
Distributed and Memory Efficient Machine
Learning for Spatial Analysis Applications

Carlos Ribeiro

Instituto Superior Técnico

Abstract. In the context of spatial analysis, spatial disaggregation or
spatial downscaling are processes by which information at a coarse spa-
tial scale is translated to finer scales, while maintaining consistency with
the original dataset. Fine grained descriptions of geographical informa-
tion is a key resource in fields such as social-economic studies, urban and
regional planning, transport planning, or environment impact analysis.
However, spatial disaggregation involves heavily iterative, and computa-
tional demanding algorithms, seriously compromising performance when
the data sets at play involve large geospatial regions and contains large
volumes of information. This paper presents a M.Sc. thesis project that
concerns with the development of a scalable and efficient approach to
spatial disaggregation, taking advantage of state-of-art approaches for
parallel and distributed computation, as well as methods for leveraging
secondary memory.

1 Introduction

Spatial analysis includes a broad range of techniques for analyzing spatial data.
Such techniques are applied in multiple fields, including biology, epidemiology,
ethnology, geography and sociology. However, spatial information (e.g., social
indicators or economic activities) is often presented at a relatively aggregated
level. When in need of providing localized estimates, aggregated spatial data
sets can be useless or even misleading, as potential critical spatial variations are
diluted throughout the region been considered.

In the context of spatial analysis, spatial disaggregation techniques can be
used as a solution to this problem. Such techniques may include classic methods
of dasymetric mapping and pycnophylactic interpolation as well as state-of-the
art regression analysis procedures leveraging ancillary data. Through them, ag-
gregated spatial data can be transformed from a set of source zones into a set
of target zones with different geometry and higher granularity.

The preferred methods to estimate the values of the missing target zones
often involve linear or non-linear regression, depending on the relation of the
source data and the ancillary information used to compute such regressions (i.e.,
depending where the target variable has a linear dependence on the covariates, or
a more complex and non-linear relationship), however, impracticalities regarding
regression analysis arise when data associated with large geographical regions is
used, namely, high computational overhead and associated time penalties.

One of the most promising solutions for this problem is parallelization, aided
by new hardware architectures such as multi-core processors and the correspond-
ing software support. Memory-efficient storage of large data on disk can also be
used to achieve improvements in terms of scalability.

In the context of my M.Sc. thesis, I will explore the development of efficient
and scalable approaches for spatial downscaling. With basis on a disseveration-
based procedure1 previously developed by Monteiro (2016) in the R programing
language, I aim to develop a new implementation, exploring state-of-the-art par-
allel and distributed programming paradigms, together with methods for lever-
aging secondary storage, to reach the desired level of scalability.

The rest of this paper is organized as follows: Section 2 presents fundamental
concepts, while Section 3 describes related work. Section 4 details my proposal to
implement computationally efficient spatial disaggregation mechanisms. Finally,
Section 5 presents an overview on this report, together with the planing and
scheduling for the next stages.

2 Fundamental Concepts

Spatial disaggregation methods rely on a multitude of areal interpolation tech-
niques, i.e., processes were known data from a set of source zones are redis-
tributed to another set of overlapping target zones, were the underlying values
are unknown. Spatial attributes of the target zones, such as area and perime-
ter, are easily calculated. However, the estimation of nonspatial attributes is a
challenge, due to the difficulty of estimating the unknown underlying spatial
distribution of those attributes. The process of computing the target variables
and their areal distributions can be performed according to various criteria, using
underlying principles inherent to the data being reallocated (i.e., simple areal in-
terpolation) or on the basis of available data from other sources, covering totally
or partially the same area (i.e., intelligent areal interpolation). Understanding
seminal intelligent areal interpolation is a key step towards the development of
a scalable spatial disaggregation method.

The following sections describe commonly used statistical analysis methods
for geospatial data, spatial disaggregation algorithms and relevant frameworks
for big data analytics.

2.1 Statistical Analysis of Geospatial Data

Statistical analysis of geospatial data is a fundamental approach in understand-
ing and extrapolating relevant information hidden in the raw data. Frequent sta-
tistical analysis include identifying statistically significant clusters or hot spots,
uncovering geographic distributions, or finding patterns and relationships be-
tween different types of variables. This section discusses some of the commonly
used methods in statistical analysis of geospatial data. Section 2.1.1 starts by

1 https://github.com/bgmartins/dissever

enumerating some data structures used to manage these types of data sets, fol-
lowed in Section 2.1.2 by a discussion about commonly used regression analysis
algorithms. Section 2.1.3 explains an algorithm, named kernel density estima-
tion, to estimate the probability density functions of random variables. Finally,
in Sections 2.1.4 and 2.1.5, spatial interpolation strategies are discussed, namely
inverse distance weighting interpolation and kriging respectively.

2.1.1 Data Models for Geospatial Data

In order to store and manage geospatial, data representations such as rasters
and shapefiles are key factors to take into account. A raster is a data structure
that divides a geographical region into rectangles, called cells or pixels, that can
store one or more values associated with the region they represent.

The raster package for the R language, available in CRAN2, has functions
for creating, reading, manipulating, and writing raster data. The package also
provides, among other things, general raster data manipulation functions, in
order to support the development of more specific user-functions. Some of the
core classes used by the raster package are the RasterLayer, RasterBrick, and
RasterStack classes. The RasterLayer object represents a single-layer raster data
whereas the RasterBrick and RasterStack objects represent multi-variable raster
data sets. The principal difference between the last two is that a RasterBrick
can only be linked to a single (i.e., multi-layer) file and the RasterStack can be
formed from separate files and/or from a few layers bands from a single file.

