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Modeling a system

KEY PERFORMANCE INDICATORS

[

INPUT FEATURES
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Modeling a system

INPUT FEATURES

d

Workload:
* Intensity, smallvs large jobs

Infrastructure
* # servers, type of servers

Application-specific
* Replication

KEY PERFORMANCE INDICATORS

ﬁ

Throughput
 Max jobs/sec

Response time
 Exec.timeofajob

Consumed energy
e Joules/job



What is a performance model?

* Approximator of a KPI function
* Relates input to target output

* Can be implemented in different ways
— White box
— Black box



Applications of Performance Modeling

e Capacity planning

— Avoid overload in datacenters
* Anomaly detection

— Model “normalcy” to detect anomalies
e Self-tuning

— Maximize performance

* Resource provisioning

— Elastic scaling in the Cloud



Accuracy of a performance model

* Approximation accuracy metrics
— MAPE (Mean Absolute Percentage Error)
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White/Black Box Modeling 101



White box performance modeling

@ Leverage on knowledge about target app’s internals

o

* Formalize a mapping between
— Application, hosting platform and
— Performance
 Formalization can be
— Analytical (e.g., Queueing Theory) [45]
— Simulation, e.g., [36]



Queueing Theory

I@’\A resource is modeled as a server + a queue

* Possible target KPls
— Resource utilization
— Throughput
— Response time
* Key factors impacting queue’s performance
— Arrival of jobs
— Service demands
— Service policy (e.g., FCFS)
— Load generation model (e.g., open vs closed)



From single queues to networks

o~

WAITING SERVICE
AREA NODE

_.Q__.

|
QOOE




Queueing Theory pros and cons

) Accurate for wide spectrum of input parameters
O Specifically crafted for target app

O Analytical tractability often requires
— Assumptions (e.g., independent job flows)
— Approximations
— Simplifications (e.g., Poisson arrival)



Simulation

f@iEncode system dynamics via a computer program
* Alternative w.r.t. analytical modeling

O simpler (code vs equations)
) May rely on less assumptions
() sSlower to produce output

O Similar trade-offs w.r.t analytical modeling

@Still uses simplifications to avoid overly complex code



Black box

Definition

performance modeling

Taxonomy (Offline vs Online, supervised vs
unsupervised, regression vs classification)

Examples (D

Ensemble
Optimization

, SVM, ANN, KNN, UCB, Gradient),



Building black box models

@ Infer performance model from behavior

e > o

* Machine Learning [8]
— Observe Y corresponding to different X

— Obtain a statistical performance model



Machine Learning pros and cons

@ No need for domain knowledge
O High accuracy in interpolation

—i.e., for input values close to the observed ones
O Curse of dimensionality

— # required samples grows exp. with input size
— Long training phase to build model

) Poor accuracy in extrapolation

— i.e., for input values far away from the observed ones



Black box modeling taxonomy

* Target output featurey

— Classification (discrete y) vs Regression (y in R)

* Training phase timing
— Online vs Offline

 Predict or find hidden structures

— Supervised vs unsupervised learning



OFF-LINE SUPERVISED LEARNING

* Supervisec

— Known inputs x have a corresponding known y = f(x)

e Offline
— Model built on a training dataset
— Dataset {<x,y> : vy = f(x)}
— Learn f’ : f'(x) ~ f(x)

* While being able to generalize outside the known dataset



Decision Trees [55]

f@Predictive model is a tree-like graph
* Intermediate nodes are predicate

* Classifications: leaves are classes

* Regression: leaves are functions

— Piecewise approximation of nonlinear functions



DT: an example

Input features
* Incomerange

(Iru:ome range of&pplicant?) e Criminal records
 #yearsin presentjob
<$30K $30-70K ~smk  * use creditcard
(Cnmmel Iecord? Y ears in present ]ob?> Cnmmal recom?

Makes credit
card payvments?

yes no
an o foan




Support Vector Machines [16]

* Atupleisa pointin a multidimensional space

f@’*Find hyperplane s.t. different classes are as
much distant as possible
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Credits to Erik Kim for SVM-related images, http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html



Support Vector Machines
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@ What if points are not linearly separable?



