Analytical Modeling of Lock-based Concurrency Control
with Arbitrary Transaction Data Access Patterns

Pierangelo Di Sanzo, Roberto Palmieri,

Bruno Ciciani, Francesco Quaglia
Sapienza, Universita di Roma, Italy

ABSTRACT

Nowadays the 2-Phase-Locking (2PL) concurrency control
algorithm still plays a core rule in the construction of trans-
actional systems (e.g. database systems and transactional
memories). Hence, any technique allowing accurate analy-
sis and prediction of the performance of 2PL based systems
can be of wide interest and applicability. In this article we
present an accurate analytical model of 2PL concurrency
control, which overcomes several limitations of preexisting
analytical results. In particular our model captures relevant
features of realistic data access patterns, by taking into ac-
count access distributions that depend on transactions’ ex-
ecution phases. Also, our model provides significantly more
accurate performance predictions in heavy contention sce-
narios, where the number of transactions enqueued due to
conflicting lock requests is expected to be non-minimal. The
accuracy of our model has been verified against simulation
results based on both synthetic data access patterns and
patterns derived from the TPC-C benchmark.

Categories and Subject Descriptors
D.4.8 [Performance]: Modeling and prediction

General Terms
Algorithms

1. INTRODUCTION

Transactional systems, such as DBMSs, play the role of
core software components for the design and implementation
of a wide spectrum of modern applications (e.g. Web-based
e-Business applications). Hence, any support for capacity
planning, tuning and configuration of these systems is a fun-
damental issue to address.

To provide such supports, a highly critical aspect to cope
with is to capture the complex effects deriving from the
selected concurrency control mechanism, which is used to
regulate concurrent accesses to the data items according to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WOSP/SIPEW’10, January 28-30, 2010, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-563-5/10/01 ...$10.00.

Paolo Romano
INESC-ID, Lisbon, Portugal

the requested transactions’ isolation level. Dealing with this
issue, the traditional approach for serializable concurrency
control is 2-Phase-Locking (2PL) [9], which is also widely
adopted by a plethora of modern commercial products (such
as IBM DB2, Informix, Sybase ASE and Microsoft SQL
Server). For this concurrency control protocol we present in
this article an innovative analytical model, which is able to
overcome several limitations characterizing any preexisting
analytical result we are aware of (e.g. [6, 13, 15, 23, 26]),
thus providing a more accurate tool for the performance
analysis of 2PL based systems.

Our model is characterized by two main innovative fea-
tures. (A) Unlike previous analytical approaches, our model
does not assume that data accesses within a transaction are
identically distributed, instead it accounts for data access
patterns that may vary depending on the current transac-
tion execution phase. This allows the model to capture real-
istic patterns, since, as also specified by several benchmarks
(e.g. TPC-C [24]), transactions typically follow a determin-
istic order in the access to the data items. For instance, in
warehouse applications, an order may be forwarded to the
warehouse (by updating a given tuple in the Orders table)
only after having checked the address of the customer (by
reading, in sequence, from the Customers and Addresses ta-
bles). We take such phenomena into account by modeling
the whole set of data manipulations executed by a trans-
action as a sequence of distinct phases, each one possibly
characterized by different data access pattern distributions.
(B) The model does not assume that the maximum length
of the queue of transactions waiting for a read/write lock is
bounded by one unit. In other words, we can accurately cap-
ture heavy contention effects and their impact on the final
perceived performance.

Clearly, the history of data accesses, and in particular
the order according to which data items are accessed within
different transaction phases, has a significant impact on the
distribution of locks’ duration and has consequently a strong
impact on the transactions’ conflict probability. Consider,
for instance, two sets of tuples, say X and Y, which are
always the first, respectively the last, ones to be accessed
within a transaction. Being the duration of the locks main-
tained on the tuples of set X much longer (relatively speak-
ing) than the duration of the locks on the tuples of set Y, it
follows that the probability of contention on the tuples of set
X will be much higher than the probability of contention on
the tuples belonging to set Y. Unfortunately, the inability of
existing 2PL models to capture such effects makes them sub-
ject to potentially remarkable errors. This is confirmed by

our experimental study (see Section 4), where we show how
performance models of 2PL that do not account for phase de-
pendent access distributions, exhibit (under literature typ-
ical system settings) up to 60% error on the evaluation of
the system saturation point while varying the transactions’
arrival rate. This leads these models to exhibit unaccept-
able errors on the evaluation of the system response time
vs variations of the transactions’ workload. As noted in
point (A) above, this paper fills such a gap by introducing
a novel modeling approach that captures scenarios with dif-
ferent data items’ access probabilities in distinct transaction
execution phases.

We have evaluated the accuracy of our analytical model
via an extended simulation study relying on both: (i) Syn-
thetic workload descriptions (e.g. in terms of machine in-
structions for specific operations within a transaction), some
of which analogous to those used for the validation of previ-
ous analytical results coping with both 2PL and Optimistic
concurrency control [26], and (ii) A workload we derived
by abstracting the main features of the transaction profiles
specified by the TPC-C benchmark [24].

By the results, we also show that, even in case of phase-
independent transaction patterns (where the transaction lo-
cality over the data items does not depend on the specific ex-
ecution phase), pre-existing analytical performance models
(see, e.g., [26, 23]) can incur some divergences from sim-
ulated performance values. This occurs especially under
heavy workloads. Our model does not exhibit such a diver-
gence just thanks to its feature in point (B), which allows it
to achieve a much higher accuracy in the modeling of sce-
narios characterized by non-minimal data contention, even
in presence of phase-independent data access patterns.

The remainder of this paper is structured as follows. In
Section 2 we discuss literature works on transactional sys-

tems’ modeling/evaluation. The analytical performance model

of 2PL is provided in Section 3. Finally, simulation results
that validate the model are presented in Section 4. Section
5 concludes the paper.

