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Abstract. In this document we present an overview of Transactional
Memory models, as well as a comparison to traditional parallel frame-
works. In this context, we follow with an analysis on the problem of
self-tuning concurrency control in transactional memory, where different
mechanisms are used to predict and adjust an application’s concurrency
level with respect to available parallelism. We are particularly interested
in tuning nesting Transactional Memory systems, an aspect that has so
far been left unexplored. We review a series of case studies on the various
types of concurrency tuning in different transactional frameworks, and
propose a new mechanism to tackle self-tuning in nesting Transactional
Memory based on techniques used in the literature.
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1 Introduction

Transactional Memory

Multicore processor technologies are becoming the norm in today’s hardware,
and show a promise to dominate most platforms in the near future. Machines
with four, eight or even hundreds of cores are commercially available today:
unfortunately, writing parallel applications that efficiently exploit the available
parallelism is far from being a trivial task. The typical approach to write parallel
application relies on locks.

In the scope of this study, a distinction can be made in the parallel develop-
ment methodologies: traditional lock-based synchronization and Transactional
Memory[1]. Traditional lock-based synchronization frameworks in application
development usually provide two alternatives. The first is a coarse-grained ap-
proach, in which a few locks are used to regulate access to huge portions of code.
While very simple to implement, this solution is naturally prone to inefficiencies,
as only a few very long critical sections can be executed in parallel. The second
alternative is a fine-grained approach, which aims at extracting as much paral-
lelism as possible from the application, by using locks to guard critical sections
as small as possible. This approach avoids the inefficiency of the first one, but
it is subject to pitfalls like deadlocks, livelocks, and data races. Furthermore, it
adds complexity to the code and hinders its maintainability.



In light of these considerations, none of the two approaches appears to be a
suitable reference parallel programming paradigm, as they either sacrifice effi-
ciency in exploiting available computational power or code maintainability. For
these reasons, many efforts have been made to devise a mechanism to facilitate
parallel development and efficiency on these architectures.

Transactional Memory (TM) is a concept derived from long-standing prac-
tices in database development[2], which promises to simplify concurrent pro-
gramming via simple constructs, and improve efficiency and scalability the way
fine-grained locking does. TM borrows the construct of transaction from databases
to be applied in parallel code blocks (hereafter referred to as transactions or
atomic blocks) via the abstraction of atomic blocks: A transaction is either suc-
cessful, in which case all modifications are committed to memory and their effects
become globally visible, or fails, and the whole block aborts, and no modifica-
tions are ever observed out of its context. A transaction is said to abort when a
conflict is detected. Conflicts in Transactional Memory can be due to a variety
of causes, depending on each TM system’s inner details, but the fundamental
underlying source is the concurrent modification of the memory state, in such a
way that isolation is no longer preserved between concurrent transactions (i.e.
transactions no longer observe coherent memory values).

Transactional programming constructs provide the developer with a simple
and transparent means for attaining high levels of concurrency without the need
to craft complicated, fine-grained lock-based synchronization schemes. These
constructs hide the details and mechanisms necessary to synchronize parallel
execution, which is managed by the runtime support system. Not only does
TM enhance code reliability and maintainability, but it also overcomes one of
the fundamental issues of lock-based concurrency: The possibility of composing
multiple parallel libraries without incurring major code changes and performance
penalties or pitfalls like deadlocks/livelocks. This is achieved by means of nesting
transactions, i.e., embedding a transaction within another transaction. Transac-
tion nesting allows different TM code blocks to be safely combined into a bigger
single atomic block. This capability can also be exploited to increase the paral-
lelism of TM applications, by having multiple nested transactions, enclosed in
the same parent transaction, to run in parallel (a.k.a. parallel nesting)[3].

Despite the fact that TM simplifies parallel programming to a large extent,
there are still a number of subtle issues influencing its actual efficiency. The
literature provides plenty of evidence that indicates that properly tuning its in-
ternal parameters depending on the applications workload is crucial to obtain
good performance [4–7]. One of the most investigated problem is how to ad-
just at runtime the number of active transactional threads so as to maximize
performance. However, several researchers have argued that in order to take full
advantage of modern massively parallel architectures, it is often desirable to sup-
port intra-transaction parallelism. This has given rise to a research line aimed
at designing efficient solutions for parallel nesting in TM.



The key challenge in tuning the intra-transaction parallelism is the dimen-
sionality of the search space. In fact, as opposed to traditional solutions that
only have to tune the number of concurrently active threads, tuning the intra-
transaction parallelism also requires the tuning of the number of nested transac-
tions to be spawned by each active top-level thread. Not only does inner paral-
lelism add an extra dimension to the parameter space, but also, if we assume that
different top-level transactions may require different degrees of inner parallelism
[8], additional complexity must be added to the concurrency control mechanism
to deal with this aspect.

This document presents a summary of the state of the art solutions in TM,
focusing on the problem of self-tuning the parallelism degree, and serves as a
knowledge base to investigate the design of self-tuning algorithms for regulating
the degree of concurrency. Our main objective is to create one or more self-
tuning algorithms for concurrency control in nested Transactional Memory. To
this extent, we focus a mature nesting TM implementation which will serve as
the baseline for further development.

Diegues and Cachopo,[9] developed a practical parallel nesting algorithm
built on top of JVSTM [10], a Java STM implementation. Few TM implemen-
tations enable nesting, and this proposal introduces a sturdy algorithm that
manages to overcome the additional challenges that nesting poses. The JVSTM
implementation of Diegues and Cachopos algorithm will serve as baseline for our
work.

