
OSARE: Opportunistic Speculation in
Actively REplicated Transactional Systems

Roberto Palmieri and Francesco Quaglia
DIS, Sapienza University, Rome, Italy

Paolo Romano
INESC-ID, Lisbon, Portugal

Abstract—In this work we present OSARE, an active replica-
tion protocol for transactional systems that combines the usage
of Optimistic Atomic Broadcast with a speculative concurrency
control mechanism in order to overlap transaction processing and
replica synchronization. OSARE biases the speculative serializa-
tion of transactions towards an order aligned with the optimistic
message delivery order. However, due to the lock-free nature of
its concurrency control algorithm, at high concurrency levels,
namely when the probability of mismatches between optimistic
and final deliveries is higher, the chances of exploring alternative
transaction serialization orders increase correspondingly. This
is achieved by OSARE in an opportunistic and lightweight
fashion. A simulation study we carried out in the context of
Software Transactional Memory systems shows that OSARE
achieves robust performance also in scenarios characterized by
non-minimal likelihood of reorder between optimistic and final
deliveries, providing remarkable speed-up with respect to state
of the art speculative replication protocols.

I. INTRODUCTION

Active replication [24] is a classical means for providing
fault-tolerance and high availability. It relies on consensus
among the replicas on a common total order for the processing
of incoming requests. The non-blocking establishment of the
agreed upon total order is typically encapsulated by a so called
Atomic Broadcast (AB) group communication primitive [6].

In this article our focus is on active replication in the context
of transaction processing systems, for which a key optimiza-
tion technique has been presented in [13]. According to this
technique, the spontaneous network delivery order is used as
an early, although possibly erroneous guess of the total deliv-
ery order of messages eventually defined via AB. This idea
is encapsulated by the Optimistic Atomic Broadcast (OAB)
primitive [13], representing a variant of AB in which the
notification of the final message delivery order is preceded by
an optimistic message delivery indication, typically available
after a single communication step. By activating transactions’
processing upon their optimistic delivery, rather than waiting
for the final order to be established, OAB-based replication
techniques overlap the (otherwise sequential) replica synchro-
nization and local computation phases. However, serializing
transactions according to the optimistic delivery order does
not pay-off in case of non-minimal likelihood of mismatch
between optimistic and final message ordering. In such a case,
optimistically processed transactions may have to be aborted
and restarted right after OAB completion, thus nullifying any
performance gain associated with their early activation.

In order to cope with the above issue, we present a novel
active replication protocol for transactional systems based on

an opportunistic paradigm, which we name OSARE - Oppor-
tunistic Speculation in Active REplication. OSARE maximizes
the overlap between replica coordination and transaction ex-
ecution phases by propagating, in a speculative fashion, the
(uncommitted) post-images of completely processed, but not
yet finally delivered, transactions along chains of conflicting
transactions. Also, speculation attempts to serialize any trans-
action after those that have preceded it within the optimistic
delivery order. In case the miss of some write is experienced
along the execution path, which we refer to as a snapshot-miss,
the materialized serialization order is opportunistically kept
alive, with the aim of increasing the likelihood of matching
the final order established by the OAB service in case it reveals
not aligned with the optimistic delivery sequence. Further,
if a transaction T experiences a snapshot miss, OSARE re-
activates a new instance of T (and, recursively, of the trans-
actions having developed a read-from dependency from T ),
thus biasing the speculative exploration towards a serialization
order compliant with the optimistic message delivery order.

Interestingly, the likelihood of snapshot-miss events is
higher in high concurrency scenarios, namely when the inter-
arrival time of optimistic deliveries is relatively short com-
pared to transaction processing latency. These scenarios are
precisely those in which the probability of mismatches be-
tween the optimistic and final message delivery orders, and
consequently the added value of exploring additional specula-
tive serialization orders, are higher. The ability of OSARE to
adjust adaptively its degree of speculation on the basis of the
current level of concurrency represents a unique, innovative
feature, which, to the best of our knowledge, does not appear
in any literature result in the field of actively replicated
transactional systems.

We assess the performance of OSARE via a trace driven
simulation study in the context of Software Transactional
Memory (STM) systems, showing that response-time speedup
of 160% can be achieved compared to recent proposals,
such as [16], that systematically entail speculative transaction
processing (even along chains of conflicting transactions), but
that materialize speculation exclusively along the optimistic
delivery sequence.