2. RELATED WORK

Several literature results exist, which cope with the evalu-
ation of transactional systems and concurrency control pro-
tocols.

Analytical modeling approaches have been presented in
[15, 22, 23] for the case of centralized database systems,
and in [6, 7] for the case of distributed/replicated databases.
Also, in [26] a general methodology for modeling and ana-
lytical evaluation of centralized transactional systems is pro-
vided. Some of the previous results differ from our proposal
in that they cope with modeling of optimistic concurrency
control, while our interest is in 2PL. Similar considerations
apply to the work in [13], where a performance model for
snapshot-isolation Multi-Version concurrency control is pro-
vided, which is intrinsically different from 2PL and provides
a different, non-serializable transaction isolation level [§].
On the other hand, compared to literature analytical results
related to lock-based concurrency control (see, e.g., [20, 21,
23, 26]), our proposal exhibits the innovative features of cap-
turing the effects of data access locality vs specific transac-
tion execution phases, and removes the assumption of lock
access queue bounded by one unit.

Concurrency control protocols, and their impact on per-
formance, have been extensively studied also via simulation

[3, 4, 11, 18, 19], which is a technique orthogonal to the
analytical approach provided in this paper.

Finally, our work is also related to those in [2, 25]. How-
ever, differently from our proposal, those analytical results
are not focused on complete performance models of concur-
rency control, since they are exclusively focused on the eval-
uation of storage management tradeoffs in multi-versioning
schemes vs the data item update frequency.

3. THE ANALYTICAL MODEL

3.1 Main Assumptions and Considerations

In accordance with typical assumptions in previous an-
alytical studies (e.g. [26]), we assume a hardware system
where the CPU is modeled as an M/M/k queue, where k
is the number of CPU-Cores, each of which has processing
speed denoted as MIPS (measured in terms of instructions
per second), and where the disk has a fixed I/O delay de-
noted as ;0. Anyway, we underline that our focus is on the
effects of data accesses and contention on logical resources,
not on physical resources. In fact, the contribution we pro-
vide is orthogonal to the assumed model for the underlying
physical system, given that our model for logical resources’
contention can be actually coupled with different models for
physical resources.

The transactional system handles a set of I items, each
of which represents a unit of data that can be accessed by
an operation within a transaction (e.g a tuple or a set of
tuples in a table of a database, or an item in a software
transactional memory). Also, transactions are processed ac-
cording to the Strong Strict Two-Phase Locking (SS2PL)
concurrency control protocol [9]. Unlike in 2PL, where locks
can be progressively released during the so called shrinking
phase of the transaction execution (typically corresponding
to the bottom half of the transaction life), SS2PL maintains
any lock till the end of the transaction. We decided to target
SS2PL as it is the most diffused variant among (commercial)
database systems relying on lock-based concurrency control,
though our model could be naturally adapted to forecast the
performance of other 2PL variants.

With locking protocols, a transaction can be aborted by
the deadlock manager, however we ignore deadlock related
aborts in our model since, as shown by previous studies [5,
14], their effects on the final perceived performance are typ-
ically negligible, unless the system is already close to sat-
uration (in which case the saturating performance curve is
already captured by our model) (*).

Further, we assume that the system is stable and ergodic,
so that quantities like the contention probability and the
mean transaction response time exist and are finite, and
defined to be either long-run averages or steady-state quan-
tities.

Finally, our analysis is based on an open model. This
choice is motivated by the fact that open models are more
suited for scenarios with a large number of users (like in,
e.g., transactional applications over the Internet).

"We do not explicitly report deadlock statistics in our sim-
ulation results supporting model validation. Anyway, the
frequency of deadlock occurrence is actually negligible also
for the case studies we have considered.

3.2 Basic Analytical Model

In this section, we present a basic version of the analytical
model relying on a workload characterized by a single trans-
action profile (a single transaction class). This is specified
in terms of number of data item to be accessed and locality
of the accesses in the different phases of the execution. Also,
we assume that transactions arrive according to a Poisson
process with mean value A\. The model extension coping
with workloads entailing differentiated transaction profiles
(multiple transaction classes) will be discussed in Section
3.3.

3.2.1 Transaction Execution Model

Each transaction consists of an initial begin phase, which
is followed by a number of M execution phases, each one ac-
cessing in read or write mode a single data item, and finally
by a commit phase. To execute a read operation, a trans-
action has to obtain a shared read-lock on the target data
item. On the other hand, for write operations, exclusive
write-locks are needed. Hence, each operation might entail
a wait (block) phase in case the requested lock is currently
unavailable.

During begin and commit phases, an exponentially dis-
tributed number of CPU instructions are executed, with
mean values nlST, and nlST., respectively. Also, the ex-
ecution of an operation is assumed to require an exponen-
tially distributed number of CPU instructions with nlS7T,
as the mean value. (The exponential assumption has been
introduced to match the M/M/k model for the underlying
CPU.) In case the access to a data item causes a buffer
miss, a time t;,0 is needed to fetch the data from disk. We
denote the expected buffer hit probability as Pgrg. Actu-
ally, we do not explicitly model the buffering policy and the
related effects since several models have already been pro-
posed to cope with the evaluation of hit probability vs the
item popularity, see, e.g. [12], which is orthogonal to our
study. Hence, Prm will be considered as an independent
parameter in our study. Finally, for simplicity, we do not
explicitly model the I/O delay associated with the commit
phase (e.g. the transaction log write onto stable storage).
Anyway, given our disk model, this delay would only entail
an additional latency term in the expression of the transac-
tion execution time. Also, our assumption well fits scenarios
where the writing of the transaction commit log is executed
asynchronously, thus not directly contributing to the trans-
action latency.

