLocks Global array of locks, one per core of the processor.

on the observation that, in workloads characterized by frequent transactions with non-minimal

memory footprints, the likelihood of capacity aborts in the HTM is exacerbated when multiple

threads are allowed to execute freely, as they contend for the shared caches of the core.

6.5 Detailed Algorithm

We now present the detailed description of Seer. We first list the data-structures and

metadata used by Seer, in Table 6.2, most of which were already referred in abstract terms

when presenting the architecture in the previous section.

Conventional HTM usage. In the algorithms explained next we shall use as starting point

the conventional HTM usage that we described initially in Section 2.1. We highlight lines, which

are associated with the conventional HTM mechanisms, with a 4 (other lines belong to Seer).

Also, we note that now the HTM_START and HTM_END procedures’ interface was augmented

to receive the information that a given transaction txId is initiated by a given thread.

Also, we recall that the HTM_START procedure implements a retry loop to try to execute

a hardware transaction, up to some threshold (MAX_ATTEMPTS), resorting to a fall-back path in
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Algorithm 15: Seer algorithm.

1: HTM_START(thread, txId)
2: thread.core ← current-core() . thread is bound to core
3: thread.acquiredTxLocks ← false
4: thread.acquiredCoreLock ← false
5: activeTxs[thread.core] ← txId

64 attempts ← MAX_ATTEMPTS
74 begin: . used to jump to and re-attempt with HTM
8: WAIT-Seer-LOCKS(thread, txId)

94 htmStatus ← _xbegin()
104 if htmStatus = _XBEGIN_STARTED
114 if is-locked(sgl) . ensure correctness with fall-back
124 _xabort()
134 else
144 return . hw transaction enabled, proceed to tx
154 . hw transaction aborted, handle before restarting
16: REGISTER-ABORT(thread, txId)
174 attempts ← attempts - 1
184 if attempts = 0 . give up on HTM, fall-back to lock
19: RELEASE-Seer-LOCKS(thread, txId)
204 acquire-lock(sgl) . SW fall-back with a single lock
214 return . SW fall-back path taken, proceed to tx
224 . before re-attempting, trigger our scheduler Seer
23: ACQUIRE-Seer-LOCKS(thread, txId, htmStatus)
244 goto begin

case the threshold is reached (in line 20). Note that the function to begin a hardware transac-

tion, _xbegin() (in line 9), returns a status that normally represents that the transaction has

started, i.e., the predicate in line 10 evaluates to true. Otherwise, this status indicates a coarse

categorization of the abort. An aborted hardware transaction transparently jumps back, and

returns from this function, akin to the setjmp/longjmp mechanism used in C/C++.

Seer Algorithm. We now discuss the various mechanisms that augment this conventional HTM

usage with Seer, briefly: i) transactions are announced to other cores (see line 5), ii) aborts are

registered in the per-thread statistics (see line 16), and iii) locks are used to induce fine-grained

serialization between contending transactions (see lines 8 and 23). We present each part next.

The HTM_END procedure is presented in Algorithm 16 where we finish the hardware trans-

action, or release the global lock, depending on the path taken in START. In case the transaction

was successfully committed via a hardware transaction, we add this information to our per-thread

statistics in line 28, and possibly release locks acquired by our scheduler in line 29. Finally, we

remove the transaction from the activeTxs list.

The procedures for registering aborts and commits are shown in Algorithm 17. The idea
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Algorithm 16: Seer algorithm.

25: HTM_END(thread, txId)
264 if _xtest() . returns true if inside a HW transaction
274 _xend() . tries to commit the HW transaction
28: REGISTER-COMMIT(thread, txId)
29: RELEASE-Seer-LOCKS(thread, txId)
304 else
314 release-lock(sgl) . executed with lock-based fall-back
32: activeTxs[thread.core] ← ⊥

is to sample the activeTxs list and to increase the frequency of a transaction found there, in

the row corresponding to the transaction that has aborted/committed (identified by txId). This

is the mechanism that we use to infer information about conflicts, and to compensate for the

lack of feedback from the HTM about the pairs of conflicting transactions. In general, this

collection of statistics may not be completely accurate, and could suffer of both false positives

and false negatives. Seer copes with this uncertainty using probabilistic inference techniques,

whose details we shall discuss shortly.

Furthermore, notice that we are sampling the active transaction of 1 thread (following a

round-robin scheme), instead of scanning the full list. This is to ensure that the overheads

associated with this collection of statistics remain constant and independent of the number

of threads used. On top of this, we highlight also that we follow a round-robin scheme, i.e.,

each thread chooses a different thread every time it performs this sampling. This increases the

statistical quality of the sampling in presence of threads that have to retry the same transaction

often due to hardware aborts. As we shall see in our evaluation, specifically in Section 6.7.4,

these two choices are of paramount importance particularly given the large number of hardware

parallelism available in the machine we used.

Notice that the aforementioned statistics are maintained per-thread, i.e., in a private fashion.

Furthermore, the activeTxs list ends up being a set of single-writer multi-reader registers; we do

not place any synchronization when accessing the list, with the intent of keeping it lightweight.

The procedures for lock management, according to our scheduler, are defined in Algorithm 18.

We use two types of locks:

1. txLocks: one per transaction of the application, to serialize contending transactions ac-

cording to the probabilities (line 47) that we describe later (in Algorithm 19). Our scheduler

may dictate that a transaction acquires some of these locks only when the transaction has
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Algorithm 17: Seer algorithm.

33: REGISTER-ABORT(thread, txId)
34: threadToSample ← getRoundRobinThread() . following a round-robin scheme
35: if activeTxs[threadToSample] 6= ⊥
36: thread.abortStats[txId][activeTxs[threadToSample]]++

37: REGISTER-COMMIT(thread, txId)
38: threadToSample ← getRandomThread()
39: if activeTxs[threadToSample] 6= ⊥
40: thread.commitStats[txId][activeTxs[threadToSample]]++

spent most of its attempts in hardware transactions — it has one left — as a last resort

measure to obtain progress before triggering the global lock in the fall-back.

2. coreLocks: one per physical core of the processor, to reduce capacity aborts, which are

amplified due to hardware threads that share the private caches of a physical core. These

caches are small and limit the size of hardware transactions, more so if shared among

several. Hence, we acquire the coreLock when a capacity abort is detected (line 44).

Furthermore, we also introduce a contention avoidance technique, which imposes waiting

before starting a transaction (in line 8). This is presented in WAIT-Seer-LOCKS, in Algo-

rithm 18, where there are two main ideas. First, we use a known technique to avoid the lemming

effect [Dice et al., 2008]. The problem is that hardware transactions quickly exhaust their budget

of attempts when the fall-back lock is taken and tend to execute mostly in the fall-back as a

consequence. To reduce this chance, a transaction waits if the global lock is taken, as otherwise

it would likely abort in line 12.

The second idea behind WAIT-Seer-LOCKS is to also wait in case the txLock and/or

coreLock are taken by another thread (lines 57 and 58). The intuition is that, even though this

thread may not have had aborts that lead it to acquire locks, it is beneficial if it co-operates

with concurrent threads that have taken the locks, giving them a chance to complete without

conflicting. Doing so is instrumental for the meaningfulness of the locking scheme that we

present next while avoiding a transaction to having to pessimistically always acquire the lock of

its transaction.

The locking scheme is updated in line 52. At that point the thread was waiting for the

single-global lock to be released, for which reason executing the logic of Seer instead is not

delaying the progress of the thread. We specifically do this in one designated thread to avoid
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Algorithm 18: Seer algorithm.

41: ACQUIRE-Seer-LOCKS(thread, txId, htmStatus)
42: if htmStatus & _XABORT_CAPACITY ∧ ¬thread.acquiredCoreLock
43: . adapted to the topology of hyper-threads in Intel processors
44: acquire-lock(coreLocks[thread.core % PHYSICAL_CORES])
45: thread.acquiredCoreLock ← true
46: if attempts = 1
47: ACQUIRE-TX-LOCKS(txId) . acquire locks in row locksToAcquire[txId]
48: thread.acquiredTxLocks ← true

49: WAIT-Seer-LOCKS(thread, txId)
50: if is-locked(sgl) . avoid starting hardware transactions if the fall-back is in use
51: if thread.core = 0 . only one thread updates the serialization locks
52: UPDATE-Seer-LOCKS() . exploit the wait time to run Seer
53: if enough-samples()
54: stochastic-hill-climbing(T h1, T h2) . periodically adapt the parameters
55: wait while is-locked(sgl) . wait here instead of aborting in line 12
56: . if some other thread is owning these Seer locks, cooperate with it and wait
57: wait while ¬thread.acquiredTxLocks ∧ is-locked(txLocks[txId])
58: wait while ¬thread.acquiredCoreLock ∧ is-locked(coreLocks[thread.core])

59: RELEASE-Seer-LOCKS(thread, txId)
60: if thread.acquiredTxLocks
61: RELEASE-TX-LOCKS(txId)
62: if thread.acquiredCoreLock
63: release-lock(coreLocks[thread.core])

synchronization. Furthermore, we have an active transactions list with as many slots as threads

in the program, making each entry of the list a single-writer multi-reader register.

The procedure to acquire the transaction locks simply goes over the row locksToAcquire[txId]

and acquires each lock. All rows are sorted consistently by the periodic update, hence this

procedure acquires them in that order to avoid deadlocks. We also optimize this procedure to

acquire the locks with a hardware transaction when there are two or more locks, instead of

performing multiple compare-and-swap operations (CAS) to acquire all locks. The rationale of

this optimization is to batch the synchronization of two or more CASes into a single hardware

transaction. If the transaction is not successful, we fall-back to the normal acquisition. Note

that this is not lock elision [Rajwar and Goodman, 2001]; we are effectively using HTM as a

multi-CAS, not eliding the locks acquired.

Devising the Locking Scheme. We are left with the logic for updating the locking scheme

for fine-grained serialization of transactions in Seer, which we present in Algorithm 19. This

procedure, opportunistically invoked by the designated thread, while waiting for the single-
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Algorithm 19: Seer algorithm.

64: UPDATE-Seer-LOCKS()
65: for all x ∈ A . A is the set of txs in the application source code
66: η ← average

({
P(x aborts ∩ x‖y), ∀y∈ A

})
67: σ2 ← variance

({
P(x aborts ∩ x‖y), ∀y∈ A

})
68: for all y ∈ A . determine if y is likely to contend with x
69: . 1st condition checks whether abort events of x, in which y is seen running concurrently, are

common enough
70: . 2nd condition checks if y is among the txs that, when executed concurrently with x, most

likely contend with x
71: if

(
P(x aborts ∩ x‖y) > T h1 ∧

P(x aborts ∩ x‖y) > T h2-th percentile of a Gaussian N (η,σ2)
)

then
72: locksToAcquire[x] ← y . contending txs take each other’s locks upon abort
73: locksToAcquire[y] ← x . txs also wait for their tx locks to be free (line 57)
74: . sort all locks in each row of locksToAcquire, and swap the old matrix by the new one (using an

indirection pointer)

global lock to be released, starts by aggregating the commit and abort statistics gathered on a

per-thread basis. The designated thread sweeps over the statistics of the other threads without

any synchronization explicitly enforced, thus being subject to racy accesses. We mitigate the

hazard of “out of the blue” values by placing the data in word-aligned memory locations.

For each pair of transactions, x, y, of the application, we calculate the conjunctive probability

of x aborting and y running concurrently (i.e., Pconjx,y = P (x aborts ∩ x ‖ y)):

Pconjx,y = P (x aborts ∩ x ‖ y) = P (x aborts | x ‖ y)× P (x ‖ y))

=
ax,y

cx,y + ax,y
× cx,y + ax,y
|A|∑
k=0

ax,k + cx,k

=
ax,y

|A|∑
k=0

ax,k + cx,k

where we abbreviated the elements of the matrices commitStats[x][y] as cx,y and abortStats[x][y]

as ax,y. Note that this probability calculation can be efficiently approximated with the statistics

that are at our disposal, as shown in the previous algorithms, where we describe how to collect

them.

As shown in Algorithm 19, we must then identify the probabilities that are most meaningful,

and for which locking should pay off in terms of forbidding some parallelism but avoiding signif-

icant hardware transaction aborts (and thus diminish the reliance on the single-global lock). To

achieve this, we resort to two thresholds, T h1 and T h2, which are aimed at pursuing different

goals.
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The threshold T h1 establishes a lower bound on Pconjx,y , below whose value Seer avoids

serializing transactions x and y. Low values of this probability imply that the frequency of aborts

events of x, in which y was found to run concurrently with it, are rare. It is thus beneficial to

avoid the cost of restricting concurrency and sparing the costs of additional lock acquisitions.

The threshold T h2 is instead used to establish a cut-off on the probability distribution of

Pconjx,y , which aims at determining a subset S among the transactions available in A that are

responsible for the most likely conflicts with a given x.

More in detail, Seer includes in S only each transaction y whose Pconjx,y is larger than

the T h2-th percentile of a Gaussian distribution N (η, σ2) with mean η and variance σ equal,

respectively, to the mean and variance of the values of Pconjx,y (for each transaction y with respect

to a given x).

In other words, this second threshold aims at identifying the transactions y that have the

relatively highest probability values of conflict with x. This contrasts with the first threshold,

which instead identifies the transactions that have the largest absolute values of conflict with x.

Seer can overestimate that absolute probability threshold for two main reasons. First, and

most importantly, Seer can falsely blame a transaction y for having aborted x, merely because y

is spotted as executing right after x gets aborted. Second, in order to minimize monitoring over-

heads, Seer adopts a lightweight and inherently imprecise mechanism for tracking concurrency

among transactions, which also causes falsely blamed transactions.

As we shall show in Section 6.6, due to this risk of overestimation, if Seer were to use

only T h1, it could overly restrict parallelism for certain workload types (e.g., when there are

few transaction types and a high number of concurrent threads). By using also T h2, though,

Seer can reason on the distribution of conflict probabilities and pinpoint in a more accurate

way which transactions are actually the most likely causes of conflict, which can be beneficial to

reduce false positive rates of locks.

Summarizing: if both conditions in line 71 are met, meaning that x is deemed to abort too

often because of y, Seer requires that transactions x and y have to acquire each other’s lock

(recall that we associate one lock per transaction).

Finally, Seer relies on an on-line self-tuning mechanism that automates the setting of the

values of the thresholds T h1 and T h2, hence sparing users from the burden of identifying stati-
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cally defined values that may be sub-optimal in heterogeneous, or time varying, workloads. To

this end, Seer uses a simple and lightweight bi-dimensional stochastic hill climbing search, which

exploits the feedback of the TM performance (throughput obtained via RTDSC-based measure-

ments) to guide the search in the parameter’s space [0,1]×[0,1] for the thresholds T h1 and T h2.

