
Self-tuning the parallelism degree in Parallel-Nested
Software Transactional Memory

José Miguel Gonçalves Simões

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

This work has been partially supported by project specSTM
(PTDC/EIA-EIA/122785/2010)

Supervisor(s): Prof. João Barreto
Prof. Paolo Romano

Examination Committee

Chairperson: Prof.
Supervisor: Prof. João Barreto

Co-Supervisor: Prof. Paolo Romano
Members of the Committee: Dr.

Prof.

May 2016

But still try, for who knows what is possible.
Michael Faraday

Acknowledgments

I would like to thank my supervisors, Professors João Barreto and Paolo Romano, Diego Didona

and Nuno Diegues for the invaluable support they provided.

I would also like to thank Duarte, for helping in having a proper work environment, and my family

for their unconditional support.

I would also like to thank Luana, Diogo, Nereida, Janaı́na, Isa, Sofia, Liliana and Inês for the

constant support throughout the duration of this work.

3

Abstract

Transactional Memory is a promising parallel computing paradigm, increasingly used nowadays,

that allows easy parallelization of sequential programs and can expose a great level of parallelism.

Many different approaches exist. One such approach is parallel-nested Transactional Memory, where

transactions are allowed to spawn their own child transactions, effectively exposing additional levels of

fine-grained parallelism. Transactional Memory systems often have tuning mechanisms, which adjust

parameters and internal dynamics according to system measurements, to increase performance. To

the best of our knowledge, tuning nested Transactional Memory systems has not been explored in

contemporary research. We propose to create a tuning mechanism for parallel-nested Transactional

Memory, and perform an analysis using a state of the art Transactional Memory system, JVSTM. We

develop mechanisms to plug different tuning strategies into JVSTM, and evaluate their effects and

improvements, or lack thereof, using a set of benchmarks designed for evaluating STM systems. The

results we obtained offer insights on the different tuning strategies, as well as a framework with which

future work can be developed.

Keywords

Transactional Memory, Software Transactional Memory, Tuning, Nesting, Nested, Optimization,

Tuning Nested Software Transactional Memory

5

Resumo

Memória Transacional é um paradigma proeminete da área de computação paralela, cada vez

mais utilizado, que permite a paralelização de programas sequenciais de uma forma simples, e

expõem grandes nı́veis de paralelismo. Existem muitas soluções diferentes no contexto da Memória

Transaccional. Uma das categorias inclui os sistemas de Memória Transaccional com aninhamento

paralelo, que permitem às transacções criar transacções filhas, efectivamente expondo paralelismo

adicional de granularidade fina. Os sistemas de Memória Transaccional podem incluir mecanismos

de ajuste, que regulam os parâmetros e dinâmica interna em resposta a medidas de desempenho

do sistema, para melhorar o seu desempenho. No limite do nosso conhecimento, não foram ex-

plorados na pesquisa contemporânea mecanismos de ajuste para Memória Transaccional aninhada.

Propomos nesta dissertação que é possı́vel criar estes mecanismos para este tipo de sistema, e

analisamos este problema utilizando um sistema de Memória Transaccional de ponta, a JVSTM. De-

senvolvemos mecanismos para integrar rapidamente diferentes estratégias de ajuste na JVSTM, e

estudamos os efeitos e melhorias, ou ausência das mesmas, de ajustar um sistema de Memória

Transaccional aninhado. Os resultados obtidos oferecem perspectivas das diferentes estratégias de

ajuste, bem como uma base sólida para realizar trabalho futuro.

Palavras Chave

Memória Transaccional, Memória Transaccional em Software, Ajuste, Aninhamento, Optimização,

Ajustar Memória Transaccional Aninhada em Software

7

Contents

1 Introduction 15

1.1 Context . 16

1.2 Motivation . 17

1.2.1 Software Transactional Memory . 17

1.2.2 Nesting . 18

1.2.3 Tuning . 19

1.2.4 Tuning and Nesting . 20

1.2.5 Outline . 20

2 Related Work 23

2.1 Software Transactional Memory . 24

2.1.1 Factors Affecting STM Performance . 25

2.1.1.A Conflict Detection . 25

2.1.1.B Version management . 26

2.1.1.C Contention Management . 27

2.1.2 Nesting . 28

2.1.3 Read-only Transactions and Opacity . 29

2.1.4 Programming Model . 29

2.1.5 JVSTM . 30

2.1.5.A API . 30

2.1.5.B Nesting transactions . 31

2.1.5.C Versioning and Conflict Detection . 32

2.1.6 Conclusion . 34

2.2 Concurrency Degree Tuning . 34

2.2.1 Tuning Categories . 34

2.2.1.A White Box . 35

2.2.1.B Black Box . 35

A – Offline Modelling . 35

B – Online Modelling . 36

2.2.1.C Gray Box . 38

2.2.2 Conclusion . 39

9

3 Tuning the Concurrency Degree in Nested Software Transactional Memory 41

3.1 Architecture . 42

3.1.1 Search Space . 42

3.1.2 Tuning and Thread Management . 43

3.1.3 Tuning Policies . 47

3.2 Algorithms . 48

3.2.1 Explore and Exploit . 49

3.2.2 Default Policy and Overhead Measurement . 49

3.2.3 Gradient Descent . 50

3.2.3.A Linear Gradient Descent . 50

3.2.3.B Full Gradient Descent . 52

3.2.4 Hierarchical Scan . 54

3.2.5 F2C2 . 56

3.2.6 Recursive Random Search . 58

4 Experimental Results 61

4.1 Experimental Setup . 62

4.1.1 Vacation . 62

4.1.2 STMBench7 . 63

4.1.3 Data Collection . 63

4.1.3.A Vacation . 63

4.1.3.B STMBench7 . 64

4.1.4 Platform . 64

4.2 Results . 65

4.2.1 Vacation . 65

4.2.1.A Search Space overview . 65

4.2.1.B Overhead . 66

4.2.1.C Execution Time Comparison . 67

4.2.2 STMBench7 . 70

4.2.2.A Search Space Overview . 70

4.2.2.B Execution Comparison . 71

5 Conclusions and Future Work 77

Bibliography 81

10

List of Figures

2.1 STM mechanisms conceptual diagram . 25

3.1 Architecture diagram . 48

3.2 Linear GD search path. 52

3.3 Full GD search path. 54

3.4 Hierarchical Scan search path. 56

3.5 F2C2 search path. 58

4.1 Vacation exhaustive test results for high contention. 65

4.2 Vacation exhaustive test results for low contention. 66

4.3 Vacation overhead test results. 67

4.4 Vacation execution time test results for high contention. 68

4.5 Vacation execution time test results for low contention. 69

4.6 STMBench7 exhaustive test results - read-only workload. 70

4.7 STMBench7 exhaustive test results - write-only workload. 71

4.8 STMBench7 throughput test results - read-only workload. 72

4.9 STMBench7 throughput test results - read-write workload. 73

4.10 STMBench7 throughput test results - write-only workload. 74

11

Abbreviations

TM Transactional Memory

STM Software Transactional Memory

HTM Hardware Transactional Memory

CD Conflict Detection

CM Contention Management

ML Machine Learning

GD Gradient Descent

LGD Linear Gradient Descent

FGD Full Gradient Descent

HS Hierarchical Scan

RRS Recursive Random Search

RS Random Sampling

13

1
Introduction

Contents
1.1 Context . 16
1.2 Motivation . 17

15

1. Introduction

1.1 Context

Computational capacity has been on a steady increase since the early days of modern computing

[1]. The vast computing power made available to modern applications can be attributed to the ad-

vances in processor technology [1, 2] and to the many results of a steady effort which envisions the

creation and improvement of powerful and scalable parallel computing architectures.

Multi-core processor technologies are becoming the norm in today’s hardware, and show a promise

to dominate most platforms in the near future. Machines with four, eight and even hundreds of cores

are commercially available today. Unfortunately, writing parallel applications that efficiently exploit

the available parallelism is far from being a trivial task, as parallel programs are harder to design,

implement and debug than their equivalent sequential versions [3, 4]. The difficulties of parallel pro-

gramming can even lead to parallel programs performing worse than their sequential version.

Given these obstacles, the research community has constantly been trying to develop new mod-

els that allow non-trivial parallelization to be efficient and simple to implement [3–7]. Unfortunately,

there is no silver-bullet approach to this problem, and several existing paradigms perform better or

worse than their counterparts depending on the nature of the problem they are applied to [14].

In the scope of our work, a distinction can be made in the parallel development methodologies:

traditional lock-based synchronization and Transactional Memory [8]. Traditional lock-based syn-

chronization frameworks in application development usually provide two alternatives. The first is a

coarse-grained approach, in which a few locks are used to regulate access to large portions of code.

While very simple to implement, this solution is naturally prone to inefficiencies, as only a few very

long critical sections can be executed in parallel. The second alternative is a fine-grained approach,

which aims at extracting as much parallelism as possible from the application, by using locks to guard

critical sections at the smallest granularity level. This approach avoids the inefficiency of the first one,

but it is subject to pitfalls like deadlocks, live-locks, and data races. Furthermore, it adds complexity to

the code and hinders its maintainability. In light of these considerations, none of these two approaches

appears to be a suitable reference parallel programming paradigm, as they sacrifice either efficiency

in exploiting available computational power or code maintainability. For these reasons, many efforts

have been made to devise a mechanism to facilitate parallel development and efficiency on these

architectures.

One such paradigm is Transactional Memory [8, 9], a promising model that abstracts parallel opera-

tions and synchronization and tries to provide performance gains and transparency when developing

parallel software.

16

1.2 Motivation

1.2 Motivation

1.2.1 Software Transactional Memory

Listing 1.1: STM Usage Example

1 public class TransactionalTask implements Thread{

2 public void start() {

3 Begin();

4 //do stuff

5 //this is a critical section

6 //do stuff

7 Commit ();

8 }

9

10 public static void main (..){

11 //do stuff

12 ExecutorService executor = new Executor ();

13 Thread thread1 = new TransactionalTask ();

14 Thread thread2 = new TransactionalTask ();

15 Executor.submit(thread1);

16 Executor.submit(Thread2);

17 //do stuff

18 }

19 }

Listing 1.1: An STM usage example. The TransactionalTask class executes a block of code transactionally, by explicitly be-

ginning and committing a transaction, which runs in its own thread. The main section of the code instantiates two of these

tasks and submits them to an executor, using a standard Java dialect.

One of the most influential models of fork-join parallel programming is Transactional Memory

(TM)[8] . TM is a concurrency mechanism that takes advantage of the concept of transactions, widely

used in database systems [9], to manage concurrent access to an application’s shared memory. TM

provides elegant abstractions to wrap groups of operations in a transaction, called atomic blocks in

TM jargon, and provides simple transactional control mechanisms such as begin, commit and abort

to control the flow of these blocks (Listing 1.1). A companion runtime system ensures that essential

properties like atomicity and isolation are met [4].

There are three main categories of TM systems: Hardware Transactional Memory (HTM) supports

the transactional constructs and the concurrency control mechanisms directly in the processor unit,

thus removing the need for programming languages and runtime systems to implement them inde-

pendently [10]. Directly opposite to HTM is Software Transactional Memory (STM): STM strives to

provide a transactional framework based entirely in software runtime support. STM has received

more attention than HTM recently, given that it is a more portable solution, not bound to any hard-

ware architecture or restricted by limitations of the underlying hardware [11]. In STM, atomic blocks

are handled by the runtime system transparently, but the transactional logic and structures are kept

in memory, which eliminates many problems of the hardware category. Finally, Hybrid Transactional

Memory [11] allows for concurrent execution of transactions using HTM and STM. Hybrid TM tries to

17

1. Introduction

circumvent the limitations present in HTM by using cheaper hardware capabilities, resorting to more

costly software transactions in case the hardware system cannot ensure smooth progress. To inter-

leave HTM and STM, the code is instrumented at compile time to follow one of two paths for each

atomic block, each one corresponding to a different TM type. Our work applies only to STM, which

we will cover in more detail in subsequent chapters.

The STM model involves the programmer in the parallelization process: Reasoning on the program

semantics and adaptation to the transaction paradigm are required, albeit kept to a minimum, as STM

systems strive to reduce development complexity [8]. STM systems achieve considerable speed-ups,

as some data dependencies are resolved through the use of transactions. However, the most com-

mon approach to using STM systems is to adopt a coarse structure of transaction blocks, to avoid

semantic complexity [12, 13]. Consequently, most parallel applications do not expose their full paral-

lelism potential, as finer details in the parallel logic are left unexplored.

1.2.2 Nesting

Listing 1.2: STM Nesting Usage Example

1 public class NestedTask{

2 public static void main (..){

3 Transaction.begin();

4 try{

5 // transactional accesses

6 Transaction.begin();

7 // nested transactional accesses

8 Transaction.commit ();

9 // transactional accesses

10 Transaction.commit ();

11 }catch(CommitException ce){

12 Transaction.abort();

13 }

14 }

15 }

Listing 1.2: A nesting usage example. The main method starts a transaction which performs arbitrary transactional ac-

cesses. In the context of that transaction, it starts a nested transaction, which executes its own accesses and has its own

(inner) begin and commit events.

In Transactional Memory systems, nesting is the act of embedding a transaction within another

transaction. Nesting models can be viewed as an extension of traditional Transactional Memory in

which transactions are allowed to spawn further (inner) transactions [13].

In the cases where a programmer may be unable to expose enough parallelism to exploit the avail-

able hardware threads (for example when only a small portion of the total application code can be

parallelized using transactions), nesting allows transactions to spawn additional (inner) transactions

18

1.2 Motivation

1, enabling intra-transaction parallelism, and thus an improved overall level of concurrency and com-

plexity.

Transactional Memory Nesting introduces its own set of problems, as TM systems now need to man-

age relationships between parent, child and sibling transactions. These must be taken into account

when designing TM systems. There are different types of nesting models, and different approaches

to solving these problems in each one. We will explore these in further sections.