Another widely used file format for storing geopatial data is the ESRI Shape-
file format, commonly comprised of three files: the first file (*.shp) contains the
geography of each shape, used to georeference the attribute values, the second
file (*.shx) is an index file which contains record offsets. The third file (*.dbf)
contains feature attributes with one record per feature.

Due to its popularity, several different R packages3 provide functions for
reading, writing, and manipulate shapefiles. Some examples are the rgdal4, the
maptools5 and the PBSmapping6 packages.

2.1.2 Regression Analysis

Regression analysis is a statistical process in which functional relationships are
established between the ancillary data and the dependent values in what is called
a learning phase. After this relationship is estimated, new values of the dependent
variable can be predicted within some degree of confidence.

Various regression approaches can be used in spatial analysis problems such
as interpolation. one simple example is the Ordinary Least Squares (OLS) method.

2 https://cran.r-project.org/web/packages/raster/index.html
3 https://www.nceas.ucsb.edu/scicomp/usecases/ReadWriteESRIShapeFiles
4 https://CRAN.R-project.org/package=rgdal
5 https://CRAN.R-project.org/package=maptools
6 https://CRAN.R-project.org/package=PBSmapping

In the OLS method, linear relationships between the independent ancillary vari-
ables (i.g., preexisting land cover types like urban, suburban or forest, in the case
of spatial disaggregation applications) and the dependent variable (i.g., popu-
lation counts) are estimated. The general OLS approach can be expressed as
follows:

y = α+

(
C∑

c=1

βcxc

)
(1)

In the equation, y is the dependent variable, C comprises the total number
of independent variables (i.e., ancillary variables), α is the intercept in the OLS
model, xc is the independent variable and βc is the regression coefficient for that
same independent variable c, computed in the learning phase.

In order to estimate the the regression coefficients βc, and the constant of
intercept α, in relation to the dependent variables, the minimization of the sum
of the squared residuals must be computed, from where the following equations
can be derived.

β̂ =
(
XTX

)−1
XT y (2)

In Equation 2, β̂ denotes the maximum likelihood estimate of β, a vector
containing all the βc regression coefficients. The matrix X contains the set of
independent observed predictor variables, and y is the vector containing the
observed dependent or response variables.

α̂ = ȳ −

(
C∑

c=1

β̂cX̄c

)
(3)

In Equation 3, α̂ is the estimate of the intercept constant α, ȳ is the mean
value of y and X̄c is the mean value of Xc.

As in many regression based models, in order to maintain the mass-preserving
property (i.e., the pycnophylactic property), the total estimated population asso-
ciated to a source zone must be adjusted by multiplying the ratio of the original
observed population to the new estimated value. Also, the computed correlation
coefficients can be negative, resulting in negative population estimates, which
can be seen as an inconsistency in this model.

Another example of a regression method is the decision tree approach, which
is a type of non-linear regression where a continuous dependent variable is mod-
eled by a step curve, based on observations relating the dependent and indepen-
dent variables.

Regarding the mechanism for building a regression tree, the classification and
regression tree (CART) algorithm is nowadays the most commonly used. In the
CART algorithm it is easier to imagine the plane containing all observations as a
multidimensional one, where the number of dimensions is defined by the number
of independent variables xj plus a dependent one y, where all data points (i.e.,

observations) can be expressed as pairs (xij , yi). The first node of the regression
tree requires a division in this plane. The algorithm tries every possible binary
division of the original plane, selecting the split resulting in a smallest impurity
measure. In this scenario the measure of impurity translates into how well the
division was performed.

The CART algorithm usually relies on one of two splitting rules or impurity
functions for a regression tree; (1) the Least Squares (LS) function and (2) the
Least Absolute Deviation (LAD) function. An example the LS function can be
expressed as the minimization of the sum of squares, in a multidimensional plane,
expressed as:

arg min
j, S

∑
i:xij>S

(ȳ − yi)2 +
∑

i:xij≤S

(ȳ − yi)2 (4)

In the equation, after the minimization is performed, the values j and S
which are respectively the selection of the dependent variable and the region
of the plane (i.e., a value for xij where the binary division will take place)
define this division. This splitting rule is then applied to the resulting subsets
of observations, generating a new node for each division, until some user defined
threshold regarding the depth of the graph is reached. Unnecessary depth in a
regression tree results in a degradation of performance in the results.

The regression trees model can be extended into a more sophisticated re-
gression method, through the combination of multiple trees the random forest
(RF) algorithm is one such procedure. The first step in creating a random forest
is the sampling procedure. In this step, k different subsets are randomly boot-
strapped from the original dataset S, each one containing N records, resulting
in a collection of k training subsets STrain = {S1, S1, ..., Sk}.

For each sample Si the observations that are not included by the sampling
procedure (i.e., the out-of-bag or OOB data) are referenced in their own subset,
one for each Si, creating the collection:

SOOB = {OOB1, OOB1, ..., OOBk}

The OOB collection is later used to obtain an estimation of the error rate.
After this data partition, for each subset Si, an unpruned decision tree hi is
created, possibly in parallel, with a slightly deviation from the standard CART
algorithm: for each Si onlym randomly selected predictors are taken into account
in the tree growth process. This results in k regression trees (Breiman, 2001).
In order to perform the regression analysis, the final result is simply computed
by averaging all the predictions from all the regression trees into a single result.
However, if the RF contains noisy decision trees, this average may deviate from
the optimal result. Due to this concern a weighted average is proposed, in order
to mitigate those effects, requiring a weight wi calculated right after the training
process (Chen et al., 2016). This can be done by calculating the mean squared
error (MSE), computed by inputting the OOBi observations in its corresponding
trained tree hi:

MSE =
1

n

n∑
i=1

(ŷi − yi)2 (5)

In the Equation, n is the number of observations in the OOBi set, ŷi is the
estimate of hi and, yi is the true value of the observation.