The scope of this study is to survey existing techniques and methodologies of
concurrency tuning to prepare further work. Our main goal is to design one or
more algorithms to dynamically tune the concurrency level in multi-dimensional
STM systems. The main challenge is to keep the overhead of our algorithm to
a minimum, enabling near-optimal configurations to be found in usable time,
without undermining the benefits of nested parallelism.

The remainder of this document is structured in the following manner:

Section 2 overviews different Transactional Memory models (Subsection 2.1),
the base techniques and types of concurrency control (Subsection 2.3), and con-
crete solutions present in TM literature (Subsection 2.4).

Section 3 details our main goals, with a review of the main challenges and
project planning.

2 Related Work

In this section we overview the various classes of Transactional Memory systems,
and different self-tuning solutions that have been proposed to improve their
performance.



2.1 Transactional Memory

Transactional Memory is a vast area of research, in which a lot of different sys-
tems and algorithms have been developed. This section categorizes and explains
the different aspects of these systems.

Hardware Transactional Memory

Hardware Transactional Memory is based on the idea of supporting the trans-
action construct and the concurrency control scheme directly in the processor
unit[11]. Transaction logs and verification logic are handled by the hardware,
usually taking advantage of the existing cache coherence protocol to validate
transactions before committing them to memory. In HTM, critical sections ex-
ecute concurrently unless the system detects that they need to be serialized to
ensure correct execution. As HTM poses additional restrictions on how a trans-
action ca fail (such as insufficient onchip resources, context switches and system
interrupts), HTM systems can be classified as best-effort approaches. Two fall-
back mechanisms are usually present to ensure forward progress when hardware
transactions abort[12]: old-fashioned locking schemes that acquire a lock during
the execution of an atomic block, and developer-defined software fallback paths,
that can use custom code to deal with the conflict.

One useful case study is a research paper evaluating the Intel Transactional
Synchronization Extensions [13]. Intel TSX is a hardware transactional support
specification included in fourth-generation Haswell processors. TSX provides two
mechanisms to achieve transactional capabilities: Hardware Lock Elision (HLE)
and Restricted Transactional Memory (RTM). HLE is a legacy compatible in-
struction set extension that tries to eliminate lock access in favor of transactions.
The RTM mechanism, on the other hand, exploits a new, more flexible instruc-
tion set that explicitly enables the definition of transactional blocks and software
fallback paths. TSX, as most other proposals, works on a best-effort basis. There
are numerous architectural conditions that can cause a transaction to abort, such
a data conflicts, buffering limits and instructions that always abort (e.g. system
calls, context switches and I/O operations). These are at the root of HTM lim-
itations. Several proposals have successfully dealt with these problems, but the
developed solutions impose complex restrictions and complicated logic to be in-
tegrated in processor design, making it unlikely that they will be adopted in a
near future [14]. An in-depth analysis of HTM systems lies outside the scope of
this document, as our main focus is to provide an overview of the main TM tech-
nologies currently available. More information on HTM specifics can be found
in [11, 14].

Software Transactional Memory

Software Transactional Memory is a category of systems that provide Transac-
tional Memory capabilities through software runtime support only. In the last
years STM has received more attention than HTM, given that it is a more



portable solution, not bound to any architecture or restricted by limitations of
the underlying hardware. In STM atomic blocks are handled by the runtime sys-
tem transparently, but the transactional logic and structures are kept in memory,
which eliminates many problems of the hardware category.

Most STMs keep a map of memory locations accessed within transactions.
These structures can serve additional purposes, such as locking, ownership record,
versioning, and log keeping[1].

The main drawback of STM systems is that they require transaction bound-
aries and operations to be instrumented, in order to keep track of their accesses
to memory[2]. This leads to overhead, which may hinder performance and ham-
per the scalability of the application.

In comparison, STM systems can incur heavy instrumentation costs, which
are avoided by HTM. Atomic code blocks are modified at compile time to account
for transactional operations and log-keeping, as well as a plethora of details that
are required by the runtime transactional support system.

Hybrid Transactional Memory

Hybrid Transactional Memory (HyTM) allows for concurrent execution of trans-
actions using HTM and STM. HyTM tries to circumvent the limitations present
in HTM by using cheaper hardware capabilities, resorting to more costly Sofware
transactions in the fallback path to ensure progress[14]. As already mentioned,
solutions for the buffering limits and context switch survival problems impose
a series of restrictions on hardware design, and are thus unlikely to be adopted
soon. HyTM exploits HTM, if available, with a combination of methods that
fallback to STM if a transaction cannot be completed. To interleave HTM and
STM, the code is instrumented at compile time to follow one of two paths for
each atomic block, each one corresponding to a different TM type.

This category of implementations must define a contention management pol-
icy that decides when to resort to STM instead of restarting the transaction in
hardware, as for the reasons described in the HTM section, there is no guarantee
that a hardware transaction will ever succeed. Of course, to perform as a coher-
ent whole, the HyTM system must be able to detect conflicts in hardware and
software transactions simultaneously. This requirement is usually achieved by
augmenting the hardware transactional structures[14], extending their visibility
to the STM runtime so that the conflict detection system has access to both
sides’ information.

Hybrid TM shows a promising decoupling between hardware support and
generic HTM usage, and can benefit from concurrency tuning approaches in both
hardware and software transactional support. Although theoretically enticing,
the mechanisms needed for conflict detection between the two underlying systems
usually introduce large overheads [4].



