TECNICO
LISBOA]Slesad

Hybrid Machine
Learning/Analytical Models for
Performance Prediction

Diego Didona and Paolo Romano
INESC-ID / Instituto Superior Técnico

6t ACM/SPEC International Conference on
Performance Engineering (ICPE)
Feb 1t 2015

Outline

e Base techniques for performance modeling

— White box modeling

— Black box modeling

— Modeling and optimization on two case studies
* Hybrid modeling techniques

— Divide et impera

— Bootstrapping

— Ensemble

* Closing remarks

Modeling a system

KEY PERFORMANCE INDICATORS

[

INPUT FEATURES

-

Modeling a system

INPUT FEATURES

d

Workload:
* Intensity, smallvs large jobs

Infrastructure
* # servers, type of servers

Application-specific
* Replication

KEY PERFORMANCE INDICATORS

ﬁ

Throughput
 Max jobs/sec

Response time
 Exec.timeofajob

Consumed energy
e Joules/job

What is a performance model?

* Approximator of a KPI function
* Relates input to target output

* Can be implemented in different ways
— White box
— Black box

Applications of Performance Modeling

e Capacity planning

— Avoid overload in datacenters
* Anomaly detection

— Model “normalcy” to detect anomalies
e Self-tuning

— Maximize performance

* Resource provisioning

— Elastic scaling in the Cloud

Accuracy of a performance model

* Approximation accuracy metrics
— MAPE (Mean Absolute Percentage Error)
N "
Z |f‘f."(.'U‘t.' — 1_)}'(’(!3|
= N real;

— RMSE (Root Mean Square Error)

N

Z | f‘f."(f”‘t{ — I)I‘f.’(jl,’ |')
&

=1

White/Black Box Modeling 101

White box performance modeling

@ Leverage on knowledge about target app’s internals

o

* Formalize a mapping between
— Application, hosting platform and
— Performance
 Formalization can be
— Analytical (e.g., Queueing Theory) [45]
— Simulation, e.g., [36]

Queueing Theory

I@’\A resource is modeled as a server + a queue

* Possible target KPls
— Resource utilization
— Throughput
— Response time
* Key factors impacting queue’s performance
— Arrival of jobs
— Service demands
— Service policy (e.g., FCFS)
— Load generation model (e.g., open vs closed)

From single queues to networks

o~

WAITING SERVICE
AREA NODE

_.Q__.

|
QOOE

Queueing Theory pros and cons

) Accurate for wide spectrum of input parameters
O Specifically crafted for target app

O Analytical tractability often requires
— Assumptions (e.g., independent job flows)
— Approximations
— Simplifications (e.g., Poisson arrival)

Simulation

f@iEncode system dynamics via a computer program
* Alternative w.r.t. analytical modeling

O simpler (code vs equations)
) May rely on less assumptions
() sSlower to produce output

O Similar trade-offs w.r.t analytical modeling

@Still uses simplifications to avoid overly complex code

Black box

Definition

performance modeling

Taxonomy (Offline vs Online, supervised vs
unsupervised, regression vs classification)

Examples (D

Ensemble
Optimization

, SVM, ANN, KNN, UCB, Gradient),

Building black box models

@ Infer performance model from behavior

e > o

* Machine Learning [8]
— Observe Y corresponding to different X

— Obtain a statistical performance model

Machine Learning pros and cons

@ No need for domain knowledge
O High accuracy in interpolation

—i.e., for input values close to the observed ones
O Curse of dimensionality

— # required samples grows exp. with input size
— Long training phase to build model

) Poor accuracy in extrapolation

— i.e., for input values far away from the observed ones

Black box modeling taxonomy

* Target output featurey

— Classification (discrete y) vs Regression (y in R)

* Training phase timing
— Online vs Offline

 Predict or find hidden structures

— Supervised vs unsupervised learning

OFF-LINE SUPERVISED LEARNING

* Supervisec

— Known inputs x have a corresponding known y = f(x)

e Offline
— Model built on a training dataset
— Dataset {<x,y> : vy = f(x)}
— Learn f’ : f'(x) ~ f(x)

* While being able to generalize outside the known dataset

Decision Trees [55]

f@Predictive model is a tree-like graph
* Intermediate nodes are predicate

* Classifications: leaves are classes

* Regression: leaves are functions

— Piecewise approximation of nonlinear functions

DT: an example

Input features
* Incomerange

(Iru:ome range of&pplicant?) e Criminal records
 #yearsin presentjob
<$30K $30-70K ~smk * use creditcard
(Cnmmel Iecord? Y ears in present]ob?> Cnmmal recom?

Makes credit
card payvments?

yes no
an o foan

Support Vector Machines [16]

* Atupleisa pointin a multidimensional space

f@’*Find hyperplane s.t. different classes are as
much distant as possible

6f o or
o0 .0 :
% 6""0 ¢
4 ° 000 oo 4
% ”‘ 8
%% 9,°0
° o .ﬁ
2 2o oo00 Low 2+
°°%°8 %900
Q
I UAED
0 o%%%«’o& o
OO 009 o
g0 8°
)
-2t
2t
4}
—4l)
2 0 2 4 6

ar 2 0 2 7 6 8

Credits to Erik Kim for SVM-related images, http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

Support Vector Machines

15
® o g °
10 o qo Ogoo°§ *&é‘ggﬁ% °eg ©
o 0SB0 0 00078 T g F 2% 0
%%0000 ? ° A %04 ogooo R
X o’ 8
05} > oo Boqusl Lo 8% °o
(-]
8 %& °o.r“°.‘ A %902%0 °
% 00 “"..o ° .' g:. g %Oo .
0.0} %, % & $ v o ;féof%
°)
® °°890 O..‘. ° ‘.; \. ogg
) ” 0%o ° -1
oo 4,'::‘.‘#.;.\»! 0 %P0
0.5} ﬁeoo) ® .0‘ o ngoo
° 8@28 o b
oo {e)e]
Q 88’ & o ®
&O O%% ®o 8 © o°% Oq)
® O 0go 03 & o&0
-1.0} AR S &
o
o
153 ~1.0 05 0.0 0.5 1.0 15

@ What if points are not linearly separable?