1.2.3 Tuning

Transactional programming constructs provide the developer with a simple and transparent means

for attaining high levels of concurrency without the need to craft complicated, fine-grained lock-based

synchronization schemes. These transactional constructs hide the details and mechanisms neces-

sary to synchronize parallel execution, which is managed by the runtime support system. Not only

does TM enhance code reliability and maintainability, but it also overcomes one of the fundamen-

tal issues of lock-based concurrency: the possibility of composing multiple parallel code blocks (e.g.

libraries) without incurring major code changes, performance penalties or pitfalls like dead- and live-

locks. This is achieved by means of nesting transactions. Nesting allows different TM code blocks

to be easily and safely combined into a bigger single atomic block, where as locking approaches are

usually difficult to interleave.

Despite the fact that TM simplifies parallel programming to a large extent, there are still a number

of subtle issues influencing its actual efficiency. The literature provides plenty of evidence that indi-

cates that properly tuning its internal parameters depending on the application’s workload is crucial

to obtain good performance [14–17]. Past and current research efforts focus on tuning a number of

different aspects of a transactional systems. Some propose to tune the contention management pol-

icy, the mechanism that dictates the system behaviour in case of a conflict between transactions [18],

while others focus on tuning the number of transactional threads available to enhance throughput [14].

Other parameters and mechanisms can be adjusted in this manner, but they are out of the scope of

our study.

1In conceptual terms, spawning nested transactions effectively creates a concurrency tree. A transaction that spawns
another is said be the latter’s parent, whereas the inner transaction is its child. Any two transaction are said to be siblings if
they have a common ancestor in the transaction tree.

19

1. Introduction

1.2.4 Tuning and Nesting

One of the most investigated problems in STM tuning is how to adjust, at runtime, the number of

active transactional threads in order to maximize performance. However, several researchers [19–

22] have argued that in order to take full advantage of modern massively parallel architectures, it is

often desirable to support intra-transaction parallelism. This has given rise to a research line aimed

at designing efficient solutions for parallel nesting in TM. Concurrency degree tuning has, to the best

of our knowledge, focused on tuning non-nested TM systems. With the introduction of nesting, the

problem’s domain becomes two-dimensional, or greater. Our work focuses on tuning the concurrency

degree of Nested Transactional Memory Systems, i.e. adjusting the number of available threads a

Nested TM system can use.

We can define the search space of our problem as the domain in which the different parameters exist.

There can be various interpretations for this search space, such as the cardinality of top-level trans-

actional threads versus nested-threads. The key challenge in tuning the intra-transaction parallelism

is the dimensionality of this search space. In fact, as opposed to traditional solutions that only have to

tune the number of concurrently active transactional threads [23–26], tuning the intra-transaction par-

allelism also requires adjusting the number of nested transactions to be spawned. Inner parallelism

adds an extra dimension to the parameter space, but if we assume that different top-level transac-

tions may require different degrees of inner parallelism [27], additional complexity must be added to

the concurrency control mechanism.

There are several nesting models and different types of tuning techniques. We overview each of

these in subsequent chapters.

1.2.5 Outline

The main contribution of this dissertation is a tuning mechanism for JVSTM, a state-of-the-art

Software Transactional Memory system. We develop such a tuning mechanism with minimal modifi-

cations of JVSTM’s original code base, and provide different approaches to this problem.

Throughout this dissertation we expose and analyse the main challenges, the problem domain, and

our proposed solution.

We test our work with two well-known benchmarks used in Transactional Memory research, STAMP

Vacation and STMBench7. With the results obtained, we show that high contention configurations

are an ideal case for tuning a transactional system, but mixed and low contention configurations are

exceptionally hard to tune, with results worse than the baseline JVSTM, while high contention config-

20

1.2 Motivation

urations show satisfactory performance gains.

21

1. Introduction

22

2
Related Work

Contents
2.1 Software Transactional Memory . 24
2.2 Concurrency Degree Tuning . 34

23

2. Related Work

Parallel computing research has defined two prevalent paradigms for designing parallel applica-

tions for multi-core platforms: Task Parallelism and Data Parallelism.

Data Parallelism consists of splitting disjoint data sets over the available processors, such that each

processor computes a given subset of the problem data, the outputs of which are subsequently joined.

Data parallelism is not pervasive, as it requires very specific workloads that can be split into disjoint

parts. This method applies only to a small set of problems, and is not viable to the generality of data

structures and program architectures [4].

Task parallelism also envisions the division of work as parallel tasks running on different cores, but

these tasks access shared data. This added liberty requires that data access be synchronized, to

coordinate accesses between different threads and avoid data corruption. The traditional approach to

this problem is the use of lock-based synchronization policies, where the programmer uses coarse- or

fine-grained lock structures to serialize concurrent access to a given memory location. Fine-grained

lock structures consistently yield better results and scalability [9], but are much more difficult to de-

velop than coarse-grained ones, which confer better readability to the code and require less semantic

reasoning on the program’s logic. Transactional Memory is a model that follows Task Parallelism and

tries to provide results on par with fine-grained locking, with the readability and simplicity of coarse-

grained locking [9].

The contributions of this dissertation apply to the task parallelism paradigm. For the remainder of

this work, we focus only on that paradigm, specifically on Software Transactional Memory. The follow-

ing subsections overview the various types of Transactional Memory and some of its concrete details,

nesting models and their properties, and the various types of tuning applied to TM, and how they

influence the solution we propose.

2.1 Software Transactional Memory

Software Transactional Memory is a category of systems that provide Transactional Memory ca-

pabilities through software runtime support only.

Most STMs keep a map of memory locations accessed within transactions. These structures can

serve additional purposes, such as locking, ownership record, versioning, and log keeping[8]. These

aspects will be covered in the next subsection.

The main drawback of STM systems is the necessity of transaction boundaries and operations to

24

2.1 Software Transactional Memory

be instrumented, in order to keep track of their accesses to memory[9]. This leads to overhead, which

may hinder performance and hamper the scalability of the application.

In comparison, STM systems can incur heavy instrumentation costs, which are avoided by HTM.

Atomic code blocks are modified at compile time to account for transactional operations and log-

keeping, as well as a plethora of details that are required by the runtime transactional support system

and take additional time to execute.

2.1.1 Factors Affecting STM Performance

As discussed in the previous section, STM systems need to maintain state during a program’s

execution via additional structures embedded in the program code at compile time. These structures

are at the heart of the runtime system, and perform a variety of functions, described followingly.

Figure 2.1: A conceptual diagram that illustrates the interplay between the different STM mechanisms. Version
Management is used for reading and writing different versions of data, as well as restoring or deleting them when
a transaction aborts. Conflicts are detected by the Conflict Detection mechanism. Contention Management
dictates the action taken in case of a conflict between any two transactions.

2.1.1.A Conflict Detection

Conflict Detection (CD) (sometimes called concurrency control in the literature) is the means by

which a transactional runtime system detects incompatibilities between two transactions. Many CD

policies exist, most of which make heavy use of the versioning system, and can have different granu-

larities and act at different moments during a transaction’s lifetime.

25

2. Related Work

Regarding granularity, two main classes can be defined: Object-based and word-based. Object-

based CD consists of detecting conflicts in data structures, is mostly applied in object oriented lan-

guages, and integrates the notion of objects in its logic [28]. Word-based CD detects conflicts conflicts

at the level of the processor architecture’s word size [29]. These can be seen as coarse-grained and

fine-grained, respectively.

Fine-grained approaches traditionally incur greater levels of overhead, mainly because they have

to manage more data in the transaction logs, but at the same time may allow greater transaction

throughput, as less conflicts are caused by accessing high-level data structures concurrently. Specif-

ically, transactions may access objects concurrently but modify different elements, which does not

cause a conflict. Conflicts caused by this type of access pattern are called false conflicts.

Regarding the time at which a conflict is detected during a transaction’s lifetime, we can make two

distinctions: Eager and lazy conflict detection. Eager CD checks for conflicts as soon as a transaction

declares its intent to access data [29]. Lazy conflict detection occurs at commit time, when a trans-

action’s logs are checked to assess if any conflicting data accesses happened [30]. As with other

aspects of STM, choosing between these two methods also carries a trade-off: Eager CD causes

overhead on every memory access, but prevents wasted work by detecting conflicts as soon as they

happen. Lazy CD enhances concurrency, but induces wasted work in case of conflicts being frequent

- as the logs are checked only at commit time, aborting transactions will discard most of the work they

performed.

2.1.1.B Version management

In STM, version management is the mechanism used by the runtime system to keep different ver-

sions of data in case a transaction needs to abort, and the memory locations written by it need to be

restored. There two main types of version management: Direct update and deferred update.

Direct update maintains an undo-log for each modified memory location, and transactions write their

tentative values directly to memory. When a transaction aborts and its effects need to be rolled back,

the undo-log is used to restore the data overwritten by the transaction [31].

Deferred Update systems maintain a redo-log (sometimes called write-set in the literature) for each

transaction. Transactions write their tentative values to this redo-log, which is copied to the real mem-

ory locations when a transaction commits. Redo-logs become, for the duration of a transaction, a part

of its memory snapshot, e.g. when a transaction tries to read a location it has previously written to, it

consults its redo-log instead of the real memory location [32].

26

2.1 Software Transactional Memory

Direct update systems incur heavy overheads when transactions need to abort, as all written val-

ues need to be checked, and previous data restored [33]. On the other hand, deferred update version

management have trivial abort mechanisms, but cause cumulative overhead when committing trans-

actions, as their write-log must be checked and copied to the real memory locations.

2.1.1.C Contention Management

Contention Management (CM) is another factor that influences TM’s performance. Contention

management determines the behaviour of transactions when a conflict is detected. Several CM tech-

niques exist, again with different results on varying workloads. Some policies perform generally better

[15], but have low performance on certain workload profiles. There are a number of different policies

based on the key ideas of assigning priority to transactions based on their state and backing off when

a conflict is detected. Transaction threads can also be made to wait, in case of repeated aborts with

the same underlying cause. Contention management is an important component in any TM system,

and must be designed carefully. Several recognized contention management policies exist [18], of

which we can examine a few select examples:

• Passive - The simplest policy where the attacker transaction aborts itself and re-executes [29].

• Polite - The attacker transaction delays its progress for a fixed number of exponentially growing

intervals before aborting the victim transaction. After each interval, the attacker checks if the

victim has finished executing, if so the attacker proceeds without ever aborting the victim [34].

• Timestamp - The contention manager aborts any transaction that started executing after the

victim transaction[18].

• Greedy - A timestamp is associated with a transaction when it first attempts to execute. A

transaction aborts a conflicting transaction if the former has a younger timestamp than the latter,

or if the latter is itself already waiting for another transaction. Unlike the previous approaches,

this policy allows every transaction to commit within a bounded time, i.e. avoids starvation of

transactions [32].

No policy performs universally best in all settings when designing a transactional system (Harris,

Larus, & Rajwar 2010). The type of concurrency and workload profiles used should be considered

when choosing a contention management policy. Some STM systems allow contention management

to be parametrised ad hoc by the applications using them.

27

2. Related Work

2.1.2 Nesting

Various STM nesting models are defined in literature, which fall in two main categories: sequential

and parallel nesting. Sequential nesting models in TM allow transactions to be nested, but serialize

them implicitly [35]. This means that code logic in parallel blocks becomes clearer, but additional

parallelism is left untapped. Briefly, three models of parallel nesting are defined in literature. In flat

nesting, a parent transaction sees all modifications to program state made by inner transactions, but

an aborting child transaction also causes the parent to abort. Closed Nesting is similar but allows for

a given nested transaction to abort without aborting its parent. Finally, in open nesting any committed

transaction’s state remains globally visible, even if the parent transaction aborts. Although flexible,

this model can introduce problems due to inconsistent program states [36].

Parallel nesting proves to be an exceptionally difficult problem in traditional lock-based concurrency

models, as coherence in the interplay between locking mechanisms is very hard to achieve, and code

logic tends to become extremely complex [20]. On the other hand, transactions provide a transparent

and simple means of abstracting parallel regions without these complications, and therefore nesting

becomes a viable possibility. Most nesting models face correctness challenges however, because

ancestor-descendant relationships must now be taken into account when designing TM systems.

There are multiple implementations of Nested TM.

PNSTM [19] uses a global work-stealing queue to distribute tasks (transactions) between active

threads, and each transactional location maintains a stack that registers the accesses performed

by active transactions. PNSTM’s transactions inherit their children’s read- and write-sets, and only

top-level transactions can commit values to memory. Inheritance is done in a lazy manner, to improve

efficiency, but this implies that false conflicts can occur, as the logs are not cleared until the top-level

transaction is completed.

NeSTM [22] is based on McRT-STM [37], a traditional blocking STM that uses eager conflict detection

and undo-logs for writes, at word granularity. Transactions lock memory locations at encounter-time,

and the authors have extended McRT-TSTM’s locks to provide additional fields and visibility, to man-

age ancestor-descendant relationships.

JVSTM [20, 38] is a versioned Transactional Memory implementation which has been augmented

by Diegues and Cachopo to support transactional nesting. The original JVSTM design uses ver-

sioned boxes (VBox), a concept that represents transactional locations. Each VBox stores a history

of the values committed to its memory location, which are used as an undo-log when a writing trans-

28

2.1 Software Transactional Memory

action aborts and a roll-back is necessary. Transactions access VBoxes when executing and record

these accesses in their respective read- and write-sets, which are used in validation. The extension

proposed by Diegues and Cachopo augments this model with a clever and efficient design to allow

nesting and manage ancestor-descendant relationships in nested transactions. VBoxes now store

both committed and tentative values. Tentative writes are inherited by parent transactions when a

child finishes, merging them into its write-set. Parent transactions successively inherit these tentative

values until a top-level transaction commits. Transactions keep two counters, nClock and ancVers,

which are accessed by their descendants and restrict the versions of a VBox they can read, to main-

tain temporal coherence between siblings and descendants.

2.1.3 Read-only Transactions and Opacity

Some STM systems favour read-only transactions in a way that allows them to never abort. These

systems are said to support invisible reads, where reading transactions are not visible to concurrent

writing transactions [29]. In order to preserve opacity, these systems have to implement additional

mechanisms, in which reading transactions are responsible for detecting conflicts in their read opera-

tions. Two examples of these mechanisms are global clocks and multi-version:

• Global clock - The runtime transactional system maintains a global counter that is incremented

every time a non-read-only transaction commits. Each transaction reads this value when it starts

and uses it to define its position in the serial order of transaction history. This value represents

the instant in which the transaction’s memory snapshot is valid, and thus the transaction aborts

if it reads an object whose version number is lower than its own version number.