Nesting in Transactional Memory

Parallel Nesting models can be viewed as an extension of traditional Trans-
actional Memory in which transactions are allowed to spawn further (inner)
transactions[3]. This section clarifies the challenges that come with its imple-
mentation, and explains some concepts needed to understand its challenges.

In some cases TM systems may be unable to expose the maximum available
parallelism, for example when only a small portion of the total application code
can be parallelized using transactions. Nesting allows these undersubscribed top-
level transactions to spawn additional (inner) transactions.

Various models are defined in literature, which fall in two main categories:
sequential and parallel nesting. Sequential nesting models in TM allow transac-
tions to be nested, but serialize them implicitly [15]. This means that code logic
in parallel blocks becomes clearer, but additional parallelism is left untapped.
Briefly, three models of parallel nesting are defined in literature. In flat nest-
ing, parent transaction sees all modifications to program state made by inner
transactions, but an aborting child transaction also causes the parent to abort.
Closed Nesting is similar but allows for a given nested transaction to abort with-
out aborting its parent. Last, in open nesting any committed transaction’s state
remains globally visible, even if the parent transaction aborts. Although flexible,
this model can introduce problems due to inconsistent program states[3].

Parallel nesting proves to be an exceptionally difficult problem in traditional
lock-based concurrency models, as coherence in the interplay between locking
mechanisms is very hard to achieve, and code logic tends to become extremely
complex [9]. On the other hand, transactions provide a transparent and simple
means of abstracting parallel regions without these complications, and therefore
nesting becomes a viable possibility. Most nesting models face correctness chal-
lenges however, because ancestor-descendant relationships1 must now be taken
into account when designing TM systems.

There are multiple implementations of Nesting TM.
PNSTM [16] uses a global work-stealing queue to distribute tasks (transac-

tions) between active threads, and each transactional location maintains a stack
that registers the accesses performed by active transactions. PNSTM’s transac-
tions inherit their children’s read- and write-sets, and only top-level transactions
can commit values to memory. Inheritance is done in a lazy manner, to improve
efficiency, but this implies that false conflicts can occur, as the logs are not
cleared until the top-level transaction is completed.

NeSTM [17] is based on McRT-STM [18], a traditional blocking STM that
uses eager conflict detection and undo logs for writes, at word granularity.
Transactions lock memory locations at encounter-time, and the authors have ex-
tended McRT-TSTM’s locks to provide additional fields and visibility, to manage
ancestor-descendant relationships.

1 Spawning nested transactions effectively creates a concurrency tree. A transaction
that spawns another is said be the latter’s parent, whereas the inner transaction is
its child. Any two transaction are said to be siblings if they have a common ancestor
in the transaction tree.



JVSTM [10] is a versioned Transactional Memory implementation which has
been augmented by Diegues and Cachopo [9] to support transactional nesting.
The original JVSTM design uses versioned boxes (VBox), a concept that repre-
sents transactional locations. Each VBox stores a history of the values committed
to its memory location, which are used as an undo-log when a writing transac-
tion aborts and a rollback is necessary. Transactions access VBoxes when exe-
cuting and record these accesses in their respective read- and write-sets, which
are used in validation. The extension proposed by Diegues and Cachopo aug-
ments this model with a clever and efficient design to allow nesting and manage
ancestor-descendant relationships in nested transactions. VBoxes now store both
committed and tentative values. Tentative writes are inherited by parent trans-
actions when a child finishes, merging them into its write-set. Parent transactions
successively inherit these tentative values until a top-level transaction commits.
Transactions keep two counters, nClock and ancVers, which are accessed by
their descendants and restrict the versions of a VBox they can read, to maintain
temporal coherence between siblings and descendants.

2.2 Factors that affect performance in Transactional memory

The Performance of TM systems strongly depends on the proper tuning of its
internal parameters against the workload that is currently exhibited by the ap-
plication: concurrency level, conflict detection mechanisms and contention man-
agement policies play a key role in attaining high performance, and a number of
studies exist that propose refinements and new designs in an attempt to reach
satisfactory performance [8, 19–21].

Concurrency degree is the level of parallelism a transactional application can
use. While there are different aspects of this feature, research usually focuses on
either the number of active threads or the number of concurrent transactions.

Contention management (CM) policies also influence TM’s performance.
Contention management determines the behaviour of transactions when a con-
flict is detected. Several CM techniques exist, again with different results on
varying workloads. Some policies perform generally better [5], but have low per-
formance on certain application profiles. There are a number of different policies
based on the key ideas of assigning priority to transactions based on their state
and backing off when a conflict is detected. Transaction threads can also be
made to wait, in case of repeated aborts with the same underlying cause. Con-
tention management is an important component in any TM system, and must
be designed carefully.

Conflict detection schemes have been optimized in various ways when the
TM’s architecture allows it. Most designs try to minimize wasted work, via re-
ducing the probability that a certain conflict will repeat, and quickly invalidating
the correspondent transaction. As seen in some case studies, certain lazy conflict
detection algorithms can cause inexistent conflicts, or worse, execute all code in
a certain transaction only to have it abort when it’s finished.

Nested TM involves a great deal of additional operations, given that sibling
conflicts and parent-child relationships must be managed. Most models assume



that only top-level transactions can commit values globally, which implies that
logs must be inherited by the parent when a nested transaction finishes. The
way in which this inheritance is performed greatly influences the outcome, as
conflicting transactions should be immediately aborted to prevent wasted work
in top-level tasks. Additionally, most implementations provide a fast path for
committing values in reading or writing transactions, given certain conditions
that usually involve concurrent accesses being performed by transactions in one
single tree branch (of the nested transaction tree). These conditions also allow
commit operations to be performed quickly, usually when no inter-branch con-
flicts exist. Of course, these assumptions are specific to each implementation,
and the vary widely between them.