On the basis of the previous considerations, a transaction
can be modeled through a direct graph (see Figure 1), where
the nodes represent different states of the transaction exe-
cution and the arcs represent state transitions. A label on
an arc from a node p to a node ¢ represents the transition
probability from state p to state q. If the label is omitted,
then the transition probability is intended to be 1. States la-
belled with begin and commit represent begin and commit
phases respectively, while the state labelled with k repre-
sents the execution of the k'™ operation, and, finally, the
state labelled with k represents a waiting phase (due to lock
contention) preceding the k" operation. We denote with
P, the probability that the requested data item by the
k" operation is currently locked.

Finally, we represent the transaction access pattern as a
I x M access matrix denoted by A. Element A; ; expresses
the probability that the k*" operation of the transaction ac-

Figure 1: Transaction model.

cesses the i*" data item. Note that the sum of each column
of A must be equal to 1. Further we represent with a vec-
tor W, with |W| = M, the type of the access (read/write)
performed by the transaction in the different phases of its
execution. Specifically, Wi, (resp. 1 — W) is probability
that the k*" operation is a write (resp. read) operation. Ac-
tually, the access matrix A is the building block allowing
our model to capture the transaction execution history, and
its effects on performance, in terms of locality variation in
different phases of its execution. As an example, the matrix
can be instantiated in a way that the access to a specific
item j inside the transactional system is always prevented
up to a given phase f of the transaction execution (this can
be done by setting to 0 all the elements A; , with ¢ = j and
k < f). This, in its turn, captures scenarios where, e.g.,
items inside a given table of a database are always accessed
after operations on other tables have been already executed.

For the sake of clarity, let us now consider an example
transaction 1" characterized by a simple access pattern on a
small database consisting solely of I = 4 different data items.
Let us assume that 7" carries out 2 data accesses, respectively
a read and a write operation. The read operation accesses
with equal probability either data item 1 or data item 2,
whereas the write operation is deterministically targeted to
data item 3. Based on these assumptions, we can describe
the data access pattern of T" through the following access
matrix A and vector W:

05 0
05 0 0

A=1 0 1 W“1’
0 0

The mean transaction response time can be evaluated as
the sum of the average times spent in each state, that is:

M
Rix = Rbegin + Z(Rk + Rk) + Rcommit7
k=1
where Rpegin and Rcommit are times spent in states begin
and commit respectively, and Rb and R~k, with 1 <k < M,
are times spent in states k and k, respectively. The evalua-
tion of these times is presented in the following sections.

3.2.2 Lock Holding Time

The wait phase experienced by a transaction for lock ac-
quisition on a given data item depends on the average lock

Figure 2: Markov chain for data item i.

holding times of transactions preceding 7' in the lock ac-
cess queue on that item. In our model we explicitly capture
the fact that accesses to data items can occur at different
phases of a transaction. Hence, if data item a is typically
the first one to be accessed by transactions, and data item
b is normally the last one to be accessed, then the average
lock holding time on item a will be significantly longer than
the lock holding time on item b.

We evaluate the lock holding time for each data item,
and how it is affected by the transaction access pattern, by
exploiting the access matrix A. Specifically, if data item is
accessed by a transaction at the k*" operation, then it gets
locked up to the end of the execution of the commit phase.
Hence, the lock holding time for the access to data item i at
the k' phase can be expressed as:

M M
Dy, = Z Rj + Z Rj + Reommit-
i=k j=k+1

We know that the probability to access data item ¢ at
the k'™ transaction phase is expressed as A, . Hence, the
average lock holding time for data item ¢ can be evaluated
as:

Th, — o Ai Dy
M Ak
k=14,
where the sum at denominator is due to the fact that the
average lock holding time must be evaluated by considering
only the transactions for which an access to data item i ac-
tually occurs. We further assume that the lock holding time
for each data item is exponentially distributed. Although,
by construction, the expression for Th; would determine an
Erlang distribution (recall that Rj terms are assumed to
be exponentially distributed in compliance with the M/M/k
model for the CPU), the exponential approximation is rea-
sonable and relatively accurate up to non-minimal values for
M. This approximation will be exploited in the next section
while modeling contention effects on each data item.

)

3.2.3 Data Contention

The arrival rate of read accesses towards the i'" data item
can be expressed as:

M

=AY Aik(1— W),

k=1

Ar'ead,i

while for write accesses we have:
M

Awrite;i = A Z Ai kWi

k=1

Note that these arrivals form two Poisson processes where
Aread,i and Awrite,; €xpress the corresponding mean values.

If the data item is requested by a write operation and
it is currently locked (in either shared or exclusive mode),
then the transaction is blocked and the write operation is
enqueued. On the other hand, if the data item is requested
by a read operation, the transaction is blocked only in case
the item is currently locked in exclusive mode. Due to these
peculiarities in the queuing policies for read and write ac-
cesses, results from the queuing theory for classical queues
(e.g. the M/M/1 queue) cannot be used to model a data
item as a single server sustaining the stream of interleaved
read/write requests.