Our hill climbing is stochastic in the sense that, with a small probability p, it performs random

jumps in the parameters’ space to avoid getting stuck in local minima. We configured this self-

tuning mechanism with standard values that were applied to irregular concurrent applications

such as those used with TM [Diegues and Romano, 2015a]. Specifically, we set p to 0.1% and

the initial values of T h1 = 0.3 and T h2 = 0.8.

6.6 Validating the Design Choices of Seer

In order to motivate the choices made while designing Seer, we first validate the proposed

probabilistic lock inference scheme by evaluating its accuracy via a simulation study. This

choice allows us to assess the accuracy of Seer when faced with a large number of randomly

generated, yet known a priori, synthetic workloads. Further, by relying on a simulator, we can

exert tight control on the degree of accuracy with which Seer can assess concurrency among

transactions. This allows us to study the impact on Seer’s locking inference scheme due to

imprecise information regarding concurrently executing transactions.

In the validations that we shall conduct in this section, we always synthesize the conflict

likelihood between transactions, so that they are known a priori and enforced in the execution

by our simulator.

Specifically, in the simulation model we use a conflict matrix C, whose cells Ci,j define the

probability for transaction Txi to be aborted by transaction Txj , in case they run concurrently.

Table 6.3: Simple example for a matrix C with 4 types of transactions where their conflicts are
known a priori

- 1 2 3 4

1 1.00 0.00 0.00 0.10
2 0.00 0.20 0.00 0.50
3 0.00 0.01 0.05 0.00
4 1.00 0.00 0.00 0.00
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Table 6.4: Description of parameters used in the simulations.

Parameter of the configuration Values used

number of simulations per configuration 100 000
number of rounds per simulation 100 000
number of threads uniformly distributed in [2; 32]
number of transaction types uniformly distributed in [2; 32]
chance of running a transaction 75%
chance of choosing a specific transaction type chosen given uniform distribution
transaction conflicts given by C
Zipfian distribution for C given by Z ∈ [1.0; 2.5]

An example of matrix C is shown in Table 6.3: in this case Tx4 aborts deterministically (i.e.,

probability of 100%) if it runs in concurrency with transaction Tx1, whereas transaction Tx1

aborts with probability 10% if it executes concurrently with Tx4.

Table 6.4 summarizes the key parameters used in the simulation model used in this study.

Each data point in the following plots corresponds to the average of 100 000 simulations. In

each simulation, we vary the number of threads, transaction types, and the conflict matrix as

indicated in Table 6.4. In particular, each row of the conflict matrix is generated using a Zipfian

distribution, whose Z parameter is treated as an independent variable in our study. In the

following, we shall vary Z in the [1.0; 2.5] range, where we recall that Z values closer to 1.0

generate more uniform distributions, and larger values result in more skewed distributions. This

allows to mimic realistic cases (such as those we test later) where there are large discrepancies

between the conflict patterns of different transaction types.

Each simulation consists of the execution of 100 000 rounds. In each round, each thread first

chooses whether to run a transaction or not (given a likelihood of executing transactional work

of 75%). In the positive case, it picks one of the transactions available in the workload with

equal probability. In each round, for each pair of threads, it is decided whether a conflict occurs

between the transactions that they are executing based on the conflict matrix C. If a transaction

Txi conflicts, with probabilities according to C, with at least one other transaction active in a

different thread, then Txi is aborted.

Note that we simulate also the usual retry policy for the transactions, which may dictate the

usage of the fall-back path using a single-global lock. Each thread concludes the round by looking

at the activeTxs and updating its thread-level statistics accordingly. This lock-step round-based
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procedure provides exact information on which other transactions were concurrently active during

an execution round. Later, in this section, we extend this simulation model to include scenarios

in which the sampling of the activeTxs array can lead to obtaining erroneous information. This

will allow us to simulate more closely Seer, which, we recall, relies on minimal synchronization

and possibly inaccurate information.

We highlight that this simulation model encompasses a representation also of the fall-back

path with a single-global lock: hardware transactions resort to a single-global lock, after at-

tempting to use HTM 5 times, thus forbidding all concurrent transactions from being executed

in that round.

It should be noted that our simulation model does not encompass spurious aborts triggered by

the HTM. Also, our simulation model does not capture the effects of running multiple hardware

threads on the same physical core. Hence, this study does not aim to evaluate the effectiveness

of core locks - for which the reader should refer to Section 6.7.

In the simulator, we monitor the execution of the first third of the rounds without acquiring

any Seer-induced lock. On the basis of the statistics gathered during this preliminary phase,

we use the same logic of Seer to compute Pconjx,y .

We then execute the remaining two thirds of the 100 000 rounds, using the locks chosen by

Seer, and evaluate its accuracy as follows:

accuracy =
truePositives+ trueNegatives

totalEvents
(6.1)

A true positive happens when there would exist a conflict between a pair of transactions

that is prevented by a lock devised by Seer. In contrast, a true negative corresponds to a

pair of transactions that executes concurrently without conflicting, and for which Seer did not

decide to enforce a transaction lock. The total number of events is the number of rounds — in

each of which we execute this logic — times the number of pairs of transactions that execute

concurrently.

Note that, while Seer relies on a throughput driven hill climbing-based self-tuning procedure

to set the values of the T h1 and T h2 thresholds, in this simulation study we shall treat these
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Figure 6.3: Average accuracy for Seer in 4 scenarios varying the parameter Z of the Zipfian
distribution that is used to generate the conflict matrices C used as input for each simulation.
In each plot we vary the value of both thresholds that are applied to Pconjx,y .
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thresholds as two independent variables. This choice allows us to gain additional insights on

the impact of tuning these two thresholds independently. We will evaluate the gains achievable

by using Seer’s self-tuning hill climbing strategy versus static thresholds in Section 6.7, when

presenting the experimental evaluation of our prototype.

We present in Figure 6.3 the average accuracy in 4 scenarios with different parameters for

the Zipfian distribution that generates the conflict matrices C. In each plot, we show the results

for different values of both thresholds that are applied to Pconjx,y .

In general, there are two relevant trends that emerge from these data: using the value of

0.0, for either T h1 or T h2, results in worse performance than if both thresholds are set to some,

properly selected, positive value. As such, this suggests that the proposed approach of combining

these thresholds results in better accuracy in terms of locks chosen, which matches our earlier

intuitions.

We also note that the correct settings of the thresholds appear to have a smaller impact for

the scenarios in which the conflict matrices are more skewed. Further, the relevance of properly

setting the values of the T h1 and T h2 thresholds is higher in more skewed workload scenarios.

This can be explained by considering that, the more skewed the conflict matrix C, the

smaller the set of transactions that cause most of the aborts for a given a transaction Tx. This

has the effect of reducing the uncertainty that Seer ’s lock inference scheme has to cope with.

In fact, Seer’s design is tailored to identify a small subset of the conflicting transactions —

the one that matters the most — exactly because skewed workloads are frequently found in

realistic applications [Cooper et al., 2010] (namely, of those that we evaluate also later). That

is, normally, not every transaction conflicts often with every other transaction type.

Another important trend is visible across the plots: since the workloads have different char-

acteristics, the best accuracy is achieved when using different combinations of the threshold

values. For more uniform workloads, e.g., Figure 6.3(a), it is important to use a high T h2 value,

since with uniform workloads the conflict probabilities tend to be very similar. Thus, the use

of high values for T h2 allows for identifying more easily the top conflicting transactions among

those that are already above the average for a given transaction. When the workloads are more

skewed, in contrast, it is more important to use a sufficiently high T h1 value that allows to

distinguish the high conflicts from the lower ones, in order to achieve higher accuracy levels.
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Figure 6.4: Average accuracy, when varying the number of simulation rounds, to show how the
convergence time is affected by the imprecise gathering of statistics when accessing the activeTxs
list. In each plot, we show four alternatives that simulate different probability values (perr) of
sampling a random concurrent transaction instead of the correct one. We show four scenarios,
similarly to Figure 6.3, by varying the parameter Z of the Zipfian distribution that is used to
generate the conflict matrices C used as input for each simulation. In each plot, we use the
thresholds for T h1 and T h2 that provided the best accuracy in the corresponding scenario in
Figure 6.3.
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Overall, these results suggest that the optimal settings of the thresholds T h1 and T h2 is

largely workload dependent: the difference in accuracy can vary from 22% (in Figure 6.3(a)) to

48% (in Figure 6.3(d)). These experimental data motivate the use of Seer’s hill-climbing based

self-tuning approach, rather than the use of static settings.

In general, these results are also important as they attest the high accuracy that is achievable

by Seer in a wide range of workloads, i.e., 90% average accuracy across all the workloads with

proper threshold tuning.

Finally, we analyze also the impact of feeding the lock inference scheme of Seer with approx-

imate/imprecise information regarding the set of concurrently active transactions. Recall that,

in the experiments analyzed so far, concurrent transactions have always been inferred correctly,

as if there was a global synchronization point when accessing the activeTxs list.

The plots shown in Figure 6.4, instead, allow us to study how the accuracy of Seer changes

when varying the probability of feeding it with imprecise information regarding concurrent trans-

actions. In this case, whenever a transaction Tx samples an entry of the activeTxs, it obtains a

random transaction type, instead of the correct one, with probability perr. This allows us to sim-

ulate the real behaviour of Seer, which samples transactions from the activeTxs list without any

synchronization, and is thus vulnerable to erroneously consider as concurrent transactions that

had either already completed when Tx aborted, or that had not yet started when Tx aborted.

The plots in Figure 6.4 consider the same workload settings of Figure 6.3, and use the values

of T h1 and T h2 that yielded the best accuracy in the previous experiments. In this case, though,

on the horizontal axis, we let the number of simulation rounds vary from 100 to 100 000.

The reason for this is that, by increasing the probability perr of wrongly inferring concurrency,

we increase also the noise in the data collected by Seer. As the plots clearly show, this has only

the effect of delaying the correct inference of the actual conflict probabilities, as with a sufficiently

large number of observations the accuracy converges to the values observed in Figure 6.3.

Furthermore, it is also evident that, when gathering statistics for a low number of rounds,

it is more likely to infer concurrent transactions wrongly. However, as we increase the number

of rounds, the accuracy quickly grows up to expected value. We also highlight that, in TM

applications it is easily the case that throughput rates are well over thousands transactions per

second. This is easy to understand given that transactions are typically small and execute over
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in-memory data. As such, these numbers of simulated rounds correspond to a very short real

time period. Hence, in practice, Seer can infer a highly accurate locking scheme in a robust and

timely way.

6.7 Experimental Comparison with Other Systems

We now report the results of an experimental study based on a fully fledged prototype of

Seer, in which we compare the proposed solution with three other state of the art systems.

To evaluate our proposal, we formulate several questions and design a set of experiments

aimed to answer them:

• What are the gains achievable by Seer? In Section 6.7.1, we compare Seer with three

alternative techniques for regulating the execution of HTM transactions.

• How are those gains obtained? In Section 6.7.2, we provide detailed data on how often

hardware transactions are aborted and why.

• How are transactions scheduled? In Section 6.7.3, we assess how often hardware transac-

tions are successful and to what extent the various available locks are acquired.

• What are the overheads of Seer? In Section 6.7.4, we assess the performance slowdown

of running Seer’s monitoring and lock inference mechanisms, but without using the locks

synthesized by Seer.

• What are the relative merits of each component of Seer’s architecture? In Section 6.7.5 we

create and compare several variants of Seer that incrementally use the different modules

of the proposed system.

All the results in this chapter were obtained using one of the largest and most recent Intel

processors with HTM support, whose description is available on Table 6.5, and of which we

highlight the fact that it has 28 virtual cores (14 physical cores, each one running up to 2

hardware threads with Intel Hyper-Threading). The machine was equipped with 128GB of

RAM and ran Ubuntu 14.10. The results reported in this chapter are the average of 10 runs.
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Table 6.5: Characteristics of the new Haswell machine used to evaluate Seer with HTM support
and 28 cores.

Resource Description

Processor Xeon E5-2683 v3 2.0GHz
Cores 14 (each with hyper-threading)

L1 Cache 32KB 8-way (per core)
L2 Cache 256KB 8-way (per core)
L3 Cache 35MB (shared)
Cache Line 64B
RAM Size 128GB

Operating System Ubuntu 14.10

Our evaluation uses the standard STAMP suite [Minh et al., 2008], a popular set of bench-

marks for TM, encompassing applications representative of various domains that generate het-

erogeneous workload. We excluded Bayes given its non-deterministic executions, and Labyrinth

as most of its transactions exceed Intel HTM capacity. In addition to these, we have also used the

STMBench7 benchmark [Guerraoui et al., 2007], which is particularly interesting for scheduling

as it encompasses 45 different transactions types. Due to the limitations of Intel HTM capacity,

we have reduced the working-set of STMBench7’s workloads roughly by ten times (namely, the

number of components per module to 1 and levels of assemblies to 2) so that there is a relatively

small number of aborted transactions due to capacity (less than 20%, in contrast with over 50%

normally).

6.7.1 How Much Can We Gain With Seer?

To assess the benefits of Seer we compare it with three alternatives for the concurrency

control:

• HLE where transactions may be retried a small number of times (processor

implementation-dependent), but without any scheduling or contention management. As

pointed out in the literature [Dice et al., 2008] this can cause a lemming effect on the elided

lock, i.e., failed hardware transactions keep exhausting the attempts and fall-back to using

the single-global lock 2.

2All the benchmarks herein used have a transactional interface, i.e., were written using atomic blocks and, as
such, there is only one (global) lock to elide (maintained internally by the TM library).
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• Baseline where the retry logic is controlled in software: we retry a given number of

attempts in HTM and always wait before doing so if the single-global lock is taken. As

already discussed in Section 6.3, the usage of a single lock in the fall-back path of these

two baseline mechanisms makes them analogous in spirit to the ATS scheduler [Yoo and

Lee, 2008].

• SCM where we implemented the Software-assisted Conflict Management [Afek et al., 2014]

technique. SCM uses an auxiliary lock to serialize transactions that are aborted, thus

decreasing the chance of having the lemming effect.

We used a budget of 5 attempts for hardware transactions RTM, SCM and Seer, which is

also the value used by Intel researchers for a similar set of benchmarks [Yoo et al., 2013].

We first present the results for this comparison with STAMP in Figure 6.5. The speedups are

relative to a sequential non-instrumented execution. In general, we can see that Seer performs

better or similar to the best alternative. This best alternative is some times SCM, but other

times Baseline, with some advantage of the former when there are less threads used. Finally,

HLE performs significantly worse than the others.

By analyzing these results with focus on Seer, we can identify three groups of benchmarks

with different merits of performance:

• Genome, Intruder, Vacation-high and Vacation-low: these benchmarks clearly illustrate

the advantage of the proposed probabilistic scheduler for hardware transactions. The gains

of Seer are consistent and unveil a new scalability ceiling with respect to the baselines

using the same hardware parallelism. Furthermore, when exploiting the highest number of

threads available, the scheduling devised by Seer minimizes performance degradation and

avoids trashing.