SVM: the kernel trick, |

@ Map points to a higher dimensional space
O |n that space, points are linearly separable

to R™2 (nonseparable)

1.4 ﬁ
1.2 7
o

* Here, kernelis f(x, y) = (x, y, X2 + y2)

SVM: the kernel trick, Il

* Nonlinear separation in original domain

Data projected to R~2 (hyperplane projection shown)

15
Data in R"3 (separable w/ hyperplane)
1.0F
14 ° °
o oo
| R 0 © . o °,
1.2 o® . ° ° S ..o 05k
!F 3.0 o0 S o ;. 0 ® & ;
- % o
10 .o °g‘oo o ¢ ot "0 9,90 O‘ db)
N o 00 o o o2 ¢)
2.8 7 e ° o o o o °%
°o ¢ o °8 0.0}
0.6 1 ° >
0.4 7 _
" /| A‘A -0.5}
0.2 7 A ™ 4
&t‘ﬂn ‘A‘ LS
A ‘Ai
1.0
0.5
0.0 _ 0.5 1.0 -1.0f
y- 05_;, 1o -05 00
L33 210 205 00 05 10

Artificial Neural Network [79]

Inner model is a graph

@ Resembles neurons connections in brain
Hidden nodes layer

Input nodes layer ‘
Input x1 Output nodes layer
' ’V 'ﬁ outy
Ty U, Wrl >
ISSECE 4»9\
" Output y2
-------- b
curon
Links ‘ Links

Credits to Koné Mamadou Tadiou for image
http://futurehumanevolution.com/artificial-intelligence-future-human-evolution/artificial-neural-networks

Input x3

—

ANN internals

* Neuron structure

o B

Output
|

Activation
Function

Inputs

 Weighted sum of inputs
* Activation 0/1 function as output

Credits to http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7

Building an ANN

* Determining its structure
— # layers
— # neurons per layer

* Activation function per neuron
* [teratively learn weights depending on error

°\h‘\
@

o @ -

W

n

K Nearest Neighbors [2]

f@iPredict based on closest known values to target
* Proximity given by a function

| k)
Euclidean \"’Z (xi — Vi)_

Manhattan 7 ’J',- —V;

2 Vg
Minkowski (i,qx,- _."i|y]

Pic from http://www.cs.bham.ac.uk/internal/courses/robotics/halloffame/2010/team12/knn.htm

K Nearest Neighbors

e Classification:
— Class of X is the most common in neighborhood
* Regression

— Value for X is a function of the values in the neighb.

ONLINE LEARNING

* We consider Reinforcement Learning [70]

— Training set not available (nor stored)

— Given a set of <State, Action> pairs [
f@iFind sequence of actions that @
" maximizes payoff (reward)

— Collect feedback from system
* Tradeoff between

Reward

4—(Ag:nq

— Exploration (try new actions)
— Exploitation (use good known actions)

Action

Multi-armed bandit (MAB)

* Inspired by gambling at slot machines. Find
— Which arm to play
— How many times
— In which order

Upper Confidence Bound [3]

* Popular set of algorithms for MAB

f@"At any time choose the arm that
1. maximizes reward, while...
2. minimizing regret:
utility loss due to sub-optimal choices

e Efficiency: regret is logarithmic in the # of trials

Hill Climbing

* Not really “learning”, but online optimization

@ Explore function in the direction that
increases/decreases its value

* Possibly coupled with randomization to avoid
local max/min

Local Minima
and Maxima

NO FREE LUNCH THEOREM FOR ML

* Thereis no “absolute best learner”
* Best learner and parameters depend on data

* When working in extrapolation, there are no a
priori distinctions between learning
algorithms [80]

ML optimization

"t A ML algorithm has meta-parameters
— # features of the input data
— # min of cases per leaf in DT
— Kernel and its parameters in SVM
— Neurons, layers, activation functions in ANN

* How to choose them to maximize accuracy?
— It depends on the problem at hand!

Features selection [40]

@ ldentify features of inputs that are correlated
the most with target output

) speedup in building the model
@ Increase accuracy by reducing noise

Features selection

* Wrapper: use target ML with different
combinations of features

— Forward selection, Backward elimination, ...

* Filter: independent of the target ML

— E.g., discard 1 between 2 highly correlated variables

* Dimensionality reduction (PCA, SVD)

— Find features that account for most of the variance

Hyperparameters optimization

* Find hyper-parameters that maximize accuracy
e Based on cross-validation

— Use part of the set as training and part as test
* Different approaches
— Grid search

— Random search [6]
— Bayesian optimization [74]

Grid Search

1. Uniformly discretize features’ domain
| | | | |

2. Take the Cartesian product of features

Random search

* Include randomness
— Increase sampling granularity of important param.

Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

ENSEMBLING

Solution to counter NFL theorem
Employ multiple learners together
Bagging [9]

— Train learners on different training sets
Boosting [66]

— Generate 1 stronglearner from N weak ones

Stacking [79]

— Combine output of learners depending on input

Bagging

:@‘Average output of sub-models
* Generate N sets of size D’
— Draw uniformly at random with repetition from D

e Generate N black box models
— Voting for classification
— Averaging for regression

 Cannot improve predictive power (in extrap.) ...

e Can reduce variance (i.e., better interp. accuracy)

Bagging example

* 100 bootstrapped learners

* Reduce variance and overfit w.r.t. single models

Temperature
80 90

70

60

T T T T
0 50 100 150

Boosting

@-Build a strong learner from many weak ones
e Stage-wise training phase
— Training at stage i depends on output of i-1

 0/1 Adaboost

— Base learners B.: can classify correctly with p > %

— |teratively try to classify better mis-classified samples
— At stage i, drawn training set according to dist. D

— D, s.t. mis-classified samples have higher relevance
— Output weighted average of weak learners

Adaboost, training

[mit1al uniform weight o) O
on training examples O e

A % e

weak classifier 1

re-weighted more heavily '
@/
'

ak classifier 2
weak classifier \\. ‘l ’
\J‘ ‘

weak classifier 3 \ ‘
!
® o
\
Final classifier 1s weighted . \
\
\

combination of weak classifiers
\ O
@ .

Incorrect classifications
n 2 I

Credits to Kihwan Kim. http://www.cc.gatech.edu/~kihwan23/imageCV/Final2005/FinalProject_KH.htm

Adaboost, result

H(x) = sign(a,h, (x)+ a,h, (x) + ah,(x))

weak weak weak stropg
classifier 1 classifier 2 classifier 3 classifier

Pictures from http://www.ieev.org/2010/03/adaboost-haar-features-face-detection.html

Stacking

@A meta-learner combine output of ML
e Partition D in D', D”
* Train 1...N learners on D’

* MLy, trained on ML,...ML, predictions on D”
|

vl 'l’ vl

viodeling oi
Case Studies

Background Case studies

* Total Order Broadcast primitive
— Analytical model
— Black box online optimization

* Distributed NoSQL transactional data grid
— Simulation model
— Black box offline supervised learning

Total Order Broadcast case study

e TOB allows a set of nodes to deliver broadcast
messages in the same order

* |ncarnates the popular consensus problem
— Fundamental abstraction for dependable computing

* We consider Sequencer-based TOB
— Messages are broadcast normally
— A Sequencer node decides the delivery order

No
(Sequencer)

Sequencer-Based TOB

M1, M2

M1 M2

M1, M2

Tt

Ny

/ M2 M1l

'

N,

L

|

M1 M2

Broadcast messages

Broadcast Seq. No.