2.3 Self-Tuning in Transactional Memory

This section details the main categories and techniques used in performance
modelling for TM.

Dynamic configurations provides a great deal of adaptivity, as no fixed con-
figuration works best for all application workloads. Dynamic configurations are
produced via a tuning mechanism, embedded in the transactional system’s run-
time, that monitors some measure of the application’s behaviour and adapts
the configuration’s parameters in real-time. This monitoring is done in sampling
periods, because instantaneous fluctuations in performance are not enough to
determine if there was a change of the workload’s characteristics.

Performance Modelling can be abstracted as an optimization problem. There
is an objective function to optimize, its parameters are extracted from a search
space that contains the application’s possible parameter values. Three main cat-
egories of performance modelling techniques exist.

White Box Models

White Box approaches use available expertise on the internal dynamics of a sys-
tem to model performance as a set of equations that map input parameters (e.g.
workload characteristics and configuration parameters) to a target performance
measure. With this technique, it is possible to create analytical models or simu-
lators that require no training, or minimal profiling of the application, to predict
performance. To ensure mathematical tractability this type of models are usually
built around a set of simplifying assumptions on how the target system behaves,
which introduces a weakness to scenarios where the underlying assumptions do
not hold, e.g. specific areas of the configuration space. Additionally, analytical
models are immutable (aside from re-evaluations of internal parameters), which
prevents re-adaptation at runtime. White Box models provide strong founda-
tions for analysis and comparison of different Transactional Memory systems, in
terms of their dynamics and behaviour.



Black Box Models

Black Box Models overcome the need of knowing system internals by using var-
ious Machine Learning techniques and search algorithms to model its behaviour
and identify at its optimal configuration. Machine Learning techniques build
a statistical performance model by observing the system behaviour under dif-
ferent configurations and workload profiles, and usually achieve high accuracy
when predicting performance. Black Box models can be coarsely grouped in two
classes: Online and offline.

Offline methodologies are implementations of machine learning engines that
try to produce an abstract model by collecting statistics during a training phase,
usually an early deployment phase. The model is instantiated with this training
data and is then used at runtime to produce an optimal configuration inferred
from the application’s data samples. These samples contain, respectively, a given
system configuration and the resulting performance metric. This information
is assumed to be representative of the parameter space, but in practise this
assumption is too coarse. The search space of all the possible configurations
is generally too large for a fully representative sample to be taken, and grows
exponentially with the number of parameters (called features ML methodology)
to be considered.

Two example techniques that are commonly employed to develop offline black
box models are Artificial Neural Networks (ANN), and Decision Trees (DT)[22].

Offline techniques offer a great deal of accuracy when predicting near-optimal
target configurations for transactional systems. They are, however, subject to
bias and fitting problems, usually caused by inadequacies in the training data.
These inadequacies can be seen as the product of the training phase not be-
ing sufficiently representative[4], as training times grow exponentially with the
number of considered parameters and sample size. There is also the hindrance of
training the mechanism in early deployment stages, which in certain applications
may be unfeasable to perform.

Online methodologies try to quickly adapt to the workload’s behaviour with-
out relying on training-based models. Most proposals for online concurrency
control algorithms refine some sort of Machine Learning algorithm or control
loop. Search algorithms that map well to concurrency control come in great va-
riety, but usually must follow two conceptual steps: Exploration, or sampling,
and exploitation[23]. Exploration, tries to broadly scan the parameter space to
identify areas of interest, where there is a grater probability of obtaining better
performance. This is also called sampling phase because well-known sampling
approaches are used to obtain representative points for each parameter, which
are then fed to the second mechanism. During the exploitation phase, on the
other hand, the available knowledge is used to determine the optimal point of
the parameter space. Examples of online learning algorithms, which are often
applied to the problem of self-tuning the degree of concurrency include Gradient
Descent, Simulated Annealing, Reinforced Learning algorithms, etc.

Systems that tune the concurrency degree must quickly react to workload
changes. This leads to a need to quickly dispose of uninteresting solutions, as



well as clever exploration algorithms that swiftly focus on performance peaking
values. These factors contribute to a general necessity of managing the jumps be-
tween exploration and exploitation in an elegant way. Sudden workload changes
may require the system to ignore the current exploitation phase, or restart the
exploration at any time.

Gray Box Models

Gray Box Models are a type of solution that combines white-box and black-
box approaches. This category of algorithms try to achieve the advantages of
both, while mitigating the disadvantages. Most solutions use a combination of
analytical models and machine learning systems.

The key drawback of black-box models compared to white-box ones is that
the former typically require observation of a large number of samples in order
to derive a model of the target system, i.e. it requires long training phases.
Analytical models, on the other hand, avoid the need for long training phases as
they exploit a-priori knowledge on the internal systems dynamics.

Offline Machine Learning approaches usually take a heavy toll on application
performance, due to requiring expensive profiling on the application’s behaviour.
On the contrary, analytical methods require few samples, but most do not ac-
count for workload changes during the application’s lifetime, and are usually
instantiated with values averaged from a whole execution. Gray Box models try
to circumvent these restrictions by combining online Machine Learning tech-
niques with White Box models.

Gray Box approaches can be broadly divided in three categories:

– Parameter Fitting [4] relies on fitting techniques to identify areas of a sub-
set of input parameters whose direct measurement is undesirable. Fitting
techniques aim to determine ranges of values that minimize the model’s pre-
diction errors over the training set.