• SSCA2, Kmeans-low, Yada: performance is generally on par with the best of the considered

alternatives. As we shall see in more detail in the rest of the evaluation, this happens

because: 1) the contention level is very limited, meaning there are almost no conflicts to

avoid (SSCA2); or 2) transactions are small and the workload is not 100% transactional,

for which reason reliance on the single-global lock is not very harmful (Kmeans-low); or 3)

reducing conflicts results in more capacity aborts (Yada).
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(a) Genome.
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(b) Intruder.
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(c) Kmeans-high.
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(d) Kmeans-low.
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(e) SSCA2.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

S
pe

ed
up

Threads

(f) Yada.
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(g) Vacation-high.
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(h) Vacation-low.

Figure 6.5: Speedup of different HTM based approaches across STAMP benchmarks.
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(a) Geometric mean for STAMP.
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(b) Geometric mean for STMBench7.

Figure 6.6: Geometric mean speedup for STAMP and STMBench7.

• Kmeans-high: in this case the performance of Seer is actually decreasing (with respect to

the best alternative) as the number of thread increases. This happens because transactions

in this workload, although quite conflicting, are still very short. As a result, the locking

scheme devised by Seer does not pay off because, when using the baselines alternatives

instead, the transactions that abort take the single-global lock for such a short duration

that it has only a limited impact on performance. Ideally, Seer would eventually self-tune

its thresholds to prevent this situation, as it happens in some of the other benchmarks

where its performance is similar to the baselines. However, for this benchmark, we have

confirmed that this does not happen because of the short running time of this benchmark

(lasting less than a second for most of the parallel executions). To verify this, we have

experimentally executed the benchmark in a closed loop, while preserving the statistics

collected by Seer, and verified that it converges to the performance of the other baselines

(namely, of Baseline) in 3 to 5 runs.

Finally, with respect to STAMP, we analyze also the geometric mean speedup across all

benchmarks that is shown in Figure 6.6(a). This data evidences that, despite some workloads

where performance remains on par with some of the alternatives, the gains are quite substantial

for most of the considered number of threads: namely, 64% over Baseline and 42% over SCM

at 14 threads (i.e., the peak of average speedup); and up to 77% over SCM at 20 threads. The

gains are also up to 4.8× over HLE.

Moving on to STMBench7 [Guerraoui et al., 2007], we present results for three workloads,

in which we vary the the percentage of read-only transactions. This is a particularly challenging

setting for a TM system because the 45 different transaction types have very heterogeneous

characteristics, ranging from very small to huge transactions, small and large read working sets,
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(a) Read-dominated.
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(b) Read-write balanced.
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Figure 6.7: Speedup of different HTM based approaches across STMBench7 workloads.

and varying contention degrees. As such, this opens more opportunities in general for scheduling,

and results also in a more complex test for Seer.

It is also noteworthy that these workloads are quite contended, as it is visible by the

rather small scalability potential and speedup values; this stems not only from the nature of

the benchmark, as evidenced by other evaluations with Software TMs [Fernandes and Cachopo,

2011,Dragojević et al., 2009a,Rito and Cachopo, 2014], but also from the working-set reduction

that we performed to make adequate it to the capacity of hardware transactions.

Although the absolute speedups vary with the workload changes, the relative merits of each

solution remain approximately the same. As such, we focus on the geometric mean across the

three workloads, which is shown in Figure 6.6(b). There, we observe an improvement of Seer

of at least 2× at 4 threads (i.e., the peak of average speedup) and up to 3.7× over Baseline and

5.3× over SCM at 14 threads.

The trend across all benchmarks is quite visible and solid: Seer enables more scalability up

to some degree of parallelism and then avoids drastic performance plunges when the contention

becomes very high with dozens of concurrent threads.
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6.7.2 Where Are the Gains of Seer Coming From?

The approach taken by Seer is to bridle parallelism so that transactions can make a more

efficient use of HTM.

In the previous subsection we already quantified the performance benefits globally achievable

by Seer. We now focus our experimental study to shed light on the origins of the speedups that

it achieves. In particular, we aim to answer the following two key questions: 1) to what extent

aborts of hardware transactions are reduced; and 2) to evaluate the consequent reduction of

activation of the fall-back path.

Once again, we show results for both the STAMP (in Figure 6.8) and STMBench7 (in

Figure 6.9) benchmarks. In those plots we can see, on the one hand, the percentage of hardware

transaction aborts (specified by type) and, on the other hand, the percentage of processor cycles

spent waiting for the single-global lock to become available. For SCM, we include in this processor

cycles count also the cycles spent spinning on the auxiliary lock. For Seer we also report the

cumulative percentage of cycles spent waiting for transactions and core locks. This data is

shown for each workload and while varying the number of threads for both Seer and for the

three considered baselines.

We distinguish three types of aborts for hardware transactions:

• conflict : aborts due to concurrent threads issuing contending data accesses. Note that the

subscription of the single-global lock may generate aborts that are reported as conflicts:

when a hardware transaction starts, it verifies that the single-global lock is free and contin-

ues to execute the transaction, so that if the lock gets acquired the hardware transaction

shall abort.

• capacity : aborts triggered when a hardware transaction accesses more cache lines than

those that fit the hardware limits (namely, of the processor caches).

• sgl : explicit abort requests triggered in case a hardware transaction finds the fall-back lock

busy upon having subscribed it.

• other : aborts triggered due to other reasons, e.g., page faults and interrupts.

In general, more than half of the aborts are due to conflicts. These are the ones that feed
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(a) Genome.
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(b) Intruder.
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(c) Kmeans-high.
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(d) Kmeans-low.
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(e) SSCA2.
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(f) Yada.
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(g) Vacation-high.
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(h) Vacation-low.

Figure 6.8: Number and types of aborts suffered by hardware transactions across the STAMP
benchmarks, together with the percentage of processor cycles spent waiting for the single-global
lock to be available (including the auxiliary lock for SCM). In the case of Seer we include also
the cumulative percentage of cycles spent spinning on transaction and core locks.
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(a) Read-dominated.
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(b) Read-write balanced.
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(c) Write-dominated.

Figure 6.9: Similar to Figure 6.8, but instead for the STMBench7 workloads.

Seer’s statistics, and that the transaction locks try to reduce. Then, most of the remaining

aborts are due to capacity, which Seer attempts to limit via the core locks.

By analyzing each benchmark, we can see that Seer does reduce the total aborts in several

cases (namely in the Genome, Intruder, Vacation and STMBench7 benchmarks) when compared

to the approach with Baseline. There are two noteworthy remarks with respect to the other

two alternatives. Firstly, recall that HLE insists very little on hardware transactions, and so it

ends up aborting less in total because it is the only approach that does not have a budget of 5

retries per transaction (as experimental evaluation seems to indicate that it retries 1 or up to

2 times at most). Secondly, SCM does have the same budget of 5 retries as Seer, but since

it serializes aborted transactions via the auxiliary lock, it restricts parallelism upfront and in a

coarse fashion; recall that SCM relies on a single auxiliary lock, whereas Seer’s locks are fine

grained.

As such, these two alternatives manage to reduce transaction aborts. Yet, this comes at

the cost of severely hindering parallelism. An evidence of this claim can be clearly obtained

by analyzing the data regarding the processor cycles spent waiting for the fall-back lock (and,

for SCM, also for the auxiliary lock) to be free. For the case of Seer we show not just the
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cycles spent waiting for the global lock, but also for Seer’s transaction and core locks. When

considering the average cycles spent waiting for locks, we have that Seer has less 4× than HLE,

3.5× than SCM, and 3× than Baseline. Notice that, while Baseline has the closest cycles spent

waiting comparing to Seer, it is also the alternative that consistently aborts more. This tension

between waiting for locks and aborting transactions is a trade-off that is best managed by Seer’s

ability to generate fine-grained locks that prevent aborts while at the same time avoiding too

much waiting.

Another interesting aspect to highlight is that, in some benchmarks, the ability of Seer to

reduce conflict aborts leads to an increase of capacity aborts. This can be explained by con-

sidering that transactions whose conflicts are avoided, thanks to Seer’s transactions locks, now

advance longer in their execution and hence become more vulnerable to capacity exceptions.

We observed this phenomenon experimentally, for instance in Vacation-high. In this case, we

can see that the transaction locks of Seer reduce the conflicts (when comparing to Baseline)

but then Seer ends up with more capacity aborts — which the core locks do not amortize en-

tirely. Baseline, on the other hand, does not observe those capacity aborts because the hardware

transactions abort early due to conflicts.

6.7.3 How are Transactions Being Scheduled?

To understand the reasons that lead Seer to reduce aborts and wait time for the fall-back

lock, we now present results that explain how transactions are being scheduled. Namely, we seek

to understand how often transactions rely on the single-global lock (thus giving up on the HTM

support), or when they acquire other locks (in the case of SCM and Seer).

Table 6.6 provides a breakdown of the usage of locks for each considered approach, providing

additional insights on the reasons underlying the performance gains achieved by Seer. We

report data for 14 and 28 threads, for each benchmark and workload. To interpret this data, it is

important to consider that, for each approach, it is desirable that the top row(s) have the highest

frequency, because they are the ones that constrain parallelism the least, while still executing

with HTM support successfully.

By considering Genome, we can see that HLE has a considerable portion of transactions

executing under the single-global lock, due to its fragile retry on abort policy. This is a trend



6.7. EXPERIMENTAL COMPARISON WITH OTHER SYSTEMS 213

Table 6.6: Breakdown of percentage (%) of transaction execution modes when running with 14
and 28 threads.
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Variant Execution Mode 14t 28t 14t 28t 14t 28t 14t 28t 14t 28t

HLE HTM no locks 71 71 77 77 70 70 71 72 76 78
SGL fall-back 29 29 23 23 30 30 29 28 24 22

Baseline HTM no locks 97 90 92 89 76 76 89 82 100 100
SGL fall-back 3 10 8 11 24 24 11 18 0 0

SCM
HTM no locks 91 82 84 72 76 74 75 75 98 98
HTM + Aux lock 7 16 14 24 23 25 24 24 2 2
SGL fall-back 2 2 2 4 1 1 1 1 0 0

Seer

HTM no locks 96 79 87 76 75 59 90 76 100 100
HTM + TxLocks 2 3 5 11 8 24 5 14 0 0
HTM + CoreLocks 0 4 0 2 0 0 0 0 0 0
HTM + Tx + CoreLocks 0 8 0 2 0 1 0 1 0 0
SGL fall-back 2 6 8 9 17 16 5 9 0 0
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Variant Execution Mode 14t 28t 14t 28t 14t 28t 14t 28t 14t 28t 14t 28t

HLE HTM no locks 82 84 66 64 53 65 90 90 92 90 92 90
SGL fall-back 18 16 34 36 47 35 10 10 8 10 8 10

Baseline HTM no locks 83 83 75 77 80 79 92 92 94 94 95 97
SGL fall-back 17 17 25 23 20 21 8 8 6 6 5 3

SCM
HTM no locks 68 65 64 58 68 68 58 60 54 57 51 51
HTM + Aux lock 18 20 30 35 27 28 36 33 40 36 42 42
SGL fall-back 14 15 6 7 5 4 6 6 6 7 7 7

Seer

HTM no locks 84 78 84 59 88 76 95 94 96 95 98 96
HTM + TxLocks 2 5 5 8 5 0 3 3 3 2 1 0
HTM + CoreLocks 0 2 0 12 0 5 0 0 0 0 0 1
HTM + Tx + CoreLocks 0 0 0 1 0 3 0 1 0 1 0 1
SGL fall-back 14 15 11 20 7 16 2 2 2 2 1 2
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Table 6.7: Distribution of transaction duration (processor cycles) across benchmarks.

Benchmark 50th perc 90th perc 95th perc 99th perc

Genome 10k 12k 13k 55k
Intruder < 1k 7k 12k 22k

Kmeans-High < 1k < 1k < 1k < 1k
Kmeans-Low < 1k < 1k < 1k < 1k

SSCA2 < 1k < 1k < 1k 1k
Vacation-High 14k 22k 25k 42k
Vacation-Low 10k 15k 17k 24k

Yada < 1k 68k 83k 108k
STMBench7-R < 1k 130k 132k 133k
STMBench7-RW < 1k 3k 131k 133k
STMBench7-W 1k 4k 7k 130k

that persists across benchmarks. As for SCM, we can see that it relies very little on the single-

global lock, because it ends up replacing it with the auxiliary lock most of the time.

When comparing Baseline with Seer, we can see that the latter reduces a few percentage

of the usage of the single-global lock (1% at 14 threads and 4% at 28 threads). This is an

interesting result, because we have verified that the performance gains can be quite substantial,

e.g., on Genome, despite having only a small effect on the global lock usage. The main reason

for this is that not all transaction types are born equal: some generate much longer transactional

execution than others.

This phenomenon is quantified in Table 6.7, which reports data on the distribution of the

processor cycles spent to execute transactions (serially, without any instrumentation) across all

the considered benchmarks. These data highlight that, for Genome, the largest 1% transactions

take 5× longer to execute than the median. As a result, even though Seer may prevent only a

small portion of transactions to use the single-global lock, the consequence may be a considerable

performance improvement in case those transactions are much longer than the median.

Analogously to Genome, we can then see that Intruder and the STMBench7 workloads

evidence exactly the same pattern: the single-global lock reduction of Seer is not astounding,

but in contrast we can see a large discrepancy between the median and > 90th percentiles (of up

to > 100× difference in transaction length).

With both Vacation workloads we verify that the transaction lengths are more homogeneous.
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Figure 6.10: Cumulative distribution function for the ratio (in %) of available locks that Seer
chose to take, averaged across all the scenarios evaluated in this section. We show this distribution
for all transactions, and also for the subset of transactions (on average 7%) that acquires at least
one Seer lock.

In fact, in these workloads, the performance gains of Seer are directly related to a significant

reduction of the usage of the single-global lock: 14% in Vacation-High and 13% in Vacation-Low,

when compared to Baseline at 14 threads (which is close to the peak of speedup).

As for the Kmeans workloads, we had previously seen that Seer did reduce transactional

conflicts. This new data now clarifies that such result is achieved thanks to the significant usage

of transaction locks (up to 24% in Kmeans-High) and a negligible usage of core locks (given that

there are almost no capacity aborts). Yet, as discussed earlier, we now confirm in Table 6.7 that

the transactions are very small and largely homogeneous in these workloads. Because of these

reasons, the usage of the single-global lock has a minor impact on performance, nullifying the

gains of Seer.

We conclude this analysis by presenting, in Table 6.8, average results across all benchmarks,

but reporting data for a larger spectrum of thread counts. These results confirm that HLE is the

least effective solution among the considered alternatives, with the largest usage of the single-

global lock (mainly due the lemming effect [Dice et al., 2008]). Baseline improves over those

results, but it still yields an average usage of the single-global lock that is larger than 10% in

most cases. SCM reduces that substantially to at most 3%, but at the cost of using more than

10% of the time the auxiliary lock. This is only slightly better than queuing all transactions on

the single-global lock.