II. RELATED WORK

Literature proposals targeting transactional systems’ repli-
cation entail protocol specification (see, e.g., [7], [12], [20]) as
well as replication architectures that have been based on mid-
dleware level approaches (see, e.g., [14], [18], [19]) and/or on



extensions of the inner logic of transactional systems (see, e.g.,
[12], [26]). As shown in [25], the most promising techniques
are those based on total order broadcast primitives, which
include active replication schemes like the one we present
in this paper. In active replication, (O)AB primitives are
exploited to coordinate processing activities by determining,
in a non-blocking fashion, a global transaction serialization
order, thus circumventing scalability problems that are known
to affect classical eager replication mechanisms based on
distributed locking and atomic commit protocols [7]. Relevant
proposals along this direction can be found in, e.g., [1], [13].
Differently from OSARE, some of these proposals do not
speculate along chains of conflicting transactions. In particular,
they either execute transactions in a non-speculative fashion
after the AB service is already finalized (see [1], [11]), or
execute at most a single optimistically delivered transaction
along the conflicting transactions chain, before the OAB gets
completed (see [13]). Also, the latter protocols require a-
priori knowledge of transactions’ data accesses since each
speculatively executed transaction needs to pre-acquire locks
on its whole data-set. Conversely OSARE adopts an optimistic
transaction scheduling approach that does not require a-priori
knowledge of data access patterns.

Like OSARE, our recent works in [16] and [22] both make
use of speculation along chains of conflicting transactions.
The work in [16] uses a lock-based concurrency control
mechanism that throttles speculation to bias it towards a
serialization order corresponding to the optimistic delivery
order. Instead, OSARE exploits a fully optimistic transaction
scheduling mechanism with no locks, that allows opportunistic
exploration of alternative serialization orders, thus better fitting
scenarios of mismatch between optimistic and final ordering
by the OAB service. The proposal in [22] is based on the
complete speculative exploration of all the plausible serializa-
tion orders of optimistically delivered transactions (depending
on actual transaction conflicts), which allows sheltering from
any mismatch between the optimistic and final delivery order.
Hence, differently from OSARE, there is no set of “preferen-
tial” serialization orders to be opportunistically processed in a
speculative fashion.

OSARE also exhibits relations with replication approaches
for main memory database systems (see, e.g., [3], [23]).
These proposals differ from OSARE since they either target
primary-backup replication schemes [3] or data-partitioned
cluster-based systems [23], while our targets are actively, fully
replicated systems.

III. SYSTEM MODEL

We consider a classical distributed system model [9] consist-
ing of a set of transactional processes Π = {p1, . . . , pn} that
communicate via message passing and adhere to the fail-stop
(crash) model. If a process does not fail we say it is correct.
We assume the availability of an OAB service exposing the
following API: TO-broadcast(m), which allows broadcasting
message m to all the processes in Π; Opt-deliver(m), which
delivers message m to a process in Π in a tentative, also called
optimistic, order; TO-deliver(m), which delivers message m

to a process in Π in a so called final order that is the same for
all the processes in Π. A formal specification of the properties
ensured by the OAB service can be found in [21].

Applications submit transactional requests to their local
Transaction Manager (XM), specifying the business logic to be
executed and the corresponding input parameters (if any). XM
is responsible of (i) propagating (through the OAB service) the
transactional request across the set of replicated processes,
(ii) executing the transactional logic, and (iii) returning the
corresponding result to the user-level application. With no
loss of generality, we assume the existence of a function
Complete, used to explicitly notify XM about the completion
of the business logic associated with a transaction.

We assume that each data item X is associated with a set
of versions {X1, . . . , Xn}, and that, at any time, there exists
exactly one committed version of a data item X . On the other
hand, other versions can be in the complete state, which means
that the creating transactions have reached the complete stage,
but their outcome (commit/abort) has not been finalized yet.