– Divide and Conquer [24] techniques consist of building models for separate
components of the target system, using AM or ML, which are then combined
to obtain a prediction of the system as a whole. This approach is mainly used
in scenarios where different sub-components have very different dynamics.
Additionally, it allows the usage of ML techniques where AM would be un-
usable, particularly when the system’s dynamics are too complex to model
using White Box approaches.

– Bootstrapping [23] relies on building a synthetic training set for a ML pre-
dictor by using an AM component, avoiding expensive initial profiling and
training phases. The ML component is re-trained over time as new data
becomes available.

2.4 Self-tuning solutions for Transactional Memory

In this section we provide an overview of some of the solutions that fall in the
previous categories. Each subsection details a light analysis on the solution,
highlighting specific aspects that we find relevant to our work.



White-Box-Models

To the best of our knowledge pure White Box Models have not been used directly
in self-tuning the degree of concurrency, but rather to support off-line what-if
analysis studies and compare performance of alternative TM algorithms.

In [25] Heindl and Pokam introduce an analytical description of STM oper-
ations using a Discrete Markov Chain that represents a single transaction, as
opposed to the whole system. Generalized transactional behaviour is captured
by computing the parameters of the single-transaction model, which presumes
all transactions have a similar probabilistic behaviour.

A state machine models each transaction’s behaviour, where each state i
represents a transaction that has performed i successful operations, that can be
a read or write according to a given probability (the authors assume no particular
access order, and therefore use a linear probability model for each access type).
State transitions represent successful operations (with a given probability), while
a transactional abort causes a restart in state 0. The model does not account
for complex contention mechanics, and assumes an aborted transaction restarts
immediately.

The authors underline that their work should adapt to different systems and
serve as framework for parameter and performance analysis on Transactional
Memory systems.

Di Sanzo et al. propose a different model [7] for commit-time locking STMs to
overcome two weaknesses in the previous model. Their study adopts the assump-
tion that threads alternate between transactional and non-transactional code,
whereas Heindl and Pokam assume a continuous transactional workload. Fur-
ther, in the first work, transactions are abstracted over time as a series of steps
whose duration is unspecified, which prevents the forecasting of time-related
performance metrics, such as response time or throughput.

This second model includes internal STM characteristics, and a heavy workload-
and application- specific parametrization. These enhancements are accomplished
with the use of continuous-time Markov Chains, aided by Queueing theory meth-
ods. The model is validated using simulation engines based on the STAMP [26]
benchmark suite, where some different aspects of the system are evaluated, with
satisfying results.

Black-Box Models

The Black-Box category of models has a number of distinctive proposals and im-
plementations. Concurrency control algorithms based on Machine Learning tech-
niques, Search algorithms, and a variety of other methods exist. Some proposals



even build mechanisms to dynamically switch some component or functionality
of the system according to behaviour measurements.

In [27] a feedback-directed mechanism is proposed to switch the underlying
implementation of atomic blocks at runtime, for specific conflicting transactions.
The authors analyse different atomic block implementations in the Haskell pro-
gramming language2, and select two specific approaches (optimistic and pes-
simistic TM) for handling different types of behaviours when transactions con-
flict.

The main insight of this proposal is that repeating conflicts have a common
cause in ”hot” variables accessed by the application’s various atomic blocks. In
order to identify these hot variables the authors take advantage of Haskell’s type
system, and extend the runtime structures that represent transactional values
(TVar) with a ”blame” mechanism. Transactions that fail to commit have their
written variables ”blamed” for the conflict, and when a given variable exceeds
a given threshold it is promoted to a ”pessimistic transactional variable”. These
pessimistic TVars are dealt with internally by a pessimistic transactional scheme,
which uses multi-reader single-writer (MRSW) locks to maintain serializability.

Overall results are encouraging, for comparisons with Haskell’s native Trans-
actional Memory mechanisms. This approach is, however, restricted to its en-
vironment, as many of the methods used are enabled by native structures in
Haskell, which limits portability to other languages and transactional platforms.

Ansari et al. [5] propose an adaptive concurrency regulation system which
regulates available parallelism. Their system uses the ratio of committed transac-
tions versus the total number of transactions (which they identify as Transaction
Commit Rate, TCR) to fuel a Gradient Descent (GD) algorithm that adjusts
the application’s thread count. Four control models are presented, which range
from a simple increase or decrease in thread count to a model that exponentially
modifies this quantity, as well as the sampling intervals.

A fifth model, called P-Only Transactional Concurrency Tuning (PoCC)
solves the previous models’ problems by balancing the changes applied to the
concurrency level, as the previous models proved too unstable.

Overall, Ansari et al. set a basis for concurrency control with their work, and
achieve satisfying results over the baseline implementation.

On a subsequent study, Ansari builds on the previous model with a novel
approach: weighted concurrency control [8]. The main insight in this mechanism
is that better results may be achieved by (de)activating specific threads, rather
than blindly adjusting the concurrency level.

The author shows that TCR rates between different threads of an application
can vary widely, and develops a framework for (de)activating them according to
specific measurements. This framework is built on top of the same system as the
previous model, which uses a global thread pool, where each thread has a double-

2 Haskell has native support for atomic blocks.



ended queue (deque) for work-stealing. This specific design is not required, but
facilitates the implementation and testing of the system.

Four models are developed in this framework, which are permutations of
methods for sorting and selecting threads for (de)activation. Overall, the more
complex a model is, the greater the performance penalty associated.

