
Self tuning replication in transactional data grids

Hugo Gomes Pimentel

IST – Instituto Superior Técnico
– INESC ID Lisboa

Distributed Systems Group
Rua Alves Redol 9, 1000-029 Lisboa, Portugal

hugo.pimentel@ist.utl.pt

Abstract Partially replicated systems help to improve the scalability of
replicated systems by allowing sites to store a subset of the application
data and split the load among replicas, to maximize throughput. On the
down side, data partitioning leads to the need of dealing with expensive
remote data accesses, every time there is a retrieval of data not locally
maintained. To cope with this problem several systems introduce an ad-
ditional caching mechanism aimed at maintaining, at each node, a replica
of the remote data items most frequently accessed by local transactions.
However, when exposed to different workloads, caching mechanisms can
also perform differently.
This report proposes the development of an efficient, self-tuning caching
mechanism for partially replicated transactional systems that aims at
providing optimal performance when exposed to different workloads.

1 Introduction

The advent of cloud-computing has recently spurred a new generation of dis-
tributed data platforms [1, 2, 3, 4, 5, 6], often referred to as NoSQL data grids,
designed from the ground up to overcome the limitations of relational DBMSs
in terms of scalability and elasticity [7]. This platforms rely on a simpler data
model, lightweight application interfaces and efficient mechanisms to achieve
data durability.

An important aspect that allows to classify existing systems and that has a
significant impact on several of their key design choices is whether data is fully
or partially replicated. Fully replicated systems place copies of data items at
all replicas to achieve high availability. However, because all the nodes need to
be contacted upon commit, fully replicated systems are inherently unscalable,
especially in presence of write-dominated workloads. On the other hand, par-
tially replicated systems are highly scalable because they allow sites to store a
subset of the application data and split the load among replicas, to maximize
throughput. On the down side, data partitioning leads to the need of dealing
with expensive remote data accesses, every time there is a retrieval of data not
locally maintained. To cope with this problem several systems introduce an ad-
ditional caching mechanism aimed at maintaining, at each node, a replica of the



2

remote data items most frequently accessed by local transactions. However, when
exposed to different workloads, caching mechanisms can also perform differently.

In this project, I am interested in the development of an efficient, self-tuning
caching mechanism for partially replicated transactional systems, which aims to
provide optimal performance when faced with different workloads.

The rest of this report is organized as follows. Section 2 motivates and de-
scribes the goals of this work. Section 3 provides an introduction to the different
technical areas related to it. Section 4 explains in detail the systems involved in
this work and what solution will be proposed and Section 5 describes how this
solution will be evaluated. The scheduling of future work is presented in Section
6. Finally, Section 7 concludes this report by summarizing its main points.

2 Goals

This work tackles the problem of caching in partially replicated systems. More
precisely:

– Goals: The main goal of this project is to analyze, design and implement
an efficient self-tuning caching mechanism for a NoSQL in-memory transac-
tional data grid.

The work started with a survey of related work (to be presented in Section
3). From this survey it becomes clear that the performance of these systems can
be significantly hampered by the need to perform expensive remote accesses to
retrieve data not locally maintained. To address this problem, several NoSQL
platforms rely on an additional caching mechanism aimed at maintaining, at
each node, a replica of the remote data items most frequently accessed by local
transactions. However, caching mechanisms can perform differently when ex-
posed to different workloads. Also, by caching very frequently updated objects
that can become rapidly stale, the system risks to expose likely stale data to
transactions. This may cause a very high abort rate, with detrimental effects on
system’s throughput.

With this in mind, I propose the implementation of an efficient, self-tuning
caching mechanism aimed at autonomously determining whether it is beneficial
or not to cache individual object instances. This work will investigate different
lightweight heuristics to determine an object’s cacheability, and will integrate
the proposed caching solution in a well known open source data platform, Infin-
ispan [5] by Red Hat.

Specifically, I will target GMU [8], a highly scalable partial replication pro-
tocol that has been recently integrated in Infinispan. The implementation will
be evaluated with well established benchmarks for transactional systems.

– Expected results: This work will: i) implement the proposed caching mech-
anism in GMU; ii) provide an experimental comparative evaluation of the
use or not of this mechanism and; iii) provide a quantified assessment of its
advantages and disadvantages.



3

3 Related Work

In order to understand the underlying problems that this project poses, we need
to review the fundamentals of various areas in distributed systems.

I start by introducing the abstraction of transaction, and overviewing a set of
relevant correctness criteria that were introduced to specify acceptable behaviors
of (distributed) transactional systems.

Next I overview three types of transactional systems, namely database man-
agement systems, software transactional memories, and transactional data grids.

I then move to discuss replication techniques for transactional systems. Before
doing so, however, I review some fundamental building blocks that are at the
heart of a large number of replication techniques, namely Group Communication
Systems, and the group communication primitives they provide.

Finally, I present some of the most recent techniques in the area of self-tuning
of transactional data grids.

3.1 Transactions

The transaction abstraction was originally introduced in the context of DBMSs,
as a way to batch multiple data manipulation operations into a single unit of
work to be treated in a coherent and reliable way by the underlying transactional
system.

During its life-cycle, a transaction can pass through four distinct, well-defined
states:

− Executing : the transaction’s operations are executing;
− Committing : the transaction has completed the execution of its operations,

and therefore, the client requested the transaction’s commit;
− Committed : the transaction was committed;
− Aborted : the transaction was aborted.

Both the executing and committing states are transitory, while both the
aborted and committed states are final.

Once started, a transaction must be ended either with commit or rollback.
A successfully completed transaction ends with commit to permanently record
the transaction results in the database. A failed and then aborted transaction
ends with rollback to undo the transaction effects on the database.

Regarding properties, database transactions satisfy atomicity, isolation, con-
sistency and durability. These are commonly referred to as ACID properties.
Their description is the following:

− Atomicity : ensures that modifications must follow an ”all or nothing rule”,
i.e., either all the modifications made by a committed transaction are made
visible or none is;

− Consistency : ensures that each transaction changes the database from one
consistent state to another consistent state;



4

− Isolation: ensures that individual memory updates within a memory trans-
action are hidden from concurrent transactions;

− Durability : ensures that once a transaction is committed, its updates will
survive any subsequent malfunctions.

3.2 Transactional Systems

In the next sections I present three of the most important transactional systems
today.

Data Base Management Systems

Data Base Management Systems (DBMS) are a set of programs that enables
users to store, modify, and extract information from a database and also provides
tools to add, delete, access, modify and analyze data stored in one location.

They can be categorized according to the model they support or the query
language or languages that are used to access the database.

The relational model [9] has been the reference model for data storage for
decades and consists of three major components:

− the set of relations and set of domains that defines the way data can be
represented (data structure);

− integrity rules that define the procedures to protect the data (data integrity);
− the operation that can be operate on the data (data manipulation).

A relational database supports relational algebra, consequently supporting
the relational operations of the set theory. In addition to mathematical set oper-
ations namely, union, intersection, difference and Cartesian product, relational
databases also support select, project, relational join and division operations.
These operations are unique to relational databases.

SQL was one of the first commercial languages for this model and became
the most widely used.

This model has several advantages relatively to other models, namely the ease
of use and design, flexibility and data independence. However, the expressiveness
of the relation data model, as well as the richness of the data manipulations
supported by SQL, make it extremely difficult to develop systems capable of
scaling horizontally to a large number of nodes [10].

Software Transactional Memories

One of the challenges of parallel programming is synchronizing concurrent ac-
cess to shared memory by multiple threads. Programmers have traditionally used
locks for synchronization, but lock-based synchronization has well-known pitfalls.
Simplistic coarse-grained locking does not scale well, while more sophisticated
fine-grained locking risks introducing deadlocks and data races.