We assume that the data items accessed by transactions are
not a-priori known, and that data access patterns can vary
depending on the observed state. More precisely, we assume
that the business logic is snapshot deterministic [22] in the
sense that the sequence of read/write operations it executes
is deterministic once fixed the return value of any of its read
operations. In other words, whenever an instance of transaction
T is re-executed and observes a same snapshot S, defined as
the set of values returned by all its read operations, it behaves
deterministically.

The manipulation of the data items occurs via the prim-
itives setComplete(XT,T), which marks a data item
version XT written by transaction T as complete, and
unsetComplete(XT,T), which removes a complete data
item version XT exposed by transaction T .

IV. THE OSARE PROTOCOL

A. Protocol Notations and Data Structures

The OAB service delivers transactions, each of which is
denoted as Ti. The delivered transactions are however never
directly executed by XM, which only executes speculative
transaction instances, denoted using the notation T ji .

Each speculative transaction T ji keeps track of its own
serialization view, defined as the totally ordered sequence of
transactions that are expected to be serialized before T ji . The
construction of the per-transaction view of the serialization
order relies on two main data structures: a global list of
speculative transaction identifiers, called OptDelivered, ac-
cessible by all the transactional threads, which maintains the
identifiers of the transactions whose speculative serialization
view is aligned with the order of optimistic deliveries; a
local list of speculative transaction identifiers, referred to as
T ji .SpeculativeOrder, which is associated with the transac-
tional thread handling transaction T ji . The sequence of spec-
ulative transactions recorded within T ji .SpeculativeOrder
expresses, on the basis of the view by T ji , the order according
to which speculative transactions preceding T ji should be



serialized. This determines a history of speculative transactions
whose snapshots may be visible by T ji ’s read operations.

We use the notation Thk
T ji→ T ts to indicate that Thk pre-

cedes T ts within the ordered list T ji .SpeculativeOrder. This
expresses that, according to the view of T ji : i) Thk and T ts
belong to the same speculative history of transactions; ii) Thk
and T ts are both expected to be serialized before T ji ; iii) Thk is
expected to be serialized before T ts . By convention, the special
transaction identifier Tωα represents the minimum element of

the
T ji→ relation for whichever transaction T ji . This notation is

used to encapsulate the history of already committed transac-
tions that, according to T ji ’s view of speculative serialization

expressed via the relation
T ji→, must be serialized before T ji and

before any transaction belonging to T ji .SpeculativeOrder.
Always by convention, T ji represents the maximum element

of the
T ji→ relation. Overall, denoting with (Th1

k1
, . . . , Thnkn ) the

sequence of transactions belonging to T ji .SpeculativeOrder,

we have: Tωα
T ji→ Th1

k1

T ji→ . . .
T ji→ Thnkn

T ji→ T ji .

B. Protocol Logic

The protocol pseudo-code is shown in Figures 1 and 2, and
is discussed in the following.
Optimistic delivery of transactions. Upon the Opt-deliver
event of a transaction Ti, XM instantiates a specula-
tive transaction T 0

i , and then sets up its serialization or-
der by copying the current content of OptDelivered into
T 0
i .SpeculativeOrder. Next, XM appends T 0

i ’s identifier
within the global list OptDelivered to reflect that at least one
instance of speculative transaction associated with Ti exists,
and that it should be serialized at the tail of the sequence of
speculative transactions currently recorded within the OptDe-
livered list. Finally, XM activates the processing activities for
T 0
i by invoking ActivateSpeculativeTransaction (which also

adds T 0
i to the set of active transactions ActiveXacts).

Handling of read and write operations. When a transaction
T si issues a read operation on a data item X , XM verifies
whether a version of X belongs to the write set of the reading
transaction. In the positive case, the written value is simply
returned. Instead, if T si has not previously issued a write on X ,

the precedence relation
T si→ is used to determine which version

of X should be seen by T si . To this end, the most recent
version exposed by a completed or committed transaction,
according to the serialization view of T si , is identified. This
is done by determining the maximum speculative transaction

T tj preceding T si according to the
T si→ relation, which has i)

written X and ii) already completed its execution.
As for the write operation of a transaction T si on a data

item X , XM simply stores the updated value of X into the
write-set of the writing transaction. As we will see, the data
item versions generated by a transaction T si are in fact made
all atomically visible only once that T si reaches completion.
Completion of speculative transactions. When the Com-
plete method is executed by XM for transaction T si , each data
item version created (i.e. written) by T si is made speculatively

