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ABSTRACT

Many adaptive systems react to variations in their environment
by changing their configuration. Often, they make the adaptation
decisions based on some knowledge about how the reconfigura-
tion actions impact the key performance indicators. However, the
outcome of these actions is typically affected by uncertainty. Adap-
tation actions have non-deterministic impacts, potentially leading
to multiple outcomes. When this uncertainty is not captured ex-
plicitly in the models that guide adaptation, decisions may turn out
ineffective or even harmful to the system. Also critical is that these
models are interpretable by the human operators that are account-
able for the system. However, accurate impact models for actions
that gave non-deterministic outcomes are very difficult to obtain
and existing techniques that support the automatic generation of
these models, mainly based on machine learning, are limited in the
way they learn non-determinism.

In this paper, we propose a method to learn human-readable
models that capture non-deterministic impacts explicitly. Addition-
ally, we discuss how to exploit expert’s knowledge to bootstrap the
adaptation process as well as how to use the learned impacts to
revise models defined offline. We motivate our work on the adap-
tation of applications in the cloud, typically affected by hardware
heterogeneity and resource contention. To validate our approach
we use a prototype based on the RUBiS auction application.
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1 INTRODUCTION

Software systems are expected to operate in dynamic environments.
As a consequence, systems must accommodate different operational
conditions and change their configurations as their contexts change.
Since manual operation is complex and expensive, some level of
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automation is desired. Autonomic computing [15, 18] proposes to do
so via an external controller that automates the operational loop,
divided into four processes— monitoring, analysis, planning, and
execution— that make use of the available knowledge about the
system; a model known as MAPE-K. Systems capable of enabling
such mechanisms are known as self-adaptive.

To achieve effective self-adaptation, many systems make deci-
sions based on some knowledge about how adaptation actions may
impact their key performance indicators. However, it is in general
not possible to know all variables that may affect the outcome of
adaptation actions and also impractical to include all known vari-
ables in the adaptation models. Hence, action impacts are naturally
affected by uncertainty. For instance, abstracting from the vari-
ables that affect whether the activation of a server succeeds or fails,
potentially leads to two different outcomes for such adaptation
action. While this uncertainty can be difficult to define, its effects
can hinder the adaptation capabilities of the system. The adaptation
process may turn out ineffective (e.g., leading to sub-optimal states
that do not meet the system’s goals) or altogether harmful (e.g., by
inducing the violation of the system constraints).

Also important in the adaptation process is the ability to have
human operators in-the-loop [4]. Human experts have potentially
a better understanding on the system’s behavior and its environ-
ment and, therefore, they can help validate the knowledge used to
make decisions as well as the policies that derive from them. On
top of that, key decisions that potentially compromise critical qual-
ities such as availability, may require an expert’s approval before
execution, for accountability matters.

Models that are used to drive adaptation should: (1) capture non-
determinism explicitly so as to be considered in decision-making
and (2) be expressed in a human-readable form. Unfortunately,
previous techniques that support the automatic generation of in-
terpretable impact models do not deal with non-determinism. On
the one hand, there are manually produced models that are expres-
sive and flexible enough to account for non-determinism. However,
models written by humans are typically incomplete and often in-
accurate. These models are also hard to maintain as the system
evolves (they change with software updates or changes in the un-
derlying infrastructure). On the other hand, there are ML-based
techniques that can create knowledge in a fully automated manner
(provided a large training set of data) and maintain the derived
models as the system evolves and new conditions arise; yet, they
do not capture non-determinism explicitly.

In this paper, we use machine learning techniques to derive
human-readable adaptation models that capture non-deterministic
impacts explicitly.We leverage on languages that capture adaptation
strategieswith probabilistic impact models [3, 5].We contribute with
a method to Learn Adaptation Models Under Non-determinism
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(Lamun), based on the use of the K-plane algorithm [1] to extract
piece-wise linear functions from data collected while the system
is running. Additionally, we propose to use expert-defined models
to accelerate the (online) learning process, as well as to use the
learned functions to revise and refine the original models.

We motivate our work on the adaptation of web applications
in public cloud environments. Cloud computing is known to be
affected by performance variability due to: (1) hardware hetero-
geneity [21], i.e. a virtual instance’s performance depends on the
hardware features of the machine where it is deployed, and (2)
resource contention [8], i.e. a virtual instance’s performance is af-
fected by co-located instances that compete for resources. These
factors are external to the application and cause scaling actions to
have non-deterministic impacts that affect decision-making.

To validate our approach, we perform elastic scaling actions
on a prototype auction application (RUBiS) in a local cloud. After
collecting data from the application, we compare a model derived
with Lamun and a model derived with a decision tree learner, which
does not consider explicit uncertainty. We evaluate the accuracy,
expressiveness, and resilience to noise of a model learned by Lamun.

The rest of this paper is organized as follows. Section 2 motivates
the problem of uncertainty for adaptation in cloud applications.
Section 3 discusses the limitations of techniques proposed in litera-
ture. We describe how Lamun is used to learn models in Section
4. We then describe how to revise existing models with Lamun in
Section 5 and discuss bootstrapping in Section 6. Section 7 shows
the evaluation settings and results. We conclude in Section 8.

2 MOTIVATION

Our research is motivated by a realistic adaptation scenario where
scaling actions of web applications are affected by uncertainty in
cloud computing.