• Multi-version - Some STM systems store multiple versions of each object [38], each one with

its own timestamp. Additionally, each transaction maintains a timestamp window, during which

its memory snapshot is guaranteed to be valid. As there are multiple versions of each object,

it is likely that when a transaction tries to read one, there is a valid version available. Thus, if

sufficient versions are available, it is guaranteed that read-only transactions will always commit.

This aspect creates a trade-off between the amount of memory used by the versioning system

and the throughput of read-only transactions. Usually some type of garbage collection must be

performed, to free unneeded versions of data.

2.1.4 Programming Model

The majority of STM systems provide simple interfaces for programmers to use when parallelizing

applications. Two of the most common constructs are annotations and begin/commit/abort instruc-

29

2. Related Work

tions, used to wrap regions of code, and thus creating atomic blocks. Compilers and the runtime

system further prepare these atomic blocks to be run transactionally.

The transactional runtime system guarantees the serial ordering of these atomic blocks, and further

provides atomicity, consistency and isolation. The combination of these measures frees the program-

mer from the need to create low level threads and synchronization mechanisms, as atomic blocks

synchronize implicitly with other atomic blocks that access the same data.

Additionally, these properties grant composability to atomic blocks. This means that one can com-

bine a set of atomic blocks and the result will still be atomic. In contrast, lock-based approaches

often require that either encapsulation be broken or internal concurrency control be exposed when

composing different operations.

2.1.5 JVSTM

Several implementations of STM for the Java platform exist [39, 40]. JVSTM[20, 38] is a state of

the art parallel nesting STM library that incorporates a sturdy algorithm to support efficient parallel

nesting.

JVSTM This section covers the aspects of JVSTM most relevant to our work.

2.1.5.A API

JVSTM involves programmers in the parallelization effort by requiring them to explicitly use the

library methods. The system has, however, a very simple API, where most applications need to use

only two classes: jvstm.Transaction and jvstm.VBox. Listings 2.1, 2.2 and 2.3 show different use

cases of the library provided by JVSTM. Listing 2.1 illustrates a simple use of top-level transactions,

listing 2.2 provides a simple linear nesting example, and listing 2.3 reflects a parallel nested use case.

30

2.1 Software Transactional Memory

Listing 2.1: Use of top-level transactions example

1 public class Myclass{

2 VBox <Integer > i = new VBox <Integer >(); // transactional data

3

4 public static void main (..){

5 Transaction.begin();

6 try{

7 // transactional accesses to i

8 Transaction.commit ();

9 }catch(CommitException ce){

10 Transaction.abort();

11 }

12 }

13 }

Listing 2.1: A simple JVSTM use case. A versioned box containing an integer ir created and accessed transactionally in

the main() method, by explicitly controlling the start and finish of the transaction via the Transaction class’ static methods.

JVSTM uses a multi-version versioning system to allow read-only transactions to always commit,

never conflicting with other concurrent transactions, favouring read-dominated applications. The VBox

(versioned box) class implements this concept, where each VBox instance represents a transactional

object, and stores the versions of that object that have been committed over time by transactions.

VBoxes have two main methods, get and put, which retrieve and update the VBox’s value for the

current transaction, respectively.

The Transaction class allows programmers to control the begin, commit, and abort operations of

transactions explicitly. The begin method starts a new transaction, and sets it as the current transac-

tion for the thread which calls it. Commit tries to commit the current transaction, and abort aborts it.

2.1.5.B Nesting transactions

Listing 2.2: Creation of a linear nested transaction example

1 public class Myclass{

2 public static void main (..){

3 Transaction.begin();

4 try{

5 // transactional accesses

6 Transaction.begin();

7 // transactional accesses

8 Transaction.commit ();

9 // transactional accesses

10 Transaction.commit ();

11 }catch(CommitException ce){

12 Transaction.abort();

13 }

14 }

15 }

Listing 2.2: A linear nesting usage example. An inner transaction is created (second begin() method call, line 6) to

execute a portion of the work sequentially but in a logically distinct transaction.

31

2. Related Work

JVSTM supports two types of nesting: Linear and Parallel. When using JVSTM in linear nesting

mode, transactions are allowed to spawn any number of nested transactions, but at most one of them

executes at once, i.e. sibling transactions execute sequentially in the parent transaction’s thread. This

can effectively be seen as a serialization of the inner transactions. As child transactions execute in

the parent’s thread, the parent transaction cannot perform any work while there are child transactions

running.

Parallel nested transactions are represented by the jvstm.ParallelTask class. Each instance of this

class will run the code to be executed, which is passed to it by the programmer. Additionally, this

class implements the logic needed to run a nested transaction in a separate thread, freeing the par-

ent transaction to continue its work while its children run in parallel. However, the parent transaction

cannot commit until all of its children have committed too, and thus waits for them to commit even if it

has no further operations to run. Listing 2.3 provides a usage example of these constructs.

Listing 2.3: STM Usage Example

1 public class Myclass{

2 public static void main (..){

3

4 Transaction.begin();

5 try{

6 // transactional accesses

7 List <ParallelTask <Integer >> tasks = new ArrayList <... >();

8 tasks.add(new ParallelTask <Integer >(){

9 @Override

10 public Integer execute () throws Throwable {

11 // transactional accesses

12 }

13 });

14 Transaction.manageNestedParallelTxs(tasks);

15 // transactional accesses

16 Transaction.commit ();

17 }catch(CommitException ce){

18 Transaction.abort();

19 }

20 }

21 }

Listing 2.3: A parallel nesting usage example. An inner transaction (instance of ParallelTask) is created to execute a

portion of the work in parallel. The method Transaction.manageParallelNestedTxs manages the execution of a group of

transactions in separate threads.

2.1.5.C Versioning and Conflict Detection

Besides using multi-version, JVSTM also implements a type of global clock. Each top-level trans-

action keeps a version number (nClock) that it fetches from a global counter when it starts. This

version number represents the data version of the modifications performed by the latest read-write

transaction that successfully committed. Child transactions inherit this number from their parent, and

32

2.1 Software Transactional Memory

compute a map of counters of their own, named ancVer. This map is computed when the child trans-

action starts, by inheriting the parent’s ancVer and adding to it the parent’s nClock. This map thus

associates an nClock value to each ancestor, and represents the versions of data that a transaction

can read from its ancestors tentative values.

A VBox instance contains two lists of written values, one with the permanent values written by com-

mitted transactions, and another with tentative values written by running transactions. Transactions

check their ancVer and nClock numbers against these values’ versions when accessing them to

ensure they are reading valid versions. Writing a value to a VBox inside a transaction is then accom-

plished by adding this value to the VBox’s tentative values list, and acquiring ownership of that list (i.e.

locking it for the current transaction). Transactions can only write values to a tentative value list if it is

locked by itself or one of its ancestors. A conflict is caused if a transaction tries to write to a list that

has been locked by a transaction outside of its hierarchy.

JVSTM uses optimistic concurrency control for top-level transactions and pessimistic concurrency

control for nested transactions. Specifically, top-level transactions can continue executing even in

case of conflicts, but nested transactions abort immediately when they perform conflicting write op-

erations. JVSTM falls back to serialization in this case, and re-executes failed nested transactions

sequentially in the context of the top-level transaction after all its descendant transactions have fin-

ished.

When a VBox is read inside a top-level transaction, a tentative value is return if the transaction or

any of its descendants have written to it - the value written by the last committed child. When a paral-

lel nested transaction reads a Vbox, a tentative value can come from a write access from itself, child

transactions, or ancestor transactions. In the latter, the current transaction has to check its nClock

and ancVer against the ancestor’s version, lest it access an invalid version.

When there is no available value from the tentative list, a value is returned from the top-level trans-

action’s local write-set. In case this write-set does not contain a value either, it is is fetched from the

permanent list. The value returned may not have the latest version, but an version number that is

equal or lower to the reading transaction’s version number.

At commit time, VBoxes read by a transaction must have a version number equal or lower than the

committing transaction. If this is not the case, another transaction has written values to that VBox

while the committing transaction was running, and its read operations are no longer valid. Conse-

quently, read-only transactions always commit, because they do not change the program state.

33

2. Related Work

2.1.6 Conclusion

STM systems provide the abstractions needed to hide complex concurrency schemes from the

programmer, allowing simple usage and additional benefits transparently, such as composability.

Compared to other approaches to easily parallelize sequential programs (such as thread-level spec-

ulation [41], message-passing parallel frameworks, etc.), STM systems generally expose more paral-

lelism, remove the need of complex data dependencies and control flows, and are generally able to

attain better performance.

Transactions are not a silver-bullet solution to parallelization, however. Programmers can still use

transaction incorrectly, or use inappropriate levels of granularity: the problem of creating coarse-

grained parallel regions to avoid complexity can still affect development, if a programmer chooses to

expose the full parallelism inherent to an application. Additionally, Transactional Memory may simply

be inadequate for certain workload profiles or parallel architectures.

Despite these considerations, STM provides a solid model to enhance parallelism, reduce the com-

plexity of developing parallel systems, and expose greater levels of concurrency and performance.

2.2 Concurrency Degree Tuning

After focusing on the aspects that influence an STM system’s performance, and broadly inspecting

the logic behind JVSTM, different tuning techniques can be analysed with a better notion of the char-

acteristics of the platform we use to solve the problem of tuning parallel-nested STMs. This section

details these techniques, and how they might apply to our tuning mechanism for JVSTM.

2.2.1 Tuning Categories

Tuning techniques can be broadly divided in three main categories: White-box, black-box and

gray-box. In this section, we cover these categories and offer insight on their main concepts and

methodology. As our work focuses on black-box tuning, we inspect this category in greater detail.

34

2.2 Concurrency Degree Tuning

2.2.1.A White Box

White Box approaches use available expertise on the internal dynamics of a system to model

performance as a set of equations that map input parameters (e.g. workload characteristics and con-

figuration parameters) to a target performance measure [42, 43]. With this technique, it is possible to

create analytical models or simulators that require no training, or minimal profiling of the application,

to predict performance. To ensure mathematical tractability this type of model is usually built around

a set of simplifying assumptions on how the target system behaves, which introduces a weakness

to scenarios where the underlying assumptions do not hold, e.g. specific areas of the configuration

space. Additionally, analytical models are immutable (aside from re-evaluations of internal parame-

ters), which prevents re-adaptation at runtime (i.e., they yield static configurations). White Box models

provide strong foundations for analysis and comparison of different Transactional Memory systems,

in terms of their dynamics and behaviour.

To the best of our knowledge pure White Box Models have not been used directly to tune the de-

gree of concurrency, but rather to support off-line what-if analysis and hypotheses testing studies and

compare performance of alternative TM algorithms.

2.2.1.B Black Box

Black Box Models overcome the need of knowing system internals by using various Machine

Learning techniques and search algorithms to model its behaviour and identify at its optimal config-

uration [14, 44]. Machine Learning techniques build a statistical performance model by observing

the system behaviour under different configurations and workload profiles, and usually achieve high

accuracy when predicting performance. Black Box models can be coarsely grouped in two classes:

Online and offline.

A – Offline Modelling Offline methodologies are implementations of machine learning engines

that try to produce an abstract model by collecting statistics during a training phase, usually an early

deployment phase. The model is instantiated with this training data and is then used at runtime to pro-

duce an optimal configuration inferred from the application’s data samples. These samples contain,

respectively, a given system configuration and the resulting performance metric. This information is

assumed to be representative of the parameter space, but in practise this assumption is too coarse.

The search space of all the possible configurations is generally too large for a fully representative

sample to be taken, and grows exponentially with the number of parameters (called features ML

35

2. Related Work

methodology) to be considered.

Two techniques that are commonly employed to develop offline black box models are Artificial Neural

Networks (ANN), and Decision Trees (DT) [45].

Offline techniques offer a great deal of accuracy when predicting near-optimal target configurations for

transactional systems. They are, however, subject to bias and fitting problems, usually caused by in-

adequacies in the training data, among other factors. These inadequacies can be seen as the product

of the training phase not being sufficiently accurate[14], as training times increase with the number

of considered parameters and sample size and suitable, representative data may not be available.

There is also the hindrance of training the mechanism in early deployment stages, which in certain

applications may be unfeasable to perform.

Machine Learning (ML) solutions for concurrency control are usually composed of three main com-

ponents: a statistics collector, which takes measurements of the application performance at runtime;

a machine learning module, which consumes measured values and produces a value for a target

parameter; and a control algorithm, which actuates on the concurrency level based on the obtained

target value and mediates the interactions between the statistics collector and ML module. A number

of different solutions exist in the literature [14, 23], which take varied approaches to tuning, from neu-

ral network algorithms that consume write- and read-set size, to selecting at runtime which features

are desirable for analysis by the ML component.

B – Online Modelling Online methodologies try to quickly adapt to the workload’s behaviour with-

out relying on training-based models. Most proposals for online concurrency control algorithms refine

some sort of Machine Learning algorithm or control loop. Search algorithms that map well to con-

currency control come in great variety, but usually must follow two conceptual steps: Exploration, or

sampling, and exploitation [25]. Exploration tries to broadly scan the parameter space to identify ar-

eas of interest, where there is a grater probability of obtaining better performance. This is also called

sampling phase because well-known sampling approaches are used to obtain representative points

for each parameter, which are then fed to the second mechanism. During the exploitation phase,

on the other hand, the available knowledge is used to determine the optimal point of the parameter

space. Examples of online learning algorithms, which are often applied to the problem of self-tuning

the degree of concurrency include Stochastic Gradient Descent[15], Simulated Annealing, Reinforce-

ment Learning algorithms, etc.

Systems that tune the concurrency degree must quickly react to workload changes. This leads to

36

2.2 Concurrency Degree Tuning

a need to quickly dispose of uninteresting solutions, as well as clever exploration algorithms that

swiftly focus on performance peaking values. These factors contribute to a general necessity of man-

aging the jumps between exploration and exploitation in an elegant way. Sudden workload changes

may require the system to ignore the current exploitation phase, or restart the exploration at any time.