Now, the weighted regression of the target variable X can be expressed as:

Hr(X) =
1

k

k∑
i=1

[wi × hi(x)] (6)

2.1.3 Kernel Density Estimation

Kernel density estimation (KDE) is a technique used to estimate the probability
density function of a target variable, based on observations (i.e., data points).

This is done by assigning a kernel, (i.e., one of multiple of curve functions,
such as Gaussian, Quadratic or Cosine) as described in Equation 9, to each data
point. This creates a surface based on the aggregation of all kernel curves. The
next step is a normalization process of this density surface so that the integral
equals 1, resulting into a estimate of the density probability of the target variable,
as expressed in Equation 7.

A d-dimensional dataset (i.e., a multivariate dataset) with sample size n can
be expressed in the following way:

Xi =

Xi1

...
Xid

 , i = 1, ..., n

In the case of geospatial coordinates, X would have two dimensions, defining
the locations of the observation in the geographical plane (Wand and Jones,
1993).

The kernel density estimate of X can be expressed as:

f̂(x;H) =
1

n

n∑
i=1

κH(x−Xi) =
1

n

n∑
i=1

κH(x1 −Xi1, ..., xd −Xid) (7)

In the formula, x is a new data point, κ(x) is the kernel function, and H is
the bandwidth matrix H = diag(h21, ..., h

2
d) which defines the smoothness level

at the surface of the estimated density function. The κH(x) represents the kernel
function leveraged smoothness factor H, expressed as:

κH(x) = |H|1/2 κ(H−1/2x) (8)

Finally the kernel function κ(x) itself is defined by a curve, such as the
Gaussian curve defined in the following Expression:

κ(x) = (2π)−d/2 exp

(
−1

2
xTx

)
(9)

2.1.4 Inverse Distance Weighting Interpolation

Many times, information relative to geographical regions is presented as a set
of arbitrary sample points, with different density throughout the geographical
plane. When in need of providing information on points outside the original
dataset, interpolation may be required. One technique to target this problem
is known as inverse distance weighting interpolation (IDWI). IDWI is a deter-
ministic and nonlinear interpolation technique. The core principle of IDWI is
that any unknown point can be estimated by the weighted sum of nearby known
observation. This weighting value is estimated accordingly to the distance of the
known and unknown points. The reason to only take into account a nearby sub-
set of sample data points is due to correlation maximization and computational
overhead minimization. A simple inverse distance weighting function, as defined
by Shepard (1968), can be expressed as:

W (x′, xi) =
1

d(x′, xi)p
(10)

In the Equation, x′ denotes the point at which the unknown value is being
estimated, xi is a known point nearby x′ and, d(x′, xi)

p is the distance func-
tion between points, leverage by a positive real number p which regulates the
weighting decay.

Given the weighting function W (), the prediction f̂(x′) for an unmeasured
location x′ is given by:

f̂(x′) =

∑N
i=1W (x′, xi) f(xi)∑N

i=1W (x′, xi)
(11)

In the Equation, f(xi) is the known value in location xi and N is the num-
ber of nearby observation surrounding x′. As inverse distance weighting is a
deterministic technique it only takes into account the density of the samples,
disregarding the underlying spatial structure of the sample points. Also, as this
procedure is preformed by computing the average of known observations, the es-
timated value being calculated can never be higher or lower then the maximum
and minimum values presented in the observation set. This leads to poor esti-
mates in locations where the observations don’t accurately model the underlying
spatial distribution of the target variable.

2.1.5 Kriging

Another important interpolation method is the kriging algorithm, also refer-
eed to as Gaussian process regression. In the the kriging algorithm interpolated
values are modeled by a Gaussian process. As in the IDWI method the krig-
ing method assumes that the distance between sample points reflects a spatial
correlation. However in this method, the weighting function also takes into ac-
count the spatial variation among observations. In this method, the prediction of
an unmeasured location is estimated by having their surrounding observations
contribution weighted in the following way:

f̂(x′) =

N∑
i=1

W (x′, xi) f(xi) (12)

In the Equation, W (x′, xi) is not only based in the distance between the
unknown and known point but also on the overall spatial variation among the
measured points. In simple kriging (i.e., one variation of the kriging algorithm)
W (x′, xi) is obtained by the following equation system:W (x′, x1)

...
W (x′, xn)

 =

c(x1, x1) · · · c(x1, xn)
...

. . .
...

c(xn, x1) · · · c(xn, xn)


−1

×

c(x1, x0)
...

c(xn, x0)

 (13)

In the Equation, c(x, y) is the known covariance between x and y. Other
variations of the kriging algorithm include ordinary kriging, and kriging with a
trend. While simple kriging assumes a constant mean throughout all observations
in ordinary kriging, this notion is discarded in favor of a constant mean only in
the local neighborhood of each estimation point. In the kriging with a trend
variation, the assumption of a constant local mean is disregarded altogether in
favor of a linear or non-linear fit on the data points.

The overall performance of the kriging algorithm is best when it is known to
exist spatially correlated distance or directional bias in the data. It also helps
to compensate for the effects of data clustering, as isolated data points have a
greater contribution than clustered ones (Burrough et al., 2015).

2.2 Spatial Disaggregation Algorithms

Spatial disaggregation procedures, often referenced as spatial downscaling, rely
upon a set techniques that can be used to transform data from a set of source
zones into a set of target zones, with different geometry and with a higher general
level of spatial resolution.

This section describes seminal spatial disaggregation procedures.