Ordered deliver

52

Performance of STOB

STOB minimizes messages exchange, but...
The sequencer may become the bottleneck
Possible solution: batching

The sequencer
— Waits to receive N > 1 msgs

— Send a single, bigger seq. msg for the N msgs
instead of N smaller

Batching in STOB

* At high load batching
— Allows for amortizing msgs sequencing cost
— Increases sequencer capacity and throughput

* Atload load batching
— Introduces useless delays
— The sequencer waits too much and wastes time

The need for self-tuning STOB Batching

* Optimal batching depending on msgs rate
20000
g} 15000
:(: 10000
:
= 5000
n
0F ' ' ' ' ' '
10 20 30 40 50 60
Batch Level
1K =ememeeees 5K 10K —+— 15K —%— 20K —*—

Tuning the batching level

* White box approaches

— Forecast the impact of batching given workload

* Black box approaches

— On-line optimization

STOB white box modeling

* Focus on performance on sequencer

* [tis representative of the whole system

£ 10000
<

(]

O

o L
C

5 1000 r
(&)

[

()

-

3 _
n 100
(] |
<

5

o 10
[

(]

5

|

>

(]

=

D

Q

& 0.1
S

>

<t

.
T
+++i£++++
+ +
+ £ *? f:
tfi{ ﬂf
i
1 10 100 1000 10000

10000(

Avg. Self-Delivery Latency over Non-Sequencer Nodes\n (msec)

STOB model input

m = messages generation rate
b = batching level
T 1 =time to process 15t message in batch

T_Add = time to process additional msgs
— Batching makes sense when T_1>T Add

STOB analytical model [59]

1

Sequencer = M/M/1 queue T(b,m)= ”

(b,m) = A(b,m)
. m
Batch generation rate Alb,m) = —
i pu(b,m) = :
Batch service rate Y T+ O L T 1)

Taking derivatives, optimal b is computed

STOB model’s accuracy

Assumptions and simplifications
— Exponential arrival rate and service rate (M/M/1)
— In computing arrivals and computation overlapping

100 | Exaustive Manua! Tuning - '

__Analytical Mcdel

10

Optimal Batching Value

0 2000 4000 6000 BOOO 10000 12000 14000
Average Msg. Arrival Rate (msgs/sec)

STOB black box optimization [24]

* Learn optimal waiting time for a batch of size b
— Computed at the sequencer

* Hill climbing for each value of b
— In/decrease wait time @b depending on feedback

* When delivering a batch of size b
— Confirm previous decision if delivery time is lower
— Revert previous decision if delivery time is higher

20

Hill Climbing in STOB

16 -

14
12
10 -

Batch Level

ot

0 % *(\/vv\/\/'\/\/\/\/\w i %(\/W/I\A

N
o
o
o
o

16000 [
12000 [
8000 -

4000 L
I I ! !

O]]]
20 40 60 80 100 120 140

Arrival Rate (Msgs/sec)

Time (sec)

* But limited expressiveness:
— Self-tuning at the cost of no predictability

Transactional NoSQL store case study

e Distributed transactional data store

— Nodes maintain elements of a dataset

* Full vs partial replication (# copies per item)

— Transactional --ACI(D)— manipulation of data
* Concurrency control scheme (enforce isolation)
* Replication protocol (disseminate modifications)

Cloud ™

A novel programming
paradigm for the Cloud

Replication protocols: which one?

transactional data
consistency prteocols

N

Single master Multi master

(primary- ba@) x ‘
\ Total @ 2PC-based
¢ Qﬁ%\‘\
Ol

Cé:a State machine replication

P

Non-voting Voting
BFC

DSTM Performance

Committed Transactions/sec

2 3 4 5 6 7 8 9 10

Number of nodes
RG - Small —¢— RG - Large —8— TPC-C —e—

 Heterogeneous, nonlinear scalability trends!

Network RTT Latency (microsec)

Factors limiting scalability

Commit Probability

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Number of nodes Number of nodes
RG - Small —— RG - Large —B— TPC-C —6— RG-Small —— RG - Large —B— TPC-C —6—
Network latency in Aborted transactions

commit phase because of conflicts

White box modeling

begin
Client -
en put
> Server remote_get
get
> remote_prepare
commit
» - abort
begin_return Transaction Manager (TM)
ol commit
put_return
€«—
get_return
F
commit_return
P
abort
<—
L I 4
U — [
CPU_complete
next_tx
=
(for open systems only) 5| . <
o s EI
E = bt © =
s| 8| 2| E
[v m §
Event B al & ©
>
Function call

"""""""" > from other cache servers

to other cache servers

Transactions per second

Simulator [21]

* Assumptions and approximations
— CPU = G/M/K
— Fixed point to point network latency

* Accuracy / resolution time trade-off

Thfoughput 4 Servers Confidence Interval (95%) for the Estimated Throughput - 4 Servers
2
00 Simulator 1 14
180 | Real System =
12
160 |
140 10
120
2 8
100
80 6T
60 J 4
40 |
24 32 40 48 56 2 4 6 8 10 12

Clients Wall-Clock-Time (sec)

Black box modeling

MorphR [20]
— Automatic switching among replication protocols

Decision tree classifier (C5.0)

Workload characterization
— Xact mix, #ops, throughput, abort rate
Physical resource usage

— CPU, memory, commit latency

Output: optimal replication protocol

Throughput (committed tx/sec)

900
800
700
600
500
400
300
200
100

MorphR in action

eling

Gray box modeling

e Combine WB and BB modeling
— Lower training time thx to WBM
— Incremental learning thx to BBM

* Techniques in this tutorial

— Divide et impera
— Bootstrapping
— Hybrid ensembling

Gray box modeling

* Techniques in this tutorial

— Divide et impera

— Bootstrapping
— Hybrid ensembling

Divide et impera

@ Modular approach
— WBM of what is observable/easy to model
— BBM of what is un-observable or too complex

* Reconcile their output in a single function

O Higher accuracy in extrapolation thx to WBM
© Apply BBM only to sub-problem

— Less features, lower training time

NoSQL optimizationin the Cloud

* Important to model network-bound ops but...

O Cloud hides detail about network @

— No topology info
— No service demand info
— Additional overhead of virtualization layer

/@’BBI\/I of network-bound ops performance
— Train ML on the target platform

TAS/PROMPT [28,30]

* Analytical modeling

— Concurrency control scheme
e E.g., encounter time vs commit time locking

— Replication protocol
* E.g.,, PBvs 2PC

— Replication scheme
e Partial vs full

— CPU

* Machine Learning
— Network bound op (prepare, remote gets)
— Decision tree regressor

Analytical model in TAS/PROMPT

* Concurrency control scheme (lock-based)
— Alockisa M/G/1 server
— Conflict prob = utilization of the server
* Replication protocol
— 2PC: all nodes are similar 2 one model
— PR: primary vs backups = two models
* Replication scheme
— Probability of accessing remote data
— # nodes involvedin commit

Machine Learning in TAS/PROMPT

* Decision tree regressor

e Operation-specific models
— Latency during prepare
— Latency to retrieve remote data
* |Input
— Operations rate (prepare, commit, remote get...)
— Size of messages
— # nodes involvedin commit

Predicted Tprep(usec)

ML accuracy for network bound ops

) Seamlessly portable across infrastructures
— Here, private cloud and Amazon EC2

35000

30000 ¢
25000 ¢
20000 ¢
15000 f
10000 f
5000 r

EC2

+H+
g
+ oAb
+

5000 10000 15000 20000 25000 30000 35000

Real Tprep(usec)

Predicted T, (1sEC)

Private Cluster
4000

3500 |
3000 | o
2500 Lo

2000 t .

1500 |
1000 |+ «*

500

Real Tprep(psec)

500 1000 1500 2000 2500 3000 3500 4000

AM and ML coupling

O At training time, all features are monitorable
1 At query time they are NOT!

