

Hybrid Machine Learning/Analytical Models for Performance Prediction

<u>Diego Didona</u> and Paolo Romano INESC-ID / Instituto Superior Técnico

6th ACM/SPEC International Conference on Performance Engineering (ICPE) Feb 1st, 2015

Outline

- Base techniques for performance modeling
 - White box modeling
 - Black box modeling
 - Modeling and optimization on two case studies
- Hybrid modeling techniques
 - Divide et impera
 - Bootstrapping
 - Ensemble
- Closing remarks

Modeling a system

Modeling a system

Workload:

Intensity, small vs large jobs

Infrastructure

servers, type of servers

Application-specific

Replication

Throughput

Max jobs / sec

Response time

Exec. time of a job

Consumed energy

Joules / job

What is a performance model?

Approximator of a KPI function

Relates input to target output

- Can be implemented in different ways
 - White box
 - Black box

Applications of Performance Modeling

- Capacity planning
 - Avoid overload in datacenters
- Anomaly detection
 - Model "normalcy" to detect anomalies
- Self-tuning
 - Maximize performance
- Resource provisioning
 - Elastic scaling in the Cloud

Accuracy of a performance model

- Approximation accuracy metrics
 - MAPE (Mean Absolute Percentage Error)

$$\sum_{i=1}^{N} \frac{|real_i - pred_i|}{N \ real_i}$$

RMSE (Root Mean Square Error)

$$\sqrt{\sum_{i=1}^{N} \frac{(real_i - pred_i)^2}{N}}$$

White/Black Box Modeling 101

White box performance modeling

Leverage on knowledge about target app's internals

- Formalize a mapping between
 - Application, hosting platform and
 - Performance
- Formalization can be
 - Analytical (e.g., Queueing Theory) [45]
 - Simulation, e.g., [36]

Queueing Theory

- A resource is modeled as a server + a queue
- Possible target KPIs
 - Resource utilization
 - Throughput
 - Response time
- Key factors impacting queue's performance
 - Arrival of jobs
 - Service demands
 - Service policy (e.g., FCFS)
 - Load generation model (e.g., open vs closed)

From single queues to networks

Queueing Theory pros and cons

- Accurate for wide spectrum of input parameters
- Specifically crafted for target app
- Analytical tractability often requires
 - Assumptions (e.g., independent job flows)
 - Approximations
 - Simplifications (e.g., Poisson arrival)

Simulation

- Fincode system dynamics via a computer program
- Alternative w.r.t. analytical modeling
 - Simpler (code vs equations)
 - May rely on less assumptions
 - Slower to produce output
- Similar trade-offs w.r.t analytical modeling
 - Still uses simplifications to avoid overly complex code

Black box performance modeling

- Definition
- Taxonomy (Offline vs Online, supervised vs unsupervised, regression vs classification)
- Examples (DT, SVM, ANN, KNN, UCB, Gradient),
- Ensemble
- Optimization

Building black box models

Infer performance model from behavior

- Machine Learning [8]
 - Observe Y corresponding to different X
 - Obtain a statistical performance model

Machine Learning pros and cons

- No need for domain knowledge
- High accuracy in interpolation
 - i.e., for input values close to the observed ones
- Curse of dimensionality
 - # required samples grows exp. with input size
 - Long training phase to build model
- Poor accuracy in extrapolation
 - i.e., for input values far away from the observed ones

Black box modeling taxonomy

- Target output feature y
 - Classification (discrete y) vs Regression (y in R)

- Training phase timing
 - Online vs Offline

- Predict or find hidden structures
 - Supervised vs unsupervised learning

OFF-LINE SUPERVISED LEARNING

- Supervised
 - Known inputs x have a corresponding known y = f(x)

- Offline
 - Model built on a training dataset
 - Dataset $\{\langle x,y \rangle : y = f(x)\}$
 - Learn $f': f'(x) \sim f(x)$
 - While being able to generalize outside the known dataset

Decision Trees [55]

- Predictive model is a tree-like graph
- Intermediate nodes are predicate
- Classifications: leaves are classes
- Regression: leaves are functions
 - Piecewise approximation of nonlinear functions

DT: an example

Support Vector Machines [16]

A tuple is a point in a multidimensional space

Find hyperplane s.t. different classes are as much distant as possible

Credits to Erik Kim for SVM-related images, http://www.eric-kim.net/eric-kim-net/posts/1/kernel trick.html

Support Vector Machines

What if points are not linearly separable?