Ansari et al. [15] propose an adaptive concurrency regulation system which regulates available paral-

lelism. Their system uses the ratio of committed transactions versus the total number of transactions

(which they identify as Transaction Commit Rate, TCR) to fuel a Gradient Descent (GD) algorithm

that adjusts the application’s thread count. Four control models are presented, which range from a

simple increase or decrease in thread count to a model that exponentially modifies this quantity, as

well as the sampling intervals. A fifth model, called P-Only Transactional Concurrency Tuning (PoCC)

solves the previous models’ problems by balancing the changes applied to the concurrency level, as

the previous models proved too unstable. Overall, Ansari et al. set a basis for concurrency control

with their work, and achieve satisfying results over the baseline implementation.

On a subsequent study, Ansari builds on the previous model with a novel approach: weighted con-

currency control [27]. The main insight in this mechanism is that better results may be achieved by

(de)activating specific threads, rather than blindly adjusting the concurrency level. The author shows

that TCR rates between different threads of an application can vary widely, and develops a framework

for activating or deactivating them according to specific measurements. This framework is built on top

of the same system as the previous model, which uses a global thread pool, where each thread has

a double-ended queue (deque) for work-stealing. This specific design is not required, but facilitates

the implementation and testing of the system.

In [26], a control feedback loop is exploited to quickly react to workload changes. F2C2 is built on top

of TinySTM [46], a state-of-the-art Transactional Memory system. The authors distinguish between

scalability-limited and fully scalable applications. In the former a system for regulating the parallelism

degree must not only be able to quickly converge on optimal dynamic configurations at runtime. In the

latter, the system must also minimize unnecessary overheads, where concurrency control is normally

not needed or has very limited effects.

The proposal borrows some ideas from the TCP protocol’s congestion control algorithm, namely:

• Slow Start is a mechanism that increases the search window when the algorithm starts. In

F2C2 this concept maps to an exponential search phase that doubles the thread count at every

sample interval while performance increases, and stops when a decrease is detected.

• Congestion Avoidance is a fine-grained search phase where the concurrency level is either

increased or decreased by one at each iteration. This phase starts immediately after Slow

Start.

37

2. Related Work

The detection component uses transaction throughput, defined as tpi, transactions per interval

(or unit time), as a global measure of the system’s performance, but does not average the total tpi.

Instead, the authors avoid global synchronization in this measurement1 by sampling a specific thread,

chosen at random, and taking that thread’s tpi as representative of the system’s performance. As

seen earlier, on Weighted Concurrency Control, this assumption may not hold for specific workloads

or application designs.

Despite these pitfalls, F2C2 introduces clever mechanisms to exploit feedback control loops, which

we will consider in our work, and obtains good results in experimental evaluation.

2.2.1.C Gray Box

Gray Box Models are a type of solution that combines white-box and black-box approaches [44].

This category of algorithms try to achieve the advantages of both, while mitigating the disadvantages.

Most solutions use a combination of analytical models and machine learning systems.

The key drawback of black-box models compared to white-box ones is that the former typically require

observation of a large number of samples in order to derive a current model of the target system, i.e.

they require long training phases. Analytical models, on the other hand, avoid the need for long train-

ing phases as they exploit a-priori knowledge on the internal system’s dynamics.

Offline Machine Learning approaches usually require expensive profiling on the application’s be-

haviour. On the contrary, analytical methods require few samples, but most do not account for work-

load changes during the application’s lifetime, and are usually instantiated with values averaged from

a whole execution. Gray Box models try to circumvent these restrictions by combining online Machine

Learning techniques with White Box models.

Gray Box approaches can be broadly divided in three categories:

• Parameter Fitting [14] relies on fitting techniques to identify areas of a subset of input parameters

whose direct measurement is undesirable. Fitting techniques aim to determine ranges of values

that minimize the model’s prediction errors over the training set.

• Divide and Conquer [23] techniques consist of building models for separate components of the

target system, using AM or ML, which are then combined to obtain a prediction of the system

as a whole. This approach is mainly used in scenarios where different sub-components have

very different dynamics. Additionally, it allows the usage of ML techniques where AM would be
1The authors avoid global synchronization in measurements to reduce overhead

38

2.2 Concurrency Degree Tuning

unusable, particularly when the system’s dynamics are too complex to model using White Box

approaches.

• Bootstrapping [25] relies on building a synthetic training set for a ML predictor by using an AM

component, avoiding expensive initial profiling and training phases. The ML component is re-

trained over time as new data becomes available.

2.2.2 Conclusion

The analysis of the state of the art conducted in the previous sections highlights that there are

no studies in the literature that have attempted to dynamically tune the concurrency degree in STMs

that support parallel nesting. The goal of this dissertation is precisely to fill this relevant gap in the

literature, by implementing a self-tuning mechanism capable of simultaneously adjusting not only the

number of concurrent top-level transactions, but also the number of nested transactions active within

each top-level transaction.

Based on the pros and cons of previous self-tuning solutions for TM systems, we highly favour on-line

black-box models, given that, if well designed they can overcome most of the alternative’s shortcom-

ings.

Additionally, this class of concurrency tuning implementations avoids impractical offline training phases,

which can be costly and time consuming. The solution we devise will also strive to minimize, and if

possible completely avoid, changes to application code.

Having the contents of this chapter in mind, we can begin to explore the different aspects of paral-

lelism we want to tune with our mechanism, given of the problem’s dimensionality. Besides regulating

top-level transactions, inner parallelism also serves as a configurable parameter. Additionally, there

is the possibility of assigning different concurrency levels to different top-level transactions, as the

natural parallelism level may not be uniform.

39

2. Related Work

40

3
Tuning the Concurrency Degree in

Nested Software Transactional
Memory

Contents
3.1 Architecture . 42
3.2 Algorithms . 48

41

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

The main contribution of this dissertation is a tuning component for JVSTM. This component is a

self-tuning system used when JVSTM’s nesting capabilities are in effect. Hereinafter, we refer to this

component as JVSTM tuning.

As highlighted in previous sections, there is a relevant gap in the literature regarding the tuning of

nested STM systems. Our main objective is precisely to fill this gap, and develop a mechanism that

will dynamically tune the concurrency degree of JVSTM. Additionally, we propose to implement a

pluggable component within the JVSTM tuning, to enable experimenting with and testing different

tuning approaches.

This section covers the various aspects of the development of JVSTM tuning.

Section 3.1 provides an overview of the challenges our solution faces, attempts to contextualize them

in the JVSTM architecture and exposes the architecture we devised in this context, and how it inte-

grates with JVSTM explicitly.

Section 3.2 covers the different tuning policies, i.e. tuning strategies, we used to explore the theme of

tuning JVSTM.

3.1 Architecture

A system that tunes the concurrency degree of a nested STM system faces a number of chal-

lenges. These challenges can be specific to the STM implementation, or may apply to other TM

systems in general.

This Section concisely defines the problems we face on our proposed solution, and elaborates

over each one, clarifying its implications and presenting our decisions on how to overcome them.

3.1.1 Search Space

Tuning a nested STM system can be loosely seen as an optimization problem: There is a function

that outputs a measure of the system’s behaviour in terms of evaluating its inputs. The inputs of this

function, in our specific case, are the number of threads JVSTM uses for its transactions. We call

these transactional threads 1. In the simplest case, we want to adjust the number of threads used for

top level transactions and the threads used for nested transactions. An optimization problem has a
1A distinction can be made regarding the types of threads used by an application. ”Regular” threads, used by the application

and orchestrated by it, and the transactional threads JVSTM uses. The latter are exclusively controlled by JVSTM, and lie solely
in the context of JVSTM’s runtime transactional support, despite executing transactional tasks issued by the programmer.
These are the threads we target in our solution.

42

3.1 Architecture

search space, composed of the domains of its various dimensions. Thus, we define the dimension-

ality of our search space to be two, in this simplest case. Its dimensions are the number of top-level

transactional threads and the number of nested transactional threads.

Another relevant interpretation of the dimensionality of our problem relies on defining one dimension

for each level of the nesting tree. A transaction’s level in the tree is its nesting depth. Thus, we would

tune one top-level dimension and an unbound number of nested dimensions. A tuning system based

on this interpretation would provide insights on how the nesting depth influences system performance.

This is far beyond our initial objectives however, and is left for future work, after an exhaustive study

on the simpler cases is complete. Thus, we choose to work with the two dimensions we described in

the previous paragraph. Consequently all nested transactions fall in the nested dimension, and their

nesting level is not considered when tuning the concurrency degree.

Regarding our approximation to an optimization problem, the goal is to optimize the output of the

target function, whatever output measure we choose to represent system performance. As the input

parameters are well-defined, further analysis can be performed. It is desirable for an STM system to

take advantage of the number of cores available in a machine. In the absence of tuning mechanisms,

thread count often fits the number of cores, as the literature suggests over-subscribing processor

cores leads to decreasing performance [36]. STMs often use (static) configurations that match the

number of threads they use with the processor count.

This influences the search space available to a tuning system. The number of nested or top-level

threads cannot be less than one, naturally, but our tuning system should consequently avoid over-

subscribing the processor cores. Thus, we can define limits to the number of threads that can be

active at any given time. In JVSTM, each thread has access to a global thread pool, to which it

submits nested transactions. This thread pool is global. The total number of transactional threads is

defined as the product of the number of top-level threads and the number of nested threads. What-

ever the configuration our tuning system applies to the system as a whole, the total number of threads

cannot be greater than the available processor cores. Regarding our previous analogy, this can be

seen as a constraint of the optimization function.

3.1.2 Tuning and Thread Management

Certain workloads and application profiles may achieve grater levels of performance with different

numbers of transactional threads. Specifically, excessive contention in applications that perform many

operations on the same sets of shared data can lead to high numbers of conflicts, and reduce per-

formance. In such cases it is desirable to reduce the number of concurrent transactional threads. On

43

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

the other hand, if low levels of contention are detected, and unused processor cores are available, an

STM system should try to increase the number of cores it uses in order to increase its performance.

Considering the JVSTM architecture, this leads to the necessity of our tuning system to adjust the

number of top-level or nested threads at runtime.

JVSTM uses a global thread pool for nested transactional threads, while top-level threads are cre-

ated on-demand. However, top-level threads stay alive after they finish their first transaction, and are

used to execute future transactions. Thus, transactional threads cannot be created and destroyed at

will without undermining the natural behaviour of the whole system. This characteristic leads to our

first important design decision: To adjust the concurrency degree of JVSTM, we control the number

of active threads by suspending/resuming the existing ones, not via thread creation and destruction.

This fact may lead to a pertinent hypothesis: The possibility of modifying JVSTM such that active

transactions can be managed by regulating thread creation and destruction. Concretely, we would

regulate the number of transactional threads by creating or destroying threads, instead of suspending

and resuming them. We do not explore this aspect in our work. We ignore the motives behind this

particular aspect of JVSTM’s current architecture, and modifying it to such an extent is out of the

scope of this dissertation. We mention this hypothesis because it could provide valuable insight when

comparing the two approaches.

Affecting a transaction’s execution without influencing its transactional thread means we must change

the behaviour of a transaction when it begins. Specifically, we modified the code for each transaction

class in JSVTM to signal our tuning component before starting. Additionally, if we are to keep an

accurate measure of the active transaction count, we must also know when a transaction aborts or

commits. We followed the same method: transactions signal the tuning system when they finish their

work. For the purpose of managing threads, it is not relevant whether they aborted or committed.

However, this becomes important when we desire to measure the system’s performance.

JVSTM tuning must be aware of the system’s performance when making decisions that will affect its

concurrency degree. Several measurement types are used throughout the architecture. We choose

committed transaction throughput (hereinafter referred to as throughput) as our unit of performance

measurement. Throughput is an absolute measure that reflects the number of committed transac-

tions, and by itself does not represent any time interval. In our solution, any throughput measure-

ments shall refer to a certain time interval, after which a tuning decision is made, to allow for thread

statistics to be collected (throughput measurements). We refer to this time interval simply as interval

hereinafter.

For the tuning system’s measurements we choose throughput because it is the simplest measure-

ment that can accurately represent our main goal: to improve system performance. Other types of

44

3.1 Architecture

measurements exist, such as the ratio between transaction starts and commits, but these are more

convoluted and may be more suited to measure other properties (such as conflict rate, for Conflict

Detection mechanisms).

The statistics collected by the tuning component are global. Each thread registers its begin, abort,

and commit events, and an aggregation process occurs at the beginning of each interval, in which

JVSTM tuning sums each thread’s statistics into global values. To avoid synchronizing this access

between the tuning component and each thread, which could affect a transaction’s critical path and

possibly slow its execution, all statistics are represented by volatile variables2 with no synchroniza-

tion, encapsulated in an instance of the jvstm.tuning.ThreadStatistics class. Each transactional

thread maintains its own instance of this class - this is achieved via Java’s ThreadLocal class, that

guarantees each thread to have a single, isolated copy of a certain object. As each thread takes care

of its own statistics, it needs not synchronize accesses to these members against other transactional

threads. When the tuning mechanism aggregates data, it accesses the statistics without synchro-

nization. This can lead to imprecise measurements, as data races may happen. This problem is not

critical, however, given the sheer number of transactional events (begin, commit, or abort) that hap-

pen during an interval. As the decision-making mechanism runs complex algorithms, and their effects

should last for a significant period, the intervals tend to be in the order of hundreds of milliseconds.

We have not tested different time intervals extensively. Using different intervals could in principle

affect the performance of the system, and our tuning system could even adapt its tuning interval in

response to system behaviour. This analysis is left for future work.

When a transaction signals the tuning system, it declares its intent to start. A check is performed

by the thread against the tuning mechanism’s records, to determine if it should start immediately or

wait before starting. The outcome of this test is determined by how many available slots exist for

threads to start transactions. This property is itself determined by the decision taken by the tuning

mechanism at each interval, and remains constant in each respective interval.