Finally, Seer is able to improve over all previously described alternatives, exactly because

the frequency with which it uses a single-global lock is lower: at most 9% average for 28 threads.
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Table 6.8: Breakdown of percentage (%) of types of transactions used on average across all
benchmarks.

Variant Execution Mode 4t 8t 12t 16t 20t 24t 28t

HLE HTM no locks 80 70 71 75 76 75 75
SGL fall-back 20 30 29 25 24 25 25

Baseline HTM no locks 96 94 91 89 88 88 88
SGL fall-back 4 6 9 11 12 12 12

SCM
HTM no locks 84 82 82 82 80 82 79

HTM + Aux lock 13 16 16 15 17 16 19
SGL fall-back 3 2 2 3 3 2 2

Seer

HTM no locks 97 94 91 85 82 80 81
HTM + Tx Locks 1 2 4 6 7 8 7
HTM + Core Locks 0 0 0 1 1 2 2

HTM + Tx + Core Locks 0 0 0 1 2 1 1
SGL fall-back 2 4 5 7 8 9 9

Furthermore, the other locks that Seer exploits have a much finer granularity — one per trans-

action and one per core. Hence, unlike the single-global or the auxiliary locks, Seer’s locks avoid

serializing all transactions.

To complement the results so far, we also show in Figure 6.10 the cumulative distribution

function for the ratio of available locks that Seer decides to acquire, averaged across all the

tested scenarios. Among all transactions, we note that only about 7% acquires at least one

Seer lock, when averaging across benchmarks and number of threads. We highlight that in 50%

of these cases, in which some lock of Seer is acquired, the fraction of locks that are actually

acquired is lower than 23% of the available ones. This experimental result confirms the ability

of the proposed lock inference mechanism to synthesize effective fine-grained locking schemes.

6.7.4 What is the Overhead of Running Seer?

We first assess the overhead of the monitoring, lock-inference and self-tuning mechanisms

of Seer. For this, we ran a variant of Seer that incurs the overheads of all its mechanisms,

without, however acquiring any lock.

In Figure 6.11, we show the average speedup of this Seer’s variant relatively to Baseline

(that consistently performed second best in our previous evaluation results). In this new plot
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Figure 6.11: Geometric mean overhead of Seer, when profiling and calculating locks to acquire,
across all benchmarks and workloads.

we present the geometric mean across all benchmarks (of STAMP and STMBench7). The mean

slowdown across all these number of threads is of 2%, which confirms that the infrastructure

used by Seer to gather data and perform statistical inference is, in fact, quite lightweight. The

peak overhead is actually with 2 threads, with 6% slowdown, because in that case we enable the

infrastructure of Seer— which is disabled when there is only one thread — and thus half of the

threads (i.e., 1 thread) now periodically runs the algorithms for devising the lock scheme and

self-tuning the thresholds. As the number of threads increases, this overhead is amortized by the

presence of additional threads that execute transactions and merely increase their thread-local

statistics counters.

Note that the technique used to sample the activeTxs list has the utmost importance in

keeping these overheads low as we increase the number of threads. We recall that each thread,

upon committing or aborting with a conflict, samples the transaction being executed by only one

other thread in the system. This is in contrast with the alternative extreme approach of obtaining

all transactions of all other threads (an approach that we call Full Snapshot). The problem with

this latter alternative is that its overheads increase with the number of concurrently active

threads. As such, the intent of sampling just one entry of activeTxs is to keep those overheads

constant.

In Figure 6.12 we show the speedup of Seer’s approach in Round Robin Sampling when

compared to that of the Full Snapshot approach. We also show a slightly different alternative

that we call Static Sampling, in which each thread always samples one given (different) thread,

instead of changing the sampled thread over time as Round Robin Sampling does.

The averaged results (across all benchmarks) shown in Figure 6.12(a) clearly show that

Round Robin yields improvements over the two alternatives, more so as the number of threads
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Figure 6.12: Comparison of three schemes to sample the transactions running concurrently in
Seer. In all cases Seer runs the same algorithm, and changes only the sampling scheme of the
activeTxs list.
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increases. The improvements over Full Snapshot are explained by the reduced overheads, as

shown in Figure 6.12(b) for the benchmark SSCA2, where there are almost no aborts: both

sampling alternatives provide considerable speedup over a Full Snapshot. Note that this is not

necessarily always the case, as shown in Figure 6.12(c), where we use an STMBench7 workload:

this has very large transactions, and thus the overhead of sampling at the end of the transaction

is amortized significantly in contrast with workloads such that of SSCA2. As a consequence, the

three sampling schemes end up having very similar performance.

Finally, the difference in performance between both sampling techniques is explained by the

better quality of sampling in conflict-prone workloads: by using round-robin over all threads,

for instance, this prevents cases where a thread constantly samples the same active concurrent

transaction in a thread, which is struggling to progress due to aborts (perhaps due to capacity

overflow). As such, Round Robin Sampling appears to be the most robust solution, by providing

higher quality sampling (over Static Sampling), while at the same time reducing the overheads

(over Full Snapshot).

6.7.5 How Much does Each Design Choice Contribute to Seer?

The design of Seer encompasses the following five aspects: 1) capturing statistics about

commits, aborts, and concurrent transactions; 2) acquiring transaction locks when aborts occur;

3) acquiring a core lock when a capacity abort happens; 4) acquiring transaction locks by using

a hardware transaction to reduce the overheads of multiple compare-and-swaps; and 5) adapting

the thresholds T h1, T h2 via a stochastic hill climbing algorithm.

To quantify the relative relevance of each of the mechanisms integrated in Seer, we con-

ducted a series of experiments, whose results, shown in Figure 6.13, evaluate the speedup of

different variants of Seer. We consider as baseline, the Seer variant previously considered for

the plots in Figure 6.11, which incurs the costs of collecting statistics and updating the locking

strategy, without ever acquiring any lock. Then, we consider four, progressively enhanced vari-

ants, where we cumulatively add: the transaction locks acquisition (+ tx-locks), the core locks

acquisition (+ core-locks), the acquisition of locks by employing a hardware transaction (+ htm

locks), and the adaptation of the thresholds via hill climbing (+ hc).

In general the transaction locks provide the largest boost in performance. Unsurprisingly,
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the core locks are only beneficial when using 16 or more threads, i.e., when we start executing

multiple hardware threads on the same core. Note that, although we strive to reduce both

conflict and capacity aborts, the latter are many times unavoidable independently of preventing

cache sharing in the same physical core via the core locks. Instead, many of the data conflicts

are effectively prevented by constraining the parallelism via the fine-grained transaction locks.

The hardware lock acquisition also shows improvements in general across all numbers of

threads. Also, a similar gain is provided by adapting on-line the thresholds used in the transaction

locks probabilities calculations.

On average, when considering the geometric mean in the last plot, we get that: 1) transaction

locks yield an average improvement of up to 74%; 2) on top of which the core locks add an im-

provement of up to 10%; 3) the lock acquisition via hardware transactions adds an improvement

of up to 9%; and 4) the stochastic hill climbing adds an improvement of up to 21%.

6.8 Summary

In this chapter we proposed Seer, the first fine-grained scheduler designed to cope with the

specific challenges arising with HTMs, i.e., the lack of detailed knowledge on the root causes of

data contention and consequent aborts. The most innovative feature of this proposal is that it

can infer conflict patterns among pairs of transactions of a TM program without relying on the

availability of precise information from the underlying TM system or static information about

the workload to be executed. Seer avoids these pitfalls by relying on lightweight, yet inherently

imprecise techniques, in order to gather information on the set of concurrently active transactions

upon the commit and abort events of transactions. Probabilistic techniques are then used to filter

out false positives and infer a dynamic locking scheme that is used to serialize contention-prone

transactions in a fine-grained fashion.

We evaluated our solution, against several alternatives and in various scenarios, using one of

the largest HTM-enabled processors available from Intel. In these experiments we verified that

Seer yields average improvements of 65% across the various benchmarks and concurrency de-

grees, with speedups of up to 3.6×. The key reason motivating these performance improvements

lies in the reduction of aborts of hardware transactions, which not only decreases the repetition

of work, but also diminishes the reliance on the fall-back single-global lock.
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7
ProteusTM: an Adaptive

High-Performance TM

system

In the previous chapters we have focused on improving the performance of either STMs or

HTMs in order to address various issues identified in the initial study in Chapter 3. Indeed,

the main motivation to consider both types of TM systems in this dissertation is exactly our

initial study showed that neither type of TM can outperform the other across different types of

workloads. That means we can always find a different workload for an application in which we

would prefer to use a different TM algorithm than the one we set out with in the first place.

To some extent, the idea of HyTMs is intended to cover these scenarios, in which the com-

bination of a STM and HTM algorithm would allow to run whichever type of transactions was

most adequate to the current workload. However, it is important to highlight that this does

not suffice for the issue identified above; i.e., combining two algorithms may still not deliver the

optimal performance across workloads, as perhaps combining a different STM with the HTM

available in the processor used could work better. Even more importantly, our study in Chap-

ter 3 also identified the sub-optimality of HyTMs due to their inherent overheads stemming from

the synchronization needed between the two algorithms, which has been recently studied also

from a theoretical point of view [Alistarh et al., 2015].

In this chapter we propose to tackle these problems with a unified TM system that delivers

high-performance across workloads by adapting between multiple dimensions of the configura-

tions available. One example dimension is the TM algorithm itself (e.g., choosing between various

STM implementations, the HTM available in the processor, or even HyTMs). Other dimensions

of the TM configuration are the number of threads allowed to execute concurrently, as well as

the retry policy and contention management between transactions.

To accomplish this idea, we propose ProteusTM, which chooses between all configurations

the one that is deemed to provide the best performance, via an off-line trained machine learning

model. This is achieved with little exploration of configurations (whose number is large due to

the exponential nature of the multiple dimensions of the problem) without sacrificing optimality.
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7.1 Problem

As established by the premise of this dissertation, the abstraction of TM has been widely

accepted as a significant improvement to ease the development of concurrent applications with

shared memory. However, its performance did not always deliver accordingly to the large expec-

tations, which were amplified by the potential available with optimistic concurrency control that

allows a fine-grained synchronization between threads.

So far, we have provided contributions to improve that performance, both for STMs in

Chapter 4, as well as for HTMs in Chapter 5 and 6. However, we have also seen in Chapter 3

that neither STMs or HTMs are universally superior to each other. This argument is clearly

conveyed in a summarized visualization in Figure 7.1. There, we show the strong sensitivity

of different TMs to the workload characteristics. We report on the normalized throughput (in

Figure 7.1(a)) and energy efficiency (in Figure 7.1(b)) of various TMs in different machines and

benchmarks. We normalized the data with respect to the best performing configuration for the

considered workload.

The underlying message of these examples is that the optimal TM choice and configuration

differ significantly for each workload. Furthermore, choosing wrong configurations can cripple

performance by several orders of magnitude.

The problem is that the efficiency of existing TM implementations is strongly dependent

on the workloads they face, meaning that their performance is not very robust to changes.

Performance can be affected by a number of factors, including program inputs (i.e., workloads)

as demonstrated in Chapter 3, phases of program execution [Didona et al., 2013], tuning of the

internal parameters of the TM algorithms as shown in Chapter 5, as well as architectural aspects

of the underlying hardware [Castro et al., 2014].

Given the vast TM design space, manually identifying optimal configurations, using trial and

error on each workload, is a daunting task. Overall, the complexity associated with tuning TM

contradicts the motivation at its basis, i.e., to simplify the life of programmers, and represents

a roadblock to the adoption of TM as a mainstream paradigm [Kleen, 2014]. This urges for

methodologies capable of automating the identification of the right TM implementation and its

proper tuning.
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Figure 7.1: Performance heterogeneity in TM applications. We show configurations with dif-
ferent TM algorithms and number of threads used, which results in largely varying degrees of
performance, ranging from optimal to considerable slowdowns.

7.2 Overview

We propose a new TM system, ProteusTM1, which allows developers to still enjoy the

simplicity and ease of usage of the TM abstraction, while sparing them from the burden of

tuning TM implementations to specific workloads.

Under the simple and elegant interface of TM, ProteusTM hides a large library of TM imple-

mentations. At runtime, ProteusTM relies on an innovative combination of learning techniques

to pursue optimal efficiency via multi-dimensional adaptation of the TM implementation and its

parameters.

At the heart of ProteusTM lie two key components:

• PolyTM is a polymorphic TM library that encapsulates several different algorithms from

the state of the art of research in TM, and has the ability to transparently and dynamically

adapt across multiple dimensions: 1) switch between different TM algorithms; 2) reconfigure

the internal parameters of a TM; and 3) adapt the number of threads concurrently executing

transactions.

• RecTM is in charge of determining the optimal TM configuration for an application across the

multiple dimensions mentioned above. Its basic idea is to cast the problem of identifying such

best configuration as a recommendation problem [Rajaraman and Ullman, 2011] (similar to the

1Proteus is a Greek god who can foretell the future and adapt his shape to many forms.
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task of a web store that recommends new items based on prior purchases). This allows RecTM to

inherit two highly desirable properties of state of the art Recommender System (RS) algorithms:

the ability to operate with very sparse training data, and to require only the monitoring of

the Key Performance Indicator (KPI) to be optimized. In our case, this KPI can be simply

the throughput of the system. This avoids intrusive instrumentation [Rughetti et al., 2012]

and (possibly inaccurate) static code analysis [Wang et al., 2012b] employed by other machine

learning-based solutions.

While building ProteusTM, we addressed several challenges, with the introduction of a set

of innovative solutions:

I Minimizing the cost of adaptivity. Supporting reconfigurations across multiple dimensions

requires introducing some degree of synchronization, in order to ensure correctness during runtime

adaptations. The challenge here is to ensure that the overheads to support adaptivity are kept

small enough not to compromise the gains achievable via our self-tuning.

We addressed this challenge by designing lightweight synchronization schemes that exploit

compiler-aided, asymmetric code instrumentation. The combination of these techniques allows

PolyTM to achieve a negligible overhead of around 1% and a maximum overhead of 5%, even

when considering the most performance sensitive TM implementations.

I Transparency and portability : PolyTM encapsulates a wide variety of TM implementations,

along with their corresponding tuning procedures. The key challenge here is to conceal these

mechanisms without breaking the clean and simple abstraction of TM. Furthermore, one of the

key design goals of ProteusTM is to seamlessly integrate with existing TM applications, and to

support different machine architectures.

We tackled this issue by integrating PolyTM in GCC, via the standard TM ABI [Ni et al.,

2008], and by exposing to programmers standard C++ TM constructs. Not only this preserves

the simplicity of the TM interface, but it also maximizes portability due to the widespread

availability of GCC across architectures.