5

Software Transactional Memory [11] (STM) provides a new concurrency-
control construct that avoids the pitfalls of locks and significantly eases concur-
rent programming. Transactional-language constructs are easy to use and can
lead to programs that scale. By avoiding deadlocks and automatically allowing
fine-grained concurrency, transactional-language constructs enable the program-
mer to compose scalable applications safely out of thread-safe libraries. The
notions of atomicity, consistency and isolation from database transactions are
also provided. STMs can be categorized as either word-based [12, 13] or object-
oriented [14, 15].

STMs and DBMSs have some common characteristics, namely:

− both support the abstraction of transaction;
− both control, in a transparent fashion, the concurrent access to data.

However, there are also some key differences between them, namely:

− STMs do not need to ensure data persistence, thus having execution times
typically several orders of magnitude smaller than DBMSs;

− DBMSs expose a well defined/restricted SQL API and execute in a sand-
boxed environment, while STM applications can perform generic memory
manipulations directly in the address space of user applications.

This key differences motivated the development of new concurrency control
mechanisms specifically tailored for STM environments focused on multicore
architectures, such as [12, 16, 17]. Also, they led to the introduction of an im-
portant safety property called opacity [18]. While the strongest coherence model
of DBMSs is serializability [19], in STMs both serializability and opacity need
to be ensured. Opacity can be viewed as an extension of serializability, with the
additional requisite that even non-committed transactions are prevented from
accessing inconsistent states (DBMSs only guarantee that committed transac-
tions do not see inconsistent states), thus avoiding the occurrence of anomalies
due to concurrent data accesses that can lead to arbitrary application behaviors
(such as infinite loops or unhandled exceptions) and the probable crash of the
entire application.

Transactional Data Grids

As mentioned before, relational databases have represented the indisputable
reference solution for transactional data management. However, another broad
class of DBMS that is in vogue nowadays is called NoSQL (Not only SQL).
NoSQL is identified by the non-adherence to the use of the relational model
and its query language SQL. NoSQL data stores are designed to manage large
volumes of data that do not necessarily follow a fixed schema. The reduced run
time flexibility compared to full SQL systems is compensated by large gains in
scalability and performance for this data models.

With the advent of cloud computing, which is the use of computing resources
(hardware and software) that are delivered as a service over a network (typically



6

the Internet), there has been a proliferation of a new generation of NoSQL
platforms, often called NoSQL data grids, that rely on a simpler data model,
lightweight application interfaces and efficient mechanisms to achieve data dura-
bility, because relational databases do not meet the scalability requirements for
this type of systems.

The term data grids is used to encompass a wide range of distributed NoSQL
systems such as key-value or column-oriented stores. This solutions use a wide
range of consistency criteria, and not all of them provide support for trans-
actions. Also those that provide transactions often do not provide the classic
serializability criterion. The focus of this section is on Transactional Data Grids,
but I briefly overview also non-transactional data grid systems.

Bigtable [1], from Google, is a sparse, distributed, persistent multi-dimensional
sorted map. The map is indexed by a row key, column key, and a timestamp.
Each value in the map is an uninterpreted array of bytes. It is built on sev-
eral other pieces of Google infrastructure such as the distributed Google File
System [20] (GFS) to store log and data files and the SST table format that is
used to store Bigtable data. It also relies on a highly-available and persistent
distributed lock service called Chubby [21] that uses the Paxos algorithm [22]
to keep its replicas consistent in the face of failure. Bigtable does not support
transactions.

Percolator [2] is an implementation of Bigtable for performing incremental
processing at large scale,i.e, it allows the maintenance of a very large repository
of documents and updates it efficiently when a new document is crawled. Differ-
ently from Bigtable, Percolator supports cross-row, cross-table ACID-compliant
transactions that provide the snapshot isolation [23] consistency level.

Spanner [3], also from Google, is a transactional globally-distributed database
that has evolved from a Bigtable-like versioned key-value store into a temporal
multi-version database. Unlike similar systems, Spanner relies on timestamps
that provide intervals with bounded time uncertainty to implement externally-
consistent distributed transactions, lock-free read-only transactions, and atomic
schema updates. It makes heavy use of hardware-assisted time synchronization
using GPS clocks and atomic clocks to ensure global consistency. This transac-
tions also provide the snapshot isolation consistency level.

Dynamo [4], from Amazon, is a distributed key-value storage system. It uses
a synthesis of well known techniques to achieve scalability and availability. The
data is partitioned and replicated using consistent hashing, and consistency is
facilitated by object versioning. The consistency among replicas during updates
is maintained by a quorum-like technique and a decentralized replica synchro-
nization protocol. Dynamo employs a gossip based distributed failure detection
and membership protocol, and provides eventual consistency [24], which allows
for updates to be propagated to all replicas asynchronously.

Infinispan [5], from Red Hat/JBoss, is a transactional in-memory distributed
key-value NoSQL storage system. Like Dynamo, Infinispan also partitions and
replicates the data using consistent hashing. At its core Infinispan exposes a
Cache interface which extends java.util.Map. It is also optionally backed by a



7

peer-to-peer network architecture to distribute state efficiently around the data
grid. Data is written to stable storage asynchronously. Infinispan’s transactions
guarantee Read Committed (RC), Repeatable Read (RR) or Repeatable Read
with Write Skew Check (RR+WS) consistency levels [23].

Because Infinispan is the system that will be used in this project, it will be
explained in more detail in Section 3.2.

Walter [6] is a transactional globally-distributed key-value storage system.
Unlike Dynamo, Walter replicates data asynchronously while providing strong
guarantees within each site, by resorting to the Parallel Snapshot Isolation [6]
consistency level. In order to implement the referred consistency level Walter
relies on the notion of preferred sites and on counting sets [25] (csets). Walter
uses a multi-version concurrency control within each site, and it can quickly
commit transactions that write objects at their preferred sites or that use csets.
For other transactions, Walter resorts to two-phase commit to check for conflicts.

3.3 Group Communication Systems

Group communication [26, 27] is a powerful paradigm for performing multi-point
to multi-point communication by organizing processes in groups. Typically, a sys-
tem that implements this paradigm is called a Group Communication System
(GCS) and offers membership and reliable broadcast services with different or-
dering guarantees. GCSs are used at the heart of a large plethora of distributed
systems, including transactional systems. They allow programmers to concen-
trate on what to communicate rather than on how to communicate. Broadcast
services ensure all or some of the following properties:

− Validity : if a correct process broadcasts/multicasts a message m, then it
eventually delivers m;

− Uniform Agreement : if a process delivers m, then all correct processes even-
tually deliver m;

− Uniform Integrity : for any message m, every process delivers m at most once,
and only if m was previously broadcasted/multicasted by its sender;

− Uniform Total Order : if processes p and q both deliver messages m and m’,
then p delivers m before m’ only if q delivers m before m’.

Uniform properties make life easier for application developers, as they apply
to both correct and faulty processes. However, enforcing uniformity often has a
cost and for this reason it is important to consider whether uniformity is strictly
necessary.

Atomic Broadcast [28] (AB), also knowned as Total Order Broadcast, is a
communication primitive that ensures that every participant receives all mes-
sages by the same order. A set of messages is broadcasted by invoking AB-
broadcast and when their final order is known, they are AB-delivered. AB en-
sures all of the above properties.

Optimistic Atomic Broadcast [29] (OAB) is a variant of AB that exploits
the fact that in a LAN, messages normally arrive at different sites exactly in



8

the same order. This assumption is called optimistic delivery order. A set of
messages is broadcasted by invoking AB-broadcast and OAB-delivered as soon
as they arrive, but only when their final order is known, they are AB-delivered.
The OAB deliver primitive enables applications to overlap computation with
communication. OAB ensures all of the above properties and one more:

− Optimistic Order : if a process p AB-delivers message m, then p has previ-
ously OAB-delivered m.