SVM: the kernel trick, |

@ Map points to a higher dimensional space
O |n that space, points are linearly separable

to R™2 (nonseparable)

1.4 ﬁ
1.2 7
o

* Here, kernelis f(x, y) = (x, y, X2 + y2)



SVM: the kernel trick, Il

* Nonlinear separation in original domain

Data projected to R~2 (hyperplane projection shown)
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Artificial Neural Network [79]

Inner model is a graph

@ Resembles neurons connections in brain
Hidden nodes layer

Input nodes layer ‘
Input x1 Output nodes layer
' ’V 'ﬁ outy
Ty U, Wrl >
ISSECE 4»9\
" Output y2
-------- b
curon
Links ‘ Links

Credits to Koné Mamadou Tadiou for image
http://futurehumanevolution.com/artificial-intelligence-future-human-evolution/artificial-neural-networks

Input x3
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ANN internals

* Neuron structure

o B

Output
|

Activation
Function

Inputs

 Weighted sum of inputs
* Activation 0/1 function as output

Credits to http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7



Building an ANN

* Determining its structure
— # layers
— # neurons per layer

* Activation function per neuron
* [teratively learn weights depending on error
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K Nearest Neighbors [2]

f@iPredict based on closest known values to target
* Proximity given by a function
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Pic from http://www.cs.bham.ac.uk/internal/courses/robotics/halloffame/2010/team12/knn.htm



K Nearest Neighbors

e Classification:
— Class of X is the most common in neighborhood
* Regression

— Value for X is a function of the values in the neighb.



ONLINE LEARNING

* We consider Reinforcement Learning [70]

— Training set not available (nor stored)

— Given a set of <State, Action> pairs [
f@iFind sequence of actions that @
" maximizes payoff (reward)

— Collect feedback from system
* Tradeoff between

Reward

4—(Ag:nq

— Exploration (try new actions)
— Exploitation (use good known actions)

Action




Multi-armed bandit (MAB)

* Inspired by gambling at slot machines. Find
— Which arm to play
— How many times
— In which order




Upper Confidence Bound [3]

* Popular set of algorithms for MAB

f@"At any time choose the arm that
1. maximizes reward, while...
2. minimizing regret:
utility loss due to sub-optimal choices

e Efficiency: regret is logarithmic in the # of trials



Hill Climbing

* Not really “learning”, but online optimization

@ Explore function in the direction that
increases/decreases its value

* Possibly coupled with randomization to avoid
local max/min

Local Minima
and Maxima



NO FREE LUNCH THEOREM FOR ML

* Thereis no “absolute best learner”
* Best learner and parameters depend on data

* When working in extrapolation, there are no a
priori distinctions between learning
algorithms [80]



ML optimization

"t A ML algorithm has meta-parameters
— # features of the input data
— # min of cases per leaf in DT
— Kernel and its parameters in SVM
— Neurons, layers, activation functions in ANN

* How to choose them to maximize accuracy?
— It depends on the problem at hand!



Features selection [40]

@ ldentify features of inputs that are correlated
the most with target output

) speedup in building the model
@ Increase accuracy by reducing noise



Features selection

* Wrapper: use target ML with different
combinations of features

— Forward selection, Backward elimination, ...

* Filter: independent of the target ML

— E.g., discard 1 between 2 highly correlated variables

* Dimensionality reduction (PCA, SVD)

— Find features that account for most of the variance



Hyperparameters optimization

* Find hyper-parameters that maximize accuracy
e Based on cross-validation

— Use part of the set as training and part as test
* Different approaches
— Grid search

— Random search [6]
— Bayesian optimization [74]



Grid Search

1. Uniformly discretize features’ domain
| | | | |

2. Take the Cartesian product of features




Random search

* Include randomness
— Increase sampling granularity of important param.

Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter



ENSEMBLING

Solution to counter NFL theorem
Employ multiple learners together
Bagging [9]

— Train learners on different training sets
Boosting [66]

— Generate 1 stronglearner from N weak ones

Stacking [79]

— Combine output of learners depending on input



Bagging

:@‘Average output of sub-models
* Generate N sets of size D’
— Draw uniformly at random with repetition from D

e Generate N black box models
— Voting for classification
— Averaging for regression

 Cannot improve predictive power (in extrap.) ...

e Can reduce variance (i.e., better interp. accuracy)



Bagging example

* 100 bootstrapped learners

* Reduce variance and overfit w.r.t. single models

Temperature
80 90

70

60

T T T T
0 50 100 150



Boosting

@-Build a strong learner from many weak ones
e Stage-wise training phase
— Training at stage i depends on output of i-1

 0/1 Adaboost

— Base learners B.: can classify correctly with p > %

— |teratively try to classify better mis-classified samples
— At stage i, drawn training set according to dist. D

— D, s.t. mis-classified samples have higher relevance
— Output weighted average of weak learners



Adaboost, training

[mit1al uniform weight o) O
on training examples O e

A % e

weak classifier 1

re-weighted more heavily '
@/
'

ak classifier 2
weak classifier \\. ‘l ’
\J‘ ‘

weak classifier 3 \ ‘
!
® o
\
Final classifier 1s weighted . \
\
\

combination of weak classifiers
\ O
@ .