OrderedList<Transaction> TODelivered, OptDelivered;
Set<Transaction> ActiveXacts;

upon Opt-deliver(Transaction Ti) do
T 0
i =Ti.createNewSpecXact();
T 0
i .SpeculativeOrder = copy(OptDelivered);

OptDelivered.enqueue(T 0
i );

ActivateSpeculativeTransaction(T 0
i );

void ActivateSpeculativeTransaction(Transaction T si )
ActiveXacts.add(T si );
start processing thread;

DataItemValue Read(Transaction T si , DataItem X)
if (X ∈ T si .WriteSet) return T si .WriteSet.get(X).value;

select version of X completed or committed by T tj = max{T fj
Tsi→ T si };

// the committed version is written by Tωα by definition
T si .ReadSet.add(X);
T si .ReadFrom.add(T tj );
return T si .ReadSet.get(X).value

void Write(Transaction T si , DataItem X , Value v)
if (X ∈ T si .WriteSet) T si .WriteSet.update(X, v) ;
else T si .WriteSet.add(X, v);

void Complete(Transaction T si )
atomically do
T si .isCompleted = TRUE
∀X ∈ T si .WriteSet do setComplete(X,T si );
∀ T tj s.t. (∃X ∈ T tj .ReadSet: (X ∈ T si .WriteSet and

T si = max{T fl : T fl

Ttj→ T tj exposing a complete version of X}) do
TxIdj =Tj .createNewSpecXact();
TxIdj .SpeculativeOrder = copy(T tj .SpeculativeOrder);
T tj .SpeculativeOrder.remove(T si ); / reflects the snapshot-miss of T tj
if (T tj ∈ OptDelivered) OptDelivered.replace(T tj , T

xId
j );

wave(T tj ,TxIdj ,T si );
wait until TODelivered.topStanding == Ti;
if (∀X ∈ T si .ReadSet: X.version == LatestCommitted) T si .RaiseEvent(Commit);
else T si .RaiseEvent(Abort);

void wave(Transaction T tj , Transaction TxIdj , Transaction T si )
∀T fl s.t. T tj ∈ T

f
l .ReadFrom do

TxId
′

l =Tl.createNewSpecXact();
TxId

′
l .SpeculativeOrder = copy(T fl .SpeculativeOrder);
TxId

′
l .SpeculativeOrder.replace(T tj ,TxIdj );
T fl .SpeculativeOrder.remove(T si );
if (T fl ∈ OptDelivered) OptDelivered.replace(T fl , T

xId′
l );

wave(T fl ,TxId
′

l ,T si )
∀T gl s.t. (T tj ∈ T

g
l .SpeculativeOrder and T tj /∈ T

g
l .ReadFrom) do

T gl .SpeculativeOrder.replace(T tj ,TxIdj );
ActivateSpeculativeTransaction(TxIdj );

Fig. 1. Behavior of XM (Part A).

visible by setting its state to the complete value. Before
making the snapshot produced by T si visible, however, it is
first checked whether every transaction T tj that, according to
its serialization view, is serialized after T si , is still correctly
executing along that order, or it missed the snapshot generated
by the execution of T si . More in detail, a snapshot-miss event
is detected in case: i) T si wrote some data item X for which
T tj has already issued a read operation, and, ii) T si is the
last speculative transaction to have written X among those
in T tj ’s speculative view. In this case, in fact, T tj has observed
a different version of X , despite, according to its serialization
view, it should have observed the version of X generated by
T si . The following three actions are taken to handle a snapshot-
miss event:



upon TO-Deliver(Transaction Ti) do
TODelivered.enqueue(Ti);

upon Abort(Transaction T si ) do atomically
∀X ∈ T si .WriteSet do unsetComplete(X,T si );
∀Thj ∈ActiveXacts s.t. j 6= i and T si ∈ T

h
j .SpeculativeOrder do

Thj .SpeculativeOrder.remove(T si );
∀Thj s.t. T si ∈ T

h
j .ReadFrom do Thj .RaiseEvent(Abort);