2.1 Uncertainty in Cloud Computing

Cloud computing has enabled many software applications to dy-
namically accommodate their resources in response to variations
in their workload. Public clouds providers offer a wide variety of
virtual machines (VMs) types, with distinct processing, memory,
storage capacities, and prices. Thus, applications can accommodate
their resources by: (1) activating a server, which increases the ca-
pacity but incurs additional costs, or (2) terminating a server, which
decreases the operational costs but reduces the capacity to handle
the load. The goal of these applications is to meet some quality
requirements (e.g. keeping the response time experienced by the
users low), while minimizing the operational costs.

While applications can decide which VM type to add or remove
from their server pools, the underlying physical infrastructure re-
mains hidden. Thus, applications have little control over ‘where’
their VMs are deployed. This is relevant because cloud services
are known to suffer from significant performance variability that
is caused by infrastructure-related conditions, such as hardware
restrictions and co-residency. Due to the unobservability and uncon-
trollabilty of these factors, applications can hardly predict the be-
havior of newly deployed VMs, thus complicating decision-making
for scaling resources; a case of planning under uncertainty.

The problem of uncertainty in the cloud is widely reported in the
literature, e.g. [8, 21]. Performance variability and unpredictability
in cloud applications is mostly caused by:
• Hardware heterogeneity, which is a primary source of perfor-
mance variability in CPU-bound applications, where perfor-
mance data often shows a multi-modal distribution. That is,
while the overall variability is large, there are clusters of sim-
ilarly performing machines that correspond to the hardware
types. Heterogeneity remains relevant as the infrastructure
evolves and new hardware is installed.
• Resource contention, which result in performance variability
when VMs placed in the same physical machine compete
for limited resources (e.g. CPU). For instance, substantial
variability is experienced in individual instances of IO-bound
applications due to bandwidth interference. Ergo, there are
slow and fast, as well as stable and unstable instances.
• Failures that are ubiquitous and may result in performance
unpredictability. Failures can be caused by hardware deterio-
ration, software updates, and overall malfunctioning. Faulty
machines can also lead to unexpected outcomes. Moreover,
failures can affect adaptation actions themselves (e.g. a new
VMs can fail to be launched).

These factors do not affect cloud-enabled applications uniformly.
Instead, their impact depends on the application type (IO vs CPU
bound), the virtual machine type (small or large, general-purpose
or not) and the provider’s infrastructure (e.g. Google’s GCE uses 5
hardware types to deploy n1 series machines1).

2.2 Adaptation Scenario

Capturing the complexity of such uncertainty is necessary for the
system to make effective adaptation. To illustrate this, consider a
content-serving web application (CPU-bound) running on a cloud
infrastructure with hardware heterogeneity (e.g. Amazon EC22).
The application has an initial resource pool composed of a large
server L (4 CPUs). In this configuration, the application has enough
processing capacity to serve its current maximum workload of 400
rps (requests per second) without violating its latency constraint. As
new content is delivered, the maximum load is expected to increase
by an additional 200 rps. To serve this extra load, the application
could add to its resource pool a medium serverM (2 CPUs) or two
small servers S (1 CPUs), at equivalent cost.

Assume thatM servers are affected by hardware heterogeneity.
Thus, these servers can be deployed in two different hardware types:
typeMA (with 75% probability) and typeMB (with 25% probability).
These hardware types perform differently; MA can serve up to 220
rps and MB can serve only 140 rps. Alternatively, assume that S
servers are always assigned the same hardware and can serve up
to 100 rps. It is worth noticing that M servers offer, on “average”,
an equivalent performance of the combination of two independent
S servers. If an adaptation model ignores non-determinism or aver-
ages out the behavior, the application could choose in-distinctively
between the two options. This could lead to a harmful decision; e.g.,
activating a M server to cope with an increase of 200 rps would
lead to a violation of the quality requirement with a 25% chance.

1https://cloud.google.com/compute/docs/machine-types
2https://aws.amazon.com/ec2/
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However, if non-determinism in represented explicitly, an adap-
tation engine can make better decisions considering the system’s
goals (e.g. latency constraints and reduced costs). Moreover, deci-
sions can derive into separate policies that depend on the workload
increase ranges. For instance, between 100 and 140 rps, any M
server can cope with the demand (even for type B hardware) at
minimum cost. However, between 140 and 200 rps, a MB server
would fail to meet the demand; thus, a safer option is to add two
S servers at the same cost. A more interesting condition is when
the load increases up to 240 rps. Here a M + S configuration is
guaranteed to meet the demand. Still, aMA server could also meet
the demand, at lower cost. Thus, an adaptation engine could first
activateM and then activate S only if theM server was assigned a
type B hardware.

2.3 Requirements of the Solution

While such scenario clearly illustrates how capturing uncertainty
can help the decision-making process to drive self-adaptation, this
case oversimplifies the reality. In real life, combinations of hard-
ware heterogeneity, resource contention, and failures would result
in more complex models and adaptation situations. Furthermore,
adaptation engines often measure and reason about impacts in
terms of more “indirect” metrics that can be easily associated to
service-level objectives (e.g. response time ≤ 10 ms). Thus, impact
models must capture how an action would affect the system in
terms of its key performance indicators (e.g. adding a S server re-
duces response time by 10%). Finally, these impacts do not behave
uniformly across different system conditions. For instance, the ef-
fects of hardware heterogeneity when adding a new server may
be visible “only” when the system is saturated; thus, for a range of
conditions (e.g. response time ≤ 9 ms) the outcome may be a single
one (e.g. adding aM server reduces response time by 20%), whilst
for a different conditional range (e.g. response time ≈ 10 ms) the
outcomes could be different, as illustrated before.

