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Abstract such as palms and WAP enabled devices, due to the re-

In this work we present a protocol ensuring the e- duced transmission rate on wireless channels. Therefore,
Transaction guarantee (i.e. a recently proposed end-tb-en OCC (which does not employ locks), looks generally more
reliability guarantee) in a Web based, three-tier transac- attractive. These are just some of the reasons why some re-
tional system. The protocol does not need any coordina-cent databases and platforms specifically tailored for Web
tion among the replicas of the application server, thus ex- applications (e.g. Tamino XML Server, Solid FlowEngine,
hibiting negligible overhead in normal behavior. Addition Adabas D and Microsoft ADO .NET) encourage the use of
ally, it achieves highly efficient fail-over especially fine OCC for “long-running activities” such as when users are
case of back-end database employing Optimistic Concur-remotely interacting with data via Web.
rency Control (OCC), namely a type of concurrency con-  Our protocol mainly relies on the use of recovery infor-
trol well suited for data access performed via Web. We mation, locally manipulated at the database side, to guar-
also present a comparative discussion with existing solu- antee that the transaction associated with a client request
tions and a quantitative analysis of the proposed protocol, is committed exactly one time. Manipulation of the recov-
which clearly quantifies its benefits, in terms of reduced use ery information does not require coordination among the
perceived latency, especially when employed in combina-replicas of the application server, which do even not need

tion with OCC. to know each other existence. Our proposal is therefore in-
) herently scalable, and well suited for both local and geo-
1 Introduction graphic distribution of the application server replicasnh

The concept of “e-Transaction” (exactly-once Transac- selves. With respect to the latter point, we recall that geo-
tion) has been recently introduced in [5] as a reasonablegraphic distribution, with a very high degree of replicatio
form of end-to-end reliability guarantee for a three-tier of the application servers hosting the transactional lagic
transactional system. In this paper we consider the case ofepresentative of recent Internet infrastructures reteto
three-tier systems with centralized back-end databask, anas Application Delivery Networks (ADNs), such as those
propose an e-Transaction protocol that introduces ndigigi  provided by Sandpiper, Akamai or Edgix. These infrastruc-
overhead in failure free computation, and achieves highly tures are a natural evolution of classical Content Delivery
efficient fail-over especially in case the back-end databas Networks (CDNs), where the edge server has not only the
employs Optimistic Concurrency Control (OCC). The lat- functionality to enhance the proximity of contents to ctign
ter aspect gives our protocol a practical relevance deriv-but also to enhance the proximity between clients and the
ing from that OCC is expected to be more adequate thanapplication (business) logic. Hence, the fact that our pro-
Pessimistic Concurrency Control (PCC) for data access viatocol reveals adequate for this type of settings further con
Web. Specifically, PCC is attractive when (i) there is non- tributes to its practical relevance.
minimal data contention (i.e. the cost of protecting data  Beyond providing the description of the protocol, we
through locking is less than the cost of rolling back trans- present a comparative discussion with existing proposals i
actions due to data conflicts) and (ii) time intervals locks support of reliability and a quantitative analysis highlig
are applied are relatively short, so that data are promptlying advantages from our protocol in terms of user perceived
available for other transactions [14]. This is typical of en latency for a wide range of system settings.
vironments where data access is done by an array of ter- The remainder of this paper is structured as follows. In
minal operators, who perform operations on the databaseSection 2 the three-tier system model we consider is pre-
on behalf of end users. On the other hand, Web applica-sented. Section 3 is devoted to the introduction of our e-
tions make every browser a data entry clerk, therefore theyTransaction protocol. The comparative discussion with ex-
allow the final user to directly access personal or financial isting proposals is provided in Section 4. Section 5 is de-
information, or specific information of interest. As such voted to the quantitative analysis.

a user will likely access its own data, contention is likely
to be low. In addition, the time interval data are being 2 System Model

accessed is typically increased, as compared to what hap- \we consider a three-tier system where processes com-

pens in Ca.s‘lal of data accfess perforrr]ned ?}y a_telrmlnzl OPeramynicate through message exchange and can fail by crash-
tor, especially In case of access through wireless devices;ng - communication channels between processes are reli-