The tuning mechanism must keep a public record (i.e. accessible to the transactional threads) of how

many transactions are allowed to run concurrently. The threads check these records when they start,

and are served by the order in which they request permission to run. These records take the form of a

semaphore in the current implementation. A semaphore provides a clean mechanism to force threads

to wait, and to quickly adjust the concurrency degree of the system. Thus, the tuning mechanism has

two semaphores, one for top-level threads and another for nested ones. The act of enforcing the

tuning decision is materialized by modifying the respective semaphore’s permits. We extended Java’s

Semaphore class in our implementation, in class jvstm.tuning.AdjustableSemaphore. The rationale

for this extension is that Java’s default semaphore class’ method reducePermits is package-private.

reducePermits is a method that reduces the number of permits a semaphore has without blocking.
2We use volatile variables to prevent the usage of cached values when aggregating each thread’s statistics.

45

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

The only other way to decrease a semaphore’s permit count is to use the acquire method, which by

design blocks the calling threads until there is an available permit. Our tuning system must not block

while managing the thread count, which is done by adjusting the number of permits, and hence we

used this approach.

Increasing the number of permits of a semaphore is a trivial operation, achieved by calling the release

method of a semaphore instance using the increment as an argument. The number of permits is

thus modified, and if any threads were waiting they resume execution. When tuning decreases a

semaphore’s permits there are two possible paths: There are enough free permits to accommodate

the change with no further complications, or, conversely, the resulting permit count will be smaller

than the number of currently active threads. In the latter case, the effects of the configuration change

may not be observed immediately. To reduce the number of active threads, we have two options: Wait

for transactions to finish (either by committing or aborting), which will eventually bring their number

down to the desired level, or select a number of threads to deactivate, i.e. abort their transactions,

and re-schedule these transactions, and force the thread to wait. We have chosen the former in

our implementation. Forcibly deactivating threads has been considered, and briefly studied, but was

abandoned. The rationale for this decision is our attempt to modify JVSTM’s current implementation

to the smallest possible extent, with the aim of creating a self-contained tuning system. Creating

a mechanism to re-schedule forcibly aborted threads in a way that recreates their original ordering

would impose too many modifications on JVSTM’s code. Additionally, we have no control on the or-

dering in which the semaphores distribute permits. If a thread were to be deactivated in this manner,

we would have no control over the scheduling of this thread regarding the time at which it would ac-

quire a permit. However, this approach constitutes a pertinent hypothesis to test in future work, as

comparative tests would clarify which approach performs best.

The core of the tuning system is implemented in the jvstm.tuning.Controller class, which or-

chestrates the tuning system. The controller runs in a daemon thread, separate from the application

and the JVSTM library. When JVSTM is first initialized, it instantiates the controller class, and starts

a new thread for it to run (we call this the controller thread). A single instance of the controller is

used by JVSTM. The controller thread is only active at the beginning of the tuning intervals, where

it calls the tuning algorithms to calculate a target concurrency degree for JVSTM. These algorithms

are contained in classes that extend the abstract class jvstm.tuning.policy.TuningPolicy. Sub-

classes of TuningPolicy (hereinafter referred to as tuning policies) represent a single, isolated tuning

strategy that is pluggable into the tuning system, as discussed in this chapter’s preamble (chapter

3). Section 3.2 dissects the algorithms used in the various policies we devised; the following section

(3.1.3) covers the architecture of a tuning policy.

46

3.1 Architecture

3.1.3 Tuning Policies

Tuning policies contain of the main logic used for generating dynamic configurations as a re-

sult of evaluating the system’s performance. All policies must instantiate a PointProvider (class

jvstm.tuning.policy.PointProvider), which implements a sampling algorithm. This algorithm is

responsible for sampling points (whose coordinates represent a system configuration) from the search

space (Section 3.1.1). As we wished to test different tuning policies we must allow flexibility in the

algorithm choice, and thus the sampling algorithms are policy-specific: each policy uses a subclass of

PointProvider, usually defined as an inner class, for modularity. The sampling algorithm may need

information on the previous configurations and their performance to make an informed decision. As

such, the PointProvider class maintains a record of all configurations used by JVSTM. As these

records must be saved for future executions of the policy’s tuning algorithm, we save them until the

application ends its execution. The reason for this design is the production of a log containing all the

steps taken by the tuning system, and their effects. The jvstm.tuning.StatisticsCollector class

fetches this data during the Java VM finalization (via Java’s standard ShutdownHook), and produces a

log file. We use this log file extensively in our test. Further details are provided in section 4, including

the overhead generated by maintaining the logs.

Tuning policies are also the containers of the global statistics (and are responsible for aggregating

them from each transactional thread) and the semaphores which dictate the concurrency configu-

ration. The motive behind this design is code clarity: Conceptually, the controller could host the

global statistics and semaphores, but all interactions with them would require a call to the controller

instance. Since the controller itself does not interact with these members, there is no reason to en-

capsulate them so.

Each tuning policy class must override the base methods run, tryRunTransaction and finishTrans

action (Hereinafter we refer to these methods as the signalling) methods). Transactional methods

invoke these methods in the controller instance, which in turn delegates the call to its tuning policy.

This way, all interactions external to the tuning system are routed through the controller, whereas

internal operations are allowed design freedom. The run method is called by the controller thread at

each tuning interval, and is the method that effectively computes the new configuration. run uses the

policy’s PointProvider instance to sample a point in the search space when needed, or, otherwise

its own logic to exploit a promising configuration. tryRunTransaction and finishTransaction try to

acquire and release a permit from a semaphore, respectively.

The set of design aspects we analysed compose the broad architecture of our solution. The fol-

lowing section (3.2) overviews each tuning policy in detail, and attempt to clearly define its behaviour

by providing an algorithmic perspective.

47

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

Figure 3.1: Architecture diagram. All transactional threads call the Controller’s methods when they begin
(tryRunTx), commit, or abort (finishTx). The Controller delegates these calls to its current TuningPolicy
. The policy instance contains a PointProvider for sampling and maintaing TuningRecords. After sampling
a point, and running its own logic, the policy enforces the configuration represented by the point by adjusting
the available permits of one or more AdjustableSemaphores. The policy’s tryRunTx and finishTx methods
respectively try to acquire and release a permit from a semaphore.

3.2 Algorithms

The centre of algorithmic complexity of JVSTM tuning lies in the tuning policies used by the con-

troller. Each tuning policy subclass represents an isolated, independent algorithm to optimize the

system’s performance, i.e. produce a dynamic configuration by evaluating performance and previous

configurations.

Policies are run by the controller instance, which centralizes all outside interactions with the tun-

ing system. Their tuning logic is entirely independent of other tuning components, and is executed at

the beginning of each tuning interval.

Section 3.1 offers an architectural overview of the system and the policies’ role in it, whereas this

section analyses each policy in an algorithmic perspective. Each policy is described in detail, and has

an associated search pattern figure. The purpose of these figures is to convey a visual representa-

tion of a policy’s search pattern, to complement the algorithmic description. The X axis represents

top-level threads, the Y axis nested threads. The search space is bound so it does not oversubscribe

the processor cores, that is, the total sum of transactional threads, top-level or otherwise, must not be

greater than the processor count. Static local and global optima are highlighted. Grey lines represent

the search path of the algorithm, and greyscale points represent configurations enforced by the tuning

system. The darker the point, the more often it was chosen and enforced.

48

3.2 Algorithms

3.2.1 Explore and Exploit

An algorithm that tunes the concurrency degree of a parallel-nested STM can be regarded as an

optimization algorithm: we make use of this subject’s terminology to establish analogies and better

describe the inner workings of our solution. One such aspect is the part of an algorithm that dictates

whether it should explore points in the global search space of the current tuning context (bound by

the machine’s available cores), or exploit promising configurations that were previously found.

In the policies we created, this particular aspect is materialised as the simplest possible mechanism

to switch between exploration and exploitation (hereinafter referred to as switching). Considering the

nature of the problem, it is natural to focus on the sampling process first, and on switching later: A

policy cannot correctly decide between exploration or exploitation if its sampling algorithm is immature

and lacks robustness, as this decision should be made using information about the previously used

points.

Following this reasoning, we use extremely simple switching mechanisms. Given a tuning policy

with a sufficiently simple switching mechanism that ensures a basic measure of fairness 3, the results

obtained from running JVSTM with this tuning policy should provide a general representation of the

policy’s behaviour. Thus, the research of efficient, and possibly complex, switching algorithms is left

for future work, and we focus our work on strengthening the sampling algorithms of each policy. All

the policies use simple switching mechanisms as described, with subtle variations.

3.2.2 Default Policy and Overhead Measurement

To compare the behaviour of executing JVSTM with and without tuning (baseline), we have cre-

ated two special tuning policies.

DefaultPolicy is a policy that essentially does nothing. Statistic are not kept or collected, and its

signalling and run methods are empty. This is equivalent of running JVSTM with no tuning, with an

exception: Transactional threads will still invoke the controller’s methods in their transactional events

(begin, commit and abort). The the effect of these invocations is negligible, as no synchronization or

complex operations are involved, are the methods have no code of their own.

The results of running JVSTM with this policy are used in our tests as the baseline results. The

results of running JVSTM with this policy are a close approximation to the results of running an un-

modified JVSTM. We use this policy as our baseline to simplify the execution of the experimental

evaluation.

3We refer to fairness in such algorithms as the property that ensures that both exploration and exploitation should eventually
have an opportunity to run. One such simple example is: a policy should have as many consecutive executions exploiting as it
does exploring, once a promising point is found. This particular mechanism is used in the RRS policy (Section 3.2.6)

49

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

FakeLinearGD is a policy that performs all the steps we described so far, and uses a Gradient Descent

algorithm (specifically, linear gradient descent, described in section 3.2.3.A) to sample the search

space, but does not enforce the configurations it produces. This policy is used to measure the over-

head of running the whole tuning process independently of the effects it exerts on JVSTM’s baseline

behaviour.

Performance comparisons are obtained by evaluating throughput measurements and/or execution

time. Chapter 4 elaborates on these measurements and references these two policies in the context

of analysing the experimental results we obtained.

3.2.3 Gradient Descent

Gradient Descent (GD) is a thoroughly studied category of optimization algorithms used for a va-

riety of problems. Gradient Descent methods are based on the observation that if a multi-variable

function is well-defined in a certain region, this function’s value decreases fastest if one follows the

direction of the function’s negative gradient at a given point, i.e. if the function’s derivative is not zero

at that point, following the steepest slope guarantees the values taken by the function will decrease

as fast as possible in the function’s domain.

The GD algorithm variants are discrete due to the nature of our problem. The tuning configura-

tion search space is composed of the 2D points inside the region bound the restrictions described

in 3.1.1. Therefore, the sampling algorithms must extract points with non-fractional coordinates from

this search space. In the context of sampling the search space we refer to tuning configurations as

points where it is appropriate.

We use this GD algorithms in two policies. The following sections describe the particular variants

used in each of these policies.

3.2.3.A Linear Gradient Descent

The Linear Gradient Descent (LGD) policy, embodied in the LinearGradientDescent44 class, im-

plements the simplest variant of the GD algorithm. From the perspective of our 2D search space, LGD

scans four points in the vicinity of the current point. Visually, these adjacent points can be observed

be immediately above, below, to the left, and to the right of the current point. Each LGD execution

sets one of these points as the current system configuration, and saves its results at the end of the
4In the initial development phases we went through a number of iterations of this policy until we arrived at a stable architec-

ture, yielding many of the insights presented in Section 3.1. LinearGradientDescent4 is the fourth and final such iteration.

50

3.2 Algorithms

tuning interval. After measuring each point (the center point and the four neighbouring points), LGD

chooses the point with the best throughput and sets it as the current point, after which it re-starts the

process.

This selection of the most promising point in a neighbouring region can be regarded as the exploita-

tion phase of these category of algorithms. More complex strategies can be examined in future work.

An example of one such strategy would be to record several of these scan phases and exploit (i.e. run

a certain number of tuning intervals) the most promising point found. In the present case, switching

to exploitation is triggered when no neighbouring point exhibits better performance: In this case, LGD

maintains its current configuration.

LGD is the simplest of the GD policies, and attempts to measure the effect of applying such a sim-

plistic approach to tuning.

Figure 3.2 provides a visual representation of the exploration path taken by an instance of this search

algorithm.

51

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

Figure 3.2: Linear GD search path and static optima. The X axis represents top-level threads, the Y axis nested
threads. Grey lines represent the search path of the algorithm, and greyscale points represent configurations
enforced by the tuning system. The darker the point, the more often it was chosen and enforced. In the LGD
case, we can see the algorithm converging around a static local optimum with coordinates (7,4).

3.2.3.B Full Gradient Descent

Full Gradient Descent (FGD) is an extension of the previous policy which scans all the neighbour-

ing points relative to the current point.

All the aspects of this policy mirror the ones used in LGD, with the exception of the sampling al-

gorithm: Instead of extracting four points, FGD samples all the neighbouring points. In a 2D plane5,
5For correctness, the sample is taken from the set of points with non-fractional coordinates that are contained in a two-

dimensional plane, not the plane itself.

52

3.2 Algorithms

the cardinality of the set containing these points is 8.

This policy takes longer than LGD to scan the neighbourhood of each point in the search space,

but has more information with which to make an informed decision to tune the system’s configuration.

The additional time FGD takes to gather information results from a trade-off that affects all policies:

The more points a policy explores, the longer the period of time it spends before discovering a promis-

ing point and starting exploitation.

Figure 3.3 provides a visual representation of the exploration path taken by an instance of this search

algorithm.

53

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

Figure 3.3: Full GD search path and static optima. The X axis represents top-level threads, the Y axis nested
threads. Grey lines represent the search path of the algorithm, and greyscale points represent configurations
enforced by the tuning system. The darker the point, the more often it was chosen and enforced. FGD does not
converge to any static optima, despite scanning point neighbourhoods more exhaustively.

3.2.4 Hierarchical Scan

The Hierarchical Scan (HS) policy samples points by selecting them from scanlines. Given the

nature of the search space, a scanline can be defined as a set of points with one fixed dimension and

one free dimension, e.g. the set of points whose X (top-level) coordinate is the same for all points and

each point’s Y (nested) coordinate represents one of the possible values for y given x.