SVM: the kernel trick, I

Map points to a higher dimensional space

In that space, points are linearly separable

• Here, kernel is $f(x, y) = (x, y, x^2 + y^2)$

SVM: the kernel trick, II

Nonlinear separation in original domain

Artificial Neural Network [79]

Inner model is a graph

Resembles neurons connections in brain

Credits to Koné Mamadou Tadiou for image http://futurehumanevolution.com/artificial-intelligence-future-human-evolution/artificial-neural-networks

ANN internals

Neuron structure

- Weighted sum of inputs
- Activation 0/1 function as output

Building an ANN

- Determining its structure
 - # layers
 - # neurons per layer
- Activation function per neuron
- Iteratively learn weights depending on error

K Nearest Neighbors [2]

Proximity given by a function

Euclidean
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

$$\sum_{i=1}^{k} (x_i - y_i)^2$$

$$\sum_{i=1}^{k} |x_i - y_i|$$

$$\left(\sum_{i=1}^{k} \left(\left|x_{i}-y_{i}\right|\right)^{q}\right)^{1/q}$$

K Nearest Neighbors

- Classification:
 - Class of X is the most common in neighborhood
- Regression
 - Value for X is a function of the values in the neighb.

Pic from http://www.cs.bham.ac.uk/internal/courses/robotics/halloffame/2010/team12/knn.htm

ONLINE LEARNING

- We consider Reinforcement Learning [70]
 - Training set not available (nor stored)
 - Given a set of <State, Action> pairs
 - Find sequence of actions that maximizes payoff (reward)
 - Collect feedback from system
- Tradeoff between
 - Exploration (try new actions)
 - Exploitation (use good known actions)

Multi-armed bandit (MAB)

- Inspired by gambling at slot machines. Find
 - Which arm to play
 - How many times
 - In which order

Upper Confidence Bound [3]

Popular set of algorithms for MAB

- 1. maximizes reward, while...
- 2. minimizing regret:
 - utility loss due to sub-optimal choices

Efficiency: regret is logarithmic in the # of trials

Hill Climbing

· Not really "learning", but online optimization

Explore function in the direction that increases/decreases its value

Possibly coupled with randomization to avoid

local max/min

NO FREE LUNCH THEOREM FOR ML

There is no "absolute best learner"

Best learner and parameters depend on data

 When working in extrapolation, there are no a priori distinctions between learning algorithms [80]

ML optimization

- A ML algorithm has meta-parameters
 - # features of the input data
 - # min of cases per leaf in DT
 - Kernel and its parameters in SVM
 - Neurons, layers, activation functions in ANN

- How to choose them to maximize accuracy?
 - It depends on the problem at hand!

Features selection [40]

- Identify features of inputs that are correlated the most with target output
 - Speedup in building the model
 - Increase accuracy by reducing noise

Features selection

- Wrapper: use target ML with different combinations of features
 - Forward selection, Backward elimination, ...

- Filter: independent of the target ML
 - E.g., discard 1 between 2 highly correlated variables

- Dimensionality reduction (PCA, SVD)
 - Find features that account for most of the variance

Hyperparameters optimization

- Find hyper-parameters that maximize accuracy
- Based on cross-validation
 - Use part of the set as training and part as test
- Different approaches
 - Grid search
 - Random search [6]
 - Bayesian optimization [74]

Grid Search

1. Uniformly discretize features' domain

2. Take the Cartesian product of features

Random search

- Include randomness
 - Increase sampling granularity of important param.

ENSEMBLING

- Solution to counter NFL theorem
- Employ multiple learners together
- Bagging [9]
 - Train learners on different training sets
- Boosting [66]
 - Generate 1 strong learner from N weak ones
- Stacking [79]
 - Combine output of learners depending on input

Bagging

- Average output of sub-models
- Generate N sets of size D'
 - Draw uniformly at random with repetition from D
- Generate N black box models
 - Voting for classification
 - Averaging for regression
- Cannot improve predictive power (in extrap.) ...
- Can reduce variance (i.e., better interp. accuracy)

Bagging example

- 100 bootstrapped learners
- Reduce variance and overfit w.r.t. single models

Boosting

- Build a strong learner from many weak ones
- Stage-wise training phase
 - Training at stage i depends on output of i-1
- 0/1 Adaboost
 - Base learners B_i : can classify correctly with $p > \frac{1}{2}$
 - Iteratively try to classify better mis-classified samples
 - At stage i, drawn training set according to dist. D_i
 - D_{i+1} s.t. mis-classified samples have higher relevance
 - Output weighted average of weak learners

Adaboost, training

Adaboost, result

$$H(x) = sign(\alpha_1 h_1(x) + \alpha_2 h_2(x) + \alpha_3 h_3(x))$$

Stacking

- A meta-learner combine output of ML
- Partition D in D', D"
- Train 1...N learners on D'
- ML_{N+1} trained on ML₁...ML_N predictions on D"

Introduction and Modeling of Main Case Studies

Background Case studies

- Total Order Broadcast primitive
 - Analytical model
 - Black box online optimization

- Distributed NoSQL transactional data grid
 - Simulation model
 - Black box offline supervised learning

Total Order Broadcast case study

- TOB allows a set of nodes to deliver broadcast messages in the same order
- Incarnates the popular consensus problem
 - Fundamental abstraction for dependable computing
- We consider Sequencer-based TOB
 - Messages are broadcast normally
 - A Sequencer node decides the delivery order

Sequencer-Based TOB

Performance of STOB

- STOB minimizes messages exchange, but...
- The sequencer may become the bottleneck
- Possible solution: batching
- The sequencer
 - Waits to receive N > 1 msgs
 - Send a single, bigger seq. msg for the N msgs instead of N smaller