2.2.1 Simple Area Weighting

In order to desegregate spatial data, one of the simplest approaches is the area
weighting method. This approach relies exclusively on the source data a priori
distribution to reallocate data in source zones to target zones with different
geometry and resolution, assuming that a given target variable y is uniformly
distributed in each source zone.

Following this assumption, the estimated value of the target variable in the
target zone can be estimated as follows:

yt =
∑
s

Ast.ys
As

(14)

In the formula, yt represents the estimated value of the target variable in the
target zone t, ys is the observed value of the target variable in source zone s, As

is the area of source zone s, and Ast is the area of the intersection of the source
and target zones.

This method satisfies the mass-preserving property, which requires that the
sum of all the values estimated for the target zones contained in a given source
zone must equal the original value of that same source zone. However, the overall
accuracy of this method is limited, compared with other more complex tech-
niques overviewed in the following sections.

2.2.2 Pycnophilatic Interpolation

Pycnophilatic interpolation, also referred to as pycnophylactic reallocation, is
a spatial disaggregation method that solely relies on the source data itself and
on some intrinsic properties of population distributions, such as the fact that
people tend to congregate, leading to neighboring and adjacent places being
similar regarding population density (Tobler, 1979).

Tobler’s (1979) pycnophilatic interpolation method starts by generating a
raster map (i.e., a grid composed of target zones) based on the original data
set, as shown in Figure 1, where (1) represents the original data set composed
of source zones, and where (2) represents the newly generated raster map. This
transformation takes into account the property of mass-preserving areal weight-
ing, where the sum of all the cells (i.e., target zones) representing a source zone
must equal to the amount of that original source zone. The values of the grid cells
are then smoothed, by replacing them with the average of their four neighbours,
resulting in a raster such as the one from Example (3) in Figure 1. The predicted
values in each source zone on the newly generated raster map are compared with
the actual values from the original source zones, and adjusted to meet the pyc-
nophylactic condition of mass-preservation. This is done by multiplying a weight
with all the cells belonging to the source zone deviating from the original values.
Several iterations of the previous referenced algorithm may be required, until
a smooth surface is achieved. Starting from the replacing of the cells with the
average of their four neighbours, the whole process can be repeated until some
convergence criterion is met (i.e., the overall value of the cells remains fairly
unmodified in two consecutive iterations).

2.2.3 Dasymetric Mapping

In order to improve the estimate of the internal structure of a spatial variable
distribution, within source zones, correlated ancillary data may be used. The
basic premise behind the dasymetric mapping method is the usage of additional
information x in order to distribute y (Wright, 1936). Provided that the infor-
mation in x and y is proportional and strongly correlated the method effectively
discards the previously presented assumption of homogeneity inside each source

7 http://www.geog.ucsb.edu/~tobler/presentations/

Fig. 1. Illustration of Tobler’s pycnophylactic method for geographical regions.7

zone, in favor of the notion that data are proportional to the auxiliary informa-
tion on any sub-region.

One of the simplest schemes for implementing dasymetric mapping is to use
binary masks in a process, referred to as binary dasymetric mapping (Fisher and
Langford, 1996). In this scenario, each source unit is divided into two binary
sub-regions (i.g., land cover types: residential and nonresidential) and the source
information is then allocated only to one of those sub-regions (e.g., populated
residential areas). To better illustrate this case, based on Equation 14 a new
expression can be reached:

yt =
∑
s

Atsr × ys
Asr

(15)

In the equation, yt is the estimated population in the target zone t, ys is the total
population in source zone s, Asr is the source zone area identified as residential,
and Atsr is the area of overlap between target zone t and source zone s, with a
land cover type identified as residential.

One limitation of binary dasymetric mapping is the constrain of only being
able to use a unique auxiliary variable. However, this method can be extended by
the assignment of weights to n different categories of ancillary data, in a method
known as polycategorical dasymetric mapping, in which the weights associated
with each of the categories (i.e., land cover types) for the source area, represent
the percentage of the target variable that is likely to be contained within that
category, per source area. The difficulty in this approach is to devise an appro-
priate set of weights capable of modeling the real influence of each land cover
type in the density distribution of the target variable. This can be done by either
consulting a specialist on the field or by using regression analysis, as discussed
in Section 3.1. In the context of his M.Sc. thesis, Monteiro (2016) presented
an hybrid disaggregation procedure, combining some of the methods referenced
in this section with a dissevertion procedure based on regression analysis. This
method will be presented in detail in Section 3.3.

2.3 Frameworks for Big Data Analytics

This section explores some available frameworks suitable for extending the al-
ready referenced disseveration procedure in R, both inside an outside the R
programing environment.

2.3.1 R Packages for Scalable Programing

R provides rich functionality and ease of use for data analysis and modeling,
including functionalities for spatial data analysis. However is primarily used as
a single threaded, single machine installation. R is not particularly scalable, nor
does it support incremental processing, thus incurring in significant time penal-
ties while computing large workloads. For instance, by cataloging where time
is spent when running R programs, it is possible to identify some bottlenecks
within the R kernel. More than 85% of total execution time for any given work-
loads in R is spent in stalls. Memory stalls alone account for nearly 75% of total
execution time due to excessive use of main memory, resulting in R swapping
to disk even when the input datasets are far smaller than the main memory
size (Sridharan and Patel, 2014).

R’s native support for efficient and scalable computation is limited, although
there is a list of CRAN packages8 that target some of the existing referenced
limitations. This section describes some of the packages that might be useful to
develop a scalable and efficient approach to aforementioned problem of spatial
disaggregation.