ActiveXacts.remove(T si );

upon Commit(Transaction Tki ) do atomically
ActiveXacts.Remove(Tki );
∀X ∈ Tki .WriteSet do Tki .WriteSet.Commit(X);
TODelivered.Dequeue(Ti);
OptDelivered.Remove(T∗i );
∀Thi ∈ActiveXacts s.t. h 6= k do Thi .RaiseEvent(Abort);
∀Thj ∈ActiveXacts s.t. j 6= i and Tki ∈ T

h
j .SpeculativeOrder do

Thj .SpeculativeOrder.remove(Tki );
∀Thj ∈ActiveXacts s.t. Tki ∈ T

h
j .ReadFrom do Thj .RaiseEvent(Validate);

upon Validate(Transaction Tki ) do
∀X ∈ Tki .ReadSet do

compute Thj = max{T fl : T fl
Tki→ Tki and X ∈ T fl .WriteSet};

if (Tki .ReadSet.get(X).Creator 6= Thj )
Tki .RaiseEvent(AbortRetry);
break;

upon AbortRetry(Transaction T si ) do atomically
∀X ∈ T si .WriteSet do unsetComplete(X,T si );
∀Thj s.t. T si ∈ T

h
j .ReadFrom do Thj .RaiseEvent(AbortRetry);

restart transaction T si ;

Fig. 2. Behavior of XM (Part B).

1. A new speculative instance T xIdj is activated, setting its
serialization view to the one currently associated with T tj .
Given that T si has now reached completion, the new instance
T xIdj is guaranteed not to miss the snapshot produced by T si .
2. The serialization order of T tj is then updated by removing
T si (namely the transaction whose write operation has been
missed by T tj ) from T tj .SpeculativeOrder. Next, if T tj was
originally recorded within OptDelivered, it is replaced by
T xIdj within this list. This reflects the fact that T tj is known
not to be any longer in a serialization order compliant with
that of the optimistic message delivery, and that there is now
a new incarnation of Tj , namely T xIdj , aligned to that order.
3. The snapshot-miss event is recursively propagated via the
wave method (described shortly afterwards) across chains of
transactions that were transitively serialized (according to their
own serialization view) after the transaction T tj involved in the
snapshot-miss event.

After having handled all the snapshot-miss events detected
upon its completion, T si simply remains waiting for the cor-
responding transaction Ti to be TO-delivered, and to become
the top standing element within the TODelivered queue. As
it will be clearer in the following, this means that for any
transaction Tj , which was TO-delivered before Ti, there exists
a corresponding speculatively executed transaction T ∗j that has
been already committed. Hence T si can now be safely validated
(by verifying whether it has read data items belonging to the
latest committed snapshot) and, depending on the validation’s
outcome, a commit, or an abort, event is raised to finalize this
speculative transaction.

Recursive propagation of snapshot-miss events. As we have
just explained, the completion of a transaction T si can trigger
a series of snapshot-miss events involving transactions T tj , for
which a new speculative instance of transaction Tj , namely
T xIdj is activated, which will be guaranteed not to miss the
snapshot created by T si . In order to pursue, on one hand,
the opportunistic exploration of additional serialization orders,
and, on the other hand, the completion of a sequence of trans-
actions serialized in an order compliant with the optimistic
message delivery order, OSARE transitively propagates the
handling of the snapshot-miss event via the wave method.

The transaction T tj , in fact, may have already completed its
execution and exposed its snapshot to a different speculative
transaction, say T fl . In this case, even if T fl did not miss
the snapshot generated by T si , it is still transitively involved
by the snapshot-miss event affecting T tj . Analogously to
T tj , therefore, T si needs to be removed by the speculative
view of T fl . Further, in order to pursue the exploration of
a serialization order compliant with the optimistic message
delivery order, a new speculative instance of Tl, namely T xId

′

l ,
needs to be activated, which should now include T xIdj in its
serialization view. Finally, just like in the Complete method,
it is verified if T fl was considered to be serialized in an order
compliant with the optimistic delivery order (by checking
whether it is included in OptDelivered). In the positive case,
the OptDelivered sequence needs to be updated, replacing
T fl with T xId

′

l , so to reflect the fact that the latter one is
now expected to be serialized according to the optimistic
delivery order. Note that the wave method relies on an elegant
recursion technique to ensure the complete propagation of the
snapshot-miss across the whole set of transactions that have
established a transitive read-from relation from T tj .