Batching in STOB

- At high load batching
 - Allows for amortizing msgs sequencing cost
 - Increases sequencer capacity and throughput
- At load load batching
 - Introduces useless delays
 - The sequencer waits too much and wastes time

The need for self-tuning STOB Batching

Optimal batching depending on msgs rate

Tuning the batching level

- White box approaches
 - Forecast the impact of batching given workload

- Black box approaches
 - On-line optimization

STOB white box modeling

- Focus on performance on sequencer
- It is representative of the whole system

STOB model input

- m = messages generation rate
- b = batching level
- T_1 = time to process 1st message in batch
- T_Add = time to process additional msgs
 - Batching makes sense when T_1>T_Add

STOB analytical model [59]

• Sequencer = M/M/1 queue $T(b,m) = \frac{1}{\mu(b,m) - \lambda(b,m)}$

Batch generation rate

$$\lambda(b,m) = \frac{m}{b}$$

Batch service rate

$$\mu(b,m) = \frac{1}{T_{1st} + \frac{(b-1)}{2m} + T_{add}(b-1)}$$

Taking derivatives, optimal b is computed

STOB model's accuracy

- Assumptions and simplifications
 - Exponential arrival rate and service rate (M/M/1)
 - In computing arrivals and computation overlapping

STOB black box optimization [24]

- Learn optimal waiting time for a batch of size b
 - Computed at the sequencer
- Hill climbing for each value of b
 - In/decrease wait time @b depending on feedback
- When delivering a batch of size b
 - Confirm previous decision if delivery time is lower
 - Revert previous decision if delivery time is higher

Hill Climbing in STOB

- But limited expressiveness:
 - Self-tuning at the cost of no predictability

Transactional NoSQL store case study

- Distributed transactional data store
 - Nodes maintain elements of a dataset
 - Full vs partial replication (# copies per item)
 - Transactional --ACI(D) manipulation of data
 - Concurrency control scheme (enforce isolation)
 - Replication protocol (disseminate modifications)

Replication protocols: which one?

transactional data

consistency procols

DSTM Performance

Heterogeneous, nonlinear scalability trends!

Factors limiting scalability

Network latency in commit phase

Aborted transactions because of conflicts

White box modeling

Simulator [21]

- Assumptions and approximations
 - CPU = G/M/K
 - Fixed point to point network latency
- Accuracy / resolution time trade-off

Black box modeling

- MorphR [20]
 - Automatic switching among replication protocols
- Decision tree classifier (C5.0)
- Workload characterization
 - Xact mix, #ops, throughput, abort rate
- Physical resource usage
 - CPU, memory, commit latency
- Output: optimal replication protocol

MorphR in action

Gray Box Modeling

Gray box modeling

- Combine WB and BB modeling
 - Lower training time thx to WBM
 - Incremental learning thx to BBM

- Techniques in this tutorial
 - Divide et impera
 - Bootstrapping
 - Hybrid ensembling

Gray box modeling

- Techniques in this tutorial
 - Divide et impera
 - Bootstrapping
 - Hybrid ensembling

Divide et impera

- WBM of what is observable/easy to model
- BBM of what is un-observable or too complex
- Reconcile their output in a single function

- Higher accuracy in extrapolation thx to WBM
- Apply BBM only to sub-problem
 - Less features, lower training time

NoSQL optimization in the Cloud

- Important to model network-bound ops but...
- Cloud hides detail about network 😊
 - No topology info
 - No service demand info
 - Additional overhead of virtualization layer
- BBM of network-bound ops performance
 - Train ML on the target platform

TAS/PROMPT [28,30]

- Analytical modeling
 - Concurrency control scheme
 - E.g., encounter time vs commit time locking
 - Replication protocol
 - E.g., PB vs 2PC
 - Replication scheme
 - Partial vs full
 - CPU
- Machine Learning
 - Network bound op (prepare, remote gets)
 - Decision tree regressor

Analytical model in TAS/PROMPT

- Concurrency control scheme (lock-based)
 - A lock is a M/G/1 server
 - Conflict prob = utilization of the server
- Replication protocol
 - 2PC: all nodes are similar → one model
 - PR: primary vs backups → two models
- Replication scheme
 - Probability of accessing remote data
 - # nodes involved in commit

Machine Learning in TAS/PROMPT

- Decision tree regressor
- Operation-specific models
 - Latency during prepare
 - Latency to retrieve remote data
- Input
 - Operations rate (prepare, commit, remote get...)
 - Size of messages
 - # nodes involved in commit

ML accuracy for network bound ops

- Seamlessly portable across infrastructures
 - Here, private cloud and Amazon EC2

AM and ML coupling

- At training time, all features are monitorable
- At query time they are NOT!

- Current config: 5 nodes, full replication
 - Contact all 5 nodes at commit
- Query config: 10 nodes, partial replication
 - How many contacted nodes at commit??