Incorrect classifications
n 2 I

Credits to Kihwan Kim. http://www.cc.gatech.edu/~kihwan23/imageCV/Final2005/FinalProject_KH.htm



Adaboost, result

H(x) = sign(a,h, (x)+ a,h, (x) + ah,(x))

weak weak weak stropg
classifier 1 classifier 2 classifier 3 classifier

Pictures from http://www.ieev.org/2010/03/adaboost-haar-features-face-detection.html



Stacking

@A meta-learner combine output of ML
e Partition D in D', D”
* Train 1...N learners on D’

* MLy, trained on ML,...ML, predictions on D”
|

vl 'l’ vl




viodeling oi
Case Studies



Background Case studies

* Total Order Broadcast primitive
— Analytical model
— Black box online optimization

* Distributed NoSQL transactional data grid
— Simulation model
— Black box offline supervised learning



Total Order Broadcast case study

e TOB allows a set of nodes to deliver broadcast
messages in the same order

* |ncarnates the popular consensus problem
— Fundamental abstraction for dependable computing

* We consider Sequencer-based TOB
— Messages are broadcast normally
— A Sequencer node decides the delivery order



No
(Sequencer)

Sequencer-Based TOB

M1, M2

M1 M2

M1, M2

Tt

Ny

/ M2 M1l
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N,

L

|

M1 M2

Broadcast messages

Broadcast Seq. No.

Ordered deliver

52



Performance of STOB

STOB minimizes messages exchange, but...
The sequencer may become the bottleneck
Possible solution: batching

The sequencer
— Waits to receive N > 1 msgs

— Send a single, bigger seq. msg for the N msgs
instead of N smaller



Batching in STOB

* At high load batching
— Allows for amortizing msgs sequencing cost
— Increases sequencer capacity and throughput

* Atload load batching
— Introduces useless delays
— The sequencer waits too much and wastes time



The need for self-tuning STOB Batching

* Optimal batching depending on msgs rate
20000
g} 15000
:(: 10000
:
= 5000
n
0F ' ' ' ' ' '
10 20 30 40 50 60
Batch Level
1K =ememeeees 5K 10K —+— 15K —%— 20K —*—




Tuning the batching level

* White box approaches

— Forecast the impact of batching given workload

* Black box approaches

— On-line optimization



STOB white box modeling

* Focus on performance on sequencer

* [tis representative of the whole system
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STOB model input

m = messages generation rate
b = batching level
T 1 =time to process 15t message in batch

T_Add = time to process additional msgs
— Batching makes sense when T_1>T Add



STOB analytical model [59]

1

Sequencer = M/M/1 queue T(b,m)= ”

(b,m) = A(b,m)
. m
Batch generation rate Alb,m) = —
i pu(b,m) = :
Batch service rate Y T+ O L T 1)

Taking derivatives, optimal b is computed



STOB model’s accuracy

Assumptions and simplifications
— Exponential arrival rate and service rate (M/M/1)
— In computing arrivals and computation overlapping

100 | Exaustive Manua! Tuning - '

__Analytical Mcdel

10

Optimal Batching Value

0 2000 4000 6000 BOOO 10000 12000 14000
Average Msg. Arrival Rate (msgs/sec)



STOB black box optimization [24]

* Learn optimal waiting time for a batch of size b
— Computed at the sequencer

* Hill climbing for each value of b
— In/decrease wait time @b depending on feedback

* When delivering a batch of size b
— Confirm previous decision if delivery time is lower
— Revert previous decision if delivery time is higher



20

Hill Climbing in STOB
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* But limited expressiveness:
— Self-tuning at the cost of no predictability



Transactional NoSQL store case study

e Distributed transactional data store

— Nodes maintain elements of a dataset

* Full vs partial replication (# copies per item)

— Transactional --ACI(D)— manipulation of data
* Concurrency control scheme (enforce isolation)
* Replication protocol (disseminate modifications)

Cloud ™

A novel programming
paradigm for the Cloud



Replication protocols: which one?

transactional data
consistency prteocols

N

Single master Multi master

(primary- ba@) x ‘
\ Total @ 2PC-based
¢ Qﬁ%\‘\
Ol

Cé:a State machine replication

P

Non-voting Voting
BFC




DSTM Performance

Committed Transactions/sec

2 3 4 5 6 7 8 9 10

Number of nodes
RG - Small —¢—  RG - Large —8— TPC-C —e—

 Heterogeneous, nonlinear scalability trends!