To cope with the determination of data contention, we
have modeled the request arrival process to each single data
item i as a birth-death process with fixed arrival rate, equal
to

Ai = Aread,i + Awrite,i

and variable service rate p; ; (see Figure (2)), where j cor-
responds to the number of standing requests for data item
¢ in the corresponding state of the Markov chain. For each
single data item ¢ the value p; ; depends on the interleaving
of read and write requests observed in state j. We evaluate
1i,j with its average value, calculated as follow. If in state
j the top standing request for lock access is a write request,
then p;,; is equal to TLhZ In fact, since the exclusive write
lock delivered to the write request blocks any other stand-
ing request, then the item is reserved for the write request
for the whole lock holding time (whose expected value is
exactly Th;). On the other hand, if the top standing re-
quest is a read request, all the other standing read requests,
if any, can be concurrently served. In the latter case, if in
state j there are [< j standing read requests, then we have
Wi = TLhZ In any case, we recall that Th; has been as-
sumed to be exponentially distributed (see Section 3.2.2),
which allows solving the birth-death process via standard
techniques [16]. Overall, denoting with Preqq,; and Purite,:
the probability that an incoming access request is a read
request or a write request, respectively, we have

_)\read,i
P’read,i S —
i
and
)\write,i
Pw'rite,i - -
Ai

We approximate the probability for the top request in state
j to be a write request (respectively a read request) with
Purite,i (respectively Preqd,:)-

Thus, after some algebra, we have

1 = L
Wij = W(Pwm‘te,i + ((Pread,s Z kPrkead,i) + jPrJead,i))
¢ k=1

When a write access occurs, a conflict is raised if the target
data item 17 is locked either in shared or in exclusive mode.
Thus we can model the contention probability for a write
access PWirite,; on data item ¢ as the sum of the probabili-
ties to stay in any of the states j, with j > 0, of the Markov
chain, which is equal to 1 — Py (where P, is the probability
to be in state 0 of the Markov chain). Hence, from queuing

theory [16], we have
1
- k—1 X ’
T+ Z:ozl szo i1

By the formula it can be noted that PWyrite,s < 1 only
if the sum at the denominator converges to a finite value.
Given that p;; > Tth V35 > 0, the condition TL}LI > \; for
every data item 4 in the transactional system is sufficient to
ensure that the contention probability for any write access
is less than 1, thus representing a stability condition for the
system.

To evaluate the contention probability of a read access we
recall that a conflict can occur only if the data item is locked
in exclusive mode. Hence, the contention probability can be
evaluated as the fraction of time during which the data item
is locked in exclusive mode. This time fraction corresponds
to the utilization of the data item vs write accesses. Thus
we have

Perite,i =1

PWiread,i = Awrite,id hi.
3.2.4 Wait Time

When an incompatible lock is found on the currently re-
quired data item, the transaction experiences a_wait time
t, which corresponds to the time spent in state k (see Fig-
ure 1), with k being the index of the operation causing the
conflicting access. The wait time depends on the data being
requested (i.e. on the amount of currently standing access
requests for that data item), not on the value of k.

We firstly evaluate the average waiting time for a trans-
action in case of a conflict on a specific data item ¢, which
we denote as Ruait,i. After we evaluate the average waiting
time experienced in each state k (with 1 < k < M), which
we denote as Ry. The latter value will depend on the trans-
action access matrix A, which expresses, for each operation,
the likelihood of access to each specific item.

Ruwait,i can be evaluated through the aforementioned
Markov chain associated with data item ¢. In particular,
the average amount of standing accesses is

Ni = ijj7
j=1

where P; is probability to stay in state j of the Markov
chain. When a conflict occurs upon data access, if no other
access requests to the same item are currently queued, the
wait time corresponds to residual lock holding time. On
the other hand, in case other access requests are currently
queued for lock acquisition, a further delay occurs due to
lock holding on that item by transactions associated with
the queued request, that is on average Th; for each one.
Thus we have Ruwait,i = (N; — 1)Th; + L;i, where:

M Ak DRO5

o Ai kD
and represents the normalized residual lock duration, de-
pending on the different durations evaluated on the basis of

the access pattern. Now, through Ruait,i, by exploiting the
access matrix A, we have

L;

I M

ék:ZZAi,kaait,i (PWread,i Pread,i + PWwrite,i Pwrite,i)
im1k—1

3.2.5 Operations Execution Time

Times spent by a transaction in states begin, 1237 with 1 <
k < M, and commit can be evaluated by exploiting the
model of the underlying hardware resources, which has been
provided at the beginning of Section 3.1. The CPU load for
the execution of a transaction is

Cepu =nISTy + M-nIST, +nIST.

and from queuing theory we get for the CPU utilization the
following expression:

_)\ Ocpu
P = & MIPS

Denoting with p[queuing| the wait probability for a request
in an M/M/k queue [16], and defining ~ as

v = 1+ plqueuing]/(k(1 — p)),

we can evaluate the response times Rpyegin and Rcommit of
states begin and commit respectively as:

R o nISTb
besin = INITPS
and
nlST.
Rcommit = ’Ym
Response times of states Ry, further depend on buffer hit
probability and I/O delays. Using the notation in Section
3.1, we have
A nlST,
Be=777pPs

for each k such that 1 < k < M.

+ Ppu-tr/0

3.2.6 Numerical Resolution

The model can be solved via an iterative procedure. After
assign the values to hardware configuration parameters (e.g
the CPU power) and transactional system parameters (e.g.
the access matrix) the value 0 has to be assigned to the pa-
rameters Ruwait,i;, PWread,i and PWirite,; (with 1 <4 < T).
Then the other model parameters can be evaluated via the
provided equations, using the results as the input for the
next iteration. The desired computational accuracy can be
fixed by defining a value € specifying the maximum differ-
ence between values obtained by two consecutive iterations
(e.g. if R, is the transaction response time at iteration n,
then the computation can be stopped when the condition
R, — Rn—1 < € becomes true). While it is out of the scope
of this paper to formally demonstrate the convergence of this
iterative solution method (which has been adopted for solv-
ing several pre-existing performance models of concurrency
control protocols, see, e.g, [6, 7, 13, 15, 26]), we have empir-
ically observed that it always converges in a few iterations,
provided that the input assignment defines a stable system.