This policy explores the hypothesis that there may exist line-like regions in the search space that

54

3.2 Algorithms

yield better performance results than their neighbouring regions. Visually, this notion could be repre-

sented by a long lines of points, either vertical or horizontal, whose throughput value is greater than

their neighbours, e.g. a line-like region of local optima.

The rationale behind the creation of this policy was to test if these types of regions existed in our

search space. The literature suggests optimum points frequently cluster together[47]. With this pol-

icy we concluded that the hypothesis that these clusters are line-like does not hold, as discussed in

Chapter 4.

Excluding its sampling algorithm, HS mirrors the patterns used in LGS and FGS. Specifically, af-

ter a scanline is sampled, the most promising point is selected and exploited for one tuning interval.

Figure 3.4 provides a visual representation of the exploration path taken by an instance of this search

algorithm.

55

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

Figure 3.4: Hierarchical Scan search path and static optima. The X axis represents top-level threads, the Y
axis nested threads. Grey lines represent the search path of the algorithm, and greyscale points represent
configurations enforced by the tuning system. The darker the point, the more often it was chosen and enforced.

3.2.5 F2C2

The F2C2 policy follows the work developed by the authors of [26], where the authors apply of

some of the TCP protocol’s mechanisms to tuning a non-nested STM system. There is an initial ex-

ploration phase, which performs a coarse-grained search over the search space, and a subsequent

exploitation phase, or fine-grained search. The exploration process exponentially increases the num-

ber of allowed transactional threads (this is performed in each consecutive tuning interval) until one

of these increments yields a throughput measurement that is lower than the previous measurement.

This search pattern attempts to quickly converge on a broad region of interest in the search space, by

56

3.2 Algorithms

avoiding exhaustive searches. The exploitation process imposes unitary fluctuations on the system’s

configuration, and follows the steepest slope in a manner similar to GD. The objective of this phase is

to comb over the region of interest in detail, and approximate the configuration to an optimal point.

The original algorithm does not re-start its exploration phase. This assumes that the application’s

workload remains relatively stable during execution, and thus the region of interest found by the ex-

plore phase will be the optimal region to exploit through the application’s lifetime. In the benchmarks

used in our tests (discussed in section 4) this assumption does not hold. Workload shifts occur

frequently and unpredictably. Additionally, we have to account for the greater dimensionality of our

search space, when compared to the original algorithm. Thus, we devised a two-dimensional version

of this algorithm, and a simple switching algorithm for our implementation of F2C2 (the switching al-

gorithms follows the logic presented in section 3.2.1).

To explore our two-dimensional search space in the manner devised ty F2C2’s authors, we fix one

dimension and perform an exponential search step on the other. Afterwards, the originally fixed di-

mension is exponentially incremented, fixed again, an the process restarts. With this approach we

sample points from the whole search space following the coarse-grained approach of F2C2.

F2C2 stops exploring after it performs the coarse-grained search over the whole search space. The

search pattern fits our search space graciously, as shown in figure 3.5. This coarse-grained search

phase highlights the most promising points for exploitation. F2C2 then starts exploiting one of these

point (the most promising) by enforcing the configuration represented by the 2D point for as many tun-

ing intervals as the exploration phase used. After this set time period, F2C2 re-starts the exploration

phase, in the same manner as described above.

Figure 3.5 provides a visual representation of the exploration path taken by an instance of this search

algorithm.

57

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

Figure 3.5: F2C2 search path and static optima. The X axis represents top-level threads, the Y axis nested
threads. Grey lines represent the search path of the algorithm, and greyscale points represent configurations
enforced by the tuning system. The darker the point, the more often it was chosen and enforced. The exponential
increments in each coordinate can be seen as the long jumps in this visual representation.

3.2.6 Recursive Random Search

Recursive Random Search (RRS) [47] is a sampling algorithm that tries to avoid inefficiency when

performing Random Sampling (RS). As shown in the authors’ published work, RS is guaranteed to

eventually converge to a global optimum. However, after a certain number of sampling steps, its effi-

ciency drops exponentially, which often leads to long periods of time before convergence is achieved.

The authors propose to avoid this inefficiency in the algorithm by reducing or re-aligning the search

space size before this inefficient phase is reached.

58

3.2 Algorithms

With this algorithm we wished to test the adequation of Random Search to our problem. From an

initial, uninformed point of view, this class of sampling algorithm did not seem appropriate, as our

workloads vary frequently during execution, and the search space configuration (Section 4.2) is noisy.

We wished to test this empirically, however, to validate or discard this possibility based on real data.

RRS relies on the assumption that promising points cluster around some optimum, either local or

global. The authors provide a mathematical model of the probability of finding one of these clusters

after a certain number of samples is taken. The model outputs this number, called n, which is the

number of samples to be taken before a promising point can be identified. Two parameters must be

configured, p and r. p represents the confidence in finding a promising point (i.e. close to an optimum)

after n samples, and r represents the measure by which the search space is reduced after this find.

By carefully selecting parameters (p and r), one can obtain a precise number n of sampling steps

to be taken such that any further sampled point with a performance measurement above the average

performance measure of the first initial n points will be a point that is worth exploring, with confidence

p. p reflects the confidence level one has that these partitions of the search space are likely to con-

tain a global optimum. The authors suggest that p should be initialized to a high value (0.99 in their

publication), and r should be considered carefully, as it regulates the switching between exploration

and exploitation (0.1 in their publication).

p is dependant on the characteristics of the search space, specifically on the clustering of promis-

ing points. Should the optima be completely independent, and form no clusters, p should take a

different value. We did not test different value ranges.

When the algorithm is exploring, after n points are sampled their respective measurements are av-

eraged. Any subsequent point that has a measurement lower than this average triggers a resize or

re-align operation.

Resizing the search space is accomplished by removing points from it until the size requirement

is met, starting with those closest to its border. Re-aligning the search space consists of defining

its centre at a certain point (e.g. a promising point found in exploration) and including neighbouring

points until its size matches the required size. These two operations increase the resolution of the

search phases

Exploitation is not well-defined is this algorithm. One can argue that decreasing the search space

space size is an exploitation technique in itself. However, a mechanism that resembles exploitation is

triggered when the exploration of the current search space has sampled a number of points greater

than the previous iteration has (i.e. the exploration phase that happened before the search space was

59

3. Tuning the Concurrency Degree in Nested Software Transactional Memory

modified) with no new candidate points. In this event, the search space is shrinked around the current

best point.

When the search space size falls within a given threshold, exploration is re-started, using the orig-

inal search space.

60

4
Experimental Results

Contents
4.1 Experimental Setup . 62
4.2 Results . 65

61

4. Experimental Results

In this chapter we evaluate the performance obtained by JVSTM’s tuning system. Section 4.1

describes the experimental setup we used in our tests. Section 4.2 presents the results we obtained

and discusses their implications.

4.1 Experimental Setup

Two benchmarks were used to evaluate JVSTM tuning’s performance: STAMP Vacation and STM-

Bench7. Sections 4.1.1 and 4.1.2 describe the configuration and usage of these benchmarks. Section

4.1.3 details our methods for data collection and analysis.

4.1.1 Vacation

Vacation belongs to the Stanford Transactional Applications for Multi-Processing (STAMP) bench-

mark suite [48], a set of benchmarks for transactional memory systems that tries to provide realistic

and diverse use cases for a transactional application. Vacation emulates a travel reservation system

by maintaining a database implemented as a set of trees. This structure stores the identification of

clients, as well as their reservations for varied travel items.

During execution, clients threads perform sessions that interact with the database kept by the bench-

mark. These sessions perform tasks such as reservations, cancellations and updates. Each of these

sessions is encapsulated in a coarse-grained transaction, to guarantee database consistency. Each

operation performed in a session is contained in a nested transaction, and can run concurrently with

other operations. Vacation emphasizes the elegance of using STM systems for parallelization, as

parallelizing Vacation with lock-based schemes is far from trivial.

Vacation allows the contention level to be parametrized via controlling the percentage of objects in

the database that can be accessed by operations. Lower percentages mean a more restrict section

of the database will be accessed by transactions, thus increasing concurrent access and contention,

while higher percentages induce less contention. In our tests we consider two configurations of this

parameter: High-contention, which accesses 1% of the database, and Low-contention, which is al-

lowed access to 90% of the database.

Vacation is initialised with a fixed number of transactions (tasks) to run, and its execution time varies.

As direct throughput measurements are not trivial to gather in Vacation, we measure execution time

62

4.1 Experimental Setup

for each run. All algorithms go through an exploration-exploitation loop until the benchmark finishes

execution, and therefore the configuration never stabilizes on a given value. As we mentioned in

Chapter 3, we focus on sampling rather than switching between exploration and exploitation. Work-

loads are highly variable when compared to the static optima we found in preliminary analysis, that is,

the static optima are not stable during execution.

4.1.2 STMBench7

STMBench7 is a benchmark for STM systems that tries to emulate a complex and realistic appli-

cation [49].

The data structure used by STMBench7 consists of a set of graphs and indexes intended to be

representative of complex, real-life applications. Several operations are supported to model a wide

range of concurrency patterns and workload profiles. STMBench7 usage is simple to configure. Users

may choose a workload type, number of top-level and nested threads and duration of the benchmark.

Additionally, users can enable or disable structural modification operations and long graph traversals.

These two aspects are not relevant to our work and are disabled throughout our tests.

We provide results for three workload types: read-only, read-write, and write-only. In our tests we

collect data for various configurations regarding the number of initial top-level and nested threads. All

tests use a fixed length of 20 seconds. As in Vacation, the explore-exploit loop runs until the bench-

mark finishes. The results we obtained for STMBench7 were not averaged from a series of tests.

Rather, they are come from a single test spanning all our pre-defined configurations and policies.

Thus, care must be taken when interpreting them.

4.1.3 Data Collection

4.1.3.A Vacation

For the Vacation benchmark we collect a variety of measurements and represent them in plots to

visually convey the information. These measurements are:

• Execution time - This measure represents the time it takes for the main segment of the algorithm

to execute. By design, Vacation does not take initialization and finalization times into account,

as the execution times of these processes are not relevant and could introduce bias in the

63

4. Experimental Results

results. This measurement is obtained directly from Vacation’s output. Each value presented is

the average of three test runs.

• Overhead - A comparison between the execution times of running Vacation with the baseline

JVSTM, JVSTM with statistics collection, JVSTM with tuning, and JVSTM with tuning and statis-

tics collection. Each result is averaged from three executions.

• Exhaustive static configuration search - This measurement allows us to obtain a visual repre-

sentation of the execution time of each possible static configuration. Although the benchmark’s

behaviour at runtime may not reflect the information these plots convey, they provide a broad

notion of how much noise is present in the search space.

4.1.3.B STMBench7

This sections details the measurements we take from STMBench7’s execution, and their relevance

to our analysis.

• Throughput - When STMBench7 finishes, it outputs a log with extensive information. We filter

the average throughput and map its value on a plot for different tuning policies and starting

configurations. We normalize this value, i.e. we divide all throughput measurements by the

default policy’s measurement. This way, the plots convey a clear notion of speedup relative to

the baseline JVSTM.

• Exhaustive static configuration search - This measurement mirrors the one we use in Vacation. It

allows us to perform a visual analysis of the execution time of each possible static configuration.

4.1.4 Platform

We ran the totality of our tests in a machine with 4 AMD Opteron 6168 processors, with 12 cores

each, yielding 48 total processing cores, and 128 GB of RAM, running linux and the Java Runtime

Environment version 1.6.0 43.

64

4.2 Results

4.2 Results

This sections presents the results we obtained by running tests as described in section 4.1 for

each benchmark. Each subsection discusses the implications these results.

4.2.1 Vacation

4.2.1.A Search Space overview

We mapped the execution time of all system configurations allowed by the number of cores in our

test machine, for Vacation. We call these exhaustive results. Exhaustive results do not reflect the be-

haviour of the tuning system. Instead, they provided valuable insight of our search space in an initial

analysis, as we built a notion of what to expect in terms of noise, i.e. the measure of how smooth our

search space is in terms of each configuration’s execution time.

Figure 4.1: Vacation exhaustive test results for high contention. Horizontal axes represent top-level and nested
thread count. The vertical axis represents execution time, in milliseconds. The flat portions of the graph where
execution time is zero were not measured, as they represent configurations that would oversubscribe the pro-
cessor cores. Tests were run using static configurations, i.e. configurations that remain unchanged for the whole
execution.

Figure 4.2 details the search space mapping for Vacation running with a high contention configu-

65

4. Experimental Results

Figure 4.2: Vacation exhaustive test results for low contention. Horizontal axes represent top-level and nested
thread count. The vertical axis represents execution time, in milliseconds. The flat portions of the graph where
execution time is zero were not measured, as they represent configurations that would oversubscribe the pro-
cessor cores. Tests were run using static configurations, i.e. configurations that remain unchanged for the whole
execution.

ration, whereas figure 4.1 details the search space mapping for the execution of this benchmark with

a low contention configuration.

These plots demonstrate a high level of noise once the number of top-level and nested threads

increases, as the performance curves are not monotonic. This confirms our intuition that a tuning

system must have a robust sampling algorithm, to avoid converging to a local optimum that may be

far from the system’s optimal configuration.

These 3D plots are not intended to provide precise information about each configuration’s perfor-

mance. Rather, they portray a general vision of performance variation between configurations. The

same applies to STMBench7’s exhaustive results, detailed in section 4.2.2.A.

4.2.1.B Overhead

To measure the overhead of the various components of our system, we separately measure the

toll they take on execution time, running the Vacation benchmark.

Figure 4.3 compares the execution times of running Vacation with the baseline JVSTM (i.e. the

66

4.2 Results

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

low-contention high-contention

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Configuration

Default
Stats
Tuning
Tuning+Stats

Figure 4.3: Vacation overhead test results.

Default tuning policy, represented as ”Default”), JVSTM with statistics collection (”stats”), JVSTM with

tuning, and JVSTM with tuning and statistics collection. Each result is averaged from three execu-

tions. For the tuning times we used Linear Gradient Descent.