*This work was partially funded by the WEB-MINDS project sup- able, therefore each message is eventually deliveredsunles
ported by the Italian MIUR under the FIRB program. either the sender or the receiver crashes during the transmi




i ssue(requestcontentreq){
sion. . generate a nevid;

1

Application servers have a primitiveonput e, which e T
embeds the transactional logic for the interaction with the & el a i o mmy
database. This primitive is used to model the application$  FGests orcoresm S omcomame MEOVT
business logic while abstracting the implementation tietai & S o e 0 AS:
such as SQL statements, needed to perform the data manipgs  Zegmmies
ulations requested by the cliemtonput e executes the up- 15, mcovMmrest
dates on the database inside a transaction that is left uncom
mitted, therefore the changes applied to data are not made
permanent as long as the database does not decide positively
on the outcome of the transaction. The result value returned

he primitiv res th f the exe- . .
cution bf the transactional ogic at the datatiass, whicttmus "eciness proof wrl fo the previously stated Safety and live-
be communicated to the client. The primitoenput e re- ness properties. The interested reader can find it in [9].
turns, together with the output of the execution of the trans 3.1 Client Behavior
actional logic, the identifier assigned by the databaseeserv  The pseudo-code defining the client behavior is shown in
to the corresponding transaction. _ Figure 1. Within the function ssue, the client generates

The system back-end consists of a database server whiclin identifier associated with the request, selects one-appli
eventually recovers after a crash. The database server hasation server and sendsRequest message to this server,
primitive deci de which can be used to invoke the com- together with the request identifier. It then waits for the
mitment of a pending transactiordeci de returns com-  yeply. In case it receives commit as the outcome for the cor-
mit/rollback depending on the final decision the databaseresponding transactionssue simply returns. In any other
takes for the transaction, and any exception possiblydaise case, it means that something wrong might have occurred.
during the decision phase. Also, as in conventional dabas specifically: (i) Timeout expiration means that the applica
technology, if the database server crashes while processtion server and/or the database server might have crashed.
ing a transaction, then, upon recovery, it does not recegniz (jj Rollback outcome means instead that the database could
that transaction as an active one. Therefore, ifteei de  not commit the transaction, for example because of deci-
primitive is invoked with an identifier associated with an sjons of the concurrency control mechanism. In both cases,
unrecognized transaction in input, then the return value ofj ssye re-selects an application server (possibly different
this primitive is rollback. from the last selected one) and re-sendsRkquest mes-

The database offers a transaction abstraction calledsage to that application server. TRequest message is
“testable transaction”, originally presented in [4]. With actually associated with the already selected requestiiden
this abstraction, the database stores recovery informatio fier. Upon successive timeout expirations, the client keeps
that can be used to determine whether a given transactiorpn re-sending th®equest message (with that same iden-
has already been committed. Specifically, each transactionifier) until it receives the commit outcome. Each time the
is associated with an identifier, which is stored within the client re-sends the request, it associates withRquest
database as a part of the transaction execution itself, tO-rnessage an additional parameter, nambbck, which no-

gether with the result of the transaction. Hence, if theiden tifies to the application server that we are in the presence of
tifier is stored within the database, the correspondingstran 3 re-transmission.

action has already been committed. As in [4], we assume N .

the testable transaction abstraction is supported thraugh 3-2 Application and Database Server Behaviors
primitive i nsert, available at the application servers, al- The application server behavior is shown in Figure 2.
lowing them to ask the database server to write the identifier Two execution paths are possible depending on the param-
within the database together with the result obtained by theeters associated with the client requestciéck is not in-
execution of theonput e primitive. Finally, an additional  cluded in theRequest message, then the application server
primitive | ookup is used to retrieve the logged recovery invokes the primitiveeonput e to start a transaction on the

Figure 1. Client Behavior.