9 EXAMPLE
* Current config: 5 nodes, full replication

— Contact all 5 nodes at commit

* Query config: 10 nodes, partial replication
— How many contacted nodes at commit??

Model resolution

f@'\AI\/I can provide (estimates of) missing input

* |terative coupling scheme

ML takes some input parameters from AM

N

\7

AM takes latencies forecaétby ML as input parameter

Commit Probability

Commit Probability

Model’s accuracy

0.5 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Number of nodes
1 T T T
0.9 &
g ————————8——————— g —8
0.8
0.7
QG[} ------- O------- BH------- gQ------- m
— = —i
05 r 1 1 1 1 1 1 T
2 3 4 5 6 7 8 9 10

Number of nodes

TOP: PB, only master node. BOTTOM: 2PC.

Throughput (tx/sec)

Throughput (tx/sec)

4000

3500
3000
2500
2000
1500
1000

500

10 12 14 16 18 20

Number of nodes

4 6 8

TPCC-W-Real —=— TPCC-R-Real —e— |
TPCC-W-Pred - - - TPCC-R-Pred - -o -

3 4 5 6 7 8 9
Number of nodes

FULL REPL.

COMPARISON WITH PURE BLACK, |

Cubist
% M5R I

0.6 | : SMOReg E8 1

7 . “MLP =

2 Divide et Impera m |

X
X
- XA
XX
. XA
XX
XA
XX
XA
XX
%
XA X
XX 0y
% [
& —
X e 00
XX
XA
XX
- X
. X

<
<
3
R
<
O 3 :
K
- s
K
. 8
K
2
K
2
K
K2
2

0.2 r

4 K
2 %%
J 3 K
. 2 0%
. 3 g
% . .
X 3 J
R . s
%%) 2
l‘l‘ . e
X4 A 4
:‘:l)(')()(: 4
XX KX .
% X o
2 o
. XX %!
o RS
o X
X o0
1 o0
%% %
X 285
X4 %%
XX 5%
X4 %%
K 285
o kxS
3 XX X%
5 o <X
o R R
e " "
- R X X
X " "
- %% o %! o ¥
X " "
o X X
X " "
b 0% X% X%
5 255 %% %%
o o%o% o ¥ o ¥
5 X5 %% %%
o oe% o ¥ o ¥
5 2525 %% %%
o oo% o ¥ o %!
5 2525 %% %%
b 0% X% %!
&S XX pd pd
X
: X] KX KX
2 00y o RXM

0 40 6 80
Percentage of additional training set
* YCSB (transactified) workloads while varying
— # operations/tx
— Transactional mix
— Scale

— Replication degree

Mean relative error
]

COMPARISON WITH PURE BLACK, I

4000 .

3500 [
3000 f

2500
2000

1500 r .
1000 4 .
500]

0

Throughput (tx/sec)

2 4 6 8 10 12 14 16 18 20
Number of nodes

real + TAS x pure ML =

ML trained with TPCC-R and queried for TPCC-W
* Pure ML blunders when faced with new workloads

TAS/PROMPT integration

e TAS/PROMPT are baseline AM for case studies

‘1 We will use TAS/PROMPT as pure white AM

— Trained with fixed network model

—i.e., we do not retrain it as new data are collected
(But it is possible)

— Representative of pure white box models

Gray box modeling

* Techniques in this tutorial

— Divide et impera

— Bootstrapping

— Hybrid ensembling

BOOTSTRAPPING [27]

:@/‘Obtain zero-training-time ML via initial AM
1. Initial (synthetic) training set of ML from AM

2. Retrain periodically with “real” samples
Analytical Boostrapping Machine Gray box tg;’;;e":a f}gi:i;e G:)(; ::'X
model training set learning model : % 8
Sampling of el construction New data<
the Parameter Space : come in
(1 (2)

)

How many synthetlc samples?

10000
0 7 + 4 —
' ©
0 1 1000 3
. 5
05 i 100 2
a 047] ;
< - — 10 N—
E] (O]
03 | £ £
41 =
021 , Z
3 . y c
3 1 0. ©
0.1 g+ 3 0.1 =

pl e]
0 e *0.01

2000 4000 6000 8000 100001200014000
Training set size

KVS-MAPE —+—TOB-MAPE ----4----
KVS-time —%— TOB-time ===

Important tradeoff

— Higher # 2 lower fitting error over the AM output
— Lower # = higher density of real samples in dataset

How to update
* Merge: simply add real samples to synthetic set
* Replace only the nearest neighbor (RNN)

* Replace neighbors in a given region (RNR)

— Two variants

Real vs AM function

Real function

AM function

Real vs learnt

* Assuming enough point to perfectly learn AM

o Syntheticsample

ML function

Merge

* Add real samples to synthetic
® Realsample

Merge

* Problem: same/near samples have diff. output

Replace Nearest Neighbor (RNN)

* Remove nearest neighbor

Replace Nearest Neighbor (RNN)

 Preserve distribution...

Replace Nearest Neighbor (RNN)

e ... but may induce alternating outputs

Replace Nearest Region (RNR)

* Add real and remove synth. samples in a radius

Replace Nearest Region (RNR)

* R =radius defining neighborhood

Replace Nearest Region (RNR)

* R =radius defining neighborhood

Replace Nearest Region (RNR)

e Skew samples’ distribution

Replace Nearest Region 2 (RNR2)

* Replace all synthetic samples in a radius R

Replace Nearest Region2 (RNN2)

* Maintain distribution, piecewise approximation

Weighting

* Give more relevance to some samples

) Fit better the model around real samples
— “Trust” real samples more than synthetic ones
— Useful especially in Merge

) Too high can cause over-fitting!

— Learner too specialized only in some regions

MAPE

Merge , TOB

1 K synthetic samples 10 K synthetic samples
12 o T : T : T T ! T T T T 12 — —
1.1t - a
1t 1 1t
0.9 f |
0.8 |] 08 f
0.7 r - Ll
o
I 06 |
0.6 <
05t] 04
04pt~, = — - ' ? . 1
82 geo— ° ° 4 o2 | ¢ — _‘
_ }H\# 4
01 *T 0 1 1 1 | | | 1 1 1 T
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Weight Weight
Merge 20% —— CUB20% —— AM % %
Merge 70% —e— CUB 70% —e— Mg;gg 20% —— Qupade i AM

* Weighting more real samples reduces error

MAPE

Replace, KVS

20%

0.4
0.38 r
0.36 £
0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2

MAPE

20 40 60 80 100 120 140 160 180 200
Weight

RNR2 0.01 —=— RNR 0.3 —— CuB
RNR2 0.3 —— RNN
RNR 0.1 —e— AM ———

 Examples of over-fitting

70%

0.4

0.35 k

0.3 r

0.25 &

0.2 P

0.15

01 1 1 1 1 1 1 1 1 1 4T

20 40 60 80 100 120 140 160 180 200
Weight

RNR2 0.01 —=— RNR 0.3 —— cuB
RNR2 0.3 —— RNN
RNR 0.01 —e— AM ———

MERGE VS REPLACE (TOB)

1.4

1.2 |

1F

0.8 |

MAPE

0.6 |

04

02 [

10 20 30 40 50 60 70 80 90
Additional training %

Merge ---+-- RNR2 -~ - CUB AM ——

* Assuming optimal parameterization

0

 Merge and Replace seem *very* similar...