Reliable Broadcast [30] (RB) is similar to AB but does not guarantee total
order in the delivery of messages. RB ensures all of the above properties except
one: uniform total order. Because of that, RB skips the coordination phase that
determines the total order of messages, so its execution time will be smaller than
AB’s execution time.

Atomic Multicast [31] (AMcast), also knowned as Total Order Multicast, is
also a variant of AB. While AB sends messages to all the processes, AMcast just
sends messages to a subset of processes. For every message m, m.dst denotes the
groups to which m is multicasted. A message m is multicasted by invoking A-
multicast(m) and delivered with A-deliver(m). AMcast ensures all of the above
properties for m.dst and one more:

− Uniform Prefix Order : for any two messages m and m’ and any two sites s
and s’ such that {s,s’}⊂ {m.dst,m′.dst}, if s A-delivers m and s’ A-delivers
m’, then either s A-delivers m’ before m or s’ A-delivers m before m’;

3.4 Transactional Replication Techniques

Replication is a fundamental building block in the construction of highly avail-
able, fault-tolerant systems. As mentioned before, an important aspect that al-
lows to classify existing systems and that has a significant impact on several of
their key design choices is whether data is fully or partially replicated.

The key difference of this two techniques is that full replication places copies
of data items at all replicas of the system, while partial replication only assigns
copies of an individual data item to a set of that replicas. This way, full replica-
tion has the advantage of not needing expensive remote data accesses (all data
is local) but is inherently unscalable, especially in presence of write-dominated
workloads, because all the nodes need to be contacted upon commit. On the
other hand, partial replication is highly scalable because a replica only has to
execute the updates for data items of which it has local copies but it needs to
deal with expensive remote data accesses that can be very detrimental especially
in presence of workloads that promote them.

Other important aspect that allows to classify this systems is whether they
provide transactional consistency (such as repeatable read [23], 1-copy serial-
izability [32], extented update serializability [33]) or weaker, non-transactional
consistency (such as eventual consistency [24], causal consistency [34], or redblue
consistency [35]).

The focus of the next sections of this report is systems that provide transac-
tional consistency. Table 1 shows all the algorithms described and their features.



9

System Consistency Level Broadcast Service
Replication
Approach

DBSM [36] 1CS AB Certification

D2STM [37] 1CS AB Certification

ALC [38] 1CS OAB+RB Certification

SCert [39] 1CS OAB Certification

SPECULA [40] 1CS AB Certification

Kemme et al.[41] N/A OAB Active

AGGRO [42] N/A OAB Active

Polycert [43] 1CS AB Certification

P-Store [44] 1CS AMcast Partial

Ruivo et al.[45] RR,RC,RR+WS AMcast Partial

GMU [8] EUS N/A Partial

Table 1. System’s features overview.

Full Replication

There are two main families of full replication techniques: passive and active.
Other replication schemes combine aspects of the two previous techniques. An
important example is certification-based replication, a scheme that is commonly
employed on transactional systems.

In the next sections I explain some of their properties and advantages and
disadvantages regarding each other. I also present some of the research made
using those techniques.

Primary Backup

Primary backup [46], also known as master-slave or passive replication, is char-
acterized by the existence of a replica, known as the master, that processes all
requests and transfers the state updates to the remaining replicas, known as the
slaves or backups. In most cases, slaves can also process read-only transactions.

Primary backup often assumes the fail-stop model [47]. When the master fails
one of the slaves is elected to replace it, becoming the new master. One of the
problems of this technique is that in write intensive workloads the master may
become a bottleneck in the system, as it is responsible for all the computation,
since the slaves do not share any workload.

State Machine Replication

State machine replication [48], also knowned as active replication, is charac-
terized by having all replicas processing the same sequence of requests, by the
exact same order. To ensure the consistency of the replicated data, state ma-
chine replication requires all operations to be deterministic, otherwise the state
of each replica could diverge.



10

In transactional systems, requests are processed according to the global se-
rialization order (GSO), which is normally defined by the AB protocol used to
disseminate requests. One of the problems of this technique is that AB is a rel-
atively slow communication primitive, as it requires that consensus is reached
among all nodes.

Moreover, since all replicas have to execute all update requests, the ability to
process them does not increase. On the contrary, it does in fact decrease, as the
cost of group communication increases with the number of peers. However, as
happens with passive replication, read-only requests can be processed in parallel
at different replicas.

In order to improve performance several state machine based schemes nor-
mally use OAB instead of AB. As described above, OAB reduces the average
delay for message delivery to the application. OAB considers the order messages
arrive at each site as a first optimistic guess, and only if a mismatch of messages
is detected, further coordination rounds between the sites are executed to agree
on a total order. This way the total delivery order notification, which is available
only after several communication steps (typically at least three), can be made
after a single communication step.

In [41] this idea was further developed. They show how applications can
take full advantage of the optimistic assumption by overlapping the coordina-
tion phase of the atomic broadcast algorithm with the processing of delivered
messages. In particular, it was presented a replicated database architecture that
employs this technique to overlap communication and transaction processing,
thus providing high performance without relaxing transaction correctness (i.e.,
serializability).

Aggro [42] is another OAB based replication algorithm that aims at maxi-
mizing the overlap between communication and transaction processing. Unlike
other OAB-based replication approaches, it does not require information on the
transactions data access patterns prior to their actual execution and propagates
the updates of yet uncommitted (but complete) transactions to the succeeding
transactions. Conversely, it detects any possible discrepancy between the trans-
action schedule and the optimistic delivery order a posteriori, namely as soon as
(and if) conflicts materialize.

Usually, in systems that ensure the spontaneous order property, these cases
are uncommon, so the system overall performance will most probably increase.

Certification Based

Certification algorithms allow that the execution of a transactional request can
take place at a single node, guaranteeing data coherency in the end, differently
from the replication techniques described above. Specifically, these algorithms
ensure that every replica agree on the outcome of a transaction at commit time
relying on a distributed transaction certification algorithm.

They are usually based on the deferred update model [49] and use group com-
munication primitives. According with this model, transactions are processed
locally in one replica and then sent to the other replicas, at confirmation time.



11

It was first introduced in [36], as a scheme designed to synchronize a cluster of
database servers in a multi-master environment

Unlike classic eager replication schemes (based on fine-grained distributed
locking and atomic commit), which suffer from large communication overheads
and distributed deadlocks, AB based certification schemes do not require any
replica coordination during the transaction execution phase. Instead, transac-
tions are executed locally in an optimistic fashion and consistency (typically,
1-Copy serializability) is ensured at commit-time, via a distributed certification
phase that uses AB to enforce agreement on a common transaction serialization
order, thus providing the following benefits:

− avoids distributed deadlocks, which are known to significantly limit scalabil-
ity of eagerly replicated transactional systems;

− offers non-blocking guarantees in the presence of failures;
− allows for a modular implementation, where the complexity associated with

failure handling is en-capsulated by the AB and group management system
layers.

This model has several advantages such as:

− better performance, because several modifications are gathered and propa-
gated together and execute the transaction in one replica, possibly near the
client;

− reduced cost of inter node coordination, by imposing a single cluster-wide
interaction per commit request;

− better support for fault tolerance, by simplifying the recovering of replicas;
− lower blocking rate, by the elimination of distributed deadlocks.

However, it also presents some disadvantages, like undesirably high abort
rates in high conflict scenarios or with heterogeneous workloads that contain
mixes of short and long-running transactions, because there is no synchronization
during the execution of a transaction.