Our work focuses on generating models that satisfy the follow-
ing requirements: (1) accuracy, since inaccuracies may result in
ineffective or harmful adaptations, (2) ease to translate into human-
readable rules, that reason in terms of (linear) impacts on system
metrics (similar to those in [3]), and (3) the ability to represent
explicitly non-deterministic impacts within conditional ranges.

3 RELATEDWORK

In the following, we discuss the limitations of previous work to
deal with the research problem at hand.

3.1 Expert-defined Adaptation Models

The idea that expert’s knowledge can be used for adaptation is
not new [4, 10, 13]. It is often the case that computer systems are
handled by administrators that, over time, acquire knowledge about
how the system operates and how it can be adapted in response to
expected conditions. Adaptation models exist that can capture such
expertise with great flexibility to represent the systems behavior
while still ensuring human readability. This allows humans to re-
main in-the-loop [4] in order to: verify the system’s behavior, react
in emergency situations, and testify for the accountability of the
adaptation policies [2, 16].

To capture system operations and human-like adaptation, some
languages have been proposed. For instance, Stitch [5] departs
from an architectural model of the system to define adaptation
strategies. Strategies follow a decision tree logic, where each step is a
conditional execution of some node in the tree, called tactic. A tactic,
in turn, represents a guarded action that encompass a collection of
operators (or configuration commands) with their expected effects
and impacts on the system metrics. Stitch language, thus, simulates
how administrators would adapt a system to reach high-level goals.
It follows a condition-action-effect logic and combines it with the
possibility of branching out in case that (so far) executed actions
are insufficient or not successful at reaching the goal.

Other proposals concentrate onmodeling how adaptation actions
can impact the system. In particular, Cámara et al. [3] proposes
to declare actions with probabilistic impacts, such that one action
can lead to different outcomes of the system with an associated
probability. By leveraging on models inspired on Discrete-Time
Markov Chains (DTMCs), this approach improves on the explicit
representation of uncertainty during adaptation (something that
Stitch only captures implicitly using the tree branches).

Architectural models and domain-specific languages are com-
monly accepted as a mean to support reasoning about the system
and its adaptation, mainly due to their expressiveness and gener-
ality [19]. Yet, expert-defined models are often incomplete, since
humans do not consider all possible conditions and effects, and are
rather inaccurate, as they are mostly based on perception rather
than strict numerical data. Moreover, after the expert has specified
a system’s model and the adaptation policies, these become hard to
keep up-to-date and risk becoming invalid over time, specially as
the system evolves and new environmental conditions arise.

3.2 Machine Learning in Adaptation

Techniques based on machine learning derive their models from
data collected, typically, from a running system. This has the po-
tential of leading to adaptation models that are accurate and valid,
provided that the learners are fed with sufficiently large and repre-
sentative training sets. Several works in self-adaptive systems that
exploit learning techniques are affected by intrinsic limitations that
derive from the way learners are trained.

Mechanisms that are trained online [30? ? ] are exposed to the
risk of performing poorly before a correct model is learned, leading
to many inefficient and harmful adaptations. Alternatively, mech-
anisms that are trained offline [11] must use a large set of data
collected before the system is deployed (which may be actually
hard) and require potentially long training phases. As a way to
mitigate these limitations, one could exploit expert-defined mod-
els to decrease the performance degradation during the learning
phase [29]. Pre-defined models can also be used to create synthetic
samples to train the learner offline and, after, refine the knowledge
with samples collected online; a technique known as bootstrapping
that was introduced in [9].

Maybe the most prevalent limitation of current machine learning
techniques when evaluated against the requirements of our solution,
is the inability to derive models that capture uncertainty explicitly.
While some works already adopt machine learning algorithms that
result in human-readable models (e.g. event-condition-action (ECA)
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rules [14] or decision trees [23, 24]), none of them can explicitly rep-
resent the inherent effects of uncertainty during adaptation. Some
solutions can capture uncertainty with probabilistic models [12, 28],
but do so by considering a discrete state of the world; for instance,
actions either succeed or fail to reach a state with a certain prob-
ability. These models lack the expressiveness to capture impacts
associated to system properties and metrics that are continuous.

Some machine learning techniques are well regarded for their
ability to infer precise predictors based on a dataset of samples;
namely, artificial neural networks [? ], fuzzy inference systems [6]
and model trees [24]. However, these do not represent a solution
to our research problem. Although artificial neural networks have
been successful in accurately approximating non-linear functions,
the inferred model is not easily translatable to human-readable
rules. Fuzzy inference systems, instead, tend to generate (a large
number of) fuzzy rules; in combination, a set of rules can closely
approximate non-linear functions within a range, but in isolation
these rules may contain little information that can be hard to inter-
pret by humans [26]. Finally, while decision trees can accurately
approximate linear functions [7] and output a set of readable rules,
these models hide the effects of non-determinism, by averaging the
impact of the potential multiple outcomes of the same action.

These techniques have also been used for cloud computing adap-
tation. For instance, [17] uses a fuzzy controller to decide scaling
actions based on two metrics: workload and response time. Fed by
expert-defined rules, the controller combines conditional ranges
and averages out the proposed number of servers to activate/deac-
tivate. Yet, it does not produce explicit policies that consider the
probabilistic impact of these actions on those metrics.