Packages like ff9, biglm10 and bigmemory11 (Kane et al., 2013) provide ef-
ficient memory manipulation by chunking the data and swapping it in and out
of the main memory, when required. The bigmemory package, besides providing
access to arbitrarily large data structures, potential larger than random access
memory (RAM), also provides shared access across different processing cores, in
order to support efficient parallel computing techniques. Nonetheless, attention
must be made in the use of such packages, as using a disk storage layout differ-
ent from R’s internal structure representation can render most CRAN packages
incompatible.

In regard to explicit parallel computing, starting from release 2.14.0, R in-
cludes a package called parallel, incorporating revised copies of CRAN packages
multicore and snow (Simple Network of Workstations). The parallel package is
designed to exploit a multi-core environment, offering a parallelized version of
the lapply method, named mclapply, were it is possible to apply a given function
f to an array x in a parallel fashion, obtaining length(x) results. This is done by
creating multiple copies of the current R session, based on the Linux fork mech-
anism, being the master R session responsible for collecting the results from all
worker sessions. For non-Linux users the alternative is the parLapply function,

8 https://cran.r-project.org/web/views/HighPerformanceComputing.html
9 https://CRAN.R-project.org/package=ff

10 https://CRAN.R-project.org/package=biglm
11 https://CRAN.R-project.org/package=bigmemory

which supports different platforms. However, a computing group (cluster) must
be created first and used as argument in this function. The clustering mechanism
in the parallel package is leverage by the integration of snow, exposing methods
like makePSOCKcluster to create and manage a cluster of processes residing on
different machines, or makeForkCluster which is equivalent to calling mclapply
when given as argument to the parLapply function, creating the worker process
by using the Unix system call fork. It should nonetheless be noted that, parallel
does not include fault tolerance, although snowFT 12 provides an extension to the
already mentioned snow package. This is done by implementing an alternative
to the snow function clusterApply, called clusterApplyFT.

Regarding the snowFT package and some of the fault tolerance improve-
ments: the master node’s primary objective is to distribute computational tasks
and collect the resulting outputs. This means that the master node spends most
of the time waiting for the slave nodes to finish. The waiting time spent by the
master node can be allocated to searching for failed nodes. Failure detection uses
a function named .PVM.pstats which returns process status and allows to easily
identify failed nodes. Upon failure node detection, the recovery procedure re-
places it by a new created node. All initialization procedures must be performed
prior to any computation.

Another option available in CRAN is associated with the project Program-
ming with Big Data in R (pbdR), which is comprised of a set of R packages13 for
large scale, distributed computing and profiling, including high performance and
high-level interfaces to MPI (Message Passing Interface, a communication pro-
tocol for programming parallel computers) and others. One interesting package
from the pbdR repository, in regard to the problem at hand, is called pbdMPI.
The package offers a a high-level interface to MPI, capable of handling linking
issues, exposing a simple R interface for MPI programming intended for batch
mode programming. In pbdMPI, programs are written in the Single Program/-
Multiple Data or SPMD style, eliminating the need for master or manager nodes.
Each process (MPI rank) gets to run the same copy of the program as every other
process, but operates on its own data, making it easy to adapt existing R scripts
to run in a parallel fashion.

Some other more complete solutions rely on frameworks that besides main-
taining a high degree of R compatibility, focus on seamlessly integrating many
other techniques of parallel and distributed computing, thus minimizing the de-
velopment effort by the user. RABID is one such system. Implemented on top of
the Spark framework (Zaharia et al., 2010), it uses distributed data structures
that act like regular R data structures. RABID includes as well a serialization
strategy that is transparent to users, building on top of the Renjin14 R execution
engine written in Java, thus effectively bridging Spark and the traditional user
R environment (Lin et al., 2014).

12 https://CRAN.R-project.org/package=snowFT
13 https://github.com/RBigData
14 http://www.renjin.org/

multicore cluster GPU
fault-

tolerance

external
memory

parallel Yes Yes No No -

snowFT Yes Yes No Yes -

pbdMPI Yes Yes No No -

RABID/spark Yes No No Yes No

theano Yes Yes Yes No No

tensorflow Yes Yes Yes Yes Yes

spartan Yes Yes No Yes Yes

Table 1. Comparison between possible tools for efficient and scalable programing

Presto is another R extension, presenting new language and runtime exten-
sions to manage distributed and parallel executions. This is achieved with the
introduction of distributed arrays, providing a shared in-memory view of multi-
dimensional data stored across multiple machines (Venkataraman et al., 2012).

2.3.2 Other Popular Frameworks for Big Data Analytics

Regarding general support for efficient and scalable programing, some interesting
options are also available, namely: Theano, TensorFlow and Spartan.

Theano15 is a Python library designed to optimize and evaluate mathemat-
ical expressions involving multi-dimensional arrays efficiently (Theano Devel-
opment Team, 2016). Theano combines aspects of a computer algebra system
(CAS) with aspects of an optimizing compiler. It generates customized C code
for many mathematical operations. This is particularly useful for tasks in which
complicated mathematical expressions are evaluated repeatedly, and where eval-
uation speed is critical, also allowing the user, by modifying a configuration flag,
to have them compiled in a highly optimized fashion to work either on CPUs or
GPUs (the latter using the CUDA library)16.

TensorFlow is an open source software library for numerical computation,
whose core is developed in C++ (Abadi, 2016). In this environment, all the
computations, shared states and operations on data are encapsulated in a data-
flow graph where each node is mapped across multiple computation devices in a
cluster, and within a machine across multiple computational devices, including
multicore CPUs and general-purpose GPUs. The placement algorithm computes
a feasible set of devices for each operation, calculates the sets of operations that

15 http://deeplearning.net/software/theano/index.html
16 http://www.nvidia.com/object/cuda_home_new.html

must be colocated, and selects a satisfying device for each colocation group.
Each edge in this architecture carrys tensors (multi-dimensional arrays) between
nodes representing the output from, or input to, a vertex. The TensorFlow API
is composed of a set of Python modules that enable constructing and executing
TensorFlow graphs. The tensorflow package also provides access to the complete
TensorFlow API from within R17.