I Applying Recommender Systems to the TM domain: Decades of research have established RS

as a powerful tool to perform prediction in various domains (e.g., music and news) [Linden et al.,

2003,Davidson et al., 2010,Das et al., 2007]. The application of RS techniques to performance

prediction of TM applications, however, raises unique challenges, which were not addressed
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by previous RS-based approaches to the optimization of systems’ performance [Delimitrou and

Kozyrakis, 2014,Delimitrou and Kozyrakis, 2013]. One key issue here is that, in conventional RS

domains (e.g., recommendations of movies), users express their preferences on a homogeneous

scale (e.g., 0 to 5 stars). On the contrary, the absolute value of KPIs of TM applications can

span very heterogeneous scales. As we shall discuss, this can severely hinder the accuracy of

existing RS techniques.

We cope with this issue by introducing a novel normalization technique, called rating dis-

tillation, which maps heterogeneous KPI values to scale-homogeneous ratings. This allows Pro-

teusTM to leverage state-of-the-art RS algorithms even in the presence of TM applications whose

KPIs’ scales span across different orders of magnitude.

I Large search space: Although RS algorithms are designed to work with very sparse information,

their accuracy can be strongly affected by the choice of the configurations [Su and Khoshgoftaar,

2009] that are initially sampled to characterize a TM application. Deciding which and how many

TM configurations to sample is a challenging task, as ProteusTM supports reconfigurations across

multiple dimensions, resulting in a vast search space.

RecTM addresses this issue by relying on Bayesian optimization techniques [Brochu et al.,

2010] in order to steer the selection of the configurations included in the characterization of a

TM application. This reduces by up to 4× the duration of the learning process of the RS using

Collaborative Filtering (CF) [Su and Khoshgoftaar, 2009].

We conducted an extensive evaluation of ProteusTM across all the benchmarks and appli-

cations presented in Section 2.7, with a TM parameter space of up to 130 configurations, and

optimizing performance in two different machines. Our results highlight that ProteusTM ob-

tains quasi-optimal performance (on average < 3% from optimal) and gains up to 2 orders of

magnitude over static alternatives.

We highlight the fact that ProteusTM was developed in cooperation with another doctoral

student, Diego Didona, whom we acknowledge as the main author for the RecTM component,

with PolyTM being developed primarily by the student authoring this dissertation. We present

the full ProteusTM in this dissertation for self-containment, having only been published before

in the conference paper listed under the contributions of this document.

The rest of this chapter is structured as follows. In Section 7.3 we first provide some ad-



228 CHAPTER 7. PROTEUSTM: AN ADAPTIVE HIGH-PERFORMANCE TM SYSTEM

ditional background and then discuss related work for optimizing TM systems and for the ex-

ploitation of RS for performance prediction. Then, Section 7.4 provides a high-level description

of the architecture of ProteusTM, which we detail in Section 7.5 and 7.6. Finally, our evaluation

study follows in Section 7.7.

7.3 Background and Related Work

Before specifically comparing our new proposal with the state of the art, we first provide

background on the field of Recommender Systems in Section 7.3.1, which is crucial to understand-

ing some of the details of ProteusTM. We then compare our proposal with other systems in the

field of optimization for TM (in Section 7.3.2 and with general purpose performance prediction

systems that rely on Recommender Systems (in Section 7.3.3).

7.3.1 Collaborative Filtering in Recommender Systems

In general, a Recommender System (RS) seeks to predict the rating that a user would give

to an item. These ratings can be exploited to recommend items of interest to users [Linden et al.,

2003].

We focus on Collaborative Filtering (CF) [Su and Khoshgoftaar, 2009], a prominent predic-

tion technique used in a RS. To infer the rating of a 〈user, item〉 pair, CF techniques exploit

the preferences expressed by other users, and ratings by the user on different items. Ratings are

stored in a Utility Matrix (UM): rows represent users and columns represent items. Typically, a

UM is very sparse, as a user rates a small subset of the items. A CF algorithm reconstructs the

full UM, from its sparse representation, by filling empty cells with ratings close to the ones that

the users would give.

K-Nearest Neighbors (KNN) and Matrix Factorization (MF) are popular techniques to im-

plement the ideas behind CF [Rajaraman and Ullman, 2011]. KNN uses a similarity function

to express the affinity of two rows or columns: a recommendation for a pair 〈u,i〉 is computed

with a weighted average of the ratings of the most similar users to u (and/or on the most similar

items to i).

MF, instead, maps users and items to a latent factors space of dimensionality d. Each
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dimension represents a hidden similarity concept: in the movies’ example domain, a similarity

concept may be how much a user likes drama movies, or how much a movie belongs to the drama

category. To compute recommendations, MF infers two matrices P and Q, which represent,

respectively, users and items in the aforementioned d-dimensional space. The product of P and

Q is a matrix R that is similar to a given UM A, i.e., QTP = R ∼ A, containing also predictions

for the missing ratings in A [Rajaraman and Ullman, 2011].

7.3.2 Optimization of TM Systems

The most researched problem in TM self-tuning is probably that of choosing the number

of active threads. Proposed solutions have relied on analytical modeling [Sanzo et al., 2013],

off-line machine learning [Rughetti et al., 2012], or exploration-based strategies [Didona et al.,

2013]. Another challenging problem is that of choosing the best TM for a given application and

workload. In this scope, AutoTM [Wang et al., 2012b] relies on Artificial Neural Networks and

programmer heuristics (although they considered only STMs). AutoTM uses a combination of

static analysis and runtime profiling, to extract many features of the application, which are then

fed to the Neural Networks. We highlight also our previous work with Tuner on Chapter 5,

which uses hill climbing and reinforcement learning to adaptively determine the best retry-on-

abort policy for HTM.

The main common aspect of these solutions is that they optimize a single characteristic of the

TM system. When considering the most challenging task targeted in this chapter, namely to si-

multaneously optimize multiple configurations of a TM, purely exploration-based solutions (such

as Tuner and [Didona et al., 2013]) quickly become impractical, as the number of configurations

to explore rapidly grows with the parameters to optimize.

ProteusTM, instead, is effective in optimizing in a large space (we considered 130 config-

urations over 4 parameters). Thanks to the capability of CF techniques to deal with sparse

information, and to the use of Bayesian optimization techniques to steer on-line explorations,

ProteusTM is able to operate in even higher dimensional problems by simply including more

configurations as extra columns of the UM.

An alternative approach adopted in the literature relies on both code analysis and intrusive

software instrumentation, which have the objective of building a workload characterization that
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is then fed to different types of machine learning algorithms. The need for relying on software in-

strumentation to obtain such detailed workload characterization information adds complexity to

the code of TM algorithms and overhead to the application. ProteusTM, conversely, relies solely

on profiling high-level KPIs (such as the throughput of the application), which incurs minimal

overhead and maximizes portability. We stress that ProteusTM’s work-flow is fully automated,

avoiding the need for programmer heuristics (which is used for instance in AutoTM [Wang et al.,

2012b]). We summarize these works, and their comparison with ProteusTM, in Table 7.1.

7.3.3 Performance prediction with Recommender Systems

To the best of our knowledge, Paragon [Delimitrou and Kozyrakis, 2013], Quasar [Delimitrou

and Kozyrakis, 2014] and U-CHAMPION [Pettijohn et al., 2014] are the only systems relying on

RS for performance prediction, job scheduling and resource provisioning. They characterize an

incoming job via random sampling of a fixed number of configurations and then apply MF-based

CF.

These works are also summarized in the second last row of Table 7.1. ProteusTM differs

from these works in three key aspects: 1) it relies on a novel rating distillation function that

identifies similarity patterns among the performances of heterogeneous applications. One note-

worthy finding of our work is that this pre-processing step, not used in previous works, is of

paramount importance to achieve high accuracy in the TM domain; 2) ProteusTM leverages

model-based techniques to determine which and how many configurations to experiment with

during the runtime sampling phase of a new workload, which, as we shall show in the later sec-

tions, outperforms random sampling of configurations; and 3) ProteusTM integrates both MF-

and KNN-based CF, being able to determine the best one to employ, depending on the training

data.

7.4 The Architecture of ProteusTM

In essence, ProteusTM applies Collaborative Filtering (CF) to the problem of identifying

the best TM configuration that maximizes a user-defined Key Performance Indicator (KPI): e.g.,

throughput. ProteusTM aims to maximize the efficiency of TM applications by orchestrating a

number of TM algorithms and the dynamic reconfiguration of their parameters. We now overview
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the architecture of ProteusTM, depicted in Figure 7.2, which enables its self-tuning capabilities.

More details shall be provided in the corresponding sections denoted.

• PolyTM (in Section 7.5): consists of a Polymorphic TM library comprising various TM

implementations. It allows for switching among TMs and reconfigure several of their internal pa-

rameters. It exposes transactional operators via an implementation of the standard TM ABI [Ni

et al., 2008] (supported, for instance, by GCC [Intel Corporation, 2009]).

• RecTM (in Section 7.6): is responsible for identifying the best configuration for PolyTM

depending on the current workload. It is composed, on its turn, by the following sub-modules:

1. Recommender (in Section 7.6.1): a RS that acts as a performance predictor and supports

different CF algorithms. It receives the KPIs of explored configurations from the Controller,

and returns ratings (i.e., predicted KPIs) corresponding to unexplored configurations that

may be of interest.

2. Controller (in Section 7.6.2): selects the configurations to be used and triggers their

adaptation in PolyTM. It queries the Recommender with the KPI values from the Monitor,

obtaining estimates for the ratings of unexplored TM configurations.

3. Monitor (in Section 7.6.3): this module collects the target KPI to: 1) give feedback to

the Controller about the quality of the current configuration, and 2) detect changes in the

workload, so as to trigger a new optimization phase in the Controller.

7.5 PolyTM: a Polymorphic TM Library

The PolyTM library encompasses a wide variety of TM implementations (such as many of

those that we have used in this work). It interacts with compilers, like GCC, via the standard TM

ABI [Intel Corporation, 2009]. Each atomic block, written by the programmer using standard

C/C++ constructs [Ni et al., 2008], is compiled into invocations to the various modules of

ProteusTM.

For every atomic block, GCC inserts a call to tm_begin and tm_end, which we direct to

PolyTM. Also, two code paths are generated: a non-instrumented path (in terms of reads and

writes), and a second one in which reads and writes to memory are instrumented with calls to
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atomic {
  x = y + 1
}

GCC

tm_start()
y1 = tm_read(y)
y1 += 1
tm_write(x,y1)
tm_end()

tm_start()
x = y + 1
tm_end()

non-instrumented instrumented

linkcompile

generates     binary
profile

STM1 HTM …application

Recommender

Monitor

SMBOController

KNN

query

kpi

STM2

adapt

ProteusTM

PolyTMTM ABI

RecTM

Figure 7.2: Architecture of the ProteusTM system. Applications are written with the canonical
atomic blocks used for the TM standard in C/C++. Our system, implementing the standard TM
ABI, is linked by the compiler and generates two paths of execution for each atomic block in the
application. This leads the application to invoke PolyTM’s interface, which hides different TM
implementations, and also to support the adaptation of other dimensions. Finally, this adaptation
is guided by RecTM, which is fed with the KPI profiling from the lightweight instrumentation
placed in the application, and then triggers adaptations in PolyTM.

PolyTM. The latter allows our code to arbitrate reads and writes, besides the begin and commit

of transactions, which are common to both paths.

Behind the TM ABI interface, we implemented in PolyTM several TM algorithms, and

runtime support to switch among them: 4 STMs [Dalessandro et al., 2010,Dice et al., 2006,Felber

et al., 2008,Dragojević et al., 2009a], 2 HybridTMs [Dalessandro et al., 2011,Matveev and Shavit,

2013], and 2 HTMs [Yoo et al., 2013,Adir et al., 2014]. We take advantage of the dual compilation

paths and use the instrumented one for the STMs. In contrast, HTMs — which automatically

transactionalize reads and writes — execute the non-instrumented one. As shown in Section 7.7.2,

the dual path optimization is crucial to minimize overhead.

The compiled code is also instrumented to profile performance metrics in a lightweight and

transparent manner. In particular, PolyTM collects the commits and aborts at each thread

and the energy consumed by the system, which are examples of possible KPIs. It also uses a

dedicated adapter thread to change the TM configuration.

In the following, we describe the mechanisms used by PolyTM to support runtime configu-

ration changes. Notably, all of this is performed automatically without the programmer having

to worry about anything except writing correct atomic blocks.
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Figure 7.3: Switching TM algorithm safely in PolyTM. In this example we have 3 threads initially
executing with TMA. Then, at event e1, the adapter thread triggers a change for them to use
TMB. However, performing this change between arbitrary TM algorithms must be done with
some care, which is ensured by the adapter thread enforcing some synchronization between the
several threads.

7.5.1 Switching Between TM Algorithms

Since our library must interact with the compiler via a single ABI, we hide different TM

implementations under a common interface defined in PolyTM. Then, each thread uses a set of

function pointers to this interface to process transaction operations. To switch between TMs, a

thread switches the function pointers to a different implementation.

Running concurrent transactions with different TMs is not safe in general [Wang et al.,

2012b, Lev et al., 2007]. So, PolyTM enforces an invariant: a thread may run a transaction in

mode TMA only if no other thread is executing a transaction in mode TMB. We illustrate the

problem in Figure 7.3: at time e1 the adapter thread tries to change the TM mode; if thread 2

immediately applied the change, it could run mode TMB concurrently with thread 1 in TMA.

The above invariant guarantees correctness by forcing thread 2 to wait until e2 to change to

TMB.

The invariant is enforced via an implementation based on the following three steps: 1) adapt

parallelism degree (i.e., number of threads) from its current value, say P , to 0; 2) change TM

back-end; 3) adapt parallelism degree back to P .
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7.5.2 Adapting the Parallelism Degree

To adapt the maximum number of active threads we use the synchronization scheme de-

scribed in Algorithm 20.

Each application thread synchronizes with the adapter thread via a (padded) state variable.

When executing a transaction for the first time, a thread is registered in PolyTM. We simplify

this in the algorithm by assuming a maximum number of threads, although PolyTM supports

an arbitrary number.

Upon starting a transaction, a thread t sets the lowest bit in its state variable (line 10),

whereas the adapter thread sets the highest bit of t’s state variable when it wants to disable t

(line 4). These writes are performed atomically together with returning the state of t. Then,

both adapter thread and t can reason on who wins (a potential race): if t sees only the lowest bit

set, it is allowed to proceed and executes the transaction; otherwise, it must wait for the adapter

to change the mode (line 13). The adapter inversely checks that only the highest bit is set, or

else waits for t to unset the lowest bit (line 5) — because t was already executing a transaction.

We implement these atomic operations with the primitives fetch-and-add/sub. These primi-

tives always succeed, and are cheaper than the traditional compare-and-swap loop [Morrison and

Afek, 2013,David et al., 2013]. Furthermore, in the common case of our algorithm — a thread

starting a transaction is not concurrently disabled — each thread performs the atomic operation

on a variable residing (with high probability) in its cache and without contention. In this case,

the latencies (in processor cycles), in our Machine A are 17 cycles for a fetch-and-add and 32

for a compare-and-swap. As such, the cost for managing the number of active threads is quite

limited, for instance when compared to the begin and commit of a hardware transaction (>120

cycles [Ritson and Barnes, 2013]).