Upon returning from the recursive call, XM substitutes
T tj with T xIdj in the speculative view of every transaction
T gl that i) contained T tj in its speculative view, and that ii)
did not develop a read-from dependency from T tj . This is
necessary in case T gl is still active, in order to ensure that
during its subsequent reads, it will be able to observe the
snapshot generated by T xIdj , thus correctly realigning T gl ’s
speculative view towards the serialization order compliant with
the optimistic message delivery order. Finally, activation of
processing activities for the spawned transaction T xIdj takes
place right before returning from wave.
Final delivery of transactions. The logic for handling final
delivery events only entails the enqueuing of the delivered
transaction within TODelivered. This ensures that the cor-
responding placeholder is sequentialized after all the already
TO-delivered ones, which allows all the replicas to validate
(and ultimately commit) transactions in the same total order.
Abort and commit events. The handling of the abort event
simply removes the aborting transaction from the set ActiveX-
acts and from any speculative order currently recording the
transaction identifier. It also propagates the abort event towards
all the transactions having read-from dependency from the
currently aborting transaction.

Slightly more sophisticated is the handling of the commit
event. In this case, the committing transaction identifier T ki



is removed from ActiveXacts, and every data item it wrote
is marked as committed. Then, the corresponding transaction
Ti is dequeued from the TODelivered list. This can cause
another TO-delivered transaction to become the top standing
transaction of this list, eventually enabling the commit of one
of its corresponding speculative instances. Next, whichever
transaction instance T ∗i currently present within OptDelivered
is removed from this list, in order to ensure that instances
of Ti are no longer to be considered as belonging to the
speculative portion of the serialization order associated with
the sequence of optimistically delivered transactions. Further,
the abort event is raised for all the transactions different from
T ki that are instances of Ti. This leads to the abort of all the
speculative transactions that had developed a, possibly transi-
tive, read-from dependency from an instance of Ti different
from T ki . T ki is then removed from any serialization view that
is currently recording it (again because it is logically passed to
the committed transaction history). Finally, it is necessary to
verify whether transactions having (direct or transitive) read-
from dependencies from the committing transaction are still
valid. This is required since, as hinted, T ki is moved to the
committed history. Therefore we need to verify whether the
transactions exhibiting dependencies on the snapshot produced
by T ki are still executing along a consistent speculative se-
rialization path. This check is performed via the Validate
function, which simply verifies whether the items read by those
transactions still correspond to those produced by the trans-
actions representing the maximum elements exposing these
items as complete along the corresponding serialization orders.
In the negative case it means that the transaction (directly
or transitively) reading from the committing transaction T ki
needs to be restarted by speculating along the modified path
where T ki has been moved to the committed history (see the
AbortRetry module).

C. Considerations
For space constraints we cannot provide details on the cor-

rectness of our protocol, which can be found in [17]. Anyway,
OSARE guarantees opacity [8], 1-copy serializability and lock
freedom. It also ensures non-redundant speculation [22], with
the meaning that no two different speculative instances of a
same transaction observe the same snapshot.

As for resource demand, we note that the protocol could
be complemented by an admission control scheme aimed at
bounding the number of speculatively executed transactions
such in a way to prevent system saturation. This would lead
to tradeoffs between the actual degree of speculation and the
final delivered performance.

V. SIMULATION STUDY

In order to assess the performance of OSARE we devel-
oped detailed simulation models for the following protocols:
OSARE, AGGRO [16] and Opt [13], all relying on OAB,
and traditional State Machine (SM), relying on AB. AGGRO
and Opt are baseline protocols for the evaluation of OSARE
since they entail some form of speculation, either limited
to conflicting transaction chains of length one, or entailing
multiple conflicting transactions along the chain. SM acts as

a reference for assessing the performance of speculative vs
non-speculative protocols.