Learning performance-influence models has also been studied
in the past. In [27], regression analysis is used to learn influence
models in highly-configurable systems. After taming down a large
configuration space, an influence function (e.g. linear) is extracted
using (few) selected features. Yet, this method is limited to systems
that exhibit deterministic performance behavior (i.e. probabilistic
outcomes cannot be learned). Similarly, Gaussian Process regres-
sion models with mixed experts [25] can identify piece-wise linear
and non-linear functions; still, this method is unable to cope with
uncertainty such as to identify multiple outcomes within a range.

A technique worth mentioning is the K-plane algorithm [1]. It
identifies the K (hyper-)planes that best approximate a set of input
data points in a multi-dimensional space. Interestingly, these planes
can overlap in the input space, which means that for a given input
there may exist more than one corresponding plane, which can be
associated with different impact functions. Still, this approach does
not explicitly separate the ranges in which a plane is valid.

4 LAMUN

Lamun uses learning techniques to derive human-readable models
that capture non-deterministic impacts explicitly. More concretely,
it relies on the subspace clustering approach, K-planes, to iden-
tify multiple impact functions that may overlap in some segments.
Then it uses a method we have developed to extract conditional
ranges associated to the system’s performance metrics. The learned
impacts are then represented in terms of human-readable models.

To illustrate the key concepts and techniques involved in the
design of Lamun, we use the adaptation scenario described in
Section 2, where a cloud-enabled application scales its resources to
keep a low response time while minimizing the cost. We consider
an example where all servers have the same “size” but may lead to
different system performances, depending on the actual hardware
provisioned by the provider.

We assume that a MAPE-K-like control loop is in place and the
adaptation engine decides when servers must be activated or ter-
minated, based on the monitored metrics. After the execution of
an action, the adaptation engine can collect data samples from the
running system, to learn how such action impacts the system’s
performance. Lamun repeats this process, supporting the improve-
ment of the accuracy of the learned impacts and keeping the learned
model up-to-date with the evolution of the system (e.g. when new
hardware is installed in the infrastructure, the impacts of adapta-
tions must be updated). A high level description of the main process
is presented in Algorithm 1.

Algorithm 1: Learning a model with Lamun
dataset← get_collected_data()
planes← infer_functions(dataset)
ranges← get_ranges(dataset, planes)
probabilities← estimate_probabilities(dataset, planes, ranges)
model← output_model(planes, ranges, probabilities)

For each adaptation action a separate model is learned. In our
exposition, we concentrate on deriving the model that captures the
effects of activating a new server (i.e. enlist server) on the system
performance. To simplify our exposition, we consider the impact
model over a single metric: the response time. The execution of the
actionmight have different outcomes. For each of them, we consider
that the predicted effect of the action in the response time (rsp′)
is defined as a function of the value of response time before the
action is executed (rsp) and this function is linear. In what follows,
we refer to these functions as impact functions.

More concretely, for each adaptation action Lamun learns a
model that captures: (1) all possible outcomes of an action on the
system metric (e.g. rsp′ = f (rsp) or rsp′ = д(rsp)), (2) the probabil-
ities associated to each outcome (e.g. with 90% probability, rsp’ is
predicted by the function f ), and (3) the parameters of each impact
function (e.g. f (rsp) = 2/3∗rsp+10). It is worth mentioning that, in
a simple model, the output (rsp’) is defined in terms of a single input
(rsp). However, in more complex scenarios, the predicted value for
a metric may depend on the values of several system properties or
metrics, that define a multi-dimensional input space3.

We assume that impact models use linear functions exclusively;
i.e. a linear combination of the values of properties and metrics
used to construct such functions can predict the value of the target
metric, within a specific range. Thus, our approach is applicable to
all functions that can be captured in a piece-wise linear form.

The activities performed by Lamun to learn a model (c.f., Algo-
rithm 1) are described in detail in the following subsections.
3The selection of (a limited number of independent) system properties/metrics in the
input space has been studied in the literature and is outside of the scope of our work
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4.1 Collecting Samples

In order to learn a model, Lamun requires a dataset of samples that
capture the effect of the adaptation action on the target metrics. For
instance, consider that a new server is activated and the observed
response time decreases from 70ms to 50ms; then, a new sample
⟨70, 50⟩ would be added to the associated dataset.

The way the dataset is collected is orthogonal to the main contri-
bution of our work. The dataset can be obtained by experimenting
with the system offline, or by accumulating data points during the
normal operation. The dataset should be large enough such that the
prediction error of the model is below some application-dependent
threshold. Later, we describe how Lamun can be applied to an evolv-
ing underlying system (by combining samples obtained at different
points in time) and also how a user-derived model can speed the
learning process (creating an initial synthetic dataset).

4.2 Inferring Impact Functions

This step receives as input the dataset collected for a given adapta-
tion action and computes the planes (assuming an n-dimensional
input space) that best represents it. To infer the impact functions,
we use the K-plane algorithm [1] as a building block, which returns
a set of K planes for a given dataset. Not,e however, that there
is no way to know a priori how many impact functions the algo-
rithm is expected to find (in particular, K cannot be derived from a
previously learned model). One of the purposes of this activity is
precisely to unveil new impacts that have not been learned yet.

To infer the impact functions we use Algorithm 2. The goal is
to find the smallest possible K that captures all the the relevant
impacts without cluttering the model with redundant functions. For
this purpose, we iterate the K-plane algorithm for different values
of K , starting with K = 1 and increasing it in each iteration.