We also use a conditional variable, associated with each thread t, for t to wait on, in the

case it is disabled. We omit the details of its management, for simplicity of presentation.

PolyTM guarantees that a reconfiguration always terminates: a thread eventually commits a

pending transaction, or else aborts and checks whether it was disabled — assuming finite atomic

blocks. Hence, the duration of a reconfiguration depends on the longest running transaction.

This, however, does not impair the efficiency of PolyTM’s reconfiguration: in-memory transac-

tions are generally very fast (given that they do not entail I/O) [Tu et al., 2013, Larson et al.,
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Algorithm 20: Changing the parallelism degree in PolyTM.
1: const int run ← 1 , block ← 1 � 32
2: padded var int threadState[max_threads] ← { 0 }

3: function disable-thread(int t) . adapter thread
4: int val ← fetch-and-add(threadState[t], block)
5: while (val & run) val ← threadState[t]

6: function enable-thread(int t) . adapter thread
7: threadState[t] ← run
8: signal(t) . wakes up thread t (locking omitted)

9: function tm-start(int t) . application thread
10: int val ← fetch-and-add(threadState[t], run)
11: if (val & block)
12: fetch-and-sub(threadState[t], run)
13: cond-wait(t) . checks it is still blocked after locking
14: . ...omitting logic for tm-start...

15: function tm-end(int t) . application thread
16: . ...omitting logic for tm-end...
17: fetch-and-sub(threadState[t], run)

2011].

In addition, the success of a reconfiguration does not rely on threads to eventually call into

ProteusTM. This is crucial to cope with applications whose threads may wait for events (e.g.,

client requests) and do not run atomic blocks often.

We note that, depending on the application, it may not be safe for PolyTM to permanently

disable an arbitrary thread: for instance, a web server may have a single thread accepting

requests. To account for such cases, in which it is impossible to know the application’s semantics,

we provide a library call for the programmer to forbid PolyTM from disabling a specific thread

(e.g., to tune the parallelism degree). Such a thread, however, may be disabled temporarily to

allow switching the TM algorithm, which is a brief procedure as noted above. Depending on

the configuration of ProteusTM, this behaviour could be made the default, and specific threads

could be identified as possible for adaptation.

7.5.3 Adapting the Contention Management

PolyTM’s optimization encompasses other configuration parameters related to contention

management [Guerraoui et al., 2005b]. Specifically, PolyTM integrates the configurations that
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we presented initially in the scope of Tuner for HTM in Chapter 5. Those configurations are

affected by two parameters: 1) the budget of retries using HTM for a transaction, and 2) whether,

upon a capacity abort, the budget should be decreased by one, halved, or fully consumed.

In fact, different contention management policies can co-exist without threatening correct-

ness [Guerraoui et al., 2005b]. Hence, both parameters can be changed at any point without

synchronization.

This allows ProteusTM to optimize also these important characteristics of HTM in the

case of deploying for multiple applications or varying workloads that cannot be optimized solely

with Tuner, namely because they require a varying number of active threads or different TM

algorithms at different phases of the workload.

7.6 RecTM: a Recommender System for TM

RecTM is the component responsible for driving the decisions that trigger the adaptations

in PolyTM. The methodology employed uses a black-box learning approach that relies on a novel

combination of off-line and on-line learning. In short, it operates according to the work-flow of

Algorithm 21:

1. Build a training set by profiling the KPI of an initial set of applications in the encompassed

TM configurations (line 1).

2. Instantiate a CF-based performance predictor based on the training set obtained off-line

in 1) (lines 2 and 3).

3. Upon deploying a new application or detecting a change of the workload, profile on-line

the application over a small set of explored configurations (lines 4 and 5).

4. Recommend a configuration for the workload (line 6).

In the following sections we provide details about the building blocks of RecTM by describing

their functionalities and interactions.
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Algorithm 21: RecTM work-flow to drive the adaptation of ProteusTM.
1: Off-line performance profiling of an initial training set of applications.
2: Rating distillation and construction of the Utility Matrix (Section 7.6.1).
3: Selection of CF algorithm and setting of its hyper-parameters (Section 7.6.1).
4: Upon the arrival of a new workload (Section 7.6.3):
5: Sample the workload on a small set of initial configurations (Section 7.6.2).
6: Recommend the optimal configuration (Section 7.6.1).

7.6.1 Recommender: Using Collaborative Filtering

RecTM casts the identification of the optimal TM configuration for a workload into a recom-

mendation problem, which it tackles using Collaborative Filtering (CF), an efficient and simple

technique for rating prediction [Su and Khoshgoftaar, 2009].

A key challenge to successfully apply CF in predicting the performance of TM applications,

is that CF assumes the ratings in a predetermined scale (e.g., a preference from 0 to 10). How-

ever, the absolute KPI values produced by different TM applications, instead, can span orders

of magnitude (e.g., from millions [Minh et al., 2008] to few transactions per second [Guerraoui

et al., 2007]). Further, KPI values of specific configurations provide no indication on the maxi-

mum/minimum KPI that the application can obtain, impairing their normalization.

Our Recommender tackles this issue with an innovative technique, which we call rating

distillation. This function maps KPI values of diverse TM applications onto a rating scale

that can be fruitfully exploited by CF to identify correlations among the performance trends of

heterogeneous applications. In the following we discuss the difficulties associated with obtaining

this function and its use in Recommender.

The Rating Heterogeneity Problem. Ratings are stored in a Utility Matrix (UM) A, of

which each row u represents a workload and each column i is a TM configuration: Au,i is the

rating of configuration i for workload u (i.e., in our domain, it expresses the performance of i

in u for a given KPI metric). To illustrate the problem, we populated an example UM directly

with sampled KPI values (e.g., throughput) in Table 7.2. That UM contains information on

applications A1 and A2 profiled with configurations C1, C2 and C3 and A3 profiled only at C1

and C2. Each configuration varies the number of active threads. From the matrix, we can infer

that A1 can scale, as its performance increases linearly with the number of threads; A2 does

not, since its performance, though higher in absolute value than A1’s, decreases as the number

of threads grows. We want to predict the rating for A3,3. Note that A3 exhibits the same linear
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Table 7.2: Example of a Utility Matrix where rows represent different applications (or workloads)
and the columns represent different configurations of the TM system. In this example we simplify
the configurations to vary only the number of active threads being used.

C1 C2 C3

A1 1 2 3
A2 30 20 10
A3 100 200 ?

trends of A1: for this reason, a likely value for A3,3 would be 300. Next, we show why well-known

CF techniques can be misled because of the heterogeneity of the ratings’ scales in the UM.

The Need for Normalization. The most common similarity functions in KNN CF are the

Euclidean, Cosine and Pearson [Rajaraman and Ullman, 2011]. The first cannot be applied

to heterogeneous ratings, because it is based on the scale-sensitive Euclidean distance: in the

example above, it would incorrectly regard C2 as more similar to C3 than C1. The other two are

scale-insensitive, so they are able to identify C1 as similar to C3. However, they would yield an

incorrect prediction in absolute value, as it will lie on C1’s scale, which is different from C3’s.

A similar shortcoming applies to MF CF. The P and Q matrices — recall Section 7.3.1 —

are typically obtained by means of stochastic gradient descent [Rajaraman and Ullman, 2011]:

starting from random matrices, this technique iteratively tries to minimize the fitting error of

P TQ over A. Thus, it is prone to over-fitting around the highest absolute value ratings, yielding

poor overall accuracy.

A solution to these problems is to normalize the entries in UM. An effective normalization

function should fulfil two requirements: 1) to transform entries in the UM so that similarities

among heterogeneous applications can be mined, and 2) to enable the application of conventional

CF techniques.

Note that feature normalization is often performed in Machine Learning (ML): a notable

example is that of Artificial Neural Networks, which normalize input features in the range

[0,1] [Bishop, 2006]. In ML, however, normalization is performed on the input features, whose

values are fully known for samples in the training set and for queries. In contrast, in ProteusTM,

the normalization has to be performed on the UM, which contains values corresponding to the

output feature KPI, and whose entries are not all known. Next, we describe how ProteusTM nor-
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malizes ratings to meet the two aforementioned requirements and, thus, enables CF to optimize

TM applications.

Normalization in the Recommender. If the minimum and maximum KPIs of an application

were known a priori, they could be mapped to a homogeneous rating scale with a simple, per

workload, normalization. Since KPIs of applications can take arbitrary values, then this ideal

solution cannot be used.

The rating distillation used by the Recommender approximates the ideal approach with a

mapping function that, for any workload w in the UM, ensures:

1. The ratio between the performance of two configurations ci, cj is preserved in the rating

space, i.e., KPIw,ci
KPIw,cj

=
rw,ci
rw,cj

.

2. The ratings of the corresponding configurations, rw,c, are distributed in the range of [0,

max{Mw}] — assuming a maximization problem — so as to minimize that index of dis-

persion of Mw, D(Mw)=
var(Mw)
mean(Mw) (where Mw is defined below).

Property 1) ensures that the information about the relative distances of two configurations

is correctly encoded in the rating spaces. Property 2) aligns the scales that express the ratings

of each workload w to use similar upper bounds Mw, which are tightly distributed around their

mean value.

We define this function in Algorithm 22. The rating of each row is obtained by normalizing

its KPI with respect to a column C*∈ {C1...CK} (assuming there are K configurations), so

to minimize the index of dispersion among the resulting maximum ratings in the normalized

domain.

Note that, not only does this function reduce the numerical heterogeneity of ratings, but it

also projects all the elements of the matrix to a semantically common domain: now, a rating

k for configuration i can be seen as “configuration i delivers performance that are k times the

Algorithm 22: Rating Distillation function in ProteusTM.
1: for Ci ∈ C1 . . . CM

2: Normalize Matrix KPI w.r.t. Ci

3: Collect the vector Mw with the max values per row
4: Compute meani(Mw) and vari(Mw)
5: return C∗ = argmini∈1...M vari(Mw)/meani(Mw)
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reference one”. While an absolute throughput of 5000 transactions per second may correspond

to either a good or a bad performance depending on the application, our rating function gives

ratings a “more universal” meaning. Also, minimizing the dispersion of the maximum values of

the scales, allows for aligning the upper extreme of the rating distributions of each application

(i.e., a row of the UM) to a common value: the tighter the distribution around a common value

Mw, the closer it approximates an ideal “omniscient” normalization.

Tuning the Recommender. We used Mahout [Owen et al., 2011], a ML framework containing

several CF algorithms. This design choice allows the Recommender to seamlessly leverage a vast

library of CF techniques, rather than binding it to a single one.

The Recommender uses the training UM to choose one of the available CF algorithms, to

adopt at runtime, and properly tunes its parameters (e.g., similarity function). Determining

the best learning algorithm and its hyper-parameters, given a training set, is a challenge that

falls beyond the domain of CF [Bergstra et al., 2011], and the literature abounds of heuristics for

automating the search of optimal models’ parameterizations. In our Recommender, we use an ap-

proach based on random-search [Bergstra and Bengio, 2012] and n-fold cross-validation [Bishop,

2006,Thornton et al., 2013,Hutter et al., 2011].

7.6.2 Controller: Explorations Driven by Bayesian Models

The Controller uses Sequential Model-based Bayesian Optimization (SMBO) [Hutter et al.,

2011] to drive the on-line profiling of incoming workloads, to quickly identify optimal TM con-

figurations.

SMBO is a strategy for optimizing an unknown function f : D → R, whose estimation can

only be obtained through (possibly noisy) observation of sampled values. It operates as follows:

1. Evaluate the target function f at n initial points x1 . . . xn and create a training set S with

the resulting 〈xi, f(xi)〉 pairs.

2. Fit a probabilistic model M over S.

3. Use an acquisition function a(M,S)→ D to determine the next point xm.

4. Evaluate the function at xm and accordingly update M .
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5. Repeat steps 2) to 4) until a stopping criterion is satisfied.

Acquisition function. Our Controller uses as acquisition function the criterion of Expected

Improvement (EI) [Jones et al., 1998], which selects the next point to sample based on the gain

that is expected with respect to the currently known optimal configuration.

More formally, considering without loss of generality a minimization problem, let De be

the set of evaluation points collected so far, Du the set of possible points to evaluate in D and

xmin = arg minx∈Du
f(x). Then the positive improvement function I over f(xmin) associated

with sampling a point x is Ixmin(x) = max{f(xmin)− f(x), 0}. Since f has not been evaluated

on x, I(x) is not known a priori ; however, thanks to the predictive model M fitted over past

observations, it is possible to obtain the expected value for the positive improvement:

EIy(xmin)(x) = E[Iy(xmin)(x)]

=

∫ ∞
−∞

max{fxmin − c, 0}pM (c|x)dc

=

∫ y(xmin)

−∞
(fxmin − c)pM (c|x)dc

Here, pM (c|x) is the probability density function that the model M associates to possible

outcomes of the evaluation of f at point x [Jones et al., 1998].

High EI values are associated either with points that are regarded by the model as likely to

be the minimum (high predicted mean), or with points whose corresponding value of the target

function the model is uncertain about (high predicted variance).

By selecting as next point for evaluation the one that maximizes the EI, SMBO naturally

balances exploitation and exploration: on one side it exploits the model’s confidence to sample

the function at points that are supposedly good candidates to be the minimum; on the other,

it explores zones of the search space for which the model is uncertain, to increase its predictive

power by iteratively narrowing uncertainty zones.

Computing pM(c|x). The Controller computes pM (c|x) with an ensemble of CF predictors,

and obtains predictive mean µx and variance σ2x of p(c|x) as frequentist estimates over the output

of its individual predictors evaluated at x.

It then models pM (c|x) as a Gaussian distribution ∼ N(µx, σ
2
x). Assuming a Normal dis-
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tribution for p(c|x) is frequently done in SMBO [Hutter et al., 2011] and other optimization

techniques [Osogami and Kato, 2007] to ensure tractability. Given a Gaussian distribution for

pM (c|x), EIy(xmin)(x) can be computed in closed form as EIy(xmin)(x) = σx[uΦ(u) + φ(u)],

where u = y(xmin)−µx
σx

and Φ and φ represent, respectively, the probability density function and

cumulative distribution function of a standard Normal distribution [Jones et al., 1998].

More in detail, the Controller builds a bagging ensemble [Breiman, 1996] of k CF learners,

each trained on a random subset of the training set. Then, it computes µx as the average of

the values output by the single predictors, and σ2x as their variance. In ProteusTM, we use 10

bagged models; we highlight that the cost of employing them instead of a single one is negligible,

mainly because they are only queried during profiling phases.

Stopping Criterion. As discussed, SMBO requires the definition of a predicate to stop explor-

ing new configurations. Devising a stopping criterion for the on-line profiling phase in ProteusTM

is not an easy task: since the target, optimal KPI value is not known beforehand, ProteusTM

cannot exactly determine how distant the best KPI value sampled so far is from the global op-

timum. Therefore, the stopping predicate must identify a good trade-off between exploitation,

i.e., trust in the model, and exploration of additional configurations.