In order to accurately model transactional execution dy-
namics we collected traces using a number of heterogenous
STM benchmarks, namely: i) three microbenchmarks, Red
Black Tree, List and SkipList, that have been adopted in a
number of performance evaluation studies of STM systems
[2], [5], [10]; and ii) two benchmarks of the STAMP suite
[4], namely Yada and Labyrinth++. The above benchmarks
were configured not to generate any read-only transaction. This
choice depends on the fact that, in all the protocols considered
in this study, read-only transactions can be executed locally,
without the need for distributed coordination. By only consid-
ering update transactions, we can therefore precisely assess the
impact of distributed coordination on the performance of the
replicated system, as well as the performance gains achievable
by OSARE. The machine used for the tracing process is
equipped with an Intel Core 2 Duo 2.53 GHz processor and
4GB of RAM, running Mac OS X 10.6.2 and JVSTM [2]. The
simulation model of the replicated system comprises a set of 4
replicated STM processes, each hosted by a machine equipped
with 32-cores processing transactions at the same speed as in
the above architecture.

The transactions’ arrival process via optimistic and final
message deliveries is also trace-driven. Specifically we use
traces generated by running a sequencer based (O)AB imple-
mentation available in the Appia GCS Toolkit [15] on a cluster
of 4 quad-core machines (2.40GHz - 8GB RAM) connected
via a Gigabit Ethernet and using TCP at the transport layer. We
injected in the system messages of 512 bytes (largely sufficient
to encode the parameters of the transactional methods exposed
by the considered STM benchmarks) with an exponentially
distributed arrival rate having mean λ. We treat λ as the
independent parameter of our study, letting it vary in the
range [1000,4000] messages per second, thus expressing from
low/moderate up to high load to be sustained by the GCS. As
expected, the mismatch between optimistic and final delivery
orders (or message reordering for the sake of brevity) increases
along with the message arrival rate, ranging from 16%, at 1000
msgs/sec, up to 48%, at 4000 msgs/sec.

The plots in Figure 3 report the speed-up achieved by
OSARE vs the other protocols, evaluated as the percentage
of additional latency for executing a transaction (being the
latency the average time since the TO-broadcast of a trans-
action till its commitment) in any of these protocols with
respect to OSARE. The data highlight striking performance
gains by OSARE compared to AGGRO, which increase (up
to around 160%) as the load and the message reordering grow.
This is due to the fact that, by opportunistically processing a
transaction in multiple serialization orders, OSARE overlaps
more effectively processing and communication. On the other
hand, the gains over Opt (which unlike OSARE and AGGRO
does not speculate along chains of conflicting transactions) and
SM are even larger, being on the order of up to 350/360%.

Comparing more closely OSARE and AGGRO, which both
speculate along chains of conflicting transactions, the number
of transactions that have already started (or completed) along



0 %

50 %

100 %

150 %

200 %

250 %

300 %

350 %

1000/16% 2000/26% 3000/34% 4000/48%

Sp
ee

d-
up

 (%
)

Transactions per second / % Msg Reordering

SkipList Osare/SM
SkipList Osare/Opt

SkipList Osare/Aggro
List Osare/SM
List Osare/Opt

List Osare/Aggro
RBTree Osare/SM
RBTree Osare/Opt

RBTree Osare/Aggro

0 %

50 %

100 %

150 %

200 %

1000/16% 2000/26% 3000/34% 4000/48%

Sp
ee

d-
up

 (%
)

Transactions per second / % Msg Reordering

Labyrinth++ Osare/SM
Labyrinth++ Osare/Opt

Labyrinth++ Osare/Aggro
Yada++ Osare/SM
Yada++ Osare/Opt

Yada++ Osare/Aggro

Fig. 3. Speed-up by OSARE.

a serialization order compliant with the OAB final delivery
sequence is up to 50% higher in OSARE than in AGGRO.
Also, at high load, the number of transactions aborted in
AGGRO is around 4x larger than in OSARE. This depends
on that AGGRO uses an aggressive rollback-retry mechanism
which re-activate transactions as soon as they are detected not
to be serialized according to the optimistic delivery order. This
policy pays off at negligible levels of message reordering. On
the other hand, as soon the probability of message reordering
becomes non-minimal, AGGRO incurs in a significant waste
of computation, which is conversely fruitfully exploitable by
OSARE thanks to its opportunistic speculative approach.