Impact of base model (TOB)

MAPE

1.4

1.2

0.8 F
0.6 f
0.4 f

0.2

40 50 60 80 90
Additional training %
CcuB

30 70

AM ——

e ... BUT replace is better if base model is poor
— It evicts synthetic samples more aggressively

Batching level

Visualizing the correction (STOB)

BASE MODEL PURE ML (70% TS)1
M
g 20 — 0.8
5 I
% 3 15 -4 0.6
% g 10 0.4
% o 0.2
g 0
0 5000 10000 0 5000 | 10000
Messages arrival rate BO OTSTR APPED ML (70% TS) Messages arrival rate

M 1

| 0.8

1 0.6

0.4

Batching level

0.2

Absolute Percentage Error

0 5000 10000
Messages arrival rate

Absolute Percentage Error

Visualizing the correction (KVS)

PURE ML (70% TS)

BASE MODEL

Jo.3 abejusoiad anjosqy

< 0 o S
o o o o o

® N © 1 ¥ M
O O O O O o
abejuaoiad ajUp

Jo.u3 abejuadiad anjosqy

o 0 N =
o o o o o

]
(=]

oo L B R
(-~ - A - - - -

abejuaaiad ajup

20 40 60 80 100 120 140

20 40 60 80 100 120 140

Number of nodes

lou3 ebejusdiad anjosqy

i 5 o o =
o o o o o o

— -

2N AN AN QN 1NN 492N 1 AN

BOOTSTRAPPED ML (70% TS)

abejuaosad ajup

Number of nodes

Optimal Batching Value

BOOTSTRAPPING in RL [59]

* Optimize batching level in STOB
 Base AM already presented

100 | Exaustive Manual Tuning ——— : ' £ . I | : : : E
__Analytical Mcdel : 1o (1)1 [e) i — e F S— el
o z 5 z]
3 ‘ 8 [: ; :]
7 E [. 1
. §. 10 F ‘ : : : -
10 | . — : 5 i v : 1
L : e e muway (: 1 - —

"""" Il 1 ! Il | L

' : A : ﬁ : : : : : :
/ — groow N
% : :

1 H { H : ; E 0 i 1 I i i P

0 2000 4000 6000 8000 10000 12000 14000 16 17 18 19 20 21 22

Average Msg. Arrival Rate (msgs/sec) Hour of the day

Hybrid RL in STOB

* UCB: find optimal batch size (b*) for a given msg.
arrival rate (m)

— Discretize m domain into M={m_min...m_max}
— A UCB instance for each m_i

— For each instance, a leverfor each b

e |nitial rewards are determined via AM

— Convergence speed of UCB insufficient at high arr. :

* Enhance convergence speed usinginitial knowledge of AM

Bootstrapped model

* Enhance response time by better batching
e Faster convergence than UCB (& no thrashing)

1] | 1 | | p
{ \ Model : :
| Model+RL ------
100 F [: : [:
T : i : _ 3
w
E
o
-
o
and
8 10000
"
o 5000
£

Hour of the day

Gray box modeling

* Techniques in this tutorial
— Divide et impera
— Bootstrapping

— Hybrid ensembling

Hybrid Ensemble [26]

* Combine output of AM and ML

— Hybrid boosting: correct errors of single models

— KNN: select best model depending on query

— Probing: train ML only where AM is not accurate

Hybrid Boosting

Implements Logistic Additive Regression
Chain composed by AM + cascade of ML
ML, trained over residual error of AM

ML;, i>1 trained over residual error of ML,

RMSE norm. w.r.t. T'ay

BOOSTING: sensitivity

2.5 1.7
1.6
2 r s 15+
<
=~ 147
1.5 S 1.3
g 1.2
1+ g 11}
w
n 1
=
0_5>f\‘e o 09
—K- 0.8
O 1 1 1 1 1 07 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 20 30 40 50 60 70 80
Percentage of additional training set Percentage of additional training set
Cubist —<— HyBoost —X— Cubist —X<— HyBoost —X—

* Chain of 3 BBMs (> 3 were useless here)
— DT, ANN, SVM

Online variant of HyBoost

* Self-correcting Transactional Auto Scaler (SC-TAS) [28]

identifying optimal level of parallelism in a
~ distributed NoSQL transactional store

— # nodes in the platforms

— # threads active on each node

Parallelism tuning in DTM

Why not using a simpler exploration based approach,
e.g. hill-climbing?

@Adapting number of threads per node is simple and effective
O Changing # nodesiis costly: state transfer!

@ Model-based solution
— Input: workload, # nodes, # threads/node
— Output: throughput
@ Obtain: highest-throughput configuration

Implemented solution: SC-TAS

@ Exploration + modeling + Machine Learning
1. Explore to gather feedback on model’s accuracy
2. LEARN corrective functions to “patch” model

* Try to avoid global reconfiguration (# nodes)
@ — Rely on local # threads exploration (cheap)

a

@ Increase accuracy

N

SC-TAS control loop

N

>/Collect Data\<

Local scaling

v

—

Update SC-TAS

|

Explore locally

NO

End
Exploration?

Global scaling

|

Invoke SC-TAS

e Workload, #thread, #nodes, TAS’ error

SC-TAS control loop

> Collect Data <
v \
Local scaling (Update SC-TAS Global scaling
] N | I
: YES *
ﬂ Invoke SC-TAS

Explore locally

Exploration?

e Re-train hyboost “patching” ML

SC-TAS control loop

> Collect Data

l

Local scaling

Update SC-TAS

|

|

Explore locally

o) End

€ ——

\Exploration?

YES

Global scaling

|

>

>I nvoke SC-TAS

* Yes if min<#tthread exploration<max &&

e Accuracy of the patched model considered “OK”

SC-TAS control loop

> Collect Data <

l

Local scaling

Update SC-TAS Global scaling

|

YES

Invoke SC-TAS

| 0
Explore locall L
_Explorelocally

Exploration?

e Patch is not enough
* Change # of threads and repeat

SC-TAS control loop

> Collect Data <

l

Global scaling

Local scaling Update SC-TAS

. |

End

Explorelocally <= Exploration?

Invoke SC-TAS /
\

N

* Model is supposedly patched
* Invoke the patched model

Dynamics of SC-TAS

1 -
S 0.8 r
L]
2
= 06~ T i e
N PRPRE Sl
o
Q
5 04r
o
n
e
< :

0.2 Fobod,
Yoo
s
0 | | | | |
0 5 10 15 20 25 30

Number of iterations

u=3 U=5 sreesemses =7 o

 uw=min # of thread explorations per node

Throughput (tx/sec)

3500

3000

2500

2000

1500
1000 |

500 |

SC-TAS: before and after

‘e 2500
2000

1500

1000

500

1 1 O
2 3 4 5 6 7 8 9 10

Number of nodes Number of nodes
2 th real —— 4 th real 8 th real 2 th real n 4 th real ° 8 th real A
2th TAS - -+ - 4th TAS - -+ - 8th TAS - -+ - 2thpred © 4thpred © 8thpred =

Final Workshop of the Euro-TM COST Action, Amsterdam, 2015 Jan. 19th

Hybrid Ensemble [26]

* Combine output of AM and ML

— Hybrid boosting: correct errors of single models

— KNN: select best model depending on query

— Probing: train ML only where AM is not accurate

Hybrid KNN

* Split D into D', D”

* Train ML,...ML, on D’
— ML can differ in nature, parameters, training set...