Our Controller uses a stopping criterion that seeks a balance between exploration and ex-

ploitation by relying on the notion of EI: it uses the estimated likelihood that additional explo-

rations may lead to better configurations. More precisely, the exploration is terminated after k

steps when:

1. The EI decreased in the last 2 iterations k − 2 and k − 1.

2. The EI for the k-th exploration step was marginal, i.e., lower than ε with respect to the

current best sampled KPI.

3. The relative performance improvement achieved in the k−1-th iteration (i.e., by exploring

the configuration recommended at iteration k − 1) did not exceed ε.

In Section 7.7.3, we evaluate the effectiveness of this policy, comparing it also with a solution

that blindly relies on the model’s output, and evaluating its sensitivity with respect to the ε

parameter.
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7.6.3 Monitor: Lightweight Behavior Change Detection

The Monitor periodically gathers KPIs from PolyTM. These are used for two tasks:

1. While profiling a new workload, they are fed to the Controller, providing feedback about

the quality of the current configuration.

2. At steady-state, they are used to detect a workload change.

The Monitor implements the Adaptive CUSUM algorithm to detect, in a lightweight and

robust way, deviations of the current KPI from the mean value observed in recent time win-

dows [Basseville and Nikiforov, 1993]. This allows the Monitor to detect both abrupt and smooth

changes and to promptly trigger a new profiling phase in our Controller.

Note that environmental changes (e.g., inter-process contention or VM migration) are indis-

tinguishable from workload changes from the perspective of our behavior change detection.

7.7 Evaluation

This section provides an extensive validation of our contributions. We introduce, in Sec-

tion 7.7.1 the test-bed, applications, and accuracy metrics used. In Section7.7.2 we assess the

overhead incurred by PolyTM to provide self-tuning capabilities. In Section 7.7.3, we evaluate

the effectiveness of RecTM’s components separately. Finally, in Section 7.7.4 we evaluate the

ability of ProteusTM to perform online optimization of dynamic workloads.

7.7.1 Experimental Test-Bed

We deployed ProteusTM in two machines with different characteristics: Machine A, corre-

sponding to that already described in Table 3.2 with HTM support; and Machine B, equivalent

to that already described in Table 4.4 but with 48 cores.

We use a wide variety of TM benchmarks and applications encompassing all those presented

in Section 2.7: the STAMP suite, STMBench7, concurrent data-structures, TPC-C and Mem-

cached. We considered over 300 workloads for all those benchmarks — varying possible values
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Table 7.3: Parameters tuned by ProteusTM in the two different machines. Note that Machine
B does not have Intel RTM support.

Machine TMs Available # threads HTM Retry HTM Capacity
Budget Abort Policy

A
TL2, NOrec, 1,2,3,4, 1,2,4, Set budget to 0;

TinySTM, SwissTM, 5,6,7,8 8,16,20 decrease budget by 1;
RTM-SGL halve budget

B TL2, NOrec, 1,2,4,6, N/A N/ATinySTM, SwissTM 8,16,32,48

for their standard input parameters — which are representative of heterogeneous applications,

from highly to poorly scalable, from HTM to STM friendly.

Our system optimizes a given KPI — we generally focus on throughput in this evaluation —

by tuning the four dimensions listed in Table 7.3. Note that ProteusTM also includes HyTMs

as available TMs. However, we omit them as they were shown in Chapter 3 to perform sub-

optimally in comparison to the alternative of running a pure HTM or STM alone. We also

created TM support for IBM Power8 HTM, however we omitted it from the results to narrow

down the available machines and span of data. Overall,the optimization problem for ProteusTM

has a total of 130 TM configurations for Machine A and 32 for Machine B.

Evaluation metrics. We evaluate the accuracy of the optimization conducted by ProteusTM

along 2 accuracy metrics: Mean Average Percentage Error (MAPE) and Mean Distance From

Optimum (MDFO).

Noting ru,i the real value of the target KPI for workload u, when running with i as configu-

ration, r̂u,i as the corresponding prediction of the Recommender, and S the set of testing 〈u, i〉

pairs, then MAPE is defined as follows:
∑
〈u,i〉∈S |ru,i − r̂u,i|/ru,i.

Noting with i∗u the optimal configuration for workload u, and with î∗u the best configuration

identified by the Recommender, the MDFO for u is computed as:
∑
〈u,·〉∈S |ru,i∗u − ru,î∗u |/ru,i∗u .

MAPE reflects how well the CF learner predicts performance for an application with respect

to their real KPI values. In contrast, MDFO captures the quality of final recommendations output

by the Recommender, by comparing the choices taken with the ones known to be optimal.
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Table 7.4: Average overhead (%) incurred by ProteusTM for different TM algorithms and number
of active threads on Machine A.

#threads TL2 NOrec SwissTM TinySTM HTM-opt HTM-naive

1 3 3 2 3 3 14
4 < 1 1 < 1 3 3 14
8 < 1 < 1 < 1 4 5 24

7.7.2 Overhead Analysis and Reconfiguration Latency

We now assess the average overhead of PolyTM (over 10 runs in each case), i.e., the in-

herent steady-state cost of supporting adaptation. We compare the performance of a bare TM

implementation T with that achieved by PolyTM using T without triggering adaptation.

Table 7.4 summarizes the results averaged across all the benchmarks. The retry policy

for HTM is set to decrease linearly the retries starting from 5 (a common setting [Yoo et al.,

2013,Karnagel et al., 2014]). We also show the overhead of the optimized code path, employed for

HTM, and the one resulting from the default GCC instrumentation (fully instrumented path).

These experiments reveal overheads consistently < 5% across the TM algorithms. There

is a slightly lower STM overhead, which is justifiable considering that STMs natively suffer

from instrumentation costs that end up amortizing most of the additional overhead introduced

by PolyTM. The last column of Table 7.4 clearly highlights the relevance of the dual path

optimization, which allows PolyTM to halve the overhead incurred when using HTM.

We also assess the average latency of a typical reconfiguration in PolyTM to switch TM

algorithms (which also entails changing the number of threads). The results, shown in Table 7.5,

encompass two heterogeneous workloads: Memcached uses 100× shorter transactions than TPC-

Table 7.5: Examples of the latency (in microseconds) to conduct a reconfiguration of a TM
algorithm.

Benchmark (Machine) # Threads
1 2 4 8 16 32

TPC-C (Machine A) 21 91 213 3419 N/A N/A
Memcached (Machine B) 2 8 28 145 1103 1849
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C. The results highlight the practicality of our reconfiguration algorithm. Even in the worst

case of large transactions in TPC-C, the latency is negligible because such costs are only taken

during the exploration phase for new configurations, which, as we shall see, is kept very short by

ProteusTM.

7.7.3 Quality of the Prediction and Learning Processes

We now evaluate each component of RecTM by means of a trace-driven simulation. We

collected traces of real executions of a subset of the test cases (namely, STAMP and concurrent

data-structures), averaging the results over 5 runs.

The data-set was split into a training set (30%) and a test set (70%). The training set is

used to choose and tune the CF algorithm (recall Section 7.6.1) and to instantiate the predictive

model. We used 10 learners for the bagging ensemble, as this is a typical value [Hutter et al.,

2011, Thornton et al., 2013]. To simulate sampling the performance of the application in a

given configuration, the corresponding value from the test set is inserted in the UM of the

Recommender.

The simulation proceeds in rounds, where each round optimizes a workload. Each round

starts with the profiling of the target workload on the reference configuration chosen for nor-

malization; then the sampling phase begins. Such phase ends when the EI-based termination

predicate described in Section 7.6.2 is evaluated to true. At this point, ProteusTM is asked to

produce a recommendation about the optimal configuration for the workload. If such configu-

ration has already been explored, then the optimization of the workload is concluded and the

final distance from optimum coincides with the distance from optimum corresponding to the

best sampled configuration. Otherwise, a final exploration of such suggested configuration cf is

performed: if the sampled KPI with cf is better than the optimal observed so far co, the final

distance from optimum is computed on the basis of cf ; if this last exploration turns out to be

fruitless, the final distance from optimum is computed on the basis of co.

The final distance from optimum, as opposed to the plain distance from optimum introduced

before, serves the purpose of simulating that ProteusTM would bring the application to work

with the best observed configuration, even if it differs by the one recommended after the last

exploration step.
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Rating distillation. We start by assessing the effectiveness of the UM preprocessing technique

employed in ProteusTM. Specifically, we compare ProteusTM’s novel data normalization with

the following data preprocessing techniques:

• No normalization: CF is applied on the UM containing raw KPI samples. This is equivalent

to Quasar [Delimitrou and Kozyrakis, 2014] (see Section 7.3.3).

• Normalization with respect to the maximum: entries in the UM are relative to the highest

value, assumed to be known a priori. It resembles Paragon’s approach [Delimitrou and

Kozyrakis, 2013] (see Section 7.3.3), where the machine’s peak instructions per second rate

is used as normalizing constant; and for which a maximum can be calculated. Such KPI,

however, is meaningless in TM applications given the possibility of aborts and transaction

restarts.

• Ideal normalization: the scheme described in Section 7.6.1, according to which the values

in each row are normalized with respect to a value known to be optimal due to an off-line

exhaustive exploration of all possible configurations for the workload in particular.

• Row-column subtraction: noted RC-diff in the plots, is typically employed in CF to cope

with biases in users and item ratings [Rajaraman and Ullman, 2011]. It consists in removing

from each known rating the average value of the corresponding row. Then, the average

value per column — computed after the first subtraction — is subtracted.

• Rating distillation: used in ProteusTM (as specified in Algorithm 22).

We present results focusing on the throughput KPI on Machine A and employing KNN with

cosine similarity. We vary the number of randomly chosen known ratings per row and compute

MAPE and MDFO.

Figure 7.4 shows that using no normalization, or normalization w.r.t. the maximum performs

very poorly, both in terms of MAPE (Figure 7.4(a)) and MDFO (Figure 7.4(b)). That is because

they are both performing a normalization with respect to some constant that has no meaning in

the scope of the applications used. RC achieves lower MAPE than the two aforementioned nor-

malizations, yet its accuracy is significantly worse than that of rating distillation, both in terms

of MAPE and MDFO. Also, the approach of ProteusTM closely follows the ideal normalization.
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Figure 7.4: Accuracy assessment for the proposed rating distillation function for an average
of executions on Machine A with the RecTM instantiated with KNN CF relying on a Cosine
similarity function. For both metrics lower values are better.

To ensure a fair comparison, we used the same training set, without forcing the presence of the

column used for normalization among the profiled configurations for ProteusTM.

We have obtained other similar results with other distance functions in KNN and MF (which

is used by other proposals that rely on a RS for performance prediction, see Section 7.3.3). Our

results confirm the key role of rating distillation to enable the use of CF in the domain of

performance prediction for TM applications.

Controller. We evaluate the effectiveness of our SMBO approach to the sampling of new

workloads. We compare our solution (called EI, from Expected Improvement) with a randomized

sampling approach, used in Quasar and Paragon [Delimitrou and Kozyrakis, 2013, Delimitrou

and Kozyrakis, 2014] (see Section 7.3.3), and two other SMBO approaches using acquisition

functions different from ours: Variance explores configurations with high uncertainty for the

underlying model (i.e., high variance/mean ratio); and Greedy explores the configuration with

highest predictive mean.

In Figure 7.5(a), we report the MDFO for the tests executed on Machine A. Our EI explo-

ration policy is able to identify a high quality solution requiring, on average, less explorations

than any competitor. Figure 7.5(b) shows the 80th percentile of the DFO obtained by EI — after

5 explorations — is less than 10%.

In Figure 7.5(d), we show the MDFO for Machine B: once again, our EI-based Controller’s
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Figure 7.5: Assessment of the accuracy for the exploration policy used by our Controller in
comparison with several alternatives in both machines used in our evaluation study.

exploration performs best. Figure 7.5(c) shows the MAPE per explorations. Interestingly, the

Variance policy has the best mean prediction accuracy. However, as it does not aim at sampling

potential optimal solutions, but only at reducing uncertainty, it does not learn the behavior of

the target function for potentially good configurations. Thus, the quality of the recommended

configurations is significantly worse than EI’s (notice its higher MDFO in Figure 7.5(d)).

Finally, we compare our EI policy with random sampling in Figures 7.5(a) and 7.5(d): taking

5% distance as reference, EI achieves a number of explorations vs MDFO trade-off that is up to

4× better than this random competitor. This highlights the effectiveness of our SMBO-based

approach over simpler sampling techniques used in recent systems [Delimitrou and Kozyrakis,

2014,Delimitrou and Kozyrakis, 2013].
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Figure 7.6: Comparison for the accuracy of different early-stop exploration predicates.

Stopping criterion. We now evaluate our stopping heuristic (recall Section 7.6.2), called Cau-

tious (C in the plots). We compare it with a Naive stopping rule N that blindly trusts the model,

by stopping explorations when the expected improvement over the best known configuration falls

< ε. The results are shown in Figure 7.6, portraying the sensitivity of both heuristics to value

of ε.

For any fixed ε, we observe that the Naive predicate chooses consistently a worse configuration

than the one of our Cautious heuristic: blindly trusting the predictive model results in an

excessively eager policy, which does not provide the model with enough training data to achieve

adequate accuracy as the model may be not receive enough data to learn the configuration-to-KPI

relation for the workload.

As expected, the plots also show that the lower ε, the lower the obtained MDFO. Notably,

for ε = 0.01, the Controller achieves, in 90% of the cases, MDFO of only 12% and 5% for these

different tests. This comes at the price of a higher number of explorations. We note that the

Controller is able to keep this price very low, by requiring, on average, a similar number of

explorations of a policy that performs a fixed amount of explorations and is tuned to deliver the

same mean performance. This confirms the effectiveness of the Controller in wisely determining

the duration of the profiling phase, by striking a balanced trade-off between the extent of on-line

exploration and final performance.

Comparison with ML approaches. We now compare ProteusTM with the AutoTM ap-

proach [Wang et al., 2012b], described in Section 7.3.2, to automate the choice of the TM
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Figure 7.7: Comparison of the learning approach of ProteusTM (embedded in RecTM) against
several Machine Learning based techniques.

algorithm for a given workload. This approach relies on workload characterization data to train

a ML-based classifier that is used to predict the best TM configuration for a given workload. The

workload characterization uses 17 features: e.g., duration of transactions, data access patterns,

and level of data contention. Wang et al. also use static analysis to obtain other features, e.g.,

the number of atomic blocks. We did not perform this step but complemented the features with

contention management features. These are not considered by the authors, but we found them

to be highly correlated with performance.

The simulation for ProteusTM evolves as previously explained. For the ML competitor,

instead, a workload is first profiled over a reference configuration (TinySTM, 4 threads) to collect

all the aforementioned features and then the ML is invoked to predict the best configuration.