3.3 Coping with Multiple Transaction Classes

In this subsection we show how our model can be employed
in scenarios where the workload entails different transaction
profiles (or classes). We denote as C' the number of the
different transactional classes, each of which can be repre-
sented through a specific transaction model featured as the
one described in 3.2.1. We use the following notation:

e Vector M, with [M| = C, where element M°, with
1 < ¢ < C, represents the number of operations of a
transaction of class c.

e Vector A of matrix elements, with [A| = C, where
element A°, with 1 < ¢ < C, is the access matrix of a
transaction of class c.

e Vector W, with [W| = C, where element W*°, with 1 <
¢ < O, is the write probability for the m'™ operation
of a transaction of class c.

Further the transaction arrival rate for class c is denoted by
Ae.

The accuracy level while describing a workload with dif-
ferentiated transaction profiles according to the previous no-
tation can be tuned in accordance to the requirements of the
performance analysis the end-user is carrying out. Roughly
speaking, the more the identified transactional classes, the
more accurate the workload description. As an extreme,
each plausible access pattern could be associated with a
specific class in such a way to describe the variation of the
transaction locality over the data items in a deterministic
manner. In this case each access matrix will be character-
ized by columns having a single element equal to 1, and all
the other elements equal to 0. As it will be clear by the be-
low description of the modifications to the model equations
in case of multiple classes, a large number of classes will only
entail an increased amount of computation power for the it-
erative model solving procedure. In general, if transactions
are composed by a fixed number of predefined statements,
as in, e.g., a lot of three-tier Web based applications, to ob-
tain a good compromise we suggest to model the workload
using a single class for each predefined transaction pattern.

With more transaction classes, some of the previously in-
troduced equations must be rewritten in order to consider
parameter dependency on the access pattern and the arrival
rate of each class. For simplicity, we only show the final
shape of these equations without explicitly repeating inter-
mediate modeling steps, which are anyway intuitive once the
base model in Section 3.2 has been analyzed. The transac-
tion response time for class c is

M
Rfﬂc = Rgegin + Z(Ri + Ri) + Rgommit:
k=1
where we added the superscript ¢ to the parameters intro-

duced in Section 3.2.1 to emphasize that each of them is
related to class c¢. The average lock holding time for data

item 4, R}, becomes
c cpc M 15 Me S5¢ c
Zc:l A i,k(Zj:k ch + Zj:k+1 ch + Rcommit)
C yenM© Lo
D1 A D ket AS

)

The arrival rates of read and write accesses towards the i*"
data item become

M€

c
)\read,i = Z)\C Z Af,k(l - W/:)v
c=1 k=1

and
Me

C
)\write,i = z A° Z Af,k(ch)
c=1 k=1

#Items 1000
ZCPUs 5
CPU Speed 10 MIPS
o 0.035s
Accesses x Xact (M) 15
PwTite 100%
Ppyg 0.27
nlIST, 150000
nlIST, 20000
nlST. 250000
Access Distribution - Phase 4 Unif. in
(Phase Independent Workload) [1,1000]
Access Distribution - Phase 1 Unif. in
(Phase Dependent Workload) [1+] 51 J-200,(51 | + 1)-200]

Table 1: Parameters settings for Part-A (as in [26]).

In the end, we can rewrite the equation of Ry, for each trans-
action class as

I M*©

S5 c
Ri= E E A7k Ruwait,i(PWread,i Pread,i + PWawrite,i Pwrite,i)
i=1k—1

4. MODEL VALIDATION

In this section we present a validation study of the pro-
posed analytical model. We evaluate the model accuracy via
a set of differentiated tests based on output comparison vs
the performance of SS2PL as obtained by a discrete event
simulator developed using the C programming language. To
ensure reproducibility of simulation results, the simulator
code has been made publicly available. We made as well
freely available the Java-based implementation of our ana-
lytical model solver (see [1] for both packages). The latter
package may reveal a valuable tool for performance engi-
neers and database administrators in charge of carrying out
capacity planning of lock-based transactional systems.

As the last preliminary observation, the simulation soft-
ware explicitly implements data accesses and lock manage-
ment algorithms proper of the SS2PL concurrency control
protocol, while it simulates the underlying hardware com-
ponents by modeling them via the corresponding queuing
systems. Transaction deadlocks possibly arising due to lock
contention are resolved in the simulator immediately upon
the generation of a cycle within the transaction wait-for-
graph [10]. Deadlock resolution results in aborting the trans-
action causing deadlock, which is immediately resubmitted
for a new execution.

The tests are related to three main scenarios character-
ized by diverse workload configurations and system param-
eters. In particular, this section is structured as follow. In
Part-A we validate our model by using the same param-
eters’ configuration used in [26]. This will also permit a
direct comparison between the accuracy of our model and
of the one presented in that same work. In Part-B we con-
sider synthetic workloads which induce worst case effects on
lock contention across different transaction classes. This has
been done to stress the robustness of the model in the pres-
ence of diverse transaction access patterns. In Part-C we
finally provide validation results for the case of transaction
workloads derived by abstracting the main features of the
well known TPC-C benchmark [24].

#lItems 100000
#CPUs 8
CPU Speed | 2000 MIPS
tI o) 0.004 ms
Pea 0
P'Lurite 20%

Table 2: Parameters settings for Part-B.

4.1 Part-A

We start validating our analytical model by considering
the same parameters setting (reported in Table 1) that has
been used to evaluate the accuracy of the SS2PL model pre-
sented in [26]. According to this setting, we consider two dif-
ferent transaction profiles, both entailing 15 data accesses in
write mode. In the first transaction profile (which we name
phase-independent), the accesses are uniformly distributed
across the whole set of items in the transactional system, in-
dependently of the transaction execution phase. In the sec-
ond transaction profile (which we name phase-dependent),
data accesses are still uniformly distributed (when consid-
ering the transaction as a whole). However, the data access
locality varies across different transaction execution phases.
Specifically, for this transaction profile we see the items in-
side the transactional systems as logically partitioned into
5 equally sized, non-overlapping sets {Si,...,S5} (which
might be seen as representative of, e.g., distinct database
tables). The transactions perform three accesses, uniformly
distributed in the set S1, and then sequentially move to the
next sets (with 3 accesses in each set), until they complete
the pre-established number of 15 data accesses.