For space constraint we cannot report the protocol cor-

information. back-end database. The application server then attempts
to make changes on the database permanent by invoking
3 TheProtocol Test abl eTr ansact i on. Within this function, the ap-

plication server first executésser t , in order to store the
client request identifier within the database, togetheh wit
the result of the transaction. It then send®ecide mes-
sage to the database server and waits for the outcome. This

The protocol we present ensures the following two prop-
erties synthesizing the e-Transaction problem as intrediuc
in [4, 5]: (i) The back-end database does not commit more
than one transaction for each client requ&stféty- at most
once). (i) If a client issues a request, then, unless itwas presence of client crash. This is because the e-Transdcimework deals
it eventually receives a commit outcome for the correspond- with thin clients having no ability to maintain recovery infoation. This

ing transaction, together with the result of the transactio reflects arepresentative aspect of current Web-basedry athere access
(Liveness at Ieést once)10 to persistent storage at the client side can be (and ussiyecluded for
: a variety of reasons. These range from privacy and secsstyes (e.g. to
contrast malicious and/or intrusive Web sites invasivellvdang cook-
1According to the specification of liveness guarantees apgsed in ies) to constraints on the available hardware (e.g. in chspgications
[4, 5], an e-Transaction protocol is not required to ensivenkss in the accessible through cell phones).




Application Server: Database Server:
resulttyperes; while(true){
transactioridentifiertid; await receive Decide[t ¢ d] from an application server;
while(true}{ [outcome,exception]=deci de(tid);
cobegin send Outcome[outcome,exception,tid]to the application server;
: await receive Request[reg,id] from client; }
[res,tid]=conput e(regq);

oRrwpE
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o ool oo e ot o et Figure 3. Database Server Behavior.
@ await receive Request[req,id,check];
10. if (res=| ookup(id))!=nil){
11. send Outcome[COMMIT, re s,id] to client;
% }/*e?ddifﬂ:/read; Lo . ie . .
1 [res.tidi=compute(rea);, primitive | ookup that simply verifies whether the identi-
15. outcome=Test abl eTransacti on(res,id); - . . .
1. send Oticome[outcome,res,id] to client fier itself has been already stored within the database. In
17.  } /*end while */ e
the positive casd, ookup returns the result of the trans-

outcomeTest abl eTr ansact i on(resulttype re s, requestidentifier i d) { . - - e .
ig inse{E(7-es,id);/*whereidisaprimarykey*l aCtIOI’], StOI‘ed together W|th the Identlflel’, and the app“'

. repeat . . .
20 e"senqloeuqe[grgmmeda;abasesewer; e ouT cation server sends @utcome message with commit to

. await receive Outcome[outcome,exception,tid] or H . . . . .
22 Jumimessage receney o i ]k ) the client together with the associated result. This might

. exception.type = duplicated.primary.key.exception . - . .
54 s rertencoption result, vokevenceptiont help saving time and resources since neith@rmput e nor
25. return COMMIT; . .
26 ) rendir Test abl eTransact i on are executed. Otherwise, the

. return outcome; . . .
28} application server processes the request as if the panamete

check were absent, and returns to the client the outcome of
its interaction with the database.

The behavior of the database server is shown in Figure 3.
same message is periodically re-sent in case of subsequertor Simplicity we only show the relevant operations related
timeout expirations. to transaction commitment, while skipping the data manip-

key for the database, which is the mechanism we adoptfor a Decide message from an application server which
to guarantee the safety property. Therefore, any attemptaSks to take a final decision for a transaction associatdd wit
to commit multiple transactions associated with the same@ giventid, and then attempts to make the transaction up-
client request identifier is rejected by the database jtself dates permanent through tteci de primitive. The final
which is able to notify the rejection event by rising an ex- result (commit/rollback) is then sent back to the applaati
ception. This makes the client request for updating dataServer, together with thecception, possibly indicating the
within the database an idempotent operation, i.e. the stque attempt to duplicate a primary key (i.e. the identifier of the
can be safely re-transmitted multiple times to different ap Cclient request) within the database. Recall that, as stated
plication servers?). in Section 2, in case the parametéd passed in input to
Upon the receipt of th®utcome message in reply from the primitiveconput e is associated with an unrecognized
the database serve¥)(the flagezception is checked to de- ~ transaction (recall this might happen in case the database
termine whether the same request identifier was already inS€rver has crashed after the activation of that transaction
the database. In the positive instance, a transactioniassoc@nd then has recovered before receiving Ereeide mes-
ated with that same client request has already been commitSage from the application server), this primitive returns a
ted. As a result, the exception allows the application severrollback outcome.
to return arOutcome message with the commit indication . .
to the client together with the already established resnlt. 4 Related Work and Discussion