We then compute the MDFO for this predicted configuration.

We used the 300 STAMP and data-structures workloads as training set and split them

randomly into training and test sets: 30-70 and 70-30 train-test splits. For ProteusTM, the

training set is the UM corresponding to the selected workloads. For ML approaches, the training

set is composed, for each workload, by the aforementioned features and the identifier of the best

configuration as target class. We report these experiments on Machine A.

We consider 3 ML algorithms, implemented in Weka [Hall et al., 2009]: Decision Trees

(CART), Support Vector Machines (SMO), and Artificial Neural Networks (MLP) [Bishop, 2006].

Their parameters were chosen via random search optimization [Bergstra and Bengio, 2012], which
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evaluated 100 combinations with cross-validation on the training set.

Figure 7.7 reports the CDF of the DFO of each technique. The data shows the superiority of

ProteusTM relatively to pure ML approaches. In particular, with 30% training set, ProteusTM

already delivers a DFO of 1.6% against the 10% of the ML competitors, and a 90th percentile of

3.5% against 25% of CART (the best alternative). Also, by increasing the training set to 70%,

ProteusTM delivers a DFO of 1.3% and a 90th percentile of 3%, against 6.8% DFO and 21% of

the best alternative (SMO).

We note that the DFO of ProteusTM is similar (both in mean and 90th percentile) in both

cases, whereas ML greatly benefits from more training data. This difference can be explained by

the number of explorations required by ProteusTM to perform its profiling phase (with threshold

ε = 0.01): at 30% training, the 90th percentile number of explorations is 7, but this lowers to 6

with 70% training set. This means that ProteusTM delivers high accuracy also in presence of

scarce training data, by autonomously exploring more.

Our evaluation suggests that detecting similarities on the KPI is more effective than statis-

tically inferring relationships from training data. We argue that this depends on two, tightly

intertwined, causes: 1) thanks to our novel normalization, using CF is more robust than ML,

as it is based on direct KPI observations, rather than on learning the mapping of input to out-

put features; and 2) the adaptive profiling phase proved to be more effective than a one-shot

classification-based solution.

7.7.4 Online Optimization of Dynamic Workloads

In Figure 7.8, we evaluate the ProteusTM system as a whole. For each application we trigger

3 workloads chosen to exemplify contrasting characteristics and resulting performances. We stress

that, in each case, ProteusTM is totally oblivious of the target application: no workloads of the

application are present in its training set. This highlights the Recommender’s ability to detect

similarity patterns between the target workloads and the set of disjoint applications used as

training set.

We set the Monitor period to 1 sec and the SMBO ε to 0.01. In each run, we measure the

performance of 1) ProteusTM, 2) the 3 configurations that perform best in each workload, 3)

the Best Fixed configuration on Average (BFA) across the three workloads of each application,



254 CHAPTER 7. PROTEUSTM: AN ADAPTIVE HIGH-PERFORMANCE TM SYSTEM

0

0.1

0.2

0.3

10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
 (t

ho
us

an
d 

tx
/s

ec
)

Time (secs)

Optimal configuration in:
Workload 1
Workload 2
Workload 3

(a) STMBench7.

0.02
0.03
0.04

10 20 30 40 50 60 70 80
Time (secs)

0.8

1.6

2.4

3.2

Sequential
ProteusTM

(b) TPC-C.

0.3

0.5

0.7

10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
 (m

ill
io

n 
tx

/s
ec

)

Time (secs)

8

11

14T

(c) Red-Black Tree (RBT).

0.2

0.3

0.4

0.5

10 20 30 40 50 60 70 80
Time (secs)

0.8

1.6

2.4

3.2

(d) Memcached.

Figure 7.8: Performance of four applications when their workload changes three times over a
period of 90 seconds. We show the performance obtained with ProteusTM, and three additional
fixed configurations, each one corresponding to the best performing configuration in each of the
three workloads.

and 4) a Sequential non-instrumented execution.

We draw three conclusions from these plots:

• ProteusTM is able to quickly identify, at runtime, configurations that are optimal — or

very close. Remarkably, ProteusTM delivers performance that is, on average, only 1%

lower than the optimal.

• Employing any of the baseline alternatives yields up to two orders of magnitude lower

performance.

• Thanks to our SMBO approach, the performance degradation incurred when exploring is
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Table 7.6: For each benchmark (of Figure 7.8), we show the MDFO (in %) of all the alternatives
tested: ProteusTM, each of the optimal configurations in each of the three workloads for each
application (denoted as Opt i for the ith workload in the application), and the Best Fixed on
Average (BFA) across the workloads of a given application (which always coincides with one of
the optimal configurations, denoted with F). Each workload is labelled with the specification of
its optimal configuration (of which one is also the BFA, as mentioned previously). For the case
of ProteusTM, we show also the number of explorations that it performed before deciding which
configuration to use (on the right column, next to its MDFO).

Machine
Mean Distance from Optimum (MDFO %)

Benchmark Optimal in Workload i ProteusTM
Name Workload (Opt Conf) Opt 1 Opt 2 Opt 3 (explorations)

A RBT
1 (NOrec: 7t) 0 137 93 < 1 (4 expl)

2 F (HTM:8t Half-20) 33 0 71 2 (4 expl)
3 (HTM: 4t GiveUp-4) 154 37 0 < 1 (7 expl)

A STMB7
1 (HTM: 4t Linear-2) 0 20 210 2 (6 expl)

2 (Swiss: 4t) 135 0 28 < 1 (4 expl)
3 F (TL2: 8t) 390 29 0 < 1 (3 expl)

A TPC-C
1 F (Tiny: 4t) 0 273 47 < 1 (3 expl)

2(HTM:3t GiveUp-16) 68 0 152 3 (4 expl)
3 (Tiny: 8t) 22 370 0 < 1 (3 expl)

B Memchd
1 F (Swiss: 32t) 0 50 26 4 (3 expl)
2 (Tiny: 32t) 19 0 258 < 1 (4 expl)
3 (Tiny: 4t) 18 66 0 < 1 (3 expl)

minimal (at most 7 explorations in these use cases). Such cost is usually amortized in long-

running services (e.g., databases), in which workload shifts are infrequent [Curino et al.,

2011].

A summary is provided in Table 7.6 where we list the optimal configurations in each workload.

We also show the Best Fixed on Average (with F) which is always also an optimal configuration

in some workload. This data highlights the robustness of ProteusTM to optimize heterogeneous

applications with diverse optimal configurations, in terms of TM algorithm (STMB7), parallelism

degree (TPC-C) and HTM tuning (RBT and Memchd) across the two different machines.

Finally, in Figure 7.9, we confirm our claims of Section 7.6.3 by using a static TPC-C

workload and varying external factors to the application to trigger behavior changes. As such,

we do not change the workload of the application per se, but, instead, vary the resources available

to the machine. To simulate these external changes we used the stress Unix tool with different
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Figure 7.9: Similar to Figure 7.8(b), but with a static application workload, varying instead the
availability of machine resources.

configurations over periods of 30 seconds: it either created high CPU, memory or IO usage in

each workload. The results are similar to what was chosen previously, in that ProteusTM obtains

perform close to the optimal across the test.

7.8 Summary

We proposed ProteusTM, the first TM system with multi-dimensional self-tuning capabili-

ties. ProteusTM is integrated with GCC and exposes a standard TM interface, which ensures full

transparency, ease of use and portability. Together with this simple abstraction, we provide high

performance by relying on a novel optimization technique that leverages Collaborative Filtering

and Bayesian Optimization.

Via an extensive evaluation based on real-word application and well-known benchmarks, we

demonstrated the ability ProteusTM to optimize heterogeneous applications in high-dimensional

configuration spaces: ProteusTM achieves performance that are, on average, < 3% from opti-

mum and gains up to 100× relatively to static configurations. These results confirm the high

performance robustness delivered by ProteusTM.

This methodology allows to optimize several dimensions — namely, the best TM algorithm,

configuration, and number of threads — and to seamlessly cope with possibly varying workloads„

while the software developer remains concerned only with writing her concurrent application with

atomic blocks. This allows her to benefit from the trade-offs exhibited by STMs and HTMs,
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which make them optimal under very different scenarios. This ability is particularly relevant in

the light of the results of our study in Chapter 3, which highlighted that current HyTM systems

deliver quite disappointing performance. It is also relevant to highlight that the solution conveyed

with ProteusTM is possible thanks to the flexible abstraction of TM, which allows significantly

different implementations to be used, all under the same interface.
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8Final Remarks

Transactional Memory (TM) was one of those ideas that may be said to have been proposed

ahead of its time. At the time of the inception of TM, in the early nineties, concurrent program-

ming was only known and used by a niche of experts. As such, the proposal of this new paradigm

did not immediately trigger much attention. Years later, the ubiquitous adoption of multi-core

processors coincided with a renewed interest in the paradigm of TM for concurrent programming.

In less than a decade, this has evolved into the current situation in which mainstream compil-

ers support programs written with TM constructs, and commodity processors have support for

hardware TM execution. These notable advances are strongly motivated by the simplicity that

TM allows in the development of concurrent programs.

While the abstraction for programming with TM has not changed much over the years, and

indeed was acknowledged as effective given its wide adoption, the same cannot be said with

respect to the performance of TM implementations. Much of the research effort in the past

years has been focused on the performance side of TMs, driven by the frequent debate over

the inconsistent performance of existing algorithms, whose implementations are known to have

widely varying performance depending on the workloads and applications in which they are used.

This dissertation addresses exactly this problem of creating robust TM algorithms that can

deliver high performance in presence of heterogeneous workloads, while preserving the simplicity

of the TM abstraction. We have pursued this objective by proposing several new algorithms and

self-tuning techniques for TM systems, which we evaluated in comparison with the state of the

art to demonstrate significant performance improvements.

In more detail, we first conducted a large comparative study between various TMs and

also locking schemes. Remarkably, this was one of the first (if not the first) work to conduct

experimental performance study contrasting the performance of various state of the art STM and

HyTM systems with the HTM implementation recently introduced by Intel for its commodity

processors. Contrarily to the intuition that HTM would nullify the relevance of Software TM
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(STM), our initial study demonstrated that the hardware limitations inherent to commodity

HTMs, in fact, lead to a situation in which no one size fits all: both HTM and STM perform

optimally in different types of workloads and applications. Furthermore, this initial step allowed

us also to identify several performance issues with existing TMs, which we addressed in the scope

of this dissertation.

In the scope of STMs, we devised the novel Time-Warp algorithm that reduces the chance

for transactions to be aborted, by using a different set of rules in the concurrency control per-

formed. The key idea of Time-Warp is to allow update transactions to execute as if they had

already happened in the past, and thus avoiding conflicts with concurrent transactions, which

would cause aborts and restarts.

We then focused on the HTM support available in recent processors, for which we identified

two main problems.

On one hand, we observed that there was no one size fits all solution for configuring the

software logic that governs the usage of the HTM. We filled this gap by introducing Tuner,

an online self-tuning approach that manages the trade-off between exploring new configurations

and adopting the best one seen so far. As such, this allows the programmer to remain oblivious

of the limitations of HTMs and let our runtime configure it properly.

On the other hand, we tackled the problem of how to reduce the chance of transaction

aborts also with HTMs. A key challenge inherent to addressing this problem is that, due to the

complexity of modern CPUs, processor manufactures are extremely conservative in changing the

logic placed in the processors’ micro-code. Rather than introducing an alternative concurrency

control mechanism (as was the case with Time-Warp, which targeted STMs), we proposed the

first (software) scheduling algorithm, Seer, designed to cope with the restrictions of currently

available HTM implementations.

Finally, we note that we had also highlighted the fact that both STMs and HTMs can

perform optimally in different scenarios. So, in fact, it is desirable to use both depending on

the current characteristics of the workload. Unfortunately, it is undesirable to expose these

intricacies to the programmer, as it would be complex for her to devise rules and a switching

system to allow adapting between different implementations. This is exactly what we proposed to

achieve automatically with ProteusTM: an adaptive TM system, which monitors a performance

indicator at runtime, and then strives to deliver the best possible performance by transparently
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adapting not only the underlying TM implementation, but also several configurations parameters

(such as the number of active threads, the configuration of the retry policy for HTMs, and

contention management between conflicting transactions).

The common traits of all these contributions are noteworthy performance improvements

over the state of the art TM algorithms, which were achieved while preserving the simplicity and

elegance of the TM abstraction.

The need to adopt adaptive solutions has been identified already in the first contribution

of this dissertation, which unveiled several situations in which contrasting TMs would outper-

form each other, depending on the workloads’ characteristics. An important aspect of the design

choices that we adopted, while devising the proposed TM self-tuning schemes, was the reliance on

online learning techniques. These have the notable advantage of not requiring the programmer

to provide any a priori information about the workload. Hence, sparing her from any addi-

tional sources of complexity and achieving full transparency. Furthermore, it was of the utmost

relevance to adopt self-tuning designs based on very lightweight and efficient mechanisms, as oth-

erwise we would easily incur in situations in which the gains would be outweigh by the overheads

of the ability to adapt.

The work shown here also demonstrated that the available Hybrid TM (HyTM) approaches

tend to perform sub-optimally with respect to the case in which one can choose between various

HTMs and STMs depending on the workload. Although manually perform such adaptation is

not practical, this was made possible with the contribution of ProteusTM that automatizes

that choice (among others). Coincidently with our practical experience, a recent theoretical

contribution has proven the inherent high costs of HyTMs in terms of their overheads and

associated software instrumentation in the hardware transactions [Alistarh et al., 2015]. In this

sense, it is an interesting research direction to study further these inherent limitations, or else

to show practically that one can build a better HyTM that could perform closely to the best

pure approaches in different scenarios. A key aspect of this may be to consider the availability of

non-transactional operations in the HTM implementations. These were not studied theoretically

in the inherent limitations mentioned above, albeit we hypothesize that they may prove to be

relevant in terms of the upper bounds shown for the overhead costs. Such studies could also

help to motivate the processors’ manufacturers to include non-transactional accesses in future

releases of their HTMs.
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Another interesting research avenue for expanding the effectiveness of TM systems is to

consider Non-Uniform Memory Access (NUMA) machines. The underlying architectures of these

systems dictates that the cost of accessing memory, in terms of latency, varies depending on the

processor core and memory bank being accessed. As a result, the management of threads —

in terms of their mapping to cores [Castro et al., 2014] — as well as the data management —

in terms of its locality [Dice et al., 2012b] — turn out to be similar challenges to those present

in distributed systems [Sowell et al., 2012,Diegues and Romano, 2015b]. The amount of work

available in the TM literature for NUMA systems is rather small (e.g., a NUMA-aware TM was

published only very recently [Mohamedin et al., ]), when considering the trending relevance of

these machine architectures, and even more given that it is the most likely way that such machines

will have to expand the ever-growing number of processor cores. As such, it is of the utmost

importance to explore adaptive ideas and novel algorithms that provide robust performance for

TM systems also in NUMA machines.
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