In Figure 3 we plot, for both the phase-independent and
phase-dependent transaction profiles, the average transac-
tion execution time as evaluated by (i) our analytical model,
(ii) the analytical model in [26], and (iii) the simulator, used
as the reference for estimating the accuracy of the two ana-
Iytical models. For the phase-independent transaction pro-
file, it can be noted that the SS2PL model proposed in this
paper is more accurate than the one in [26], especially when
the probability of data conflict grows (i.e. at high workload).
In particular, our model well captures system saturation,
while the model in [26] largely underestimates the system
saturation point, with an error of about 60%.

This depends on that, differently from our approach, the
model in [26] determines the average lock waiting time by
exploiting a number of simplifying assumptions (e.g. limit-
ing the lock queue length to 1 and then compensating by
upper bounding the data access conflict probability) that
introduce larger errors in scenarios characterized by high
conflict rates.

When moving from the phase-independent workload to
the phase-dependent workload with the same popularity for
each data item, it can be noted that the system perfor-
mance gets remarkably affected. Given that the effects of
access locality variations across different transaction execu-
tion phases are not captured by the model in [26], it would
lead to the same curve seen for the phase-independent case
and exhibit a significant discrepancy with respect to the
simulator output. Conversely, our model, which explicitly
captures this phenomenon, provides highly accurate perfor-
mance predictions even for the phase-dependent case.

Part A

1.1

09 r

0.8

=]

= . .
Model in [26] - Phase-independent Accesses
Our Model - Phase-independent Accesses —+—

0.7

Avg. Transaction Execution Time (sec)

06 Simulation - Phase-independent Accesses ------- T
Our Model - Phase-dependent Accesses —&—
05 _ Simulation - Phase-dependent Accesses ---B---

5 10 15 20 25
Transactions per Second (TPS)

Figure 3: Performance comparison for both inde-
pendent and phase-dependent data access patterns
(Part-A).

#Accesses (M) Access Distribution - Phase ¢ €[1,M]
Profile P 20) Uniform in
[14+ I_%j »20000,(|_Zzlj + 1)-20000]
Profile P 8) Uniform in
[14+ I_%j »20000,(|_Zzlj + 1)-20000]
Profile Ps 8) Uniform ir_1
[14 (L%J + 3)»20000,([11” + 4)-20000]

Table 3: Synthetic workload 1 (Part-B).

Part B - Synthetic Workload 1

_ Our Model - P;” ——
g 014F OurModel- P, —+— 1
e Our Model - P; —a—
) Simulator - F?1
£ 012r Simulator - Py -t 1
= Simulator - P3 o
3]
k= 0.1 E 4
o
Q
x
w008 - b
c
2
8
& 0.06 -]
c
© +
=
5 004f ~ . 1
S = = = = =
<
0.02 ‘ ‘ ‘ ‘ ‘ ‘ ‘

7500 7600 7700 7800 7900 8000 8100 8200 8300 8400
Transactions per Second (TPS)

Figure 4: Transaction execution time for synthetic
workload 1 (Part-B).

Accesses (M) 15
Profile P; Uniform in
Access Distribution - Phase i [1+ |1]-200,(] 21] +1)-200]
Profile Py Uniform in

Access Distribution - Phase

[14[==L 1-200, (] 25=2 | + 1)-200]

Table 4: Synthetic workload 2 (Part-B).

Part B - Synthetic Workload 1

0 Ogr Model - SS1
imulator -
0.35 - Our Model - S; + b
Simulator - S, —+—
03 Our Model - Sg @]
Simulator - S3 —=—
S L Our Model - S n]
% 025 Simulator - S: —-
N Our Model - Sg o
= 0.2 Simulator - S5 —e— 1
x
8 015t
- +
e il + ‘
01 a1 1 5 = E‘ﬁg
s P B & & & & =
0.05 }) R

0
7500 7600 7700 7800 7900 8000 8100 8200 8300
Transactions per Second (TPS)

Figure 5: Lock utilization for synthetic workload 1
(Part-B).

4.2 Part-B

We now focus our experimental study on the evaluation of
the accuracy of our model in more complex scenarios char-
acterized by multiple transaction profiles and highly skewed
phase-dependent data access distributions. Further, com-
pared to the study in the previous section, we consider sys-
tem parameters representative of more modern platforms
(e.g. an increased number of CPUs/Cores and increased
processor/disk speed) and applications (e.g. an increased
amount of items inside the transactional system). The de-
tailed parameter settings adopted for this study are reported
in Table 2. As the last preliminary consideration, this time
the value of Ppr (which would depend on the specific ob-
ject replacement policy) has been set to 0. (Recall that our
analysis is orthogonal to modeling approaches for buffer re-
placement policies and related hit/miss effects vs the item
popularity.)