Model resolution

AM can provide (estimates of) missing input

Iterative coupling scheme

ML takes some input parameters from AM

AM takes latencies forecast by ML as input parameter

Model's accuracy

TOP: PB, only master node. BOTTOM: 2PC. FULL REPL.

COMPARISON WITH PURE BLACK, I

- YCSB (transactified) workloads while varying
 - # operations/tx
 - Transactional mix
 - Scale
 - Replication degree

COMPARISON WITH PURE BLACK, II

- ML trained with TPCC-R and queried for TPCC-W
- Pure ML blunders when faced with new workloads

TAS/PROMPT integration

TAS/PROMPT are baseline AM for case studies

- We will use TAS/PROMPT as pure white AM
 - Trained with fixed network model
 - i.e., we do not retrain it as new data are collected (But it is possible)
 - Representative of pure white box models

Gray box modeling

- Techniques in this tutorial
 - Divide et impera
 - Bootstrapping
 - Hybrid ensembling

BOOTSTRAPPING [27]

- Obtain zero-training-time ML via initial AM
- 1. Initial (synthetic) training set of ML from AM
- 2. Retrain periodically with "real" samples

How many synthetic samples?

- Important tradeoff
 - Higher # → lower fitting error over the AM output
 - Lower # → higher density of real samples in dataset

How to update

Merge: simply add real samples to synthetic set

Replace only the nearest neighbor (RNN)

- Replace neighbors in a given region (RNR)
 - Two variants

Real vs AM function

Real vs learnt

Assuming enough point to perfectly learn AM

Merge

Add real samples to synthetic

Merge

Problem: same/near samples have diff. output

Replace Nearest Neighbor (RNN)

Remove nearest neighbor

Replace Nearest Neighbor (RNN)

• Preserve distribution...

Replace Nearest Neighbor (RNN)

• ... but may induce alternating outputs

Add real and remove synth. samples in a radius

R = radius defining neighborhood

R = radius defining neighborhood

Skew samples' distribution

Replace all synthetic samples in a radius R

Maintain distribution, piecewise approximation

Weighting

Give more relevance to some samples

- Fit better the model around real samples
 - "Trust" real samples more than synthetic ones
 - Useful especially in Merge

- Too high can cause over-fitting!
 - Learner too specialized only in some regions

Merge, TOB

1 K synthetic samples

10 K synthetic samples

Weighting more real samples reduces error

Replace, KVS

Examples of over-fitting

MERGE VS REPLACE (TOB)

- Assuming optimal parameterization
- Merge and Replace seem *very* similar...

Impact of base model (TOB)

- ... BUT replace is better if base model is poor
 - It evicts synthetic samples more aggressively

Visualizing the correction (STOB)

Visualizing the correction (KVS)

20 40 60 80 100 120 140

0.1

BOOTSTRAPPING in RL [59]

- Optimize batching level in STOB
- Base AM already presented

Hybrid RL in STOB

- UCB: find optimal batch size (b*) for a given msg.
 arrival rate (m)
 - Discretize m domain into M={m_min...m_max}
 - A UCB instance for each m_i
 - For each instance, a lever for each b

- Initial rewards are determined via AM
 - Convergence speed of UCB insufficient at high arr. :
 - Enhance convergence speed using initial knowledge of AM

Bootstrapped model

- Enhance response time by better batching
- Faster convergence than UCB (& no thrashing)

Gray box modeling

- Techniques in this tutorial
 - Divide et impera
 - Bootstrapping
 - Hybrid ensembling

Hybrid Ensemble [26]

Combine output of AM and ML

Hybrid boosting: correct errors of single models

KNN: select best model depending on query

Probing: train ML only where AM is not accurate

Hybrid Boosting

Implements Logistic Additive Regression

Chain composed by AM + cascade of ML

ML₁ trained over residual error of AM

ML_i, i>1 trained over residual error of ML_{i-1}

BOOSTING: sensitivity

- Chain of 3 BBMs (> 3 were useless here)
 - DT, ANN, SVM

Online variant of HyBoost

Self-correcting Transactional Auto Scaler (SC-TAS) [28]

- identifying optimal level of parallelism in a distributed NoSQL transactional store
 - # nodes in the platforms
 - # threads active on each node

Parallelism tuning in DTM

Why not using a simpler exploration based approach, e.g. hill-climbing?

Model-based solution

Input: workload, # nodes, # threads/node

Output: throughput

Obtain: highest-throughput configuration

Implemented solution: SC-TAS

- Exploration + modeling + Machine Learning
 - 1. Explore to gather feedback on model's accuracy
 - 2. LEARN corrective functions to "patch" model

- Try to avoid global reconfiguration (# nodes)
- Rely on local # threads exploration (cheap)
- Increase accuracy

Workload, #thread, #nodes, TAS' error

Re-train hyboost "patching" ML

- Yes if min<#thread exploration<max &&
- Accuracy of the patched model considered "OK"

- Patch is not enough
- Change # of threads and repeat

Invoke the patched model

Dynamics of SC-TAS

• μ = min # of thread explorations per node

SC-TAS: before and after

Hybrid Ensemble [26]