Existing certification-based replication algorithms can be classified into two
main categories:

− Non-voting schemes: solutions that disseminate the whole transaction read-
set to all replicas, allow each replica to certify transactions locally, by sending
both the read-set and write-set via an AB primitive;

− Voting schemes: schemes that avoid broadcasting the read-set of transactions
by sending (via AB) only the write-set.

Non-voting schemes are optimal in terms of communication steps, but it also
makes them prone to generate very large messages and to overload the Group
Communication System.

Voting schemes drastically reduce the network bandwidth consumption but
they incur into the costs of an additional coordination phase along the critical
path of the transaction commit, which can reduce significantly the performance.



12

The overhead of AB based certification schemes can be particularly detrimen-
tal in STM environments because they incur neither in disk access latencies nor
in the over-heads of SQL statement parsing and plan optimization. This makes
the execution time of typical STM transactions normally much shorter than in
database settings and leads to a corresponding amplification of the overhead of
inter-replica coordination cost.

Bloom Filter Certification [37] is a variant of the non-voting certification
mechanism that relies on the space efficient encoding of Bloom Filters [50] to
generate smaller messages. The probabilistic nature of the Bloom filter encod-
ing, however, induces false positives in the certification phase, increasing the
transaction abort rate.

One STM system that leverages BFC, at the cost of a user-tunable increase
of the transaction abort probability, is D2STM [37]. The goal of D2STM is
to leverage replication not only to improve performance, but also to enhance
dependability. However, because transactions are only validated at commit time
and no bound is provided on the number of times that a transaction will have
to be re-executed due to the occurrence of conflicts, D2STM also presents the
disadvantages mentioned above.

ALC [38] tackles that issue. In the core of the ALC scheme is the notion
of asynchronous lease. Asynchronous leases are used by a replica to establish
temporary privileges in the management of a subset of the replicated dataset.

ALC provides two significant advantages with respect to D2STM:

− relies on the cheaper Reliable Broadcast (RB) primitive to disseminate ex-
clusively the write sets;

− shelters transactions from repeated aborts due to remote conflicts.

This leads to a significant reduction of the inter-replica synchronization over-
head and to a throughput increase in high conflict scenarios because ALC does
not need to atomically broadcast the write set and the (Bloom Filter encoded)
read set of a committing transaction and avoids the optimistic certification ap-
proach used in D2STM, by using the notion of asynchronous lease.

SCert [39] tackles the same issue that ALC, but in a different manner. The
key idea at the core of SCert is to reduce the time to disseminate the updates
generated by committing transactions in order to achieve the following two com-
plementary goals:

− provide executing transactions with fresher snapshots;
− detect conflicts earlier during transaction execution.

Those goals are achieved via a speculative approach, which leverages the
same OAB service used in [41] and [42] and described above.

SPECULA [40] is other transactional replication protocol that also exploits
speculative techniques but to achieve complete overlapping between replica syn-
chronization and transaction processing activities.

The main idea is to execute the commit phase in a non-blocking fashion.
This way, rather than waiting until the completion of the replica-wide synchro-
nization phase, the results (i.e. the write set) generated by a transaction that



13

successfully passes a local validation phase are speculatively committed in a local
multi-versioned STM, making them immediately visible to future transactions
generated on the same node (either by the same or by a different thread).

In presence of misspeculations, SPECULA detects data and flow dependen-
cies and aborts all the transactions related to that misspeculation.

Partial Replication

Partial replication is a variant of full replication, where one replica does not
own all the data. Each replica only saves a determined subset of all the data in
that system and that set can have several copies in the other replicas. The idea
is that there is no need to all nodes to process a transaction, so that transactions
can only be sent to replicas that maintain the data accessed by it. Therefore,
the network communication and the replica coordination cost will be less thus
improving the scalability of the system. However, by partitioning the data there
is the need of dealing with expensive remote data accesses, every time a replica
needs a data item that does not own.

Partial replication protocols can be divided in three groups [51]:

− Genuine: for each transaction T, the replicas that certificate T are the ones
that have the data accessed by T;

− Quasi-genuine: for each transaction T the correct replicas that do not have
data accessed by T, only store permanently the identifier of T;

− Non-genuine: for each transaction T, every replica store information about
T, even if they do not have data acessed by T.

Non-genuine protocols [52, 53, 54] go against the goal of partial replication,
because all the replicas have to be involved in a transaction, which leads to
scalability issues similar to those experienced by full replication protocols.

P-Store [44] is genuine partial replication algorithm that ensures 1-Copy se-
rializability [32]. It assumes a wide area network environment where sites are
clustered in groups (e.g., data centers) and seeks to minimize costly and slow
inter-group communication. In P-Store, an AMcast service is used to order trans-
actions that operate on the same data items. To execute and certify each trans-
action, a single message is atomically multicasted.

The work in [45] also exploits the use of the AMcast primitive to ensure agree-
ment on the transaction serialization order but in order to improve 2PC-based
algorithms that provide weaker consistency guarantees [23]: Read Committed
(RC), Repeatable Read (RR) and Repeatable Read with Write Skew Check
(RR+WS).

Results show speed-ups of up to 40x when comparing the proposed algorithms
with the previous ones.

GMU [8] is another genuine partial replication protocol for transactional
systems, which exploits an highly scalable, distributed multiversioning scheme
that relies on a vector clock [55] based synchronization mechanism to track
both data and causal dependency relations among transactions, and guarantees



14

Extended Update serializability [56, 33] (EUS). Unlike existing multiversion-
based solutions, GMU does not rely on a global logical clock, which represents a
contention point and can limit system scalability. Also, GMU never aborts read-
only transactions and spares them from distributed validation schemes, which is
a major source of inefficiency on other systems.

GMU is the focus of the work presented in this report and will be explained
in more detail in Section 3.4.

Caching in Partial Replication

As it may be impossible to partition the data in a way to ensure that every
access performed by applications targets exclusively a single partition, several
systems introduce an additional caching mechanism aimed at maintaining, at
each node, a replica of the remote data items most frequently accessed by local
transactions. If the requested data is contained in the cache (cache hit), this
request can be served by simply reading the cache. Otherwise (cache miss), the
data has to be recomputed or fetched from its original storage location, which
takes more time.

As mentioned before, partially replicated systems need to deal with remote
data accesses during processing because they only allow sites to store a subset
of the application data, so they can also leverage the same mechanism. However,
such mechanism must ensure that accessing cached data does not result in the
violation of transaction semantics, so a transactional cache consistency mainte-
nance algorithm is required to ensure that no transactions that access stale (i.e.,
out-of-date) data are allowed to commit.

Many such algorithms have been proposed in the literature and, as all pro-
vide the same functionality, performance is a primary concern in choosing among
them. They can be divided into two classes according to whether their approach
to preventing stale data access is detection-based or avoidance-based [57]. The
key difference between them is that detection-based schemes are lazy, requir-
ing transactions to check the validity of accessed data, while avoidance-based
schemes are eager, as they ensure that invalid data is quickly (and atomically)
removed from client caches. Both schemes allow data propagation (the newly
updated value is installed at the remote site in place of the stale copy) or inval-
idation (removal of the stale copy from the remote cache so that it will not be
accessed by any subsequent transactions).

In the following, I briefly describe three families of caching algorithms (see [58]
for a more detailed description).

Server-Based Two-Phase Locking (S2PL) algorithms are detection-based al-
gorithms that validate cached pages synchronously on a transaction’s initial
access to the page.

Callback Locking (CBL) algorithms are similar to C2PL, in that they are
extensions of two-phase locking that support inter-transaction page caching. In
contrast to the detection-based C2PL algorithm, however, CBL algorithms are
avoidance-based.



15

Optimistic Two-Phase Locking (O2PL) algorithms are avoidance-based al-
gorithms but, unlike CBL, they are more ”optimistic” because they defer write
intention declaration until the end of a transaction’s execution phase.