Network RTT Latency (microsec)

Factors limiting scalability

Commit Probability

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Number of nodes Number of nodes
RG - Small ——  RG - Large —B— TPC-C —6— RG-Small —— RG - Large —B— TPC-C —6—
Network latency in Aborted transactions

commit phase because of conflicts



White box modeling

begin
Client -
en put
> Server remote_get
get
> remote_prepare
commit
» - abort
begin_return Transaction Manager (TM)
ol commit
put_return
€«—
get_return
F
commit_return
P
abort
<—
L I 4
U — [
CPU_complete
next_tx
=
(for open systems only) 5| . <
o s EI
E = bt © =
s| 8| 2| E
[ v m §
Event B al & ©
>
Function call

"""""""" > from other cache servers

to other cache servers



Transactions per second

Simulator [21]

* Assumptions and approximations
— CPU = G/M/K
— Fixed point to point network latency

* Accuracy / resolution time trade-off

Thfoughput 4 Servers Confidence Interval (95%) for the Estimated Throughput - 4 Servers
2
00 Simulator 1 14
180 | Real System =
12
160 |
140 10
120
2 8
100
80 6T
60 J 4
40 |
24 32 40 48 56 2 4 6 8 10 12

# Clients Wall-Clock-Time (sec)



Black box modeling

MorphR [20]
— Automatic switching among replication protocols

Decision tree classifier (C5.0)

Workload characterization
— Xact mix, #ops, throughput, abort rate
Physical resource usage

— CPU, memory, commit latency

Output: optimal replication protocol



Throughput (committed tx/sec)
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MorphR in action
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Gray box modeling

e Combine WB and BB modeling
— Lower training time thx to WBM
— Incremental learning thx to BBM

* Techniques in this tutorial

— Divide et impera
— Bootstrapping
— Hybrid ensembling



Gray box modeling

* Techniques in this tutorial

— Divide et impera

— Bootstrapping
— Hybrid ensembling




Divide et impera

@ Modular approach
— WBM of what is observable/easy to model
— BBM of what is un-observable or too complex

* Reconcile their output in a single function

O Higher accuracy in extrapolation thx to WBM
© Apply BBM only to sub-problem

— Less features, lower training time



NoSQL optimizationin the Cloud

* Important to model network-bound ops but...

O Cloud hides detail about network @

— No topology info
— No service demand info
— Additional overhead of virtualization layer

/@’BBI\/I of network-bound ops performance
— Train ML on the target platform



TAS/PROMPT [28,30]

* Analytical modeling

— Concurrency control scheme
e E.g., encounter time vs commit time locking

— Replication protocol
* E.g.,, PBvs 2PC

— Replication scheme
e Partial vs full

— CPU

* Machine Learning
— Network bound op (prepare, remote gets)
— Decision tree regressor



Analytical model in TAS/PROMPT

* Concurrency control scheme (lock-based)
— Alockisa M/G/1 server
— Conflict prob = utilization of the server
* Replication protocol
— 2PC: all nodes are similar 2 one model
— PR: primary vs backups = two models
* Replication scheme
— Probability of accessing remote data
— # nodes involvedin commit



Machine Learning in TAS/PROMPT

* Decision tree regressor

e Operation-specific models
— Latency during prepare
— Latency to retrieve remote data
* |Input
— Operations rate (prepare, commit, remote get...)
— Size of messages
— # nodes involvedin commit



Predicted Tprep(usec)

ML accuracy for network bound ops

) Seamlessly portable across infrastructures
— Here, private cloud and Amazon EC2
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AM and ML coupling

O At training time, all features are monitorable
1 At query time they are NOT!

9 EXAMPLE
* Current config: 5 nodes, full replication

— Contact all 5 nodes at commit

* Query config: 10 nodes, partial replication
— How many contacted nodes at commit??