In [19], a control feedback loop is exploited to quickly react to workload
changes. F2C2 is built on top of TinySTM [28], a state-of-the-art Transactional
Memory system. The authors distinguish between scalability-limited and fully
scalable applications. In the former a system for regulating the degree parallelism
must not only be able to quickly converge on optimal dynamic configurations
at runtime. In the latter, the system must also minimize unnecessary overheads,
where concurrency control is normally not needed or has very limited effects.

The proposal borrows some ideas from the TCP protocol’s congestion control
algorithm, namely:

– Slow Start is a mechanism that increases the search window when the al-
gorithm starts. In F2C2 this concept maps to an exponential search phase
that doubles the thread count at every sample interval while performance
increases, and stops when a decrease is detected.

– Congestion Avoidance is a fine-grained search phase where the concurrency
level is either increased or decreased by one at each iteration. This phase
starts immediately after Slow Start.

The fine-grained search phase of F2C2 can be seen as a Gradient Descent
algorithm applied to a Feedback Control Loop, whereas the coarse-grained phase
can be thought of as a global sampling phase, where areas of interest are iden-
tified and a local search is then performed. F2C2 does not restart the coarse-
grained search algorithm, and is thus prone to reacting slowly to abrupt work-
load changes. The fine-grained search phase is accomplished by imposing unitary
fluctuations to the concurrency level, and measuring performance.

The detection component uses transaction throughput, defined as tpi, trans-
actions per unit time, as a global measure of the system’s performance, but does
not average the total tpi. Instead, the authors avoid global synchronization in
this measurement3 by sampling a specific thread, chosen at random, and taking
that thread’s tpi as representative of the system’s performance. As seen earlier,
on Weighted Concurrency Control, this assumption may not hold for specific
workloads or application designs.

Despite these pitfalls, F2C2 introduces clever mechanisms to exploit feedback
control loops, which we will consider in our work, and obtains good results in
experimental evaluation.

Machine Learning approaches to concurrency control are usually composed of
three main components: a statistics collector, which takes measurements of the
application performance at runtime; a machine learning module, which consumes

3 The authors avoid global synchronization in measurements to avoid oerhead



measured values and produces a value for a target parameter; and a control
algorithm, which actuates on the concurrency level based on the obtained target
value and mediates the interactions between the statistics collector and ML
module.

In [21], Rughetti et al. design a system that uses a Neural Network to char-
acterize performance metrics at runtime and produce a corresponding concur-
rency level to apply. The Statistics Collector implemented in their work col-
lects a set of parameters common to machine learning in concurrency control,
namely average read- and write-set sizes, and execution time for transactional
and non-transactional code blocks. In addition, two indexes are calculated based
on estimated probability distributions, read-write affinity and write-write affin-
ity, which represent an estimation of the probability of a given read or write
operation to generate a conflict.

Comparing their model to the baseline TinySTM implementation yields in-
creasing levels of performance with increasing maximum thread count, and slightly
worse results with low maximum thread count.

In a more recent development, Rughetti et al. improve upon their earlier
design with a key feature for machine-learning concurrency control: feature se-
lection. The authors propose a mechanism to dynamically adjust the cardinality
of the set of input data, following two key observations: (i) some feature val-
ues may show small variance during given time windows, and (ii) some features
may be statistically correlated to other features during certain time intervals.
In their particular case, where the target function describes wasted transaction
time (wtime), the authors conclude that variations in this measurement do not
depend on features with small variance, and that measurements of a single fea-
ture in a set of correlated features are representative of the whole set, given that
certain conditions are met.

After experimental validation, the authors publish strong evidence that cor-
relation between features does indeed occur in a substantial set of benchmarks,
as well as reduced variance in certain values, namely read-write and write-write
affinity. Additionally, tests are performed to assess the gains of shrinking feature
sets. These tests demonstrate that a reduction of up to 90% can be obtained in
worst-case scenarios, where thread count is low4.

To restart the algorithm, when the current feature set becomes no longer
representative of the system state, the control mechanism enlarges (or resets)
the feature set when the ML predictions begin to decline when compared to
the real result5. The authors choose to use the weighted root mean square error
between predicted and measured values.

4 Test results also demonstrate that overhead from sampling tends to scale down as
the number of concurrent threads increase.

5 As some features have been excluded, no recent values exist to verify if conditions
have changed.



Rughetti et al. propose a Black Box approach to tuning the parallelism degree
in HTM systems[29]. The main insight of the authors’ work is that traditional
parameters and measures used in concurrency tuning cannot be efficiently cap-
tured in HTM systems. Additionally, the authors propose a change in the feature
set used, as the features used in previous STM concurrency tuning systems are
not available in HTM. To this end Rughetti et al. develop a classification-based
approach, relying on Machine Learning mechanisms that predict the optimal
level of parallelism. The classification-based techniques reduces overhead when
compared to regression engines. This work explores a novel feature in HTM tun-
ing: The cause for transactional aborts. By integrating this factor in their model,
the system achieves greater accuracy in predictions.

Gray-Box Models

As already mentioned in section 2.1, Gray-Box Models incorporate mechanisms
from both white- and black-box models, with the goal of maximizing synergy
between them to create performance predictions and tuning strategies with high
extrapolating power and good accuracy.