any other case (i.eczception is not raised), the outcome A typical solution for providing reliability consists of en
received by the database server is sent back to the clienteapsulating the processing of the client request within an
The outcome might be roIIbapk, e.g., due to decisions of the atomic transaction to be performed by the middle-tier (ap-
concurrency control mechanism. . plication) server [6]. This is the approach taken, for ex-

~ Aslightly different behavior is triggered at the applica- ample, by Transaction Monitors or Object Transaction Ser-
tion server upon the receipt ofRequest message which  vjces such as OTS or MTS. However, this solution does not
includes the parametefheck. In this case, the applica- deal with the problem of loss of the outcome due, for ex-
tion server knows that we are in the presence of a re-ample, to middle-tier server crash. The work in [7] tackles
transmission of the same request from a client. There-the |atter issue by encapsulating within the same transac-
fore, we might take performance benefits by exploiting the tion both processing and the storage of the outcome at the
fact that a previous transmission of that same client reques client by means of cookies. This solution imposes the use
might have originated a transaction that has already beerof a distributed commit protocol, i.e. two-phase commit
committed. To discover whether the transaction was already(2pPC), since the client is required to be included within the
committed, the identifier of the client request is used by the houndaries of a distributed transaction. Therefore, iesel

2We note that assuming the client request identifier to be a pyikey on the exchange of prepare/vote messages among parties,

is a viable solution in practice. In case we can modify thelizta schema,  thus exhibiting larger communication/processing ovedhea
this primary key can be easily added. In case the schema istpretieed as compared to our protocol, in fact we do not include the

Figure 2. Application Server Behavior.

and not modifiable (e.g. legacy databases), as suggestefiimilé de- client within the transaction boundaries and we do not make
scribing supports for the testable transaction abstnactio external table use of 2PC
can be used. ) . .

3Given that the database server eventually recovers aftash,ca reply Several solutions based on the use of persistent queues

is eventually delivered to the application server. have also been proposed in literature [1, 2], which are com-