There is no such algorithm that fits perfectly all the scenarios possible in
these type of environments. There are often complex trade-offs among compet-
ing factors such as the amount of generated network traffic or the probability
of transaction aborts. The avoidance/detection choice has seen to have a large
impact on the number of messages sent, where detection leads to more messages.
Regarding the choice of an optimistic or a pessimistic avoidance approach, with
no read-write or write-write sharing, both approaches are roughly equal in per-
formance. If sharing is present, using the optimistic approach can save messages.
However, if sharing increases to the point were data contention arises, it can lead
to significantly higher abort rates.

3.5 Self-tuning in Transactional Systems

With the advent of autonomic computing, that refers to the capability of a
system to manage itself in order to provide optimal performance, the research
made on transactional data grids also moves towards that direction.

The ultimate goal of this type of systems is to alleviate the developers/administrators
from the hard and time-consuming task of profiling the application and select-
ing the most suitable protocol for each deployment or to avoid a system’s mis-
configuration that may lead to largely suboptimal performance in presence of
heterogeneous workloads.

As already mentioned, distributed transactional platforms are complex sys-
tems, which result from the delicate intertwining of a number of systems oper-
ating at different levels. In the following I briefly overview self-tuning solutions
aimed at optimizing three different layers/aspects of a distributed data grid,
namely, i) the replication protocol, ii) the group communication system, iii)
the elastic scaling manager (i.e. the system in charge of determining how many
replicas should be used to achieve a target performance level).

Replication Protocol

Polycert [43] is a polymorphic certification protocol that allows for the si-
multaneous coexistence of multiple AB-based certification schemes, relying on
machine-learning techniques, namely a regressor based on decision trees [59] and
a reinforcement learning technique called UCB [60], to determine the optimal
certification scheme on a per transaction basis.

MorphR [61] is a framework that allows to automatically adapt the repli-
cation protocol of in-memory transactional platforms according to the current
operational conditions, also by relying on machine learning techniques, namely
C5.01, a state of the art decision-tree classifier. It provides a set of interfaces with

1 http://www.rulequest.com/see5-info.html.



16

precisely defined semantics and a generic, protocol-agnostic reconfiguration pro-
tocol that guarantees the correct switching between two arbitrary replication
protocols, as long as they implement those interfaces. The replication protocols
provided by MorphR are Primary-Backup, a 2PC based certification scheme and
a total order based one.

Both PolyCert and MorphR are capable of achieving a performance extremely
close to that of an optimal non-adaptive protocol in presence of non heteroge-
neous workloads, and significantly outperform any non-adaptive protocol when
used with realistic, complex applications that generate heterogeneous workloads.

Group Communication System

In [62] its proposed an adaptive protocol that is able to dynamically switch
between different total order broadcast (TOB) protocols. Unlike similar adaptive
protocols, the transition between TOB protocols does not require the traffic to
be stopped, allowing a smooth adaptation to changes in the underlying network.
However, despite being an adaptive protocol, it does not focus on the conditions
that trigger that adaptation, just in providing a generic switching procedure.

The work in [63] show that is also possible to self-tune the batching level
of TOB protocols. Batching is a well known technique that allows boosting the
throughput of TOB protocols by amortizing the per-message ordering overhead
across a set of incoming messages. By combining analytical modeling and re-
inforcement learning techniques (same as Polycert), it is possible to minimize
learning time and accumulate feedback from the operation of the system to
enhance the self-tuning accuracy over time thus avoiding blind explorations of
inadequately low batching values which would otherwise rapidly lead the system
to trashing at high load, and making the self-tuning policy more accurate when
using both techniques instead of exclusively the analytical model.

Elastic Scaling

The work in [64] introduces a pro-active scheme based on the K-nearest-
neighbors [65] (KNN) machine learning approach for adding database replicas to
application allocations in dynamic content web server clusters. This scheme mon-
itors the system and application metrics in order to decide how many databases
it should allocate to a given workload and incorporates awareness of system sta-
bilization periods after adaptation in order to improve prediction accuracy and
avoid system oscillations.

TAS [66] (Transactional Auto Scaler) is a system that provides the same
functionality that the work mentioned above but for in-memory transactional
data grids. TAS uses a performance forecasting methodology that exploits the
joint usage of analytical modeling and machine-learning thus achieving high
extrapolation power and good accuracy even when faced with complex workloads
deployed over public cloud infrastructures.



17

4 Proposed Solution

4.1 Infinispan

As already discussed in Section 4.1, this work will be developed into Infinispan.
Infinispan is a highly scalable data grid platform that allows data distribution
or replication. It exposes a key-value store data model, and maintains data en-
tirely in-memory relying on replication as its primary mechanism to ensure fault-
tolerance and data durability. Both partial and full replication are supported.

As other recent NoSQL platforms, Infinispan opts for weakening consistency
in order to maximize performance. It uses the classical 2PC algorithm to main-
tain data coherence and provides weak consistency guarantees [?]: Read Com-
mitted (RC), Repeatable Read (RR) and Repeatable Read with Write Skew
Check (RR+WS).

In Infinispan architecture, each one of its nodes is composed by the following
components:

− Transaction Manager : this component is responsible for the execution of
transactions, either local or remote;

− Lock Manager : this component is responsible for managing the locks ac-
quired by the transactions and is also able to detect distributed blockings.
If there is a distributed blocking between two transactions, one of them will
be canceled;

− Replication Manager : this component is responsible for the maintenance of
data coherence between replicas. It certificates transactions through a 2PC
algorithm and the Transaction Manager;

− Persistent Storing : this component is responsible for guaranteeing that the
storing and loading of data in a persistent manner (in a disk or a DB, local
or remote). If this component is active, it can work on one of the following
execution modes:

• Activation/Passivation: the data is stored persistently or in memory.
When a item of that data is needed, it is moved to the memory (and
is deleted from the disk/DB). When it is needed no more, that item is
deleted from memory and stored again persistently;

• Load/Store: the data is stored in both memory and persistently. When
a data item is needed, a copy of that item is sent to memory.

− Group Communication System: this component is responsible for the main-
tenance of group members information (including fault detection) and offers
support for the communication between replicas.

A client can initiate the execution of a transaction in any replica of the
system. That transaction is executed locally. The information maintained about
a transaction data is the key of the accessed item and its value. If there is a
modification in some key, the old is also maintained.

When the execution of a transaction ends, its write set (WS) is sent to the
other replicas involved in order to be certified, through the 2PC algorithm. The
transaction is then confirmed or canceled in those replicas.



18

As mention, the Group Communication System component provides support
for the communication between replicas. Infinispan uses JGroups for this matter.

4.2 GMU

As mentioned before, GMU (Genuine Multiversion Update serializability) is
a genuine partial replication algorithm that provides multiversion concurrency
control, which relies on a distributed synchronization scheme that exploits vector
clocks. Every locally stored versions of a data item is paired with a scalar, mono-
tonically increasing (integer) clock, which is used to totally order the commit
events of transactions that update this data items.

In the GMU architecture, each node contains the following data structures:

− CommitQueue: an ordered queue whose entries are tuples <T, VC, status>
where T is a transaction, VC is its current vector clock, and status is a value
in the domain{pending, ready}, that is used to commit transactions using
the same commit VC and in the same total order in the nodes that maintain
data of that transactions;

− CommitLog : a list that maintains, for each committed transaction, the tuple
<T, VC, updatedKeys>, where T is the identifier of a committed transac-
tion, VC is its vector clock and updatedKeys is the set of keys locally stored
by process p that T has updated during its execution, thus providing the
most recent local snapshot that is visible by a transaction.