Combine output of AM and ML

Hybrid boosting: correct errors of single models

- KNN: select best model depending on query

Probing: train ML only where AM is not accurate

Hybrid KNN

- Split D into D', D"
- Train ML₁...ML_N on D'
 - ML can differ in nature, parameters, training set...
- For a query sample x
 - Pick the K training samples in D" closest to x
 - Find the model with lowest error on the K samples
 - Use such model to predict x

KNN, sensitivity (TOB)

- Low cut-off && low % training -> collapse to AM
- High cut-off && high % training -> collapse to ML

Hybrid Ensemble [26]

Combine output of AM and ML

Hybrid boosting: correct errors of single models

KNN: select best model depending on query

Probing: train ML only where AM is not accurate

PROBING

- Use AM where it is accurate
- Train ML only where AM fails

Differences with KNN

- In KNN, ML is trained on all samples:
 - Here, only when AM is found to be inaccurate
- In KNN, voting decides on ML vs AM:
 - Here, binary classifier determines in <u>which regions</u> the AM is inaccurate

Probing at work

- 1. $D_{ML} = empty set$
- 2. Train a classifier: for each x in D
 - If error of AM on x > cut-off, map x to ML and add x to D_{MI}
 - Else map x to AM
- 3. Train ML on D_{ML}
- QUERY for input z
 - If classify(z) = AM, return AM(z); else return ML(z)

Probing Sensitivity (KVS)

- High cut-off

 collapses to AM
- Low cut-off → collapses to ML

NFL strikes again

- No one-size-fits-all hybrid models exist!
- Choosing best hybrid model (with right parameters) can be cast to a parameter optimization problem

Concluding remarks

- WBM and BBM often conceived as antithetic
- They can be leveraged on synergistically
 - Increased predictive power thx to WBM
 - Incremental learning capabilities thx to BBM
- Of Gray box approaches
 - Divide et impera, Bootstrapping, Hybrid ensembling
 - Design, implementation and use cases
 - Can deliver better accuracy than pure B/W

THANK YOU

Questions?

didona@gsd.inesc-id.pt

www.gsd.inesc-id.pt/~didona

Hybrid Machine Learning/Analytical Models for Performance Prediction: Bibliography

Diego Didona and Paolo Romano INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

White box performance modeling: principles, applications and fundamental results.

[45] [49] [50] [71] [46] [4] [39] [44] [58] [51] [36]

Principles of Machine Learning.

[8][5][80] [65][66][48][34][9][79][10][70][41][3][77][62] [16][33][54] [55] [47] [56][53] [42] [76] [2]

ML ensembling, features selection and hyper-parameter optimizations.

[32] [12] [74] [6] [69] [40]

Application of ML to performance modeling.

[13] [60][18][20][15] [59][31][75][38][37][68] [1][82][81] [57]

Divide et impera.

[30] [43] [28] [22]

Bootstrapping.

[73] [59] [67] [72] [61] [27]

Hybrid ensembling.

[26] [25] [14]

Case studies: introduction and performance modeling/optimization.

[11] [35] [63] [24] [18] [21] [52] [7] [29] [17] [19] [23] [64] [20] [78]

[83] [84] [85] [86] [87] [73]

References

- [1] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik. Learning-based query performance modeling and prediction. In *Proceedings of the 2012 IEEE 28th International Conference on Data Engineering*, ICDE '12, pages 390–401, Washington, DC, USA, 2012. IEEE Computer Society.
- [2] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric regression. *The American Statistician*, 46(3):175–185, 1992.
- [3] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine Learning*, 2002.
- [4] Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Palacios. Open, closed, and mixed networks of queues with different classes of customers. *J. ACM*, 22(2):248–260, April 1975.
- [5] Richard Bellman. *Dynamic Programming*. Princeton University Press, Princeton, NJ, 1957.
- [6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. *J. Mach. Learn. Res.*, 13(1):281–305, February 2012.
- [7] Philip A Bernstein and Nathan Goodman. Concurrency control in distributed database systems. *ACM Computing Surveys (CSUR)*, 13(2):185–221, 1981.
- [8] Christopher M. Bishop. *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Springer-Verlag New York, Inc., 2006.
- [9] Leo Breiman. Bagging predictors. *Mach. Learn.*, 24(2):123–140, August 1996.
- [10] Leo Breiman. Stacked regressions. Machine learning, 24(1):49–64, 1996.
- [11] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. *Introduction to Reliable and Secure Distributed Programming* (2. ed.). Springer, 2011.
- [12] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, Alex Ksikes Ensemble selection from libraries of models. In *Proc. of ICML*, 2004.
- [13] Jin Chen, G. Soundararajan, and C. Amza. Autonomic provisioning of backend databases in dynamic content web servers. In *Proceedings of the 2006 IEEE International Conference on Autonomic Computing*, ICAC '06, pages 231–242, Washington, DC, USA, 2006. IEEE Computer Society.