We conclude that the component parts of our system do not exert too much overhead on the nat-

ural execution of JVSTM, introducing average overhead levels of less than 1%. With low contention

the system obtains worse performance than the baseline JVSTM. This result is expected, and dis-

cussed in detail in the following section.

With high contention values the execution time decreases. This is desirable, and expected, because

with high contention the tuning mechanism the number of threads, which leads to JVSTM taking less

time to execute.

4.2.1.C Execution Time Comparison

With Vacation, we obtain our main performance comparison results by measuring the benchmark’s

execution time. We use a series of pre-defined configurations to represent different cases of nesting

(or lack thereof).

Figure 4.4 details execution time comparison for Vacation with high contention, and figure 4.5 for low

contention.

67

4. Experimental Results

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1x1 1x2 1x4 2x3 4x3 8x3 16x3

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Initial Configuration (top x nested)

jvstm execution time comparison

Default
FakeLinearGD
LinearGD
FullGD
HierarchicalScan
F2C2
RRS

Figure 4.4: Vacation execution time test results for high contention. Lower is better. All policies perform worse
than the baseline (Default policy, white squares), although Linear GD, Full GD and RRS have small performance
losses. F2C2 performs especially bad in this scenario.

68

4.2 Results

 0

 20000

 40000

 60000

 80000

 100000

 120000

1x1 1x2 1x4 2x3 4x3 8x3 16x3

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Initial Configuration (top x nested)

jvstm execution time comparison

Default
FakeLinearGD
LinearGD
FullGD
HierarchicalScan
F2C2
RRS

Figure 4.5: Vacation execution time test results for low contention. Lower is better. Hierarchical Scan and F2C2
perform generally bad, while the other policies keep up with the baseline, but degrade performance when the
system’s initial configuration has a higher numbers threads (8x3 and 16x3 configurations). RRS follows this
pattern, but is the policy with lowest performance losses.

The results obtained show that there is no performance gain associated with tuning the system’s

configuration for this benchmark. Tuning generally performs worse than the baseline JVSTM. This is

slightly diluted with high contention configurations, and is expected, as in this configuration the sys-

tem experiences many more conflicts than with low contention. This in turn leads to the performance

losses being smaller with high contention configurations.

The Gradient Descent policies generally perform poorly. This is associated with the slow sampling

method they use. In a search space with many local optima and high variation between configura-

tions, these fail to quickly converge to a suitable configuration, and become stuck either in local optima

or in long sampling phases that do not inspect a relevant portion of the search space. However, these

policies manage to keep performance relatively close to the baseline.

RRS is the policy with the smallest performance loss. This effect is associated with its efficient sam-

pling algorithm, adapting to Vacation’s highly unstable workload behaviours using high contention.

Random sampling is designed to cover significant portions of the search space quickly, which may

lead to regions of interest being found quickly, after which the algorithm reduces the search space

around them. Hierarchical Scan does not keep up with the baseline results, on par with F2C2.

69

4. Experimental Results

4.2.2 STMBench7

4.2.2.A Search Space Overview

With STMBench7, as with Vacation, we mapped the whole search space to examine its shape.

Figures 4.6 and 4.7 present this mapping for read-only and write-only configurations, respectively.

Figure 4.6: STMBench7 exhaustive test results - read-only workload. Horizontal axes represent top-level and
nested thread count. The vertical axis represents average throughput, in commits/second. The flat portions of
the graph where execution time is zero were not measured, as they represent configurations that would oversub-
scribe the processor cores. Tests were run using static configurations, i.e. configurations that remain unchanged
for the whole execution.

Read-only configurations on STMBench7 favour a high level of top-level threads and low level of

nesting. Because this is a read-only configuration, conflicts are rare, and long transactions can run

unimpeded with infrequent aborts, which explains the performance gains.

70

4.2 Results

Figure 4.7: STMBench7 exhaustive test results - write-only workload. Horizontal axes represent top-level and
nested thread count. The vertical axis represents average throughput, in commits/second. The flat portions of
the graph where execution time is zero were not measured, as they represent configurations that would oversub-
scribe the processor cores. Tests were run using static configurations, i.e. configurations that remain unchanged
for the whole execution.

Write-only configurations highly favour nesting. A high number of writing transactions will cause

frequent conflicts and subsequent aborts. Thus, high levels of nesting, which cause the system to

subdivide its operations into smaller transactions, cause these conflicts to occur in shorter opera-

tions, which can be quickly aborted and re-started, yielding better performance results.

4.2.2.B Execution Comparison

This section details the performance results we obtained with each tuning policy, for different start-

ing configurations of STMBench7, and different workload types.

Contrary to Vacation, STMBench7 results are presented in terms of speedup (relative to the baseline)

obtained via measuring the system’s average throughput. STMBench7 is built with this specific mea-

surement in mind, and the execution time is fixed for each execution. Thus, we cannot use the latter

metric as a performance indicator.

The plots display a horizontal line that represents unitary speedup, i.e. the performance of the default

71

4. Experimental Results

policy, which reflects JVSTM’s baseline performance. Speedup is a measure of how much better a

given configuration performs relative to another, e.g. a speedup of two means the system yielded

twice the average throughput of the baseline, whereas a speedup of 0.5 represents a halving of the

baseline throughput.

Figure 4.8: STMBench7 throughput test results - read-only workload.

Figure 4.8 presents the results for a read-only workload (meaning the system experiences low

contention), with pre-set starting thread configurations that represent different levels of nesting.

Gradient Descent policies are on par with the baseline for low thread starting configurations. They

show performance peaks on the 2x3 configuration, which can be related to the search space plots

presented before. The 2x3 configuration is not particularly efficient, but is close to neighbouring con-

figurations that show extreme performance improvements. Therefore, we surmise that GD policies

quickly locate these peaks when starting with a 2x3 configuration. With higher thread configurations

performance decreases: as GD policies do not efficiently exploit promising points, they never stabilise

around efficient configurations. As such, worse points are constantly enforced on the system.

72

4.2 Results

Hierarchical Scan is generally worse than the baseline, especially with high thread configurations.

At best, this policy remains on par with the baseline, on the 2x3 configuration.

RRS and F2C2 perform on par with the baseline. RRS displays one spike in throughput, also in

the (2x3) configuration. We believe this may be a statistical quirk, as RRS has no particular reason

to favour a given starting condition, given that it randomly scans the whole search space. One al-

ternative hypothesis would be that RRS randomly sampled a promising point after the first round of

exploration, and quickly converged on this point, and the area of interest around it. This is unlikely,

however, because should that be the case, similar behaviour would be expected from other starting

configurations, but is not observed.

Figure 4.9: STMBench7 throughput test results - read-write workload.

Figure 4.9 presents the results for a mixed read-write workload, with pre-set starting thread con-

figurations which represent different levels of nesting.

73

4. Experimental Results

Generally, no policy yields promising speedups in this type of workload, and at best remain on par

with the baseline. Small speedup improvements are achieved in specific cases, but are not enough

to justify the adequacy of the policy that yielded them to to this workload type.

We surmise that mixed workloads will have high levels of noise in the search space performance

levels, and are thus difficult to tune. Multiple local optima, frequent behaviour changes in conflict

and commit rate, and other factors may contribute to this hypothesis. This workload type is where

the tuning system obtains its worse results. Therefore, future work should focus on dealing with this

particular case, and improving, or at least maintaining, performance levels when tuning is used on

mixed workloads.

Figure 4.10: STMBench7 throughput test results - write-only workload.

Finally, figure 4.10 presents the results for a write-dominated workload (the system experiences

high levels of contention), with pre-set starting thread configurations which represent different levels

of nesting.

74

4.2 Results

Almost all policies are able to at least remain on par with the baseline. Starting configurations with

high level of nesting experience the highest levels of contention, and thus are ideal candidates for

tuning. These show remarkable speedup when tuned, particularly in the 2x3 and 4x3 configuration,

where Gradient Descent policies seem to perform well and exhibit high levels of speedup. This may

be attributed to this starting configuration being close to a global optimum.

These improvements in system performance are expected, as high-contention settings are the best

candidates for our tuning system. The high level of conflicts implies that there is a great amount of

wasted work, which the tuning system reduces when it finds a more suitable configuration. Thus,

write-dominated workloads show the best improvements in performance. These results obtained in

these tests should, however be observed with care. As results are not averaged from a series of runs,

there may be statistical quirks, even if the observed behaviour is consistent for the same configura-

tions across different polices.

75

4. Experimental Results

76

5
Conclusions and Future Work

77

5. Conclusions and Future Work

Modern devices have increasing computational power and core count, which allow for the explo-

ration of extremely complex applications that are unavailable with traditional single-core machines

and sequential architectures. Financial and business computing, for example, gain competitive ad-

vantages in exploiting additional parallelism in their applications. Still, parallel programming is far

from trivial, and the average programmer cannot implement such complex patterns in a manner that

exposes the maximum available parallelism.

Software Transactional Memory is one of the most successful paradigms to abstract the inner com-

plexity of modern-day parallelism, and effectively hides the burden of explicitly parallelizing an appli-

cation with complex locking and synchronization schemes. STM is far from being an optimal solution

however, as it is not globally appropriate for all application and workload profiles. As these can take

many forms and respond differently to various transactional configurations, we propose in this disser-

tation to establish a framework with which one can study and test different types of tuning in STM

systems, and to experiment with different tuning policies and measure their effects and results.

Tuning a nested STM system is no trivial task in itself. The architecture of the STM implementa-

tion must be considered, and a deep knowledge about its inner workings is required. However, the

majority of challenges that the design of this system encompasses can be conceptualized and trans-

ported into a general STM environment, and can be useful even in the light of different architectures.

The core of the work developed for this dissertation was the creation of a tuning component in JSVTM,

a state of the art STM system developed in the Java programming language. We showed that it is pos-

sible to introduce such a component without meddling excessively with JVSTM’s code, thus creating

a nearly self-contained package. Additionally, this component imposes no significant overhead on the

system, as shown by our overhead tests. Specifically, we ran the whole tuning process, but discarded

the configurations it produced, effectively exerting the natural overhead of the tuning component with-

out any actual tuning taking place. The results were satisfying, as overhead is kept to a minimum. If

the overhead levels were too high, they would entirely undermine the advantages of tuning the system.

Several unexplored or abandoned research paths were briefly overviewed, as we believe they may be

worth studying to better understand the nature of tuning nested STM systems.

We used two benchmarks, Stamp (Vacation) and STMBench7, to assess the gains of the tuning com-

ponent we created, with respect to each of its tuning policies. No single policy appears to be ideal, as

the majority produce spikes in throughput on some specific configurations, but otherwise show neutral

or negative effects on the system’s performance. This is an expected result, as this research had an

exploratory nature. Some specific cases show promising results. Tuning JVSTM with the SMTBench7

and a write-only (high contention) configuration yielded exceptional performance gains. This case is

isolated, however, as other configurations and benchmarks did not achieve these gains. Despite this

78

fact, we believe the insights provided by our experimenting, and the data we collected are valuable

contributions to current understanding and future work on this subject.

There is a vast number of algorithmic approaches that can be explored in future work to enhance

the data we provide and lead nested STM tuning to be a pervasive performance enhancement tech-

nique on nested STM systems. The two key points we distinguish in a tuning policy are sampling

and exploration/exploitation. Our results show that robust sampling techniques can converge on op-

tima configurations faster than simple hill-climbing or gradient descent techniques. An equilibrium in

exploration and exploitation phases is also critical, and different strategies for tuning this aspect are

available in the literature.

Our data collection focused on retrieving measurements of the system’s throughput and execution

times, commonly used in the literature, with the intent of providing a clear and accurate contribution

to this area of research. Additionally, this allows our results and data collection tools to be reused in

future work.

79

5. Conclusions and Future Work

80

Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A Quantitative Ap-

proach, 5th ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[2] K. Olukotun and L. Hammond, “The future of microprocessors,” Queue, vol. 3, no. 7, pp. 26–29,

Sep. 2005. [Online]. Available: http://doi.acm.org/10.1145/1095408.1095418

[3] M. J. Quinn, Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education Group,

2003.

[4] T. Harris, J. Larus, and R. Rajwar, Transactional Memory, 2Nd Edition, 2nd ed. Morgan and

Claypool Publishers, 2010.

[5] P. Romano, N. Carvalho, and L. Rodrigues, “Towards distributed software transactional mem-

ory systems,” in Proceedings of the 2Nd Workshop on Large-Scale Distributed Systems and

Middleware, ser. LADIS ’08. New York, NY, USA: ACM, 2008.

[6] P. Rundberg and P. Stenström, “An all-software thread-level data dependence speculation sys-

tem for multiprocessors,” Journal of Instruction-Level Parallelism, vol. 3, 2001.

[7] A. Welc, S. Jagannathan, and A. Hosking, “Safe futures for java,” SIGPLAN Not., vol. 40, no. 10,

pp. 439–453, Oct. 2005. [Online]. Available: http://doi.acm.org/10.1145/1103845.1094845

[8] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural support for lock-free data

structures,” in Proceedings of the 20th Annual International Symposium on Computer Architec-

ture, 1993, pp. 289–300.

[9] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha, “Unlocking concurrency,” Queue, pp. 24–33,

2006.

[10] S. Lie and K. Asanovic, “Hardware support for unbounded transactional memory,” Master’s the-

sis, MIT, Tech. Rep., 2004.

[11] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum, “Hybrid transactional

memory,” SIGPLAN Not., vol. 41, no. 11, pp. 336–346, Oct. 2006. [Online]. Available:

http://doi.acm.org/10.1145/1168918.1168900

[12] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Harris, and

M. Valero, “Atomic quake: Using transactional memory in an interactive multiplayer

81

http://doi.acm.org/10.1145/1095408.1095418
http://doi.acm.org/10.1145/1103845.1094845
http://doi.acm.org/10.1145/1168918.1168900

Bibliography

game server,” SIGPLAN Not., vol. 44, no. 4, pp. 25–34, Feb. 2009. [Online]. Available:

http://doi.acm.org/10.1145/1594835.1504183

[13] J. a. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and R. Guerraoui, “Unifying thread-level spec-

ulation and transactional memory,” in Proceedings of the 13th International Middleware Confer-

ence, ser. Middleware ’12. New York, NY, USA: Springer-Verlag New York, Inc., 2012, pp.