Spartan is a distributed array framework, exposing a friendly development
interface by implementing a small number of high-level parallel operators that
encapsulate common patterns, efficiently expressing most types of computa-
tions (Huang et al., 2015). The Spartan framework supports array based logic to
scale across multiple machines. This creates the issue of how to maximize the lo-
cality of accesses to array data spread out across the memory of many machines,
also referred as tiling. One of the major contributions of the Spartan framework
is in solving the tiling problematic automatically, via evaluation of the previ-
ously referenced high-level operators in an expression graph computed during
the user program’s execution. However, automatic tiling only aims to minimize
network communications, ignoring other aspects such as how tiling impacts each
machine’s cache locality.

3 Related Work on Spatial Disaggregation

This section describes some relevant previous studies regarding spatial disaggre-
gation techniques, on which this work will be based upon.

3.1 Spatial Disaggregation Leveraging Regression Analysis

Spatial disaggregation procedures based on dasymetric mapping techniques can
be greatly improved by the introduction of a statistical perspective in order to
quantify the functional relationship between the ancillary data (i.g., land-cover
types) and the target variable. Regression is the preferred approach to quantify
this relationship (Mennis, 2009).

Unlike traditional dasymetric mapping, referenced in Section 2.2.3, the target
variable density is not only estimated by allocating the source information to
the overlapping areas between land-cover types an the source area, but instead
by a contribution of each land-cover type, weighted by a regression model.

The previously explained Equation 15 can now be extended as:

yt =
∑
s

∑
c

Astc.ys
Asc

=
∑
s

∑
c

Astc dsc (16)

In the Equation, Astc is the area of interception between target zone t and
source zone s, identified as land cover c, Asc is the area of land cover type c in

17 https://rstudio.github.io/tensorflow/index.html

the source zone s and dsc is a regression based estimate for land cover type c in
the source zone s.

In this context, basic regression models may have some disadvantages, such
as the model not meeting the mass preserving pycnophylactic property or in
some scenarios the regression equation predicting a negative population density.
The first problem may be addressed by simply shifting the intercept regression
parameter to the origin and the second one by scaling the estimated density
values to fit the original values (Reibel and Agrawal, 2007).

3.2 Geographically Weighted Regression

In general, dasymetric models provide better results in comparison to simple
statistical models. This is due to the fact that the discussed regression meth-
ods are fitted globally, whereas dasymetric estimates are locally fitted (Fisher
and Langford, 1995). This is the case regarding population attributes as the
relationship between land cover types and population density are nonstation-
ary in most cases (i.e., varies from one geographical region to another). In this
context geographically weighted regression (GWR) is presented as a solution to
nonstationary relationship between ancillary and the target variables.

In order to take into account the different spatial relationships between the
dependent and independent variables, multiple regression procedures can be per-
formed in different geographical regions. This method is called Geographically
Weighted Regression (GWR) (Brunsdon et al., 1998).

Very much like Equation 1 the estimate for the dependent variable given by
the GWR method can be expressed by the following Equation:

yt = αt +

(
C∑

c=1

βctxtc

)
(17)

The difference from to standard OLS regression is that the regression coef-
ficient for an independent variable c is not the same for the complete spatial
geographical region. Instead, many βct are computed independently for different
spatial subregions t, and the intercept constant α is now αt referring only to its
geographical subregion.

This approach requires computing estimates β for each predictive variable
c (i.e., βc) in each geographical region t, (i.e., the set βct). This is done only
by considering data points near the location t. For sake of simplicity let us
imagine that the region t is defined by the radius r and the βc outputted by the
OLS model, only takes into account observations within this circle, thus in fact
representing the value βct.

If weights were to be assigned to all observations, this binary inclusion system,
would compute them in the following way:

αtk =

{
1 , if dtk < r
0 , otherwise

(18)

In the Equation 18, αtk is the weight given to observation k in the region t
and dtk is the distance between observation k and the location t.

This is the underling notion of GWR. However, due to the unsatisfactory no-
tion that observations in the farthest inner periphery region of the circle defined
by the radius r have the same weight as observations in the center of the circle
and, observations immediately outside of this region are not considered at all in
the regression procedure an optimization referenced as kernel-weighting my be
applied to the previously presented GWR model (Brunsdon et al., 1998).

Given the kernel-weighting optimization its possible to rewrite Equation 18
to accommodate a Gaussian distance decay function:

αtk = exp

(
−d2tk
2h2

)
(19)

In this example the value of the weights associated with the observations
decays gradually with distance. The parameter h provides control over the range
of the circle of influence. Other distance-decay functions (also referenced as kernel
functions) my be used in this model.

Having defined a weighting function, Equation 2 can now be presented in a
new form:

β̂t =
(
XTWtX

)−1
XTWt y (20)

In the previous equation, Wt is the diagonal matrix expressed in the following
manner:

Wt =


αt1 0 · · · 0
0 αt2 · · · 0
...

. . .
...

0 0 · · · αtN

 (21)

In the definition for Wt, N is the number of observations and the diagonal
elements correspond to the weights associated with the observations of the geo-
graphical region t. The output of Expression 20 is an array of equations, one for
each region t. Each equation from this array outputs a vector of coefficients, one
for each land cover type, effectively creating a matrix of coefficients βct required
for the GWR model.