Model resolution

f@'\AI\/I can provide (estimates of) missing input

* |terative coupling scheme

ML takes some input parameters from AM

N

\7

AM takes latencies forecaétby ML as input parameter



Commit Probability

Commit Probability

Model’s accuracy
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COMPARISON WITH PURE BLACK, |
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COMPARISON WITH PURE BLACK, I
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real + TAS x pure ML =
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* Pure ML blunders when faced with new workloads




TAS/PROMPT integration

e TAS/PROMPT are baseline AM for case studies

‘1 We will use TAS/PROMPT as pure white AM

— Trained with fixed network model

—i.e., we do not retrain it as new data are collected
(But it is possible)

— Representative of pure white box models



Gray box modeling

* Techniques in this tutorial

— Divide et impera

— Bootstrapping

— Hybrid ensembling




BOOTSTRAPPING [27]

:@/‘Obtain zero-training-time ML via initial AM
1. Initial (synthetic) training set of ML from AM

2. Retrain periodically with “real” samples
Analytical Boostrapping Machine Gray box tg;’;;e":a f}gi:i;e G:)(; ::'X
model training set learning model : % 8
Sampling of el construction New data<
the Parameter Space : come in
(1 (2)

)



How many synthetlc samples?
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Important tradeoff

— Higher # 2 lower fitting error over the AM output
— Lower # = higher density of real samples in dataset



How to update
* Merge: simply add real samples to synthetic set
* Replace only the nearest neighbor (RNN)

* Replace neighbors in a given region (RNR)

— Two variants



Real vs AM function

Real function

AM function




Real vs learnt

* Assuming enough point to perfectly learn AM

o Syntheticsample

ML function




Merge

* Add real samples to synthetic
® Realsample




Merge

* Problem: same/near samples have diff. output




Replace Nearest Neighbor (RNN)

* Remove nearest neighbor




Replace Nearest Neighbor (RNN)

 Preserve distribution...




Replace Nearest Neighbor (RNN)

e ... but may induce alternating outputs




Replace Nearest Region (RNR)

* Add real and remove synth. samples in a radius




Replace Nearest Region (RNR)

* R =radius defining neighborhood




Replace Nearest Region (RNR)

* R =radius defining neighborhood




Replace Nearest Region (RNR)

e Skew samples’ distribution




Replace Nearest Region 2 (RNR2)

* Replace all synthetic samples in a radius R




Replace Nearest Region2 (RNN2)

* Maintain distribution, piecewise approximation




Weighting

* Give more relevance to some samples

) Fit better the model around real samples
— “Trust” real samples more than synthetic ones
— Useful especially in Merge

) Too high can cause over-fitting!

— Learner too specialized only in some regions



MAPE

Merge , TOB
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* Weighting more real samples reduces error



MAPE

Replace, KVS
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MERGE VS REPLACE (TOB)
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* Assuming optimal parameterization

0

 Merge and Replace seem *very* similar...



Impact of base model (TOB)

MAPE

1.4

1.2

0.8 F
0.6 f
0.4 f

0.2

40 50 60 80 90
Additional training %
CcuB

30 70

AM ——

e ... BUT replace is better if base model is poor
— It evicts synthetic samples more aggressively



Batching level

Visualizing the correction (STOB)
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Visualizing the correction (KVS)

PURE ML (70% TS)
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Optimal Batching Value

BOOTSTRAPPING in RL [59]

* Optimize batching level in STOB
 Base AM already presented
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Hybrid RL in STOB

* UCB: find optimal batch size (b*) for a given msg.
arrival rate (m)

— Discretize m domain into M={m_min...m_max}
— A UCB instance for each m_i

— For each instance, a leverfor each b

e |nitial rewards are determined via AM

— Convergence speed of UCB insufficient at high arr. :

* Enhance convergence speed usinginitial knowledge of AM



Bootstrapped model

* Enhance response time by better batching
e Faster convergence than UCB (& no thrashing)
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Gray box modeling

* Techniques in this tutorial
— Divide et impera
— Bootstrapping

— Hybrid ensembling




Hybrid Ensemble [26]

* Combine output of AM and ML

— Hybrid boosting: correct errors of single models

— KNN: select best model depending on query

— Probing: train ML only where AM is not accurate



Hybrid Boosting

Implements Logistic Additive Regression
Chain composed by AM + cascade of ML
ML, trained over residual error of AM

ML;, i>1 trained over residual error of ML,



RMSE norm. w.r.t. T'ay

BOOSTING: sensitivity

2.5 1.7
1.6
2 r s 15+
<
=~ 147
1.5 S 1.3
g 1.2
1+ g 11}
w
n 1
=
0_5>f\‘e o 09
—K- 0.8
O 1 1 1 1 1 07 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 20 30 40 50 60 70 80
Percentage of additional training set Percentage of additional training set
Cubist —<— HyBoost —X— Cubist —X<— HyBoost —X—

* Chain of 3 BBMs ( > 3 were useless here)
— DT, ANN, SVM



Online variant of HyBoost

* Self-correcting Transactional Auto Scaler (SC-TAS) [28]

identifying optimal level of parallelism in a
~ distributed NoSQL transactional store

— # nodes in the platforms

— # threads active on each node



Parallelism tuning in DTM

Why not using a simpler exploration based approach,
e.g. hill-climbing?