In the execution phase of a transaction T, GMU stores the following infor-
mation about it:

− the transaction vector clock, an array of scalar (integer) logical timestamps,
having cardinality equal to the number of nodes in the system;

− the transaction read-set, which stores the set of identifiers of the keys read
by T;

− the transaction write-set, which stores, as a set of pairs <key, value>, the
identifiers and values of the keys written by T;

− an array of booleans, which has an entry for each node in the system and
each entry stores the flag indicating whether T has already issued a read
operation on a key stored by that node.

Write operations are simply handled by storing the identifier and the key
value in the transaction’s write-set. On the other hand, read operations require
a more complex management as it is necessary to determine which one among the
versions maintained by the data platform should be visible to the transaction.

For space constraints, I cannot provide a detailed description of the read
handling logic (which, of course, can be found in the GMU paper [8]). However,
in the following I will provide a discussion on the three main rules used in
GMU to determine versions visibility, as this is necessary to discuss, in Section
4.3, what are the key challenges to be addressed in order to design a caching
algorithm for GMU.



19

Specifically, GMU determines which version of a key K should be returned
upon the execution of a read operation on node N by transaction T according
to the following rules:

− Rule 1 - Reading Lower Bound : as data is replicated among multiple nodes, it
is possible that node N may have not yet finalized the commit of a transaction
T* whose effects have been already observed by transaction T (during a
previous operation) on another node. In order to avoid consistency issues,
if the N-th entry in the vector clock of T is larger than the N-th entry of
the most recent vector clock in the commit log of N, T is blocked until all
dependencies are solved;

− Rule 2 - Reading Upper Bound : in order to maximize data freshness, if trans-
action T is reading for the first time on node N, the vector clock of T is
updated in its N-th entry with the N-th entry of the vector clock retrieved
from the read;

− Rule 3 - Data Version Selection: as in a classic, non-distributed multi-version
concurrency control schemes [67], whenever there are multiple entrys of some
data item, the entry selected will be the most recent one that has a vector
clock smaller or equal than the vector clock of T.

GMU has been recently integrated in Infinispan and results show that it
achieves linear scalability while introducing negligible overheads (less than 10%)
with respect to solutions ensuring non-serializable semantics in a wide range of
workloads. EUS is sufficiently strong to ensure the correctness of complex OLTP
workloads (such as TPC-C), but also weak enough to allow for efficient and
scalable implementations.

4.3 Caching in GMU

As mentioned before, partially replicated transactional systems need to deal with
expensive remote data accesses that can severely hinder their performance, es-
pecially when faced with workloads that promote them. To face this problem,
this type of systems often resort to a caching mechanism that aims at maintain-
ing, at each node, a replica of the remote data items most frequently accessed
by local transactions, thus diminishing the need for remote data accesses. Un-
fortunately, GMU does not provide such mechanism, so it also suffers from the
problem mentioned above.

As already mentioned in Section 2, the key goal of this project is to design an
efficient, self-tuning caching algorithm for GMU. In order to achieve this goal,
there are two main problems that need to addressed:

− it is necessary to ensure that accessing cached data does not result in the vi-
olation of the correctness properties ensured by GMU, i.e., extended update
serializability (EUS);

− it is important that the employment of the caching algorithm does not have
a negative impact on the freshness of the data observed by transactions, or
it may end up hindering performance, rather than improving it.



20

So far, I have already done some progress in the design of possible solutions,
which I briefly overview in the following. Note that these are still preliminary
ideas whose correctness and efficiency have to be thoroughly evaluated during
the next phase of this project.

Ensuring data consistency

To ensure data consistency, it is necessary to define efficient mechanisms to
know, every time an entry is stored in cache, if that entry will be safely read by
future transactions originated on that node. The challenge is to define how the
entry’s owner should inform the other nodes in the system about the occurrence
of updates to its keys. A simple solution that would preserve EUS would be to
force a node N, which owns a key K that is being updated by a transaction T,
to inform all the other nodes in the system that store K in their cache about its
update in a synchronous fashion, namely during the execution of 2PC. This is
however undesirable because it would significantly slow down the commit phase
and violate the genuineness property that is at the basis of the design of GMU
and is fundamental to maximize scalability.

The solution I propose as a caching scheme, which I refer as L1 cache, is
based on the idea that each entry stored will have the additional meta-data:

− readVersion: a vector clock that represents the freshness of the entry, i.e.,
the most recent vector clock committed that the entry is valid for;

− creationVersion: a vector clock that represents the first time the entry was
stored in the L1 Cache.

By using these two pieces of information, it is possible to implement a set of
rules determining version visibility in GMU without compromising serializability.
Specifically:

− Rule 1 : to determine if the entry in the L1 cache is too obsolete given the
causal dependencies developed by the transaction, it is sufficient to check if
the transaction’s vector clock is not larger than the entry’s readVersion;

− Rule 2 : if the entry in the L1 cache was retrieved from a node from which
the transaction has not yet read, the transaction can be updated with the
readVersion of the cached version;

− Rule 3 : this rule requires ensuring that the entry observed by a read is
the most recent with respect to transaction’s vector clock. Since we are
guaranteed to have in the L1 cache the entire set of entries of a data item,
we will need to force a cache miss in case the cached entry readVersion is
smaller than the transaction’s vector clock. In this case, in fact, the entry
may have already been overwritten at the remote node, and by reading the
cached entry we may violate serializability. In case this check succeeds, it is
then safe to select the cached entry having the most recent creationVersion.



21

Maximizing data freshness

As seen in Section 4.2, GMU maximizes the freshness of the data observed
by transactions by updating the transaction’s vector clock upon the first read
on a remote node N (Rule 2). Specifically, in this phase, GMU verifies what
is the freshest commit log entry of N visible for T, considering T’s previous
read. By interjecting a caching mechanism that may contain obsolete information
(i.e. information updated at the time in which the requested data item was
put in the cache), we run the risk of letting transactions observe arbitrarily
old snapshots. Note that this is not only an issue for applications who have
specific constraints on the recency of the snapshots they observe, but can also
lead to unacceptable abort rates. In fact, in GMU, update transactions that
observe obsolete snapshots are doomed to be aborted at commit time, during
the transaction’s validation phase.

By analyzing the caching algorithm proposed above, it appears that there
is a trade-off between the benefits associated with the possibility of serving a
possibly obsolete data from the L1 cache, and the freshness of the data observed
by transactions, which could be maximized by bypassing the cache and forcing
a remote access to the data owners. Also, some data is more frequently updated
than other, so the risk of observing stale data in cache is higher for those data
items.

I plan to design a self-tuning algorithm that would automatically identify
which entries are beneficial to cache. There is two main challenges that will need
to be addressed:

− how to evaluate the benefits of caching or not caching an item;
− how efficient and scalable the self-tuning mechanism will be.

At first sight, to address the first challenge, the update frequency is clearly a
useful indicator, but the identification of the thresholds on the update frequency
to be used to determine an object’s cacheability raises another challenge. Ideally,
the caching mechanism should be capable of determining in an automatic fashion
the values of these threshold. Hence, I plan to investigate techniques that will
allow the self-tuning of this parameter.

Regarding the second challenge, the ideal solution is to determine the cacheabil-
ity of objects at the granularity of a single key. However, as the number of keys
globally maintained by a NoSQL data grid can be extremely large, this raises
the problem of how to efficiently gather information on update frequencies and
objects cacheability. So I also plan to investigate space-efficient mechanisms that
will allow the self-tuning scheme to cope with arbitrary large data sets.

5 Evaluation Method

This work will be integrated into Infinispan. Therefore, the performance of the
proposed solution will be determined by experimental evaluations.



22

5.1 Metrics

The most important metrics to evaluate the performance of the algorithms are:

− the number of transactions delivered at each site;

− the number of transactions processed by the system;

− the number of aborted transactions;

− the number of cache hits/misses;

− the freshness of cached items.