187–207.

[14] D. Rughetti, P. Di Sanzo, A. Pellegrini, B. Ciciani, and F. Quaglia, “Tuning the level

of concurrency in software transactional memory: An overview of recent analytical,

machine learning and mixed approaches,” in Transactional Memory. Foundations, Algorithms,

Tools, and Applications, ser. Lecture Notes in Computer Science, R. Guerraoui and

P. Romano, Eds. Springer International Publishing, 2015, pp. 395–417. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-14720-8 18

[15] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and I. Watson, “Transactions

on high-performance embedded architectures and compilers iii,” P. Stenström, Ed. Berlin,

Heidelberg: Springer-Verlag, 2011, ch. Robust Adaptation to Available Parallelism in

Transactional Memory Applications, pp. 236–255. [Online]. Available: http://dl.acm.org/citation.

cfm?id=1980776.1980793

[16] D. Didona, P. Felber, D. Harmanci, P. Romano, and J. Schenker, “Identifying the optimal level

of parallelism in transactional memory applications,” in Networked Systems, V. Gramoli and

R. Guerraoui, Eds. Springer Berlin Heidelberg, 2013, pp. 233–247.

[17] P. D. Sanzo, B. Ciciani, R. Palmieri, F. Quaglia, and P. Romano, “On the analytical

modeling of concurrency control algorithms for software transactional memories: The case of

commit-time-locking,” Performance Evaluation, vol. 69, no. 5, pp. 187 – 205, 2012. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S016653161100068X

[18] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott, “A comprehensive strategy for

contention management in software transactional memory,” SIGPLAN Not., vol. 44, no. 4, pp.

141–150, Feb. 2009. [Online]. Available: http://doi.acm.org/10.1145/1594835.1504199

[19] J. a. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and M. Kapalka, “Leveraging parallel

nesting in transactional memory,” SIGPLAN Not., vol. 45, no. 5, pp. 91–100, Jan. 2010. [Online].

Available: http://doi.acm.org/10.1145/1837853.1693466

[20] N. Diegues and J. Cachopo, Distributed Computing: 27th International Symposium, DISC

2013, Jerusalem, Israel, October 14-18, 2013. Proceedings. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013, ch. Practical Parallel Nesting for Software Transactional Memory, pp.

149–163. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-41527-2 11

[21] K. Agrawal, J. T. Fineman, and J. Sukha, “Nested parallelism in transactional memory,” in

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

82

http://doi.acm.org/10.1145/1594835.1504183
http://dx.doi.org/10.1007/978-3-319-14720-8_18
http://dl.acm.org/citation.cfm?id=1980776.1980793
http://dl.acm.org/citation.cfm?id=1980776.1980793
http://www.sciencedirect.com/science/article/pii/S016653161100068X
http://doi.acm.org/10.1145/1594835.1504199
http://doi.acm.org/10.1145/1837853.1693466
http://dx.doi.org/10.1007/978-3-642-41527-2_11

Bibliography

Programming, ser. PPoPP ’08. New York, NY, USA: ACM, 2008, pp. 163–174. [Online].

Available: http://doi.acm.org/10.1145/1345206.1345232

[22] W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun, “Implementing and evaluating

nested parallel transactions in software transactional memory,” in Proceedings of the

Twenty-second Annual ACM Symposium on Parallelism in Algorithms and Architectures,

ser. SPAA ’10. New York, NY, USA: ACM, 2010, pp. 253–262. [Online]. Available:

http://doi.acm.org/10.1145/1810479.1810528

[23] D. Rughetti, P. Romano, F. Quaglia, and B. Ciciani, Euro-Par 2014 Parallel Processing:

20th International Conference, Porto, Portugal, August 25-29, 2014. Proceedings. Cham:

Springer International Publishing, 2014, ch. Automatic Tuning of the Parallelism Degree in

Hardware Transactional Memory, pp. 475–486. [Online]. Available: http://dx.doi.org/10.1007/

978-3-319-09873-9 40

[24] D. Didona, P. Romano, S. Peluso, and F. Quaglia, “Transactional auto scaler: Elastic scaling of

replicated in-memory transactional data grids,” ACM Trans. Auton. Adapt. Syst., vol. 9, no. 2, pp.

11:1–11:32, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/2620001

[25] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing performance prediction robustness

by combining analytical modeling and machine learning,” in Proceedings of the 6th ACM/SPEC

International Conference on Performance Engineering, ser. ICPE ’15. New York, NY, USA:

ACM, 2015, pp. 145–156. [Online]. Available: http://doi.acm.org/10.1145/2668930.2688047

[26] K. Ravichandran and S. Pande, “F2c2-stm: Flux-based feedback-driven concurrency control for

stms,” in Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, May

2014, pp. 927–938.

[27] M. Ansari, “Weighted adaptive concurrency control for software transactional memory,”

J. Supercomput., vol. 68, no. 3, pp. 1027–1047, Jun. 2014. [Online]. Available:

http://dx.doi.org/10.1007/s11227-014-1138-5

[28] J. Sreeram, R. Cledat, T. Kumar, and S. Pande, “Rstm: A relaxed consistency software

transactional memory for multicores,” in Proceedings of the 16th International Conference on

Parallel Architecture and Compilation Techniques, ser. PACT ’07. Washington, DC, USA: IEEE

Computer Society, 2007, pp. 428–. [Online]. Available: http://dx.doi.org/10.1109/PACT.2007.62

[29] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of word-based software

transactional memory,” in Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, ser. PPoPP ’08. New York, NY, USA: ACM, 2008, pp.

237–246. [Online]. Available: http://doi.acm.org/10.1145/1345206.1345241

[30] D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii,” in Proceedings of the

20th International Conference on Distributed Computing, ser. DISC’06. Berlin, Heidelberg:

Springer-Verlag, 2006, pp. 194–208. [Online]. Available: http://dx.doi.org/10.1007/11864219 14

83

http://doi.acm.org/10.1145/1345206.1345232
http://doi.acm.org/10.1145/1810479.1810528
http://dx.doi.org/10.1007/978-3-319-09873-9_40
http://dx.doi.org/10.1007/978-3-319-09873-9_40
http://doi.acm.org/10.1145/2620001
http://doi.acm.org/10.1145/2668930.2688047
http://dx.doi.org/10.1007/s11227-014-1138-5
http://dx.doi.org/10.1109/PACT.2007.62
http://doi.acm.org/10.1145/1345206.1345241
http://dx.doi.org/10.1007/11864219_14

Bibliography

[31] R. Guerraoui and P. Romano, Transactional Memory. Foundations, Algorithms, Tools, and

Applications: COST Action Euro-TM IC1001, ser. Lecture Notes in Computer Science.

Springer International Publishing, 2014. [Online]. Available: https://books.google.pt/books?id=

X74iBgAAQBAJ

[32] A. Dragojević, R. Guerraoui, and M. Kapalka, “Stretching transactional memory,” SIGPLAN Not.,

vol. 44, no. 6, pp. 155–165, Jun. 2009. [Online]. Available: http://doi.acm.org/10.1145/1543135.

1542494

[33] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood, “Logtm: log-based transactional

memory,” in The Twelfth International Symposium on High-Performance Computer Architecture,

2006., Feb 2006, pp. 254–265.

[34] W. N. Scherer, III and M. L. Scott, “Advanced contention management for dynamic software

transactional memory,” in Proceedings of the Twenty-fourth Annual ACM Symposium on

Principles of Distributed Computing, ser. PODC ’05. New York, NY, USA: ACM, 2005, pp.

240–248. [Online]. Available: http://doi.acm.org/10.1145/1073814.1073861

[35] H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, X. Tian, and R. Narayanaswamy,

“NePaLTM: Design and implementation of nested parallelism for transactional memory systems,”

in ECOOP ’09: Proc. 23rd European Conference on Object-Oriented Programming, jun 2009,

springer-Verlag Lecture Notes in Computer Science volume 5653.

[36] R. Filipe and J. a. Barreto, “Nested parallelism in transactional memory,” in Transactional Memory.

Foundations, Algorithms, Tools, and Applications, R. Guerraoui and P. Romano, Eds. Springer

International Publishing, 2015, pp. 192–209.

[37] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg, “Mcrt-stm:

A high performance software transactional memory system for a multi-core runtime,” in

Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, ser. PPoPP ’06. New York, NY, USA: ACM, 2006, pp. 187–197. [Online].

Available: http://doi.acm.org/10.1145/1122971.1123001

[38] J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis for memory transactions,”

Science of Computer Programming, vol. 63, no. 2, pp. 172 – 185, 2006, special

issue on synchronization and concurrency in object-oriented languages. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167642306001171

[39] B. Hindman and D. Grossman, “Atomicity via source-to-source translation,” in Proceedings of

the 2006 Workshop on Memory System Performance and Correctness, ser. MSPC ’06. New

York, NY, USA: ACM, 2006, pp. 82–91. [Online]. Available: http://doi.acm.org/10.1145/1178597.

1178611

[40] G. Korl, N. Shavit, and P. Felber, “Noninvasive concurrency with java stm.”

84

https://books.google.pt/books?id=X74iBgAAQBAJ
https://books.google.pt/books?id=X74iBgAAQBAJ
http://doi.acm.org/10.1145/1543135.1542494
http://doi.acm.org/10.1145/1543135.1542494
http://doi.acm.org/10.1145/1073814.1073861
http://doi.acm.org/10.1145/1122971.1123001
http://www.sciencedirect.com/science/article/pii/S0167642306001171
http://doi.acm.org/10.1145/1178597.1178611
http://doi.acm.org/10.1145/1178597.1178611

Bibliography

[41] J. a. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and R. Guerraoui, “Unifying thread-level

speculation and transactional memory,” in Proceedings of the 13th International Middleware

Conference, ser. Middleware ’12. New York, NY, USA: Springer-Verlag New York, Inc., 2012,

pp. 187–207. [Online]. Available: http://dl.acm.org/citation.cfm?id=2442626.2442639

[42] P. Di Sanzo, B. Ciciani, R. Palmieri, F. Quaglia, and P. Romano, “On the analytical

modeling of concurrency control algorithms for software transactional memories: The case of

commit-time-locking,” Perform. Eval., vol. 69, no. 5, pp. 187–205, May 2012. [Online]. Available:

http://dx.doi.org/10.1016/j.peva.2011.05.002

[43] A. Heindl and G. Pokam, “An analytic framework for performance modeling of software

transactional memory,” Comput. Netw., vol. 53, no. 8, pp. 1202–1214, Jun. 2009. [Online].

Available: http://dx.doi.org/10.1016/j.comnet.2009.02.006

[44] D. Didona, P. Romano, S. Peluso, and F. Quaglia, “Transactional auto scaler: Elastic scaling of

replicated in-memory transactional data grids,” ACM Trans. Auton. Adapt. Syst., vol. 9, no. 2, pp.

11:1–11:32, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/2620001

[45] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics).

Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[46] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, “Time-based software transactional memory,” IEEE

Transactions on Parallel and Distributed Systems, vol. 21, no. 12, pp. 1793–1807, 2010.

[47] T. Ye and S. Kalyanaraman, “A recursive random search algorithm for black-box optimization.”

[48] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford Transactional Appli-

cations for MultiProcessing,” in IEEE International Symposium on Workload Characterization,

2008, pp. 35–46.

[49] R. Guerraoui, M. Kapalka, and J. Vitek, “Stmbench7: A benchmark for software transactional

memory,” SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 315–324, Mar. 2007. [Online]. Available:

http://doi.acm.org/10.1145/1272998.1273029

85

http://dl.acm.org/citation.cfm?id=2442626.2442639
http://dx.doi.org/10.1016/j.peva.2011.05.002
http://dx.doi.org/10.1016/j.comnet.2009.02.006
http://doi.acm.org/10.1145/2620001
http://doi.acm.org/10.1145/1272998.1273029

Bibliography

86

	Title
	Acknowledgments
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Acronyms

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.2.1 Software Transactional Memory
	1.2.2 Nesting
	1.2.3 Tuning
	1.2.4 Tuning and Nesting
	1.2.5 Outline

	2 Related Work
	2.1 Software Transactional Memory
	2.1.1 Factors Affecting STM Performance
	2.1.1.A Conflict Detection
	2.1.1.B Version management
	2.1.1.C Contention Management

	2.1.2 Nesting
	2.1.3 Read-only Transactions and Opacity
	2.1.4 Programming Model
	2.1.5 JVSTM
	2.1.5.A API
	2.1.5.B Nesting transactions
	2.1.5.C Versioning and Conflict Detection

	2.1.6 Conclusion

	2.2 Concurrency Degree Tuning
	2.2.1 Tuning Categories
	2.2.1.A White Box
	2.2.1.B Black Box
	A – Offline Modelling
	B – Online Modelling

	2.2.1.C Gray Box

	2.2.2 Conclusion

	3 Tuning the Concurrency Degree in Nested Software Transactional Memory
	3.1 Architecture
	3.1.1 Search Space
	3.1.2 Tuning and Thread Management
	3.1.3 Tuning Policies

	3.2 Algorithms
	3.2.1 Explore and Exploit
	3.2.2 Default Policy and Overhead Measurement
	3.2.3 Gradient Descent
	3.2.3.A Linear Gradient Descent
	3.2.3.B Full Gradient Descent

	3.2.4 Hierarchical Scan
	3.2.5 F2C2
	3.2.6 Recursive Random Search

	4 Experimental Results
	4.1 Experimental Setup
	4.1.1 Vacation
	4.1.2 STMBench7
	4.1.3 Data Collection
	4.1.3.A Vacation
	4.1.3.B STMBench7

	4.1.4 Platform

	4.2 Results
	4.2.1 Vacation
	4.2.1.A Search Space overview
	4.2.1.B Overhead
	4.2.1.C Execution Time Comparison

	4.2.2 STMBench7
	4.2.2.A Search Space Overview
	4.2.2.B Execution Comparison

	5 Conclusions and Future Work
	Bibliography