Didona et al. [30] propose a mixed approach to address scaling of Distributed
Transactional Memory (DTM) systems, which delegates the measurement of cer-
tain components of the system to different predictors. Analytic models are a
well suited tool to model accesses and contention on Transactional Memory, but
become extremely complex when network topologies and behaviour are consid-
ered. The authors of TAS (Transactional Auto-Scaler) solve this by creating a
machine-learning component that deals with the dynamics of the network layer.
Not only does this approach simplify the analytical model, but enhance porta-
bility, as the system is no longer designed for a specific network architecture.
This approach has been used in other approaches in literature [31]

Traditional machine learning algorithms try to compute a performance metric
for an unknown configuration given the current performance level and resource
usage. TAS instead feeds the machine learning engine with an accurate estimate
of the unknown configuration’s resource usage, obtained by querying a white-box
analytical model, eliminating a major regression step that would be expensive in
distributed applications. The mechanism used is a decision-tree based regressor
that computes linear models at each node instead of an element of the discrete
parameter domain, and is updated at runtime with collected samples to account
for scale changes in the system. TAS achieves impressive accuracy and provides
a viable tool for elastic scaling of data grids, as well as QoS and cost-driven
analysis and scaling policy creation.

A more recent work by Didona et al. [6] builds on top of TAS, with the
aim of improving transaction throughput in the same category of systems dis-
tributed Transactional Memory systems. The authors begin by examining cen-



tralized STM systems and producing a mechanism similar to a feedback con-
trol loop, which explores neighbouring configurations in search of a local maxi-
mum. Benchmarking was performed with the STAMP suite and various synthetic
micro-benchmarks, and results show that no applications with multiple maxima
were found.

The core of this work lies in the exploration component, or ”decision mod-
ule”, which incorporates TAS’s logic with a ”patcher”, a Decision Tree-based
mechanism that, given enough samples (and TAS’s prediction) at runtime, can
estimate corrective factors that minimize the prediction errors when contention
reaches high levels (where TAS’s accuracy starts to decline).

Didona et al. propose a further means [32] of combining AM with ML ap-
proaches. When addressing this challenge, the authors compare three different
approaches:

– K Nearest Neighbours
KNN is used in this context to evaluate the accuracy of the analytical model
and various machine learning components, and can be used to select the
best one at runtime, depending on the system behaviour and on the target
workload/configuration;

– Hybrid Boosting
HyBoost follows the intuition that a corrective function to predict the resid-
ual error from the analytical model may be easier to learn (with an ML
algorithm) than the original target function. The final prediction is then
produced by combining the AM output with the corrective factor obtained
from the learning algorithm;

– Probing
Probing is an approach that consists of using machine learning components
exclusively on the regions of the search space where the analytical model does
not achieve sufficient accuracy. More in detail, a classifier is used in order
to determine in which subsets of the parameters the analytical model or a
black-box model should be used. A second black box regressor is then trained
exclusively with samples corresponding to regions in which the analytical
model is known to achieve poor accuracy.

The system is tested in a total-order broadcast platform (TOB), and in a
distributed transactional in-memory store, Infinispan. In TOB, HyBoost achieves
disappointing results, and is outperformed by a pure ML baseline approach,
while both Probing and KNN show encouraging improvements over the first
two. On Infinispan the scenario is inverted, with KNN and Probing showing some
improvement and HyBoost being extremely efficient. The low performance shown
by HyBoost in TOB is due to the non-linearity of the AM’s error distribution.
Conversely, in Infinispan the corrective function is highly linear, which translates
to high levels of speedup when using HyBoost. Although promising, these results
show that there is no silver-bullet approach in gray-box models.



The technique of feeding ML models with data produced with AM is known as
”Bootstrapping”. While multiple approaches in literature use this method, some
aspects are left unexplored in existing implementations. Didona and Romano [32]
propose a novel research in which they algorithmically formalize two aspects of
bootstrapping methods:

– The sample size of the AM’s output that should be used to feed the ML
model.

– The algorithms that fit best when updating the (initially fully) synthetic
training set.

To this end, the authors use a ten-fold cross-validation approach when gener-
ating the initial knowledge base from the analytical model. This allows to assess
the validity of the chosen set, which is selected if the average accuracy falls over
a given threshold ε, and discarded otherwise, after which a new training set is
tested and the algorithm repeated. Updating the training set is the core of the
bootstrapping methodology, as it allows for the incremental refinement of the
initial performance model.

Following the objectives of this study, training time is substantially decreased,
while an accurate convergence is obtained with fewer samples at runtime.

3 Goals

Objectives

The analysis of the state of the art conducted in the previous section highlights
that in the literature there are no solutions that have attempted to dynami-
cally tune the concurrency degree in STMs that support parallel nesting. The
goal of my dissertation is precisely to fill this relevant gap in the literature, by
implementing a self-tuning mechanism capable of simultaneously adjusting not
only the number of concurrent top-level transactions, but also the number of
nested transactions active within each top-level transaction. Based on the pros
and cons of previous self-tuning solutions for TM systems, we highly favour on-
line black-box models, given that, if well designed they can overcome most of the
alternative’s shortcomings. Additionally, this class of concurrency tuning imple-
mentations avoids impractical offline training phases, which can be costly and
time consuming. Our devised solution will also strive to minimize, and if possible
avoid, changes to application code. A distinction can be made in the different
aspects of parallelism we want to tune with our mechanism, given of the prob-
lem’s dimensionality. Besides regulating top-level transactions, inner parallelism
also serves as a configurable parameter. Additionally, there is the possibility of
assigning different concurrency levels to different top-level transactions, as the
natural parallelism level may not be uniform.