These metrics will allow me to compare the system’s performance with and
without the caching mechanism and assess the influence of a cache hit in a
transaction’s execution.

As a result, I expect to get insights on how to configure the caching mech-
anism for optimal performance and on which scenarios, if any, their use allows
significant improvement on the performance of the system.

5.2 Benchmarks

The performance of the proposed solution will be assessed with well established
benchmark suites for transactional systems, such as:

− TPC-C [68]: is a benchmark that has been ported to work on key-value
stores that generates workload representative of OLTP environments and is
characterized by complex and heterogeneous transactions, with very skewed
access patterns and high conflict probability;

− Radargun2: is a benchmark created by RedHat specifically for this transac-
tional data grids. With Radargun it is possible to compare the performance of
several distributed caches (such as Infinispan, Ehcache3, Coherence4, etc.),
in different scenarios and, by imposing a fairly high load on the different
nodes of the system, it allows us to assess the maximum throughput of each
configuration;

− STAMP [69]: is a comprehensive benchmark suite for evaluating TM systems
that has been ported to work on key-value stores. STAMP includes eight
applications and thirty variants of input parameters and data sets in order to
represent several application domains and cover a wide range of transactional
execution cases;

− Bank [17]: is a simple benchmark that has the advantage of providing a
fine control on the conflict rate. It simulates the transfer of money amounts
between variables representing distinct bank accounts.

2 https://github.com/radargun/radargun/wiki/.
3 http://ehcache.org/.
4 http://www.oracle.com/technetwork/middleware/coherence/overview/index.html.



23

6 Work Planning

Future work is scheduled as follows:

− January 7 - May 31, 2013: Detailed design and implementation of the pro-
posed architecture, including preliminary tests.

− June 1 - June 31, 2013: Perform the complete experimental evaluation of the
results.

− July 1 - July 31, 2013: Write a paper describing the project.
− August 1 - October 15, 2013: Finish the writing of the dissertation.
− October 15, 2013: Deliver the MSc dissertation.

7 Conclusion

This work addresses the implementation of a caching mechanism for partially
replicated transactional systems. As seen in the related work presented in this re-
port, partially replicated systems can leverage the implementation of such mech-
anism. However, caching mechanisms can perform differently when faced with
different workloads. To address this problem, an efficient, self-tuning caching
mechanism was proposed.

The report is concluded with an explanation of what will be implemented,
experimentally compared, and validated in the proposed solution.

Acknowledgments

I am grateful to my advisor, Paolo Romano, for his support and comments
during the preparation of this report. This work has been partially supported
by the FCT project ARISTOS (PTDC/EIA- EIA/102496/2008).

References

1. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed storage system
for structured data,” in Proceedings of the 7th USENIX Symposium on Operat-
ing Systems Design and Implementation - Volume 7, ser. OSDI ’06. USENIX
Association, 2006, pp. 15–15.

2. D. Peng and F. Dabek, “Large-scale incremental processing using distributed trans-
actions and notifications,” in Proceedings of the 9th USENIX Symposium on Op-
erating Systems Design and Implementation, 2010.

3. J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s globally-
distributed database,” in Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation, ser. OSDI’12. USENIX Association, 2012,
pp. 251–264.



24

4. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly avail-
able key-value store,” in Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, ser. SOSP ’07. ACM, 2007, pp. 205–220.

5. F. Marchioni and M. Surtani, Infinispan Data Grid Platform. Packt Publishing.
6. Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage for geo-

replicated systems,” in Proceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles, ser. SOSP ’11. ACM, 2011, pp. 385–400.

7. M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Hel-
land, “The end of an architectural era: (it’s time for a complete rewrite),” in Pro-
ceedings of the 33rd international conference on Very large data bases, ser. VLDB
’07. VLDB Endowment, 2007, pp. 1150–1160.

8. S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues, “When scalability
meets consistency: Genuine multiversion update-serializable partial data replica-
tion,” in ICDCS. IEEE, 2012, pp. 455–465.

9. E. F. Codd, “A relational model of data for large shared data banks,” Commun.
ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

10. B. C. Ooi, “Cloud data management systems: Opportunities and challenges,” Se-
mantics, Knowledge and Grid, International Conference on, vol. 0, 2009.

11. N. Shavit and D. Touitou, “Software transactional memory,” in Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, ser.
PODC ’95. ACM, 1995, pp. 204–213.

12. J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis for memory transac-
tions,” Sci. Comput. Program., pp. 172–185.

13. T. Riegel, C. Fetzer, and P. Felber, “Time-based transactional memory with scal-
able time bases,” in Proceedings of the nineteenth annual ACM symposium on
Parallel algorithms and architectures, ser. SPAA ’07. ACM, 2007, pp. 221–228.

14. T. Riegel, P. Felber, and C. Fetzer, “A lazy snapshot algorithm with eager valida-
tion,” in Proceedings of the 20th international conference on Distributed Comput-
ing, ser. DISC’06. Springer-Verlag, 2006, pp. 284–298.

15. M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III, “Software transactional
memory for dynamic-sized data structures,” in Proceedings of the twenty-second
annual symposium on Principles of distributed computing, ser. PODC ’03. ACM,
2003, pp. 92–101.

16. D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii,” in Proceedings of the
20th international conference on Distributed Computing, ser. DISC’06. Springer-
Verlag, 2006, pp. 194–208.

17. M. Herlihy, V. Luchangco, and M. Moir, “A flexible framework for implementing
software transactional memory,” in Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications,
ser. OOPSLA ’06. ACM, 2006, pp. 253–262.

18. R. Guerraoui and M. Kapalka, “On the correctness of transactional memory,” in
Proc. of PPOPP, 2008.

19. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and recovery
in database systems. Addison-Wesley Longman Publishing Co., Inc.

20. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in Proceedings
of the nineteenth ACM symposium on Operating systems principles, ser. SOSP ’03.
ACM, 2003, pp. 29–43.

21. M. Burrows, “The chubby lock service for loosely-coupled distributed systems,” in
Proceedings of the 7th symposium on Operating systems design and implementation,
ser. OSDI ’06. USENIX Association, 2006, pp. 335–350.



25

22. T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an engineer-
ing perspective,” in Proceedings of the twenty-sixth annual ACM symposium on
Principles of distributed computing, ser. PODC ’07. ACM, 2007, pp. 398–407.

23. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil, “A critique
of ansi sql isolation levels,” in Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’95. ACM, 1995, pp. 1–10.

24. S. Gustavsson and S. F. Andler, “Self-stabilization and eventual consistency in
replicated real-time databases,” in Proceedings of the first workshop on Self-healing
systems. ACM, 2002, pp. 105–107.

25. M. Letia, N. Preguiça, and M. Shapiro, “Consistency without concurrency control
in large, dynamic systems,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 29–34,
Apr. 2010.

26. G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communication specifications:
a comprehensive study,” ACM Comput. Surv., vol. 33, no. 4, pp. 427–469, Dec.
2001.

27. D. Powell, “Group communication,” Commun. ACM, vol. 39, no. 4, pp. 50–53,
Apr. 1996.

28. V. Hadzilacos and S. Toueg, “Distributed systems (2nd ed.),” S. Mullender, Ed.
ACM Press/Addison-Wesley Publishing Co., 1993, ch. Fault-tolerant broadcasts
and related problems, pp. 97–145.

29. F. Pedone and A. Schiper, “Optimistic atomic broadcast: a pragmatic viewpoint,”
Theor. Comput. Sci., vol. 291, no. 1, pp. 79–101, Jan. 2003.

30. J.-M. Chang and N. F. Maxemchuk, “Reliable broadcast protocols,” ACM Trans.
Comput. Syst., vol. 2, no. 3, pp. 251–273, Aug. 1984.