In order to assess when the iteration must stop, we first split the
dataset into two subsets: training and test subset (90% and 10% of
original dataset). The K-plane algorithm is run against the training
subset and validated against the test subset.

Algorithm 2: Inferring the Impact Functions
Input: dataset: set of samples
Data: ERROR_T: error threshold previously defined
Output: planes: set of planes inferred from the dataset
K← 0
error← 1
while error > ERROR_T do

K← K + 1
error_list← []
for training, test : 10-Fold-cross-validation(dataset) do

planes←K-Plane(K, training)
// test is a function, which returns error
error_list←append(error_list, test(planes, test))

end

error← avg(error_list)
end

planes← K-Plane(K, dataset)
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Figure 1: Inferred linear functions

The test subset is used to compute the error of the model, by
measuring the average distance between each sample and its closest
plane. This process is repeated 10 times, one with a different 10% of
the dataset as test set and the error is an average of the 10 runs. The
iterative loop stops when the computed error is lower than a given
threshold (ERROR_T ). After K is chosen, the K-plane algorithm is
re-applied to the entire dataset, to obtain a result that is as accurate
as possible. The result is a set of planes that represent different
linear impact functions.

Figure 1 illustrates the result of applying this algorithm to a
dataset of samples (dots) collected monitoring the average response
time before and after enlisting a new server. In our example, two
linear functions (depicted as lines) are inferred.

4.3 Computing Validity Ranges

In the previous step, K planes were derived capturing K different
impact functions for a given adaptation action. However, some of
these functions may apply just to a sub-region of the entire input
space. For instance, in the running example, we have obtained
two impact functions (c.f. Figure 1) but for one of these functions,
samples only exist for the interval [50, 100] of the pre-adaptation
response time. Hence, there is no evidence that this impact function
applies when the adaptation is performed in conditions where the
response time is outside such interval. Therefore, after computing
the impact functions, it is necessary to identify the sub-regions of
the input space for which each of the functions is valid.

For each plane, only samples that are closer to that plane are
used to compute the range for each input dimension. Considering
a single dimension at a time, the range will be between the mini-
mum and maximum value taken by samples, which belong to that
plane. After this step we will have a range for each dimension and
for any given plane, i.e. a hyper-cube surrounding the plane. In
our example, one of the functions (planes) is limited by the range
[0, 100] and the other one by the range [0, 50]. For one dimension,
we split such ranges by joining and ordering the limits of every
plane. In our example, this would result in 0, 50, 100. Then, we pair



SEAMS’18, May 2018, Gothenburg, Sweden F. Duarte et al.

0 20 40 60 80 100

0
20

40
60

80
10
0

response time (ms)

re
sp

on
se

 ti
m

e 
af

te
r a

da
pt

at
io

n 
(m

s)

Figure 2: Validity ranges for the impact functions

every two consecutive values: [0, 50] and [50, 100]. Here, the second
validity range represents an intersection of the sub-regions where
the two functions are valid. The validity ranges resulting from this
procedure are represented as vertical lines in Figure 2.

For higher dimensions, we check for intersecting planes, one
dimension of the input space at a time. If no intersections are
found on the input dimension, then the input space does not in-
tersect (meaning that there is no uncertainty). In such case, the
space does not need to be split because it is possible to distin-
guish among planes by, at least, an input variable. Otherwise, we
split the input space as it was explained previously considering
one dimension at a time. For instance, if there are two planes:
([0, 100], [0, 100]) and ([50, 150], [50, 150]), the result of the split-
ting for the first dimension is: ([0, 50], [0, 100]), ([50, 100], [0, 100]),
([50, 100], [50, 150]), and ([100, 150], [50, 150]). Then, we repeat the
process for the second dimension.

4.4 Estimating Probabilities

This step consists in deriving how likely it is to observe each
of the possible impacts, for each region of the space where non-
determinism has been detected (i.e. where different impacts can be
observed for the same range). That is, the probabilities associated
with each impact function are estimated at this stage.

The probability of the result of a given action being the one
predicted by the ith impact function takes into account each differ-
ent region of the input state for which different non-deterministic
outcomes are possible. These probabilities are estimated using the
formula: P(fi |region) = #(region, fi )/#(region). The probability of
ith impact function in a given region is estimated by counting the
number of samples that belong to that region (denoted by #(region))
and the number of samples in that region that are closer to that
impact function (denoted by #(region, fi )). Figure 3 depicts proba-
bilities next to their plane.
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Figure 3: Probabilities for each impact function/region

4.5 Outputting a Human-Readable Model

Although our approach is generic and not tied to a particular lan-
guage, to make the exposition concrete, we express the learned
impact models using a syntax similar to the one proposed in [3].

The model that results from processing our example dataset
is presented in Listing 1. The model specifies that, for observed
response times (rsp) in the range [50, 100]ms , the predicted response
time after a new server is enlisted can have two outcomes: with
40% probability, the new response time rsp’ is predicted by function
f (rsp), and with 60% probability it is predicted by function д(rsp).
Linear functions f and д are also defined in the model.
define f ( r sp ) = ( 4 / 5 ) ∗ r sp + 20
define g ( r sp ) = ( 1 / 2 ) ∗ r sp + 5
impactmodel e n l i s t S e r v e r

50 < r sp < 100 −> { [ 0 . 4 ] rsp ' = f ( r sp ) +
[ 0 . 6 ] rsp ' = g ( r sp ) }

Listing 1: Resulting Model

5 REVISION OF EXISTING MODELS

We have just described how a new model can be built from scratch
based on a given dataset. In many real scenarios the system being
modeled is not static and can evolve with time. For instance, a cloud
provider may acquire new machines types, whose performance
would differ from that of previous hardware. Naturally, Lamun can
be executed periodically, to generate updated models that follow
the evolution of the underlying system. In this paper, we do not
have space to elaborate on the different strategies that optimize
this refinement process, but we simply sketch the general principle
that guide the use of Lamun to refine a model.