We analyze two different synthetic workloads which only
share the following two characteristics. Data items are
grouped in 5 contiguous sets (logically equivalent to, e.g.,
database tables) which we again refer to as {Si,...,S5}.
Also, the probability of access in write mode is set equal to
20%. Synthetic workload 1 (see Table 3) entails three differ-
ent transaction profiles P1, P> and Ps, with identical arrival
rates, and the following access patterns. For class Pi, the
pattern is similar to the phase-dependent pattern of Part-
A of our study, with the only variation that the number of
accesses is equal to 20, and 4 accesses per set are executed
before moving to the subsequent set. Transactions of class
P> perform 4 accesses to the set S1 and then other 4 accesses
to the set Sz (for a total of 8 accessed items). Similarly,
transactions of profile P;3 perform 4 accesses to the set Sa,
and 4 subsequent accesses to the set S5. In every transaction
profile, the 4 accesses in each set are uniformly distributed
over the whole items in that set. The performance plots
for this workload (see Figure 4) show a very good matching
between simulation and analytical values for all the three
transaction classes. Also, despite the transaction profiles
P> and Ps access the same number of items having the same
global popularity, the relative response times differ by about
the 35%. This phenomenon is due to the presence of profile
Py, which locks the items of sets S1 and Sz (also accessed

Part B - Synthetic Workload 2

0.08 T T T T T T T
— Our Model
8 Simulator —a—
Z
> 0.07 1
£
=
_5 0.06 1
5
[$]
g 005 1
c
S
S 004 8
[%2]
c
©
F 003} A
(e
>
<
0.02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

12500 12600 12700 12800 12900 13000 13100 13200 13300 13400
Transactions per Second (TPS)

Figure 6: Transaction execution time for synthetic
workload 2 (Part-B).

in profile P») for longer time intervals than the items in sets
Sy and Ss (also accessed by profile P3). For this same work-
load, we also show (see Figure 5) a comparison between the
lock utilization values for each of the 5 sets as predicted
by both the simulation and the analytical model. Beyond
confirming the tight matching between simulation and an-
alytical results, these plots highlight an interesting feature
of our model. Specifically, its ability to capture data con-
tention dynamics with single data item granularity makes it
capable to predict the performance effects due to the specific
organization of the transactional logic (such as the order of
the accesses to different data sets within different phases of
a transaction). As an example, Figure 5 highlights that the
accesses to the set of items S; represent the system bottle-
neck.

The second synthetic workload (number 2) we consider
represents a “stress” case aimed at assessing the accuracy of
our analytical model (see Table 4). This workload consists of
two transaction profiles, denoted as P; and P>, with identical
length, 15 accesses, and arrival rates. The data accesses for
the two profiles are symmetric. Specifically, transactions of
profile P perform three accesses to each set S; starting from
S1 and then sequentially moving according to increasing set
indexes. Instead, transactions of profile P> perform three
accesses to each set starting from S5 and then move to the
other sets according to a (reverse) decreasing order of the
set indexes. In such a configuration, items in the sets with
extreme indexes (i.e. index 1 and index 5) experience lock
holding times with high variance across the two transaction
profiles, which is the main contribution towards the stress
configuration for Mean-Value-Analysis (MVA) approaches
like our one. Also for this workload, the plotted curves (see
Figure 6) show a very good matching between simulation
and analytical performance values (?).

4.3 Part-C

We conclude our experimental study by evaluating the
accuracy of our model with a workload reflecting relevant
features of a standard benchmark for transactional systems,

2Due to symmetry, the response time for the two transaction
profiles is the same, which is the reason why we only plotted
a single analytical/simulated curve.

Table Name # Items | Table ID
WAREHOUSE 500 tb0
DISTRICT 1000 tbl
CUSTOMER 15000 th2
STOCK 500000 tb3
ITEM 100000 tb4
ORDER 1000 tb5
NEW-ORDER 1000 tb6
ORDER-LINE 1000 tb7
HISTORY 1000 tb8

Table 5: TPC-C tables’ population.

Phase Py Py Py Ps
(47%) (45%) (4%) (4%)

0 (R),tb0 | (R),tb0 | (R),tb2 | (R),th6
1 (R),tbI | (R),tbl | (R),tb5 | (W).th6
2 (W),tbl | (R),tb2 | (R),tb7 | (R),tb5
3 (R),tb2 | (W),th0 (W),tb5
1 (W),tb5 | (W),tb1 (R),tb7
5 (W),tb6 | (W),tb2 (W) ,tb7
6 (R),tb4 | (W),tbs (R),th2
7 (R),tb3 (W),tb2
8 (W),tb3

9 (W),tb6

Table 6: Abstracted TPC-C transaction profiles
(classes).

namely TPC-C [24]. The item tables’ population and layout
(see Table 5) have been configured by setting the number of
warehouses (which represent an explicit scale parameter for
TPC-C) to 500. The only variation is related to the scaling
of the size of the tables which are accessed via select state-
ments using intervals of keys. This choice is motivated by
the fact that such select statements would lead to K read op-
erations, as modeled in our approach. Therefore the scaling
has been done in order to provide a fair modeling approach
for select (i.e. read) statements operating at different gran-
ularity values (single key vs interval of keys).

The characterization of the transactional data access pat-
terns is based on the TPC-C workload modeling carried out
in [17]. Table 6 reports, for each transaction profile and
transaction execution phase, which item table is accessed
as well as the corresponding access mode (read, denoted as
(r), vs write, denoted as (w)). We consider only 4 of the 5
different transactional classes identified in [17], since one of
them, namely the Stock-level transaction, does not impose
any isolation guarantee, hence not triggering any concur-
rency control mechanism at all (whose modeling is the focus
of this work). The remaining model parameters (characteriz-
ing, e.g., the available hardware resources) are not reported
as they are unchanged with respect to Section 4.2.

By the results in Figure 7, it can be observed that our
model well fits the simulation output. As for previous cases,
the matching can be observed for each single transaction
profile included in the workload. These results confirm the
high accuracy of our analytical performance model even in
case of complex and diverse workloads.

S. ASSESSMENTS AND CONCLUSIONS

In this work we have proposed a novel analytical model
for one of the most widely employed concurrency control
schemes, namely (Strong Strict) 2-Phase-Locking.