- [14] Jin Chen, G. Soundararajan, S. Ghanbari, and C. Amza. Model ensemble tools for self-management in data centers. In *Data Engineering Workshops* (*ICDEW*), 2013 IEEE 29th International Conference on, pages 36–43, April 2013.
- [15] Tianshi Chen, Qi Guo, Ke Tang, Olivier Temam, Zhiwei Xu, Zhi-Hua Zhou, and Yunji Chen. Archranker: A ranking approach to design space exploration. *SIGARCH Comput. Archit. News*, 42(3):85–96, June 2014.
- [16] Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine Learning*, 1995.
- [17] Maria Couceiro, Diego Didona, Lus Rodrigues, and Paolo Romano. Selftuning in distributed transactional memory. In Rachid Guerraoui and Paolo Romano, editors, *Transactional Memory. Foundations, Algorithms, Tools, and Applications*, volume 8913 of *Lecture Notes in Computer Science*, pages 418–448. Springer International Publishing, 2015.
- [18] Maria Couceiro, Paolo Romano, and Luis Rodrigues. A machine learning approach to performance prediction of total order broadcast protocols. In *Self-Adaptive and Self-Organizing Systems (SASO), 2010 4th IEEE International Conference on*, pages 184–193. IEEE, 2010.
- [19] Maria Couceiro, Paolo Romano, and Luis Rodrigues. Polycert: Polymorphic self-optimizing replication for in-memory transactional grids. In *Proceedings of the 12th ACM/IFIP/USENIX International Conference on Middleware*, Middleware'11, pages 309–328, Berlin, Heidelberg, 2011. Springer-Verlag.
- [20] Maria Couceiro, Pedro Ruivo, Paolo Romano, and Luis Rodrigues. Chasing the optimum in replicated in-memory transactional platforms via protocol adaptation. In *Proceedings of the 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)*, DSN '13, pages 1–12, Washington, DC, USA, 2013. IEEE Computer Society.
- [21] Pierangelo Di Sanzo, Francesco Antonacci, Bruno Ciciani, Roberto Palmieri, Alessandro Pellegrini, Sebastiano Peluso, Francesco Quaglia, Diego Rughetti, and Roberto Vitali. A framework for high performance simulation of transactional data grid platforms. In *Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques*, SimuTools '13, pages 63–72, ICST, Brussels, Belgium, Belgium, 2013. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

- [22] Pierangelo Di Sanzo, Francesco Quaglia, Bruno Ciciani, Alessandro Pellegrini, Diego Didona, Paolo Romano, Roberto Palmieri, and Sebastiano Peluso. A flexible framework for accurate simulation of cloud in-memory data stores. *ArXiv e-prints*, December 2014.
- [23] Pierangelo Di Sanzo, Diego Rughetti, Bruno Ciciani, and Francesco Quaglia. Auto-tuning of cloud-based in-memory transactional data grids via machine learning. In *Proceedings of the 2012 Second Symposium on Network Cloud Computing and Applications*, NCCA '12, pages 9–16, Washington, DC, USA, 2012. IEEE Computer Society.
- [24] Diego Didona, Daniele Carnevale, Sergio Galeani, and Paolo Romano. An extremum seeking algorithm for message batching in total order protocols. In *SASO*, pages 89–98. IEEE Computer Society, 2012.
- [25] Diego Didona, Pascal Felber, Derin Harmanci, Paolo Romano, and Joerg Schenker. Identifying the optimal level of parallelism in transactional memory applications. *Computing Journal*, pages 1–21, December 2013.
- [26] Diego Didona, Francesco Quaglia, Paolo Romano, and Ennio Torre. Enhancing performance prediction robustness by combining analytical modeling and machine learning. In *Proceedings of the 2015 ACM/SPEC 6th International Conference on Performance Engineering (ICPE 2015)*, ICPE '15, 2015.
- [27] Diego Didona and Paolo Romano. On Bootstrapping Machine Learning Performance Predictors via Analytical Models. *ArXiv e-prints*, October 2014.
- [28] Diego Didona and Paolo Romano. Performance modelling of partially replicated in-memory transactional stores. In *Proceedings of the 22nd IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2014)*, MASCOTS '14, 2014.
- [29] Diego Didona and Paolo Romano. Self-tuning transactional data grids: The cloud-tm approach. In *Proceedings of the Symposium on Network Cloud Computing and Applications, (NCCA)*, pages 113–120. IEEE, 2014.
- [30] Diego Didona, Paolo Romano, Sebastiano Peluso, and Francesco Quaglia. Transactional auto scaler: Elastic scaling of replicated in-memory transactional data grids. *ACM Trans. Auton. Adapt. Syst.*, 9(2):11:1–11:32, July 2014.
- [31] Nuno Diegues and Paolo Romano. Self-tuning intel transactional synchronization extensions. In 11th International Conference on Autonomic Com-