Algorithm 3 illustrates how Lamun would be used inside a loop
to revise an existing model. In this loop, the existing dataset is
curated, new samples are added to the dataset, and a new model is
generated (based on the revised dataset that results from the two
operations above). The goal of the data_curation step is to remove
from the dataset samples that are no longer considered relevant.
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Algorithm 3: Revising an existing model
while TRUE do

dataset← data_curation(dataset)
dataset← dataset ∪ get_new_samples()
model← Lamun (dataset)

end

As with all similar approaches, there is a trade-off between how
fast the model reacts to changes in the underlying system and how
prone the model is to be affected by transient perturbations of the
system. If the user wants to revise the model quickly in face of
changes, he can simply discard the old dataset and build a new
model just with the samples collected during the current iteration.
On the other extreme, new samples can simply be accumulated
with old samples. A middle ground solution consists in eliminating
samples that are older than a given age. In any case, the number of
points that remain in the dataset, in each iteration, should be large
enough to allow the model to be accurate.

6 BOOTSTRAP FROM USER-DEFINED MODEL

In the previous section, we have shown that it is possible to refine
a model based on a pre-existing dataset, that can be subsequently
enriched with new points. In some scenarios, an user-defined model
of the system operation is available. One might be interested in
using Lamun before a large enough dataset is collected from the
running system. Thus, to start using Lamun earlier, it si possible
to generate a synthetic dataset form the expert-defined model and
then apply the iterative approach of model refinement presented
before. Note that departing from a synthetic dataset based on the
expert’s knowledge can ensure that accuracy is not lost while the
new model is learned. Also, even if not enough samples of a given
outcome are observed at run time during the first loop iterations,
the knowledge captured in the expert-defined model is preserved
and taken into account.

User-defined models can be exploited to bootstrap the learning
process of Lamun. The initialization procedure for the dataset is
captured in Algorithm 4.

Algorithm 4: Initialize Dataset
Input: impacts: a set of impacts
Data: C: constant value
Output: dataset: set of samples
dataset← {}
for i : impacts do

samples_per_dim← i.probability * C
// get_inputs computes combinations of inputs on a
// grid with a side of: range / (samples_per_dim - 1)
input_set← get_inputs(i.dimensions, samples_per_dim)
for input : input_set do

output← compute(i.function, input)
dataset← add(dataset, (input, output))

end

end

As before, to simplify the exposition, let us consider the impact
an action has on a single metric. To generate the synthetic samples
for this metric, the impact functions from the original model are
used. For each impact function fi , synthetic tuples consist of pairs
⟨input , fi (input)⟩, for some input value of the input space. To pre-
serve the information provided by the probabilities associated with
each impact function, the number of samples generated for each
function is proportional to its probability. This is done by generat-
ing a number of samples per dimension that is proportional to the
probability associated with the impact. The proportionality factor
C must be a positive number, large enough to ensure the creation of
multiple samples for each possible impact. Our approach requires
that the interval of valid input values is passed to the algorithm.
Knowledge on the input ranges is needed to create synthetic points
just for the relevant scenarios.

To create the synthetic dataset, Lamun makes an uniform sam-
pling of the input space by dividing each input dimension in regions
of the same size as follows: ranдe/(samples_per_dim − 1). This en-
sures that all samples are within the minimum and maximum value
of the dimension’s range, and are uniformly spaced. In our example,
since we only consider one input variable, assuming that the valid-
ity range is [0, 100] and that the number of samples to generate is
1000, then samples will be generated for input values separated by
approximately 0.1 units, resulting in 1000 samples.

7 EVALUATION

We now present an experimental evaluation of Lamun. We experi-
mented with a concrete instantiation of the problem used in Section
4. Namely, we applied Lamun to learn an adaptation model used to
support the elastic scaling of RUBiS4deployment in a local cloud.
RUBiS is a well-known auction website similar to eBay.

7.1 Experimental Testbed

We have used RUBiS 1.4.3 deployed on virtual machines running
Ubuntu 14.04 in a cluster of workstations, each with a 2.13GHz
Quad-Core Intel(R) Xeon(R) processor and 32GB of RAM, con-
nected by a private Gigabit Ethernet. We used Autobench 3 5 as a
benchmark workload generator and drive httperf [22] to issue the
requests. We run HAProxy6 1.6

For our experimental usecase, the adaptation actions to be mod-
eled are the activation and termination of one server (VM). We
consider all servers to be of the same “size”. Naturally, the models
that are learned are slightly more complex than the simplified ex-
ample presented before. In the deployed system, we monitor several
metrics, namely: number of active servers, average request rate,
and average response time. The learned model estimates the impact
of the actions on a single metric: the response time.