Finally, interesting conclusions can be drawn by analyzing
the statistics on the average and maximum number of specu-
lative transactions generated in OSARE. At 4000 transactions
per second (exhibiting about 48% of message reordering), the
average number of speculative instances activated by OSARE
for a given transaction (across all the evaluated benchmarks) is
2.7. In other words, beyond the serialization order associated
with the final delivery order, only 1.7 additional serialization
orders are explored for each transaction. Also, our experi-
mental data show that, on average, the corresponding CPU
utilization is less than 8% with OSARE on the simulated hard-
ware architecture. Overall, we can deduce that the speculative
approach provided by OSARE is perfectly sustainable by off-
the-shelf multi-core and many-core architectures, at least when
considering scenarios resembling the simulated settings.

REFERENCES

[1] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Exploiting atomic
broadcast in replicated databases (extended abstract). In Euro-Par, pages
496–503, 1997. Springer-Verlag.

[2] J. Cachopo and A. Rito-Silva. Versioned boxes as the basis for memory
transactions. Sci. Comput. Program., 63(2):172–185, 2006.

[3] L. J. Camargos, F. Pedone, and R. Schmidt. A primary-backup protocol
for in-memory database replication. In NCA, pages 204–211, 2006.

[4] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC, pages
35–46, 2008.

[5] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM:
Dependable Distributed Software Transactional Memory. In PRDC,
pages 307–313, 2009. IEEE Computer Society.

[6] X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–
421, 2004.

[7] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication
and a solution. In SIGMOD, pages 173–182, 1996. ACM.

[8] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In PPOPP, pages 175-184, 2008. ACM.

[9] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed
Programming. Springer, 2006.

[10] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for im-
plementing software transactional memory. SIGPLAN Not., 41(10):253–
262, 2006.

[11] R. Jiménez-Peris, M. Patiño-Martı́nez, and S. Arévalo. Deterministic
scheduling for transactional multithreaded replicas. In SRDS, pages 164–
173, 2000. IEEE Computer Society.

[12] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a
new way to implement database replication. In VLDB, pages 134–143,
2000. Morgan Kaufmann.

[13] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann. Using
optimistic atomic broadcast in transaction processing systems. IEEE
Trans. Knowl. Data Eng., 15(4):1018–1032, 2003.

[14] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris. Middle-
ware based data replication providing snapshot isolation. In SIGMOD,
pages 419–430, 2005.

[15] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel
supporting multiple coordinated channels. In ICDCS, pages 707–710,
2001. IEEE Computer Society.

[16] R. Palmieri, F. Quaglia, and P. Romano. AGGRO: Boosting stm
replication via aggressively optimistic transaction processing. In NCA,
pages 20–27, 2010. IEEE Computer Society.

[17] R. Palmieri, F. Quaglia, and P. Romano. OSARE: Opportunistic specu-
lation in actively replicated transactional systems. Technical Report 2,
INESC-ID, January 2011.

[18] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso.
Middle-r: Consistent database replication at the middleware level. ACM
Trans. Comput. Syst., 23(4):375–423, 2005.

[19] F. Pedone and S. Frølund. Pronto: High availability for standard off-
the-shelf databases. J. Parallel Distrib. Comput., 68(2):150–164, 2008.

[20] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine
approach. Distributed and Parallel Databases, 14(1):71–98, 2003.

[21] F. Pedone and A. Schiper. Optimistic atomic broadcast: a pragmatic
viewpoint. Theor. Comput. Sci., 291(1):79–101, 2003.

[22] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, and L. Rodrigues. An
optimal speculative transactional replication protocol. In ISPA, pages
449–457, 2010. IEEE Computer Society.

[23] R. Schmidt and F. Pedone. Consistent main-memory database federa-
tions under deferred disk writes. In SRDS, pages 85–94, 2005. IEEE
Computer Society.

[24] F. B. Schneider. Replication management using the state-machine
approach. ACM Press/Addison-Wesley Publishing Co., 1993.

[25] M. Wiesmann and A. Schiper. Comparison of database replication
techniques based on total order broadcast. IEEE Trans. Knowl. Data
Eng., 17(4):551–566, 2005.

[26] S. Wu and B. Kemme. Postgres-r(si): Combining replica control with
concurrency control based on snapshot isolation. In ICDE, pages 422–
433, 2005. IEEE Computer Society.