- puting (ICAC 14), pages 209–219, Philadelphia, PA, June 2014. USENIX Association.
- [32] Thomas G. Dietterich. Ensemble methods in machine learning. In *Proc. of MCS Workshop*, 2000.
- [33] Harris Drucker, Chris, Burges* L. Kaufman, Alex Smola, and Vladimir Vapnik. Support vector regression machines. In *Advances in Neural Information Processing Systems 9*, volume 9, pages 155–161, 1997.
- [34] Jerome H. Friedman. Stochastic gradient boosting. *Comput. Stat. Data Anal.*, 38(4):367–378, February 2002.
- [35] Toy Friedman and Robbert Van Renesse. Packing messages as a tool for boosting the performance of total ordering protocls. In *Proceedings of the 6th IEEE International Symposium on High Performance Distributed Computing*, HPDC '97, pages 233–, Washington, DC, USA, 1997. IEEE Computer Society.
- [36] Richard M. Fujimoto. Parallel discrete event simulation. *Commun. ACM*, 33(10):30–53, October 1990.
- [37] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L. Wiener, Armando Fox, Michael Jordan, and David Patterson. Predicting multiple metrics for queries: Better decisions enabled by machine learning. In *Proceedings of the 2009 IEEE International Conference on Data Engineering*, ICDE '09, pages 592–603, Washington, DC, USA, 2009. IEEE Computer Society.
- [38] Saeed Ghanbari, Gokul Soundararajan, Jin Chen, and Cristiana Amza. Adaptive learning of metric correlations for temperature-aware database provisioning. In *Proceedings of the Fourth International Conference on Autonomic Computing*, ICAC '07, pages 26–, Washington, DC, USA, 2007. IEEE Computer Society.
- [39] Donald Gross, John F Shortle, James M Thompson, and Carl M Harris. *Fundamentals of queueing theory*. John Wiley & Sons, 2013.
- [40] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. *The Journal of Machine Learning Research*, 3:1157–1182, 2003.
- [41] Martin T. Hagan, Howard B. Demuth, and Mark Beale. *Neural Network Design*. PWS Publishing Co., Boston, MA, USA, 1996.

- [42] Mark Hall et al. The weka data mining software: An update. *SIGKDD Explor. Newsl.*, 11(1):10–18, November 2009.
- [43] Herodotos Herodotou, Fei Dong, and Shivnath Babu. No one (cluster) size fits all: automatic cluster sizing for data-intensive analytics. In *Proc. of the ACM Symposium on Cloud Computing (SOCC)*, 2011.
- [44] James R Jackson. Networks of waiting lines. *Operations research*, 5(4):518–521, 1957.
- [45] Leonard Kleinrock. *Queueing Systems*, volume I: Theory. Wiley Interscience, 1975.
- [46] John DC Little. A proof for the queuing formula: L= λ w. *Operations research*, 9(3):383–387, 1961.
- [47] Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1):14–23, 2011.
- [48] Philip M. Long and Rocco A. Servedio. Random classification noise defeats all convex potential boosters. *Mach. Learn.*, 78(3):287–304, March 2010.
- [49] Daniel A. Menasce and Virgilio Almeida. *Capacity Planning for Web Services: Metrics, Models, and Methods*. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.
- [50] Daniel A. Menasce, Lawrence W. Dowdy, and Virgilio A. F. Almeida. *Performance by Design: Computer Capacity Planning By Example*. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.
- [51] T. Murata. Petri nets: Properties, analysis and applications. *Proceedings of the IEEE*, 77(4):541–580, Apr 1989.
- [52] Matthias Nicola and Matthias Jarke. Performance modeling of distributed and replicated databases. *IEEE Trans. on Knowl. and Data Eng.*, 2000.
- [53] J. R. Quinlan. Learning with continuous classes. In *Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (AI)*, pages 343–348. World Scientific, 1992.
- [54] J. R. Quinlan. Improved use of continuous attributes in c4.5. *J. Artif. Int. Res.*, 4(1):77–90, March 1996.
- [55] J. R. Quinlan. Learning decision tree classifiers. *ACM Comput. Surv.*, 28(1):71–72, March 1996.

- [56] J. Ross Quinlan. *C4.5: Programs for Machine Learning*. Morgan Kaufmann Publishers Inc., 1993.
- [57] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Leyi Wang, and George Yin. Vconf: A reinforcement learning approach to virtual machines autoconfiguration. In *Proceedings of the 6th International Conference on Autonomic Computing*, ICAC '09, pages 137–146, New York, NY, USA, 2009. ACM.
- [58] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multichain queuing networks. *J. ACM*, 27(2):313–322, April 1980.
- [59] Paolo Romano and Matteo Leonetti. Self-tuning batching in total order broadcast protocols via analytical modelling and reinforcement learning. In *International Conference on Computing, Networking and Communications.*, ICNC, 2011.
- [60] Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, and Francesco Quaglia. Machine learning-based self-adjusting concurrency in software transactional memory systems. In *Proc. of the International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems*, MASCOTS, 2012.
- [61] Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, and Francesco Quaglia. Analytical/ml mixed approach for concurrency regulation in software transactional memory. In *IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing*, CCGRID, 2014.
- [62] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Technical Report TR 166, Cambridge University Engineering Department, Cambridge, England, 1994.
- [63] Nuno Santos and André Schiper. Optimizing paxos with batching and pipelining. *Theor. Comput. Sci.*, 496:170–183, July 2013.
- [64] Pierangelo Di Sanzo, Francesco Molfese, Diego Rughetti, and Bruno Ciciani. Providing transaction class-based qos in in-memory data grids via machine learning. In *Proceedings of the 2014 IEEE 3rd Symposium on Network Cloud Computing and Applications (Ncca 2014)*, NCCA '14, pages 46–53, Washington, DC, USA, 2014. IEEE Computer Society.
- [65] Robert E. Schapire. The strength of weak learnability. *Mach. Learn.*, 5(2):197–227, July 1990.