3.3 Hybrid Techniques for Spatial Disaggregation

Monteiro (2016) described the use of state-of-the-art regression analysis on top
of classic methods of dasymetric mapping and pycnophylactic interpolation, ef-
fectively extending a previously proposed spatial downscaling algorithm called
dissever (Malone et al., 2012) to perform spatial disaggregation. His approach
has also been made available18 as an open-source package for the R system.

The main logical steps used in this disaggregation algorithm are as follows:

18 https://github.com/bgmartins/dissever

1. We start with a thematic map (i.e., a type of map designed to show a par-
ticular theme connected with a specific geographic area) of the aggregated
information (e.g population counts) associated with the respective polygonal
regions.

2. The data is redistributed using an iterative pycnophylactic-interpolation pro-
cess in order to generate a smoothed surface to better represent the real dis-
tribution of the values, as previously explain in Section 2.1 (Tobler, 1979).
The result of this process is used as an initial estimate, in a given target
resolution.

3. All the ancillary data is represented in several other rasters, one for each
type, normalized to the same target resolution.

4. A new raster is created based on an iterative regression analysis, using as
input (1) ancillary correlated variables, sampled to diminish computational
stress, and (2) the raster produced at Step 2 as an initial estimate (Malone
et al., 2012).

5. The values returned by the downscaling procedure are proportionality read-
justed, in order to maintain the mass-preserving property.

6. The estimates are again feeded to the regression analysis algorithm until
some convergence criterion is reached, thus reaching a final solution.

For implementing the regression methods, Monteiro (2016) relied on the
caret19 package for R, which contains numerous tools for developing different
types of predictive models facilitating the realization of experiments with differ-
ent types of regression approaches.

One limitation referenced by the author is the impracticality associated with
the time it takes to desegregate data belonging to large geographical regions.
Sampling the data in the learning phase can mitigate this constrain, at the ex-
pense of creating a trade-off between statistical confidence in the results and the
time it takes to produce those results. The proposal of the work here presented
follows directly from this problem.

4 Thesis Proposal

My M.Sc. thesis proposal focuses extending the hybrid disaggregation procedure
from Monteiro (2016), making use of secondary as well as parallel and distributed
programming, in order to solve scalability constrains associated to the current
approach.

4.1 An Efficient and Scalable Approach for Spatial Downscaling
Based on Disseveration

The first step in this project requires a carefully revised profile of the dissevera-
tion algorithm referenced in Section 3.3, including performance tests regarding
execution times, in order to create a benchmark for future comparison. This is

19 https://topepo.github.io/caret/

aimed at identifying code sections that promise parallelism possibilities as well
relevant data structures used in the main algorithm. After this analysis is per-
formed, a multicore parallel implementation of the disseveration algorithm will
be constructed, leveraging packages discussed in Section 2.3, such as the parallel
package. All concurrent memory accesses constrains must be carefully accessed
in order to prevent inconsistencies in the algorithm. This implementation must
be probed by a second battery of performance tests, accessing the improvements
of the referenced modification. The second main step in my proposal, and the
more sensitive one, is the migration of the new parallel disseveration algorithm to
a distributed environment, making use of the snow package, or using one of the
general purpose scalable programing frameworks discussed in Section 2.3 such
as theano, tensorflow or spartan. At this stage new performance tests will be
conducted in order to access in which circumstances a distributed environment
can be beneficial.

4.2 Datasets and Validation Plan

The online platform A Vision of Britain through Time20 provides a historical
database from the mid-nineteenth century to 1974, regarding the Great Britain
territories, including census on several themes such as population densities, rates
of growth, social class and socio-economic indexes, housing or land use, among
many others. The content is provided in form of shapefiles, describing the digital
boundaries, as well as .csv files containing the relevant statistical data, meaning
that any census data can be joined to the exact spatial units that were used
to publish them. Depending on the themes, the information is presented at the
parish level, at the district level or at the town level.

The multitude of different information presented in this portal, the possible
correlation between different themes, and the organization in which those data
sets are presented, motivates their use as a test bed for future experiments related
to this work. In the past, these data sets have already been used in studies related
to spatial downscaling (Gregory, 2002).

Spatial disaggregation is never a error-free process, and it is vulnerable to er-
ror propagation. However, due to the different resolutions in which the datasets
are presented, accuracy assessments may be performed by aggregating the tar-
get zone estimates to the source zones or some intermediary zones, and then
compare the aggregated estimates against the original counts. Some statistical
strategies of error assessment may include Root Mean Square Error (RMSE)
between estimated and observed values, or the Mean Absolute Error (MAE).
The RMSE and MAE are expressions are expressed as:

RMSE =

√∑n
i=1(ŷi − yi)2

n
(22)

MAE =

∑n
i=1 |ŷi − yi|

n
(23)

20 http://www.visionofbritain.org.uk/

In both Equations, ŷi corresponds to a predicted value, yi corresponds to the
true value, and n is the number of predictions. It is important to use multiple
error metrics in order to emphasizes more than one aspect of the model per-
formance. While the MAE weights all errors in the same way, RMSE penalizes
variance as it gives errors with larger absolute values more weight than errors
with smaller absolute values. It should also be noted that, RMSE and MAE
are not equivalent (i.e., one is not deductible from the other) (Willmott and
Matsuura, 2005) Previous studies argued that the MAE is preferable to describe
uniformly distributed errors. However, model errors are likely to have a normal
distribution rather than uniform distribution, making the RMSE a better metric
to present than the MAE (Chai and Draxler, 2014).