* For a query sample x
— Pick the K training samples in D” closest to x

— Find the model with lowest error on the K samples
— Use such model to predict x

RMSE norm. w.r.t. Tapg

KNN, sensitivity (TOB)

15 T T T T T T T T T 09
oo 000 @ @ ‘
147 1 = o085 ® ° o
—
1.3 ¢ . *:
A A A = 0.8 r A A A
12 1 E
e aWal A ~ D 2 0.75 4
11 B N \ AN A N\ N\ \ w
1 [o 0.7 1
09 1 1 1 1 1 1 1 1 1 065 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 0.9 1 0 01 02 03 04 05 06 0.7 08 0.9 1
C C
Cubist-20 —@— Cubist-30 —&— Cubist-50 —@— Cubist-80 —&—
KNN-20 —&A— KNN-30 —A&— KNN-50 —&— KNN-80 —A—

* Low cut-off && low % training = collapse to AM
* High cut-off && high % training = collapse to ML

Hybrid Ensemble [26]

* Combine output of AM and ML
— Hybrid boosting: correct errors of single models

— KNN: select best model depending on query

— Probing: train ML only where AM is not accurate

PROBING

/@‘Build a ML model as specialized as possible
— Use AM where it is accurate
— Train ML only where AM fails

"1 Differences with KNN

— In KNN, ML is trained on all samples:
* Here, only when AM is found to be inaccurate

— In KNN, voting decides on ML vs AM:

* Here, binary classifier determinesin which regions the
AM is inaccurate

Probing at work

1. Dy = empty set
2. Train a classifier: for each xin D

— If error of AM on x > cut-off, map x to ML and add
X to Dy,

— Else map xto AM
3. Train MLon Dy,

 QUERY for input z
— If classify(z) = AM, return AM(z); else return ML(z)

Probing Sensitivity (KVS)

1.4 . :

1.3 .
=z 1.2 -
— 14t .
= 1 F A
£ 09 r i
o
LICJ 0.8 "
%) 0.7)
=
o 0.6

0.5 o< S,)

0.4

0 0.1 0.2 0.3 04 05 06 07 038

Cubist-50 —@— Cubist-80 —&5—
Prob-50 —&— Prob-80 —&—

* High cut-off 2 collapses to AM
* Low cut-off = collapses to ML

RMSE norm w.r.t. T'apm

NFL strikes again

No one-size-fits-all hybrid models exist!

* Choosing best hybrid model (with right

2.4

22

1.8
1.6
1.4
1.2 |

0.8 r
0.6
04 r

0.2

parameters) can be cast to a parameter
optimization problem

1.8 .
> N
< L
L 1.6
= 14
=
e 12 LN
% S
. 5
3
3 E 08 i %20
R 3 % O 6 R o R
20 30 50 80 20 30 50 80
Percentage of additional training set Percentage of additional training set

Cubist mmm KNN B8 HyBoost &Y Prob £za Cubist mm KNN B HyBoost =X Prob £za

Concluding remarks

@WBI\/I and BBM often conceived as antithetic
@,‘They can be leveraged on synergistically

— Increased predictive power thx to WBM
— Incremental learning capabilities thx to BBM

~@ Gray box approaches

— Divide et impera, Bootstrapping, Hybrid ensembling
— Design, implementation and use cases

@Can deliver better accuracy than pure B/W

THANK YOU

Questions?
didona@gsd.inesc-id.pt

www.gsd.inesc-id.pt/~didona

U

TECNICO o
LISBOA inescid

Hybrid Machine Learning/Analytical Models for
Performance Prediction: Bibliography

Diego Didona and Paolo Romano
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

White box performance modeling: principles, applications and fundamental
results.

[45] [49] [S0] [71] [46] [4] [39] [44] [58] [51] [36]

Principles of Machine Learning.

[81[51[80] [65][66][48]1[34]1[91[79][101[701[41]1[3][77]1[62] [16][33]1[54] [55] [47]
[56][53] [42] [76] [2]

ML ensembling, features selection and hyper-parameter optimizations.

[32] [12] [74] [6] [69] [40]

Application of ML to performance modeling.

[13] [601[18][20][15] [SO1[311[751(38]1[371[68] [11[82][81] [57]

Divide et impera.

[30] [43] [28] [22]

Bootstrapping.

[73] [59] [67] [72] [61] [27]

Hybrid ensembling.

[26] [25] [14]

Case studies: introduction and performance modeling/optimization.
[11][35]1[63] [24] [18] [21] [52] [7][29] [17] [19] [23] [64] [20] [78]

[83] [84] [85] [86] [87] [73]

References

[1]

(2]

[8]

[9]

[10]
[11]

[12]

[13]

Mert Akdere, Ugur Cetintemel, Matteo Riondato, Eli Upfal, and Stanley B.
Zdonik. Learning-based query performance modeling and prediction. In
Proceedings of the 2012 IEEE 28th International Conference on Data En-
gineering, ICDE °12, pages 390-401, Washington, DC, USA, 2012. IEEE
Computer Society.

Naomi S Altman. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician, 46(3):175-185, 1992.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine Learning, 2002.

Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Pala-
cios. Open, closed, and mixed networks of queues with different classes of
customers. J. ACM, 22(2):248-260, April 1975.

Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, 1957.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter op-
timization. J. Mach. Learn. Res., 13(1):281-305, February 2012.

Philip A Bernstein and Nathan Goodman. Concurrency control in distributed
database systems. ACM Computing Surveys (CSUR), 13(2):185-221, 1981.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., 2006.

Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123-140, August
1996.

Leo Breiman. Stacked regressions. Machine learning, 24(1):49-64, 1996.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. [Introduction to
Reliable and Secure Distributed Programming (2. ed.). Springer, 2011.

Rich Caruana , Alexandru Niculescu-Mizil , Geoff Crew , Alex Ksikes En-
semble selection from libraries of models. In Proc. of ICML, 2004.

Jin Chen, G. Soundararajan, and C. Amza. Autonomic provisioning of back-
end databases in dynamic content web servers. In Proceedings of the 2006
IEEFE International Conference on Autonomic Computing, ICAC *06, pages
231-242, Washington, DC, USA, 2006. IEEE Computer Society.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Jin Chen, G. Soundararajan, S. Ghanbari, and C. Amza. Model ensemble
tools for self-management in data centers. In Data Engineering Workshops
(ICDEW), 2013 IEEE 29th International Conference on, pages 3643, April
2013.

Tianshi Chen, Qi Guo, Ke Tang, Olivier Temam, Zhiwei Xu, Zhi-Hua Zhou,
and Yunji Chen. Archranker: A ranking approach to design space exploration.
SIGARCH Comput. Archit. News, 42(3):85-96, June 2014.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 1995.