We consider that the application is affected by uncertainty caused
by resource contention in the underlying infrastructure, composed
by physical machines of one unique type.We have considered physi-
cal machines that can be in two distinct conditions: non-contentious

4Rice University Bidding System: http://rubis.ow2.org/
5Autobench: http://www.xenoclast.org/autobench/
6HAProxy: http://www.haproxy.org/
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or contentious. In the first condition, the physical machine is run-
ning RUBiS exclusively. In the second condition, the physical ma-
chines runs RUBiS alongside other services. Specifically, we simu-
late the conditions of a newly activated server of the smallest type
in the GoGrid7 cluster. That is, a new server is guaranteed 1 CPU,
but can be assigned 2 CPUs if the physical machine is not being
used by other services (with a 60% probability in our usecase). Also,
we assume that the provider decides the physical machine where a
server is deployed; thus, it cannot be controlled by the application.

7.2 Data Collection

We have collected experimental data for our deployment under
different configurations and workloads. We change the number of
active servers (between 1 and 4) and the number of requests per
second (between 250 and 10000). For simplicity, we ensure that all
servers that are active before the adaptation is executed have 2
CPUs each. For each configuration, we generate a load of 10000
requests distributed among four clients.

We then collected samples that measure the impact on the re-
sponse time. We have executed five different runs of each experi-
ment and used the average behavior to derive the final values to
be included in the dataset. Also, samples with observed response
time higher than 600ms were removed, as we consider that a real
system would have to adapt before reaching such conditions.

The size of our dataset is of 688 samples.

7.3 Resilience to Noise

A key parameter in the performance of Lamun is the error threshold
(ERROR_T). This parameter is used in Algorithm 2 to decide when
to stop adding planes to the model (i.e. to select the value of K).
Another factor affecting the accuracy of the learned model is the
accuracy of the measurements used to create samples in the dataset.
Algorithm 2 assumes that a minimum level of accuracy exists in
the dataset, such that the detected number of planes K is valid. Yet,
if the dataset samples are created out of (very) noisy measurements,
Lamun can falsely detect planes where there is just noise. To test
the resilience to noise, we designed a experiment to inject different
levels of noise and estimate the value of ERROR_T, such that K is
accurately identified in spite of the noise.

In our experiments, we already observed a significant amount of
noise when measuring the impact of adaptations. In our case, we
were able to smooth the effect of the noise by averaging the outcome
of multiple samples, as described previously. However, there may
be cases where having enough samples to smooth the noise is
unfeasible. To assess the effect of noisy datasets in Lamun, we
created “polluted” datasets from the original dataset. This allowed
us to control exactly how much noise is present in the dataset,
something that is hard to control in real life. The added noise was
generated randomly using a normal distribution, with mean equal
to the original point’s value and standard deviation equal to half
the original point’s error. To create an instance of a polluted dataset,
a percentage of this noise was added to the original dataset values.

To isolate the effects of noise from uncertain impacts, we de-
parted from a dataset that uses dedicated servers exclusively and
learns “one” impact function (K = 1), i.e. the impact is deterministic.
7GoGrid: https://my.gogrid.com/

Table 1: Noise. ERROR_T parameter selection

ERROR_T 0% 10% 20% 30% 40% 50%
0.2 2.3 3.4 3.4 4.5 4.5 6.7
0.3 1.0 1.0 1.0 1.0 2.3 3.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0

We simulated Algorithm 2 running several instances of a “polluted”
dataset against different values of ERROR_T and computed the
average number of planes detected for each pollution level.

Table 1 show results for a (small but representative) set of pollu-
tion levels within the noise range observed when monitoring the
original data: 0%, 10%, 20%, 30%, 40%, 50%. We calibrated ERROR_T
experimentally and selected three of the tested values (0.2, 0.3, and
0.4) that illustrate the observed trend. We show that as noise levels
increase, the detected number of planes increases too.

In particular, the number of planes that should be detected by
Lamun in this experiment is K = 1. However, if the value of ER-
ROR_T is too small (e.g. 0.2), even data without added noise (0%)
can be considered to hold more than one plane: non-determinism
is being found where it should not exist. Instead, if the value of
ERROR_T is too high (e.g. 0.4) the sensitivity is too low, which may
lead to ignoring planes that could exist. For this particular dataset,
ERROR_T ≈ 0.3 represents a good trade-off given the noise levels.
It is worth mentioning that the absolute values presented here are
specific to this setting and should not be applied to other contexts.

7.4 Capturing Uncertainty

An advantage of Lamun is the ability to capture uncertainty ex-
plicitly. To demonstrate this feature, we have fed the learner with
data capturing the two distinct conditions of the physical machine
assigned to a new active RUBiS server. With 60% chance, a fully
dedicated server is enlisted (2 CPUs) and, with 40% probability, a
server that also runs other services is enlisted (1 CPU).