Assessments regarding execution time must be performed in order to evaluate
code efficiency. Two R commands can be used to this end, namely: proc.time
and system.time. The proc.time command works as a stop-watch. It requires a
initialization at the starting time and then, by subtracting the starting time from
the ending time in the bottom of a code sequence to be evaluated, the elapsed
time is obtained.

The system.time command works as the previous one, however it takes the
single R expression to be evaluated as its argument, avoiding the need to initialize
and define variables.

Both commands output an object of class proc time which is a numeric vec-
tor of length 5 containing counts for user, system, total elapsed times for the
currently running R process and the cumulative sum of user and system times
of any child processes spawned by it on which it has waited. Depending on the
OS the definition of user and system times may vary. As a rule of thumb the
user time is considered to be the CPU time charged for the execution of user
instructions of the calling process. The system time is the CPU time charged for
execution by the system on behalf of the calling process.

5 Conclusions and Planning for Next Stage

In this paper, I described my M.Sc. thesis proposal. The main objective in this
work is to enhance the scalability of the disseveration algorithm used by Monteiro
(2016), by making use of secondary memory as well as state-of-art parallel and
distributed programming methods.

In the course of developing my M.Sc. thesis, spanning weeks 1 to 38, I plan
to address the following tasks:

1. Data collection (Weeks 1 to 2)
2. Profiling of the disseveration algorithm. (Weeks 1 to 4)
3. Modification of the disseveration algorithm to support multi-core computa-

tion and secondary memory storage. (Weeks 5 to 14)
4. Performance results assessment. (Weeks 15 to 16)
5. Migration of the algorithm to a distributed environment. (Weeks 17 to 29)
6. Performance results assessment. (Weeks 30 to 35)
7. Writing the M.Sc. dissertation and a summarized report. (Weeks 1 to 38)

References

Abadi, M. (2016). Tensorflow: Learning functions at scale. In Proceedings of the
ACM SIGPLAN International Conference on Functional Programming.

Breiman, L. (2001). Random forests. Machine Learning, 45(1).
Brunsdon, C., Fotheringham, S., and Charlton, M. (1998). Geographically

weighted regression. Journal of the Royal Statistical Society: Series D (The
Statistician), 47(3).

Burrough, P. A., McDonnell, R. A., McDonnell, R., and Lloyd, C. D. (2015).
Principles of geographical information systems. Oxford University Press.

Chai, T. and Draxler, R. (2014). Root mean square error (rmse) or mean absolute
error (mae)? Geoscientific Model Development Discussions, 7.

Chen, J., Li, K., Tang, Z., Bilal, K., Yu, S., Weng, C., and Li, K. (2016). A
parallel random forest algorithm for big data in a Spark cloud computing
environment. IEEE Transactions on Parallel and Distributed Systems, PP(99).

Fisher, P. F. and Langford, M. (1995). Modelling the errors in areal interpolation
between zonal systems by monte carlo simulation. Environment and Planning
A, 27(2).

Fisher, P. F. and Langford, M. (1996). Modeling sensitivity to accuracy in
classified imagery: A study of areal interpolation by dasymetric mapping. The
Professional Geographer, 48(3).

Gregory, I. N. (2002). The accuracy of areal interpolation techniques: standar-
dising 19th and 20th century census data to allow long-term comparisons.
Computers, environment and urban systems, 26(4).

Huang, C.-C., Chen, Q., Wang, Z., Power, R., Ortiz, J., Li, J., and Xiao, Z.
(2015). Spartan: A distributed array framework with smart tiling. In Proceed-
ings of the USENIX Annual Technical Conference.

Kane, M. J., Emerson, J., and Weston, S. (2013). Scalable strategies for com-
puting with massive data. Journal of Statistical Software, 55(14).

Lin, H., Yang, S., and Midkiff, S. P. (2014). Rabid: A distributed parallel R
for large datasets. In proceedings of the IEEE International Congress on Big
Data.

Malone, B. P., McBratney, A. B., Minasny, B., and Wheeler, I. (2012). A gen-
eral method for downscaling earth resource information. Computers & Geo-
sciences, 41(2).

Mennis, J. (2009). Dasymetric mapping for estimating population in small areas.
Geography Compass, 3(2).

Monteiro, J. (2016). Spatial disaggregation using geo-referenced social media
data as ancillary information. Master’s thesis, Instituto Superior Técnico.

Reibel, M. and Agrawal, A. (2007). Areal interpolation of population counts
using pre-classified land cover data. Population Research and Policy Review,
26(5-6).

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-
spaced data. In Proceedings of the 1968 23rd ACM national conference. ACM.

Sridharan, S. and Patel, J. M. (2014). Profiling R on a contemporary processor.
Proceedings of the VLDB Endowment, 8(2).

Theano Development Team (2016). Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688.

Tobler, W. R. (1979). Smooth pycnophylactic interpolation for geographical
regions. Journal of the American Statistical Association, 74(367).

Venkataraman, S., Roy, I., AuYoung, A., and Schreiber, R. S. (2012). Using
R for iterative and incremental processing. In Proceedings of the USENIX
Conference on Hot Topics in Cloud Ccomputing.

Wand, M. and Jones, M. (1993). Comparison of smoothing parameterizations
in bivariate kernel density estimation. Journal of the American Statistical
Association, 88(422).

Willmott, C. J. and Matsuura, K. (2005). Advantages of the mean absolute
error (mae) over the root mean square error (rmse) in assessing average model
performance. Climate research, 30(1).

Wright, J. K. (1936). A method of mapping densities of population: With cape
cod as an example. Geographical Review, 26(1).

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010).
Spark: cluster computing with working sets. Proceedings of the USENIX Con-
ference on Hot Topics in Cloud Computing.