Maria Couceiro, Diego Didona, Lus Rodrigues, and Paolo Romano. Self-
tuning in distributed transactional memory. In Rachid Guerraoui and Paolo
Romano, editors, Transactional Memory. Foundations, Algorithms, Tools,
and Applications, volume 8913 of Lecture Notes in Computer Science, pages
418-448. Springer International Publishing, 2015.

Maria Couceiro, Paolo Romano, and Luis Rodrigues. A machine learning
approach to performance prediction of total order broadcast protocols. In Self-
Adaptive and Self-Organizing Systems (SASO), 2010 4th IEEE International
Conference on, pages 184-193. IEEE, 2010.

Maria Couceiro, Paolo Romano, and Luis Rodrigues. Polycert: Polymorphic
self-optimizing replication for in-memory transactional grids. In Proceed-
ings of the 12th ACM/IFIP/USENIX International Conference on Middle-
ware, Middleware’11, pages 309-328, Berlin, Heidelberg, 2011. Springer-
Verlag.

Maria Couceiro, Pedro Ruivo, Paolo Romano, and Luis Rodrigues. Chas-
ing the optimum in replicated in-memory transactional platforms via protocol
adaptation. In Proceedings of the 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), DSN ’13, pages
1-12, Washington, DC, USA, 2013. IEEE Computer Society.

Pierangelo Di Sanzo, Francesco Antonacci, Bruno Ciciani, Roberto
Palmieri, Alessandro Pellegrini, Sebastiano Peluso, Francesco Quaglia,
Diego Rughetti, and Roberto Vitali. A framework for high performance simu-
lation of transactional data grid platforms. In Proceedings of the 6th Interna-
tional ICST Conference on Simulation Tools and Techniques, SimuTools *13,
pages 63-72, ICST, Brussels, Belgium, Belgium, 2013. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing).

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Pierangelo Di Sanzo, Francesco Quaglia, Bruno Ciciani, Alessandro Pel-
legrini, Diego Didona, Paolo Romano, Roberto Palmieri, and Sebastiano
Peluso. A flexible framework for accurate simulation of cloud in-memory
data stores. ArXiv e-prints, December 2014.

Pierangelo Di Sanzo, Diego Rughetti, Bruno Ciciani, and Francesco Quaglia.
Auto-tuning of cloud-based in-memory transactional data grids via machine
learning. In Proceedings of the 2012 Second Symposium on Network Cloud
Computing and Applications, NCCA 12, pages 9-16, Washington, DC,
USA, 2012. IEEE Computer Society.

Diego Didona, Daniele Carnevale, Sergio Galeani, and Paolo Romano. An
extremum seeking algorithm for message batching in total order protocols. In
SASO, pages 89-98. IEEE Computer Society, 2012.

Diego Didona, Pascal Felber, Derin Harmanci, Paolo Romano, and Joerg
Schenker. Identifying the optimal level of parallelism in transactional mem-
ory applications. Computing Journal, pages 1-21, December 2013.

Diego Didona, Francesco Quaglia, Paolo Romano, and Ennio Torre. Enhanc-
ing performance prediction robustness by combining analytical modeling and
machine learning. In Proceedings of the 2015 ACM/SPEC 6th International
Conference on Performance Engineering (ICPE 2015), ICPE ’15, 2015.

Diego Didona and Paolo Romano. On Bootstrapping Machine Learning Per-
formance Predictors via Analytical Models. ArXiv e-prints, October 2014.

Diego Didona and Paolo Romano. Performance modelling of partially repli-
cated in-memory transactional stores. In Proceedings of the 22nd IEEFE Inter-
national Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2014), MASCOTS 14, 2014.

Diego Didona and Paolo Romano. Self-tuning transactional data grids: The
cloud-tm approach. In Proceedings of the Symposium on Network Cloud
Computing and Applications, (NCCA), pages 113-120. IEEE, 2014.

Diego Didona, Paolo Romano, Sebastiano Peluso, and Francesco Quaglia.
Transactional auto scaler: Elastic scaling of replicated in-memory transac-
tional data grids. ACM Trans. Auton. Adapt. Syst., 9(2):11:1-11:32, July
2014.

Nuno Diegues and Paolo Romano. Self-tuning intel transactional synchro-
nization extensions. In /1th International Conference on Autonomic Com-

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

puting (ICAC 14), pages 209-219, Philadelphia, PA, June 2014. USENIX
Association.

Thomas G. Dietterich. Ensemble methods in machine learning. In Proc. of
MCS Workshop, 2000.

Harris Drucker, Chris, Burges* L. Kaufman, Alex Smola, and Vladimir Vap-
nik. Support vector regression machines. In Advances in Neural Information
Processing Systems 9, volume 9, pages 155-161, 1997.

Jerome H. Friedman. Stochastic gradient boosting. Comput. Stat. Data Anal.,
38(4):367-378, February 2002.

Toy Friedman and Robbert Van Renesse. Packing messages as a tool for
boosting the performance of total ordering protocls. In Proceedings of the
6th IEEE International Symposium on High Performance Distributed Com-
puting, HPDC °97, pages 233—, Washington, DC, USA, 1997. IEEE Com-
puter Society.

Richard M. Fujimoto. Parallel discrete event simulation. Commun. ACM,
33(10):30-53, October 1990.

Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L. Wiener, Ar-
mando Fox, Michael Jordan, and David Patterson. Predicting multiple metrics
for queries: Better decisions enabled by machine learning. In Proceedings of
the 2009 IEEE International Conference on Data Engineering, ICDE °(09,
pages 592-603, Washington, DC, USA, 2009. IEEE Computer Society.

Saeed Ghanbari, Gokul Soundararajan, Jin Chen, and Cristiana Amza. Adap-
tive learning of metric correlations for temperature-aware database provision-
ing. In Proceedings of the Fourth International Conference on Autonomic
Computing, ICAC °07, pages 26—, Washington, DC, USA, 2007. IEEE Com-
puter Society.

Donald Gross, John F Shortle, James M Thompson, and Carl M Harris. Fun-
damentals of queueing theory. John Wiley & Sons, 2013.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3:1157-1182, 2003.

Martin T. Hagan, Howard B. Demuth, and Mark Beale. Neural Network
Design. PWS Publishing Co., Boston, MA, USA, 1996.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Mark Hall et al. The weka data mining software: Anupdate. SIGKDD Explor.
Newsl., 11(1):10-18, November 2009.

Herodotos Herodotou, Fei Dong, and Shivnath Babu. No one (cluster) size
fits all: automatic cluster sizing for data-intensive analytics. In Proc. of the
ACM Symposium on Cloud Computing (SOCC), 2011.

James R Jackson. Networks of waiting lines. Operations research, 5(4):518—
521, 1957.

Leonard Kleinrock. Queueing Systems, volume I: Theory. Wiley Interscience,
1975.

John DC Little. A proof for the queuing formula: L= A w. Operations
research, 9(3):383-387, 1961.

Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 1(1):14-23, 2011.