- [66] Robert E. Schapire. A brief introduction to boosting. In *Proceedings of the 16th International Joint Conference on Artificial Intelligence Volume 2*, IJCAI'99, pages 1401–1406, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.
- [67] Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, Erich Nahum, and Adam Wierman. How to determine a good multi-programming level for external scheduling. In *Proc. of the International Conference on Data En*gineering, ICDE, 2006.
- [68] Karan Singh, Engin İpek, Sally A. McKee, Bronis R. de Supinski, Martin Schulz, and Rich Caruana. Predicting parallel application performance via machine learning approaches: Research articles. *Concurr. Comput. : Pract. Exper.*, 19(17):2219–2235, December 2007.
- [69] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. In *Advances in Neural Information Processing Systems*, pages 2951–2959, 2012.
- [70] Richard S. Sutton and Andrew G. Barto. *Introduction to Reinforcement Learning*. MIT Press, Cambridge, MA, USA, 1st edition, 1998.
- [71] Y. C. Tay. Analytical Performance Modeling for Computer Systems, Second Edition. Morgan & Claypool Publishers, 2013.
- [72] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das, and Mohamed N. Bennani. On the use of hybrid reinforcement learning for autonomic resource allocation. *Cluster Computing*, 2007.
- [73] Eno Thereska and Gregory R. Ganger. Ironmodel: Robust performance models in the wild. *SIGMETRICS Perform. Eval. Rev.*, 36, June 2008.
- [74] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: Combined selection and hyperparameter optimization of classification algorithms. In *Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '13, pages 847–855, New York, NY, USA, 2013. ACM.
- [75] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris. Automated, elastic resource provisioning for nosql clusters using tiramola. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 34–41, May 2013.

- [76] Laurens JP van der Maaten, Eric O Postma, and H Jaap van den Herik. Dimensionality reduction: A comparative review. Technical Report TiCC-TR 2009-005, Tilburg University, 2009.
- [77] Christopher John Cornish Hellaby Watkins. *Learning from delayed rewards*. PhD thesis, University of Cambridge, 1989.
- [78] Pawel T. Wojciechowski, Tadeusz Kobus, and Maciej Kokocinski. Model-driven comparison of state-machine-based and deferred-update replication schemes. In *Proceedings of the 2012 IEEE 31st Symposium on Reliable Distributed Systems*, SRDS '12, pages 101–110, Washington, DC, USA, 2012. IEEE Computer Society.
- [79] David H. Wolpert. Original contribution: Stacked generalization. *Neural Netw.*, 5(2):241–259, February 1992.
- [80] David H. Wolpert. The lack of a priori distinctions between learning algorithms. *Neural Comput.*, 8(7):1341–1390, October 1996.
- [81] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, Calton Pu, and Hakan Hacigumus. Intelligent management of virtualized resources for database systems in cloud environment. In *Proceedings of the 2011 IEEE 27th International Conference on Data Engineering*, ICDE '11, pages 87–98, Washington, DC, USA, 2011. IEEE Computer Society.
- [82] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Calton Pu, and Hakan HacigümüŞ. Activesla: A profit-oriented admission control framework for database-as-a-service providers. In *Proceedings of the 2Nd ACM Symposium on Cloud Computing*, SOCC '11, pages 15:1–15:14, New York, NY, USA, 2011. ACM.
- [83] Steve Zhang, Ira Cohen, Julie Symons, and Armando Fox. Ensembles of models for automated diagnosis of system performance problems. In *Pro*ceedings of the 2005 International Conference on Dependable Systems and Networks, DSN '05, pages 644–653, Washington, DC, USA, 2005. IEEE Computer Society.
- [84] Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and Evgenia Smirni. Automated anomaly detection and performance modeling of enterprise applications. *ACM Trans. Comput. Syst.*, 27(3):6:1–6:32, November 2009.

- [85] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani, and Deepak Rajan. Prepare: Predictive performance anomaly prevention for virtualized cloud systems. In *Proceedings of the 2012 IEEE 32Nd International Conference on Distributed Computing Systems*, ICDCS '12, pages 285–294, Washington, DC, USA, 2012. IEEE Computer Society.
- [86] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. *ACM Computing Surveys (CSUR)*, 41(3):15, 2009.
- [87] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeffrey S. Chase. Correlating instrumentation data to system states: A building block for automated diagnosis and control. In *Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation Volume 6*, OSDI'04, pages 16–16, Berkeley, CA, USA, 2004. USENIX Association.