Challenges

In designing a concurrency control scheme for multi-dimensional TM systems,
we face a few challenging problems, the greatest of which is the dimension of the
search space. There are, of course, many well-understood algorithms in this do-
main, but our design must keep the search algorithm’s overhead to a minimum,
given the performance critical nature of our target system. Furthermore, the
balance between exploration and exploitation phases is harder to achieve, given
that local fluctuations in any dimension can lead to improved or reduced per-
formance. Thus, whatever the direction our solution follows, two main features
must be guaranteed:

– An efficient sampling algorithm that can quickly converge on areas of interest
of a large search space

– The system must be able to rapidly switch between exploration and exploita-
tion when workload characteristics change.

Planning

We plan to follow a few key steps in the early stages of our design. The first
logical step would be the integration of mechanisms to support dynamic con-
currency adaptation into JVSTM. This mechanism will allow the tuning of the
parallelism degree of top-level and nested transactions. We will implement this
at the JVSTM library level, to keep the system’s transparency.

Next, we will proceed with the development of a simple tuning mechanism
for JVSTM, to serve as a baseline performance measure when testing further
work. This implementation will also be a fast prototype, to guide other devel-
opment phases. After this initial prototyping, we will be ready to take the first
measurements for future reference, after which the design and development of
the main algorithm(s) can start.

Initial steps in the main research phase will focus on finding an efficient sam-
pling algorithm that can converge on the search space in an efficient way. The
work produced in this step will base itself on key features of other algorithms
(e.g. Latin Hypercube Sampling[33]) that prove to tackle the dimensionality
problem adequately. Meanwhile, a combination of techniques will be refined and
tested in the context of JVSTM, such as Gradient Descent and Simulated An-
nealing, to perceive which approach fits best in nested parallelism. While testing
these components we plan to use various measures to infer which metric is most
accurate in reflecting the workload’s characteristics. The metrics used largely
influence the concurrency control system’s behaviour. Different measures can
be used, namely transaction commit rate, wasted transaction time, and abort
rates. Given our dimensionality problem, we must carefully study these alterna-
tives to determine which one fits best. Finally the system will need an algorithm
to control the jumps between exploration and exploitation phases. UCB [34],
RRS [35], and other proposals use clever conditions in the exploitation phase to
restart exploration. We plan to test some of these methods and refine a trigger
that can rapidly react to workload changes and restart exploration.



Further down the development process we intend to study the effects of shut-
ting down inner parallelism entirely. We predict some workload profiles will per-
form better with top-level transactions only (measuring and results are needed).
Switching off inner transactions requires that our main algorithm be capable of
restarting this system component without too much overhead, as to provide per-
formance benefits. If work re-distribution and thread creation and destruction
undermine the benefits of having only top-level transactions, this aspect will not
be considered in further work.

In summary, we propose to develop a novel concurrency control mechanism
for multi-dimensional Transactional Memory systems, where the dimension of
the search space poses an important challenge , and brings about a plethora of
other details which we plan to face using knowledge gathered from other works
in the literature.

3.1 Evaluation

The evaluation of the solution we obtain will be performed experimentally, across
a number of components and with different algorithms. As we need to explore
several techniques and try different approaches for each development step, tests
will encompass all of these different aspects of our work. In detail, to evaluate
our proposal we intend to proceed as follows:

– Evaluation metrics: the most relevant measure in respect to implementa-
tion quality is the execution time, when compared to a baseline measurement.
We admit the possibility of using other support metrics, such as number of
conflicts, transaction throughput, etc., if their usage reveals to be adequate.

– Test cases: There are a number of benchmark suites for transactional mem-
ory which try to reflect real-world workloads. We intend to use the STAMP
suite, a collection of test cases frequently used in academic research.

– Comparison with other systems: Besides comparing the base system
(JVSTM) running with static configurations to our solution’s performance,
our incremental development plan will allow for a rapid initial prototype to
be used as baseline measure for comparison.

3.2 Roadmap

– January 9 - February 15: Integration of mechanisms into JVSTM to support
the dynamic adaptation of the degree of concurrency of both top-level trans-
actions and nested transactions. The mechanisms will be integrated at the
JVSTM library level, so to achieve full transparency at the application level.
The system shall also support the online monitoring of key performance indi-
cators like throughput and abort rate, which will be used to feed the on-line
tuning system.



– February 15 - March 31 : Development and evaluation of the first online
tuning-system, which will apply gradient descent techniques and operate at
the granularity of the single program, i.e. all top-level transactions will be
allowed to spawn the same maximum number of top-level transactions.

– April 1 - May 31: Development and evaluation of a more sophisticated on-
line tuning mechanism, which will operate at a finer granularity by allowing
different top-level transactions to spawn a different number of nested trans-
actions.

– May 31 - July 15: Investigate the possibility of achieving an even finer gran-
ularity, by allowing a top level transaction that spawns nested transactions
more than once during its execution to use different degrees of concurrency.

– July 15 - August 31: Preparation of a paper for submission to a scientific
conference

– September 1 - October 15: Preparation of the MsC dissertation

3.3 Conclusions

In this document I conducted a study of the state of the art on Transactional
Memory, focussing on the problem of dynamically adjusting one of the key tun-
ing knobs of this emerging class of systems, i.e. the degree of parallelism that TM
systems should adopt. My analysis of the state of the art has highlighted a rele-
vant gap in the existing literature, i.e. the lack of self-tuning mechanisms capable
of adjusting the degree of parallelism in TM that support parallel nesting.

During then next phase of my dissertation I aim at addressing precisely this
issue, and in this document I have already identified some of the key design
choices and challenges that I will have to address. Further, I have laid out a
roadmap for my future research activities.
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