Philip M. Long and Rocco A. Servedio. Random classification noise defeats
all convex potential boosters. Mach. Learn., 78(3):287-304, March 2010.

Daniel A. Menasce and Virgilio Almeida. Capacity Planning for Web Ser-
vices: Metrics, Models, and Methods. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 2001.

Daniel A. Menasce, Lawrence W. Dowdy, and Virgilio A. F. Almeida. Perfor-
mance by Design: Computer Capacity Planning By Example. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2004.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541-580, Apr 1989.

Matthias Nicola and Matthias Jarke. Performance modeling of distributed
and replicated databases. IEEE Trans. on Knowl. and Data Eng., 2000.

J. R. Quinlan. Learning with continuous classes. In Proceedings of the 5th
Australian Joint Conference on Artificial Intelligence (Al), pages 343-348.
World Scientific, 1992.

J. R. Quinlan. Improved use of continuous attributes in c4.5. J. Artif. Int.
Res., 4(1):77-90, March 1996.

J. R. Quinlan. Learning decision tree classifiers. ACM Comput. Surv.,
28(1):71-72, March 1996.

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., 1993.

Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Leyi Wang, and George Yin.
Vconf: A reinforcement learning approach to virtual machines auto-
configuration. In Proceedings of the 6th International Conference on Au-
tonomic Computing, ICAC °09, pages 137-146, New York, NY, USA, 2009.
ACM.

M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multichain
queuing networks. J. ACM, 27(2):313-322, April 1980.

Paolo Romano and Matteo Leonetti. Self-tuning batching in total order broad-
cast protocols via analytical modelling and reinforcement learning. In In-
ternational Conference on Computing, Networking and Communications.,
ICNC, 2011.

Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, and Francesco Quaglia.
Machine learning-based self-adjusting concurrency in software transactional
memory systems. In Proc. of the International Symposium on Model-
ing, Analysis and Simulation of Computer and Telecommunication Systems,
MASCOTS, 2012.

Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, and Francesco Quaglia.
Analytical/ml mixed approach for concurrency regulation in software trans-
actional memory. In IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGRID, 2014.

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist
systems. Technical Report TR 166, Cambridge University Engineering De-
partment, Cambridge, England, 1994.

Nuno Santos and André Schiper. Optimizing paxos with batching and pipelin-
ing. Theor. Comput. Sci., 496:170-183, July 2013.

Pierangelo Di Sanzo, Francesco Molfese, Diego Rughetti, and Bruno Ciciani.
Providing transaction class-based qos in in-memory data grids via machine
learning. In Proceedings of the 2014 IEEE 3rd Symposium on Network Cloud
Computing and Applications (Ncca 2014), NCCA ’14, pages 46-53, Wash-
ington, DC, USA, 2014. IEEE Computer Society.

Robert E. Schapire. The strength of weak learnability. Mach. Learn.,
5(2):197-227, July 1990.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Robert E. Schapire. A brief introduction to boosting. In Proceedings of
the 16th International Joint Conference on Artificial Intelligence - Volume 2,
IJCATI’99, pages 1401-1406, San Francisco, CA, USA, 1999. Morgan Kauf-
mann Publishers Inc.

Bianca Schroeder, Mor Harchol-Balter, Arun lyengar, Erich Nahum, and
Adam Wierman. How to determine a good multi-programming level for
external scheduling. In Proc. of the International Conference on Data En-
gineering, ICDE, 2006.

Karan Singh, Engin Ipek, Sally A. McKee, Bronis R. de Supinski, Martin
Schulz, and Rich Caruana. Predicting parallel application performance via
machine learning approaches: Research articles. Concurr. Comput. : Pract.
Exper., 19(17):2219-2235, December 2007.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in Neural Information
Processing Systems, pages 2951-2959, 2012.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

Y. C. Tay. Analytical Performance Modeling for Computer Systems, Second
Edition. Morgan & Claypool Publishers, 2013.

Gerald Tesauro, Nicholas K. Jong, Rajarshi Das, and Mohamed N. Bennani.
On the use of hybrid reinforcement learning for autonomic resource alloca-
tion. Cluster Computing, 2007.

Eno Thereska and Gregory R. Ganger. Ironmodel: Robust performance mod-
els in the wild. SIGMETRICS Perform. Eval. Rev., 36, June 2008.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
Auto-weka: Combined selection and hyperparameter optimization of classi-
fication algorithms. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 13, pages 847—
855, New York, NY, USA, 2013. ACM.

D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris.
Automated, elastic resource provisioning for nosql clusters using tiramola. In
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM Inter-
national Symposium on, pages 34—41, May 2013.

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Laurens JP van der Maaten, Eric O Postma, and H Jaap van den Herik. Di-
mensionality reduction: A comparative review. Technical Report TiCC-TR
2009-005, Tilburg University, 2009.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.
PhD thesis, University of Cambridge, 1989.

Pawel T. Wojciechowski, Tadeusz Kobus, and Maciej Kokocinski. Model-
driven comparison of state-machine-based and deferred-update replication
schemes. In Proceedings of the 2012 IEEE 31st Symposium on Reliable Dis-
tributed Systems, SRDS 12, pages 101-110, Washington, DC, USA, 2012.
IEEE Computer Society.

David H. Wolpert. Original contribution: Stacked generalization. Neural
Netw., 5(2):241-259, February 1992.

David H. Wolpert. The lack of a priori distinctions between learning algo-
rithms. Neural Comput., 8(7):1341-1390, October 1996.

Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, Calton Pu,
and Hakan Hacigumus. Intelligent management of virtualized resources for
database systems in cloud environment. In Proceedings of the 2011 IEEE
27th International Conference on Data Engineering, ICDE 11, pages 87—
98, Washington, DC, USA, 2011. IEEE Computer Society.

Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Calton Pu, and
Hakan HacigimiiS. Activesla: A profit-oriented admission control frame-
work for database-as-a-service providers. In Proceedings of the 2Nd ACM
Symposium on Cloud Computing, SOCC ’11, pages 15:1-15:14, New York,
NY, USA, 2011. ACM.

Steve Zhang, Ira Cohen, Julie Symons, and Armando Fox. Ensembles of
models for automated diagnosis of system performance problems. In Pro-
ceedings of the 2005 International Conference on Dependable Systems and
Networks, DSN 05, pages 644—653, Washington, DC, USA, 2005. IEEE
Computer Society.

Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and Ev-
genia Smirni. Automated anomaly detection and performance modeling of
enterprise applications. ACM Trans. Comput. Syst., 27(3):6:1-6:32, Novem-
ber 2009.

[85]

[86]

[87]

Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatra-
mani, and Deepak Rajan. Prepare: Predictive performance anomaly preven-
tion for virtualized cloud systems. In Proceedings of the 2012 IEEE 32Nd
International Conference on Distributed Computing Systems, ICDCS 12,
pages 285-294, Washington, DC, USA, 2012. IEEE Computer Society.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM Computing Surveys (CSUR), 41(3):15, 2009.

Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeffrey S.
Chase. Correlating instrumentation data to system states: A building block
for automated diagnosis and control. In Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation - Volume 6,
OSDI’04, pages 16-16, Berkeley, CA, USA, 2004. USENIX Association.

10