@Adapting number of threads per node is simple and effective
O Changing # nodesiis costly: state transfer!

@ Model-based solution
— Input: workload, # nodes, # threads/node
— Output: throughput
@ Obtain: highest-throughput configuration



Implemented solution: SC-TAS

@ Exploration + modeling + Machine Learning
1. Explore to gather feedback on model’s accuracy
2. LEARN corrective functions to “patch” model

* Try to avoid global reconfiguration (# nodes)
@ — Rely on local # threads exploration (cheap)

a

@ Increase accuracy

N



SC-TAS control loop

N

>/Collect Data\<

Local scaling

v

—

Update SC-TAS

|

Explore locally

NO

End
Exploration?

Global scaling

|

Invoke SC-TAS

e Workload, #thread, #nodes, TAS’ error




SC-TAS control loop

> Collect Data <
v \
Local scaling  ( Update SC-TAS Global scaling
] N | I
: YES *
ﬂ Invoke SC-TAS

Explore locally

Exploration?

e Re-train hyboost “patching” ML




SC-TAS control loop

> Collect Data

l

Local scaling

Update SC-TAS

|

|

Explore locally

o) End

€ ——

\Exploration?

YES

Global scaling

|

>

>I nvoke SC-TAS

* Yes if min<#tthread exploration<max &&

e Accuracy of the patched model considered “OK”




SC-TAS control loop

> Collect Data <

l

Local scaling

Update SC-TAS Global scaling

|

YES

Invoke SC-TAS

| 0
Explore locall L
_Explorelocally

Exploration?

e Patch is not enough
* Change # of threads and repeat



SC-TAS control loop

> Collect Data <

l

Global scaling

Local scaling Update SC-TAS

. |

End

Explorelocally <= Exploration?

Invoke SC-TAS /
\

N

* Model is supposedly patched
* Invoke the patched model



Dynamics of SC-TAS
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Throughput (tx/sec)
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Hybrid Ensemble [26]

* Combine output of AM and ML

— Hybrid boosting: correct errors of single models

— KNN: select best model depending on query

— Probing: train ML only where AM is not accurate



Hybrid KNN

* Split D into D', D”

* Train ML,...ML, on D’
— ML can differ in nature, parameters, training set...

* For a query sample x
— Pick the K training samples in D” closest to x

— Find the model with lowest error on the K samples
— Use such model to predict x



RMSE norm. w.r.t. Tapg

KNN, sensitivity (TOB)
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* Low cut-off && low % training = collapse to AM
* High cut-off && high % training = collapse to ML



Hybrid Ensemble [26]

* Combine output of AM and ML
— Hybrid boosting: correct errors of single models

— KNN: select best model depending on query

— Probing: train ML only where AM is not accurate




PROBING

/@‘Build a ML model as specialized as possible
— Use AM where it is accurate
— Train ML only where AM fails

"1 Differences with KNN

— In KNN, ML is trained on all samples:
* Here, only when AM is found to be inaccurate

— In KNN, voting decides on ML vs AM:

* Here, binary classifier determinesin which regions the
AM is inaccurate




Probing at work

1. Dy = empty set
2. Train a classifier: for each xin D

— If error of AM on x > cut-off, map x to ML and add
X to Dy,

— Else map xto AM
3. Train MLon Dy,

 QUERY for input z
— If classify(z) = AM, return AM(z); else return ML(z)



Probing Sensitivity (KVS)
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RMSE norm w.r.t. T'apm

NFL strikes again

No one-size-fits-all hybrid models exist!

* Choosing best hybrid model (with right
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Concluding remarks

@WBI\/I and BBM often conceived as antithetic
@,‘They can be leveraged on synergistically

— Increased predictive power thx to WBM
— Incremental learning capabilities thx to BBM

~@ Gray box approaches

— Divide et impera, Bootstrapping, Hybrid ensembling
— Design, implementation and use cases

@Can deliver better accuracy than pure B/W



THANK YOU

Questions?
didona@gsd.inesc-id.pt

www.gsd.inesc-id.pt/~didona
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