31. X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast algo-
rithms: Taxonomy and survey,” ACM Comput. Surv., vol. 36, no. 4, pp. 372–421,
Dec. 2004.

32. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and recovery
in database systems. Addison-Wesley Longman Publishing Co., Inc., 1987.

33. R. C. Hansdah and L. M. Patnaik, “Update serializability in locking,” in ICDT
86, International Conference on Database Theory, Rome, Italy, September 8-10,
1986, Proceedings, ser. Lecture Notes in Computer Science, vol. 243. Springer,
1986, pp. 171–185.

34. M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal memory:
Definitions, implementation, and programming,” Distributed Computing, vol. 9,
no. 1, pp. 37–49, March 1995.

35. C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues, “Making
geo-replicated systems fast as possible, consistent when necessary,” in Proceedings
of the 10th USENIX conference on Operating Systems Design and Implementation,
ser. OSDI’12. USENIX Association, 2012, pp. 265–278.

36. F. Pedone, R. Guerraoui, and A. Schiper, “The database state machine approach,”
Distributed and Parallel Databases, vol. 14, no. 1, pp. 71–98, July 2003.

37. M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues, “D2STM: Dependable
distributed software transactional memory,” in Proc. of PRDC. IEEE CS, 2009,
pp. 307–313.

38. N. Carvalho, P. Romano, and L. Rodrigues, “Asynchronous lease-based replication
of software transactional memory,” in Proc. of Middleware. LNCS, Springer, 2010.

39. ——, “Scert: Speculative certification in replicated software transactional mem-
ories,” in The 4th Annual International Systems and Storage Conference. IBM
Research, 2011.



26

40. S. Peluso, J. C. M. Fernandes, P. Romano, F. Quaglia, and L. Rodrigues, “Specula:
Speculative replication of software transactional memory,” in The 31st Symposium
on Reliable Distributed Systems. IEEE, 2012.

41. B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann, “Using optimistic
atomic broadcast in transaction processing systems,” IEEE TKDE, vol. 15, no. 4,
pp. 1018–1032, 2003.

42. R. Palmieri, F. Quaglia, and P. Romano, “AGGRO: Boosting stm replication via
aggressively optimistic transaction processing,” Proc. of NCA, pp. 20–27, 2010.

43. M. Couceiro, P. Romano, and L. Rodrigues, “Polycert: polymorphic self-
optimizing replication for in-memory transactional grids,” in Proceedings of the
12th ACM/IFIP/USENIX international conference on Middleware, ser. Middle-
ware’11. Springer-Verlag, 2011, pp. 309–328.

44. N. Schiper, P. Sutra, and F. Pedone, “P-store: Genuine partial replication in wide
area networks,” in Proc of SRDS. IEEE CS, 2010, pp. 214–224.

45. P. Ruivo, M. Couceiro, P. Romano, and L. Rodrigues, “Exploiting total order
multicast in weakly consistent transactional caches,” in Dependable Computing
(PRDC), 2011 IEEE 17th Pacific Rim International Symposium on. IEEE Com-
puter Society, 2011, pp. 99–108.

46. N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “Distributed systems
(2nd ed.),” S. Mullender, Ed. ACM Press/Addison-Wesley Publishing Co., 1993,
ch. The primary-backup approach, pp. 199–216.

47. C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and Secure
Distributed Programming (2. ed.). Springer, 2011.

48. F. B. Schneider, “Implementing fault-tolerant services using the state machine
approach: a tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp. 299–319, Dec. 1990.

49. J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication and a
solution,” in Proceedings of the 1996 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’96. ACM, 1996.

50. B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-
mun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

51. N. Schiper, R. Schmidt, and F. Pedone, “Optimistic algorithms for partial database
replication,” in Proceedings of the 10th international conference on Principles of
Distributed Systems, ser. OPODIS’06. Springer-Verlag, 2006, pp. 81–93.

52. D. Serrano, M. Patino-Martinez, R. Jimenez-Peris, and B. Kemme, “Boosting
database replication scalability through partial replication and 1-copy-snapshot-
isolation,” in Proceedings of the 13th Pacific Rim International Symposium on
Dependable Computing, ser. PRDC ’07. IEEE Computer Society, 2007, pp. 290–
297.

53. D. Serrano, M. Patiño Mart́ınez, R. Jiménez-Peris, and B. Kemme, “An autonomic
approach for replication of internet-based services,” in Proceedings of the 2008
Symposium on Reliable Distributed Systems, ser. SRDS ’08. IEEE Computer
Society, 2008, pp. 127–136.

54. J. E. Armendáriz-Iñigo, A. Mauch-Goya, J. R. G. de Mend́ıvil, and F. D. Muñoz
Escóı, “Sipre: a partial database replication protocol with si replicas,” in Proceed-
ings of the 2008 ACM symposium on Applied computing, ser. SAC ’08. ACM,
2008, pp. 2181–2185.

55. L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Commun. ACM, vol. 21, no. 7, pp. 558–565, July 1978.

56. A. Adya, “Weak consistency: A generalized theory and optimistic implementations
for distributed transactions,” PhD Thesis, MASSACHUSETTS INSTITUTE OF
TECHNOLOGY, Tech. Rep., 1999.



27

57. M. J. Franklin, M. J. Carey, and M. Livny, “Transactional client-server cache
consistency: alternatives and performance,” ACM Trans. Database Syst., vol. 22,
no. 3, pp. 315–363, Sep. 1997.

58. M. J. Franklin, “Caching and memory management in client-server database sys-
tems,” Ph.D. dissertation, 1993.

59. J. R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., 1993.

60. P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Mach. Learn., vol. 47, no. 2-3, pp. 235–256, May 2002.

61. M. Couceiro, P. Romano, P. Ruivo, and L. Rodrigues, “Chasing the optimum in
replicated in-memory transactional platforms via protocol adaptation,” INESC-ID,
Tech. Rep., Dec. 2012.

62. J. Mocito and L. Rodrigues, “Run-time switching between total order algorithms,”
in Proceedings of the Euro-Par 2006, ser. LNCS. Springer-Verlag, 2006, pp. 582–
591.

63. P. Romano and M. Leonetti, “Self-tuning batching in total order broadcast pro-
tocols via analytical modelling and reinforcement learning,” in Computing, Net-
working and Communications (ICNC), 2012 International Conference on. IEEE,
2012, pp. 786 –792.

64. J. Chen, G. Soundararajan, and C. Amza, “Autonomic provisioning of backend
databases in dynamic content web servers,” in Proceedings of the 2006 IEEE In-
ternational Conference on Autonomic Computing, ser. ICAC ’06. IEEE Computer
Society, 2006, pp. 231–242.

65. E.-H. Han, G. Karypis, and V. Kumar, “Text categorization using weight adjusted
k-nearest neighbor classification,” in Proceedings of the 5th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, ser. PAKDD ’01. Springer-Verlag,
2001, pp. 53–65.

66. D. Didona, P. Romano, S. Peluso, and F. Quaglia, “Transactional auto scaler:
elastic scaling of in-memory transactional data grids,” in Proceedings of the 9th
international conference on Autonomic computing, ser. ICAC ’12. ACM, 2012,
pp. 125–134.

67. P. A. Bernstein and N. Goodman, “Concurrency control in distributed database
systems,” ACM Comput. Surv., vol. 13, no. 2, pp. 185–221, Jun. 1981.

68. F. Raab, “Tpc-c - the standard benchmark for online transaction processing
(oltp).” in The Benchmark Handbook. Morgan Kaufmann, 1993.

69. C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp: Stanford transac-
tional applications for multi-processing.” in IISWC. IEEE, 2008, pp. 35–46.