Listings 2 shows a representation of the learned impact models.
In this model, act is the initial number of active servers, req is the
average number of requests per second, and rsp and rsp’ are the
average response time before and after the action’s execution. As
it can be observed, Lamun is able to learn multiple (probabilistic)
impact functions. Also, the learned probabilities follow closely the
expected numbers as approximately 60% of the dataset corresponds
to activating dedicated servers (2 CPUs). Finally, the model can
associate each impact function to its validity range. Thus, the de-
rived policies are applicable in different workload conditions, when
the number of requests is in three different ranges: (250, 800]rps ,
(800, 9955]rps , and (9955, 10000]rps .
define f ( a , rq , r s )= −34 . 99 ∗ a + 0 . 0 2 5 ∗ rq + 0 . 3 6 ∗ r s +74 . 5 1
define g ( a , rq , r s )= −135 . 08 ∗ a + 0 . 0 1 4 ∗ rq + 0 . 4 9 ∗ r s +502 . 8 7
impactmodel e n l i s t S e r v e r
( 0 < a c t < 4 & 3 . 6 < r sp < 5 9 5 . 7 & 250 < req <= 800 )
−> { [ 1 . 0 0 0 ] rsp ' = f ( ac t , req , r sp ) }

( 0 < a c t < 4 & 3 . 6 < r sp < 5 9 5 . 7 & 800 < req <= 9955 )
−> { [ 0 . 6 2 3 ] rsp ' = f ( ac t , req , r sp ) +

[ 0 . 3 7 7 ] rsp ' = g ( ac t , req , r sp ) }
( 0 < a c t < 4 & 3 . 6 < r sp < 5 9 5 . 7 & 9955 < req <= 10000 )
−> { [ 1 . 0 0 0 ] rsp ' = g ( ac t , req , r sp ) }

Listing 2: Enlist server impact with Lamun
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Figure 4: Accuracy: cubist and Lamun Errors

7.5 Model Accuracy

To evaluate the accuracy of the model learned by Lamun, i.e. how
well it captures the behavior of the system, we compare it with the
accuracy of a model learned with cubist [20]. cubist is a rule-based
learner that considers continuous states, creating models similar
to those learned by Lamun. Yet, cubist does not explicitly capture
non-determinism; instead, it averages out all outcomes.

To compare both approaches, we have split the collected dataset
(688 samples) into a training (80%) and a testing (20%) subset, select-
ing samples randomly to ensure an unbiased dataset. We built the
model using data from the training subset (exclusively) and used
data from the testing subset to check the accuracy of the model.

We define the fit error as the average distance between the (real)
value of the test points and the value estimated by themodel, accord-
ing to the following function: f iterror =

∑
pointerror/#(points),

where: pointerror = | real − estimate |/| estimate |. We variate
the size of the training subset (from 0% to 90%) to illustrate how
fast the model stabilizes into a “good” model as more samples are
added.

The results in Figure 4 show that Lamun achieves a better fitting
to the model w.r.t. cubist. The model learned by Lamun stabilizes
rapidly after a training set of around 15% of the dataset (≈ 100
samples). At such point, the model captures two distinct outcomes
and is able to estimate the real value with f iterror ≤ 0.35. We can
also observe that as the number of samples used to train the model
increases, the fit error of cubist increases slightly. We assume this
happens because the model grows skewed to a value in between
both outcomes, thus increasing its variance as more samples are
added.

It is worth mentioning that these results are specific to the ex-
perimental dataset, as the number of samples needed to learn an
accurate model with Lamun is highly dependent on how samples
in the dataset are distributed across multiple outcomes.
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Figure 5: Model convergence after bootstrapping

7.6 Revision of Existing Models

Lamun can learn models from scratch or departing from a pre-
existing model. When departing from a pre-existing model, the
quality of such model can have an impact in the learning process.
In order to show how the correctness of a pre-existing model affects
Lamun, we revise three models with different quality: (1) one in-
ferred using a linear regression, (2) one inferred using cubist, and (3)
one learned from scratch. To train these models we used a partial
dataset composed by 50% of the entire dataset (sampled randomly).
The remainder of the dataset is split into training and test sets to
validate the model through 10-fold cross-validation. For each model,
we fed Lamun a growing number of samples from the training set,
and test it using the test set. We use bootstrapping to generate the
synthetic samples from the two existing models.

Figure 5 shows that, in general, using a pre-existing model to
initialize the dataset results in a faster convergence into an accu-
rate model. However, when the original model is inaccurate (see
linear regression), the model being learned will behave better at
the beginning, but it will be hindered in the long run due to the
samples collected from the original (inaccurate) model.

A data curation procedure could help reduce the negative impact
of outdated samples in the dataset. To evaluate the need of data
curation, we perform an experiment where the original (synthetic)
dataset is created based on an inaccurate prediction of the new
response time after the enlist server action is executed. We generate
two inaccurate models for a unique output fo the metric, with a
deviation error of 250ms (lower error) and 300ms (higher error).
We then add new samples gathered from the running system and
evaluate the system’s ability to disregard inaccurate data.

Figure 6 shows how the probability assigned to the inaccurate
model decreases with the number of added (accurate) samples. We
conclude that data curation is not indispensable; instead, it is only
needed if Lamun is slow at capturing new samples from the running
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Figure 6: Evolution of the probability of a synthetic impact

function as new samples are added to the dataset

system. The definition of the periodicity with which Lamun updates
the dataset online is application-specific and a choice of the user.

8 CONCLUSION

In this paper we proposed a way of learning action’s impact models
for self-adapting systems, and represent them in a readable form,
which will allow the user to be kept in the adaptation loop. What
differentiates our solution from existing approaches is the fact that
we consider and explicitly represent probabilistic impacts, while
also considering a continuous space. To learn impact functions from
a dataset, knowing that a single input can have multiple output
values, we used K-Plane algorithm. We tested this solution using
a well-known auction application, RUBiS. Specifically, we tested
its accuracy, its ability to handle uncertainty by capturing multi-
ple outcomes of an actions, and its speed in revising an existing
impact model. Furthermore, we tested the way it deals with noisy
measurements and showed how that affected parametric choices.
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