Our solution overcomes several limitations of preexisting

Part C
006 Our Model - Py’
Simulator - I5)0
Our Model - Py -t
0.05 - Simulator - Py —+—
Our Model - P, &
Simulator - P, —=—
Our Model - Py ---m
0.04 1 Simulator - Py —=— b

0.03

0.02 -

A

Avg. Transaction Execution Time (sec)

0.01 p—sm = = 5 = = = = —

3500 3600 3700 3800 3900 4000 4100
Transactions per Second (TPS)

Figure 7: Simulation and analytical results for the
abstracted TPC-C workload.

analytical approaches, such as the simplifying assumption
that accesses across different execution phases of a transac-
tion are identically distributed. Through an extensive ex-
perimental study, we have shown that our model is capable
of achieving significantly a higher level of accuracy with re-
spect to existing methods for a wide variety of synthetic and
realistic workloads.

Our analytical model takes as input parameter a so called
access matrix, which encodes the transaction access pattern
associated with data items. Planned future work encom-
passes the study of methods for automatic generation of the
access matrix in generic transactional contexts.

6. REFERENCES

[1] http://www.dis.uniromal.it/pub/quaglia/2pl-
simulator-plus-modelsolver.tar.gz.

[2] K. A. Merchant, P. Yu, and M. Chen. Performance
analysis of dynamic finite versioning for concurrent
transaction and query processing. ACM
SIGMETRICS Performance Evaluation Review, 20(1),
June 1992.

[3] R. Agrawal, M. J. Carey, and M. Livny. Concurrency
control performance modeling: Alternatives and
implications. ACM Transactions on Database Systems,
12(4), December 1987.

[4] N. Al-Jumaha, H. Hassaneinb, and M. El-Sharkawia.
Implementation and modeling of two-phase locking
concurrency. Information and Software Technology,
42(4):257-273, March 2000. Elsevier Science.

[5] R. Balter, P. Berard, and P. Decitre. Why control of
the concurrency level in distributed systems is more
fundamental than deadlock management. In
Proceedings of the First ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing,
Ottawa, Canada, pages 183-193. ACM New York, NY,
USA, 1982.

[6] B.Ciciani, D.M.Dias, and P.S.Yu. Analysis of
concurrency-coherency control protocols for
distributed transaction processing systems with
regional locality. IEEE Transactions on Software
Engineering, Volume 18(10):pp. 899-914, October
1992.

[7]

8]

[9]

(10]

(11]

(13]

B.Ciciani, D.M.Dias, and P.S.Yu. Dynamic and static
load sharing in hybrid distributed-centralized systems.
Computer Systems Science and Engineering, Volume
7(1):pp. 2541, January 1992.

H. Berenson, P. Bernstein, J. Gray, J. Melton,

E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, volume 99, pages 1-10, May 22-25 1995. San
Jose, California, United States.

P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.
Addison-Wesley Longman Publishing Co., Inc., 1987.
M. J. Carey and W. A. Muhanna. The performance of
multiversion concurrency control algorithms. ACM
Transactions on Computer Systems, 4(4):338-378,
November 1986.

B. Ciciani, F. Calderoni, A. Santoro, and F. Quaglia.
Modeling of QoS-oriented content delivery networks.
In Proceedings of the 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems
(MASCOTS 2005), pages 341-344, Washington, DC,
USA, 2005. IEEE Computer Society.

P. di Sanzo, B. Ciciani, F. Quaglia, and P. Romano. A
performance model of multi-version concurrency
control. In Proceedings of the 16th IEEE International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems
(MASCOTS 2008), pages 41-50. IEEE Computer
Society, 2008.

J. Gray, P. Homan, R. Obermarck, and H. Korth. A
straw man analysis of probability of waiting and
deadlock. IBM Research Report RJ 3066, 1981.
I.LK.Ryu and A.Thomasian. Analysis of database
performance with dynamic locking. Journal of the
ACM (JACM), Volume 37(Issue 3):pp. 491 — 523, July
1990.

(16]

(17]

(24]

25]

(26]

L. Kleinrock. Queuing Systems (Voll and Vol2).
Wiley-Interscience, 1975.

S. T. Leutenegger and D. Dias. A modeling study of
the tpc-c benchmark. SIGMOD Rec., 22(2):22-31,
1993.

D. R. Ries and M. Stonebraker. Locking granularity
revisited. ACM Transactions on Database Systems
(TODS), 4(2), 1974.

D. R. Ries and M. Stonebraker. Effects of locking
granularity in a database management system. ACM
Transactions on Database Systems (TODS), 2(3),
September 1977.

A. Thomasian. On a more realistic lock contention
model and its analysis. In Proceedings of the 10th
International Conference on Data Engineering, pages
2-9, Feb 1994.

A. Thomasian. A more realistic locking model and its
analysis. Information Systems, 21(5):409-430, 1996.
A. Thomasian. Concurrency control: Methods,
performance, and analysis. ACM Computing Surveys,
30(1), March 1998.

A. Thomasian and I. Ryu. Performance analysis of
two-phase locking. IEEE Transactions on Software
Engineering, Volume 17(Issue 5):386 — 402, May 1991.
Transaction Processing Performance Council. TPC
Benchmark™ C, Standard Specification, Revision
5.1. Transaction Processing Perfomance Council, 2002.
P. Yu and M. Chen. Performance analysis of dynamic
finite versioning schemes: storage cost vs.
obsolescence. IFEE Transactions on Knowledge and
Data Engineering, 8(6), December 1996.

P. S. Yu, D. M. Dias, and S. S. Lavenberg. On the
analytical modeling of database concurrency control.
Journal of the ACM (JACM), 40(4):831-872,
September 1993.