monly used in industrial mission critical applications and During this phase, the client sends, on a timeout basis, ter-
supported by standard middleware technology (e.g. JMSminate messages to the application servers until it reseive
in the J2EE architecture, Microsoft MQ and IBM MQ a reply indicating whether the transaction associated with
series). However, persistent queues are transactional rethe last issued request message has been committed or has
sources, whose updates must be performed within the saméeen rolled back. In case the client is notified of a rollback
transactional context in which the application data are ac-outcome, it can safely start a new round of interaction by
cessed. This needs coordination among several transacre-sending the request message with a different identifier
tional resources just through a distributed commit protoco to whichever application server. On the other hand, upon
(e.g. 2PC). Therefore, compared to our protocol, also B1thi the receipt of a terminate message, an application server
case the communication/processing overhead is higher.  forces a rollback operation on the database in order to en-
Message logging has also been used as a mean to resure the abort of the corresponding transaction, in case it
cover from failures in multi-tier systems [8]. A client logs Wwere still uncommitted. At this point the application serve
any request sent to the server, which also logs any requesgdetermines whether the transaction was already committed
received. This allows the server to reply to multiple in- by checking if the recovery information associated with the
stances of the same request from a client without producingtransaction is stored within the database. In the positive
side effects on the back-end database multiple times. Thecase, the application server retrieves the transactiaritres
server also logs read/write operations on the database, irfio be sent to the client.
order to deal with recovery of incomplete transaction pro-  For what concerns the impact of the different structure of
cessing. Differently from our proposal, this solution pri- the two protocols on the fail-over, we need to consider the
marily copes with statefull client/middle-tier applicatis, effect of the type of concurrency control used at the back-
e.g. like CAD or work-flow systems. Also, this solution end database. With PCC, the termination phase executed
needs to provide high availability of recovery information by the protocol in [4] might help system responsiveness.
(i.e. the logs of received requests and of read/write opera-This is because forced termination of a transaction, possi-
tions) over the middle-tier to handle the fail-over. Givhatt bly left pending due to crash of the application server tgkin
this is typically obtained through replication of the reeoy care of it, allows releasing the acquired locks. As a conse-
information, this protocol imposes some form of overhead quence, a new instance of the transaction will not be tem-
and exhibits reduced scalability because of the handling ofporarily blocked by a previous instance accessing the same
the coherency of the replicated information. We avoid such data within the database. Given that our protocol does not
a problem by maintaining the application servers (i.e. the rely on any forced termination, a new instance of the trans-
middle-tier) stateless. action associated with the client request could be blocked b
Frolund and Guerraoui have presented three different e-a pending previous instance until it experiences lock time-
Transaction protocols [3, 4, 5]. The solutions in [3, 5] are out for deadlock detection at the back-end database. On the
based on an explicit coordination scheme among the repli-other hand, with OCC our protocol is expected to provide
cas of the application server, so they have to pay an addi-better responsiveness while handling the fail-over. Speci
tional overhead due to coordination. As a consequence, theycally, a new instance of the transaction, originated by ¢he r
are mainly tailored for the case of replicas of the applarati  transmission of the client request upon timeout, can access
server hosted by a cluster environment, where the cost ofdata within the database with no additional delay caused by
coordination can be kept low thanks to low delivery latency a previous instance possibly left pending due to crash of the
of messages among the replicas. Since coordination amongpplication server taking care of it (this is because OCC al-
the replicas is not required in our protocol, we can avoid lows each transaction to execute without blocking data be-
that overhead at all, with performance benefits especially i ing read/written). Therefore, in this circumstance, we pay
case of high degree of replication of the application server no penalty possibly caused by the presence of a previous
and distribution of the replicas on a geographical scatg, e. pending instance of the transaction, and no penalty due to
like in ADNs. the end-to-end additional interaction required to supitart
Actually, the protocol in [4] is the closest one to our so- termination phase, as instead occurs for the protocol in [4]
lution since it does not need coordination among the repli-  As a last point, we note that forced rollback of pending
cas of the application server and relies on recording sometransactions, required by the protocol in [4] during the ter
recovery information (having the same content as the onemination phase, implies that explicit transaction demarca
used in our proposal) at the back-end database during the¢ion must be performed at the database server side. By the
processing of the transaction. However, the relevant dif- admission of the authors, this should be done through the
ference between this proposal and our protocol is that weXA standard API [12]. However, XA specifications pre-
use part of the content of the recovery information (i.e. the scribe that upon a rollback operation of a transaction asso-
client request identifier) as a primary key. This feature, in ciated with a given identifier, namely XID in the XA ter-
its turn, leads to a strong difference in the fail-over phase minology, the database system can reuse that XID value for
of the two protocols. Specifically, to maintain safety, the a successive transaction activation. Hence, if a terminate
solution in [4] does not allow the client to simply re-submit message were processed before the corresponding request
its request to a possibly different replica of the applmati  message in the protocol in [4], the latter message could pos-
server, as instead we admit in our protocol. The proposalsibly give rise to a transaction that gets eventually commit
in [4] ensures safety via a so called “termination” phase, ted. On the other hand, upon the receipt of the reply to a
to be executed upon timeout expiration at the client side. terminate message indicating the rollback of the previousl



issued request, the client would activate a new transaction depending on whether the transaction was already commit-
with a different XID, which could eventually get commit- ted upon the issue of the rollback request by the applica-
ted, thus leading to multiple updates at the database andion server to the database server. Actually, the real out-
violating safety. To prevent this problem, the authors sug- come is discovered by using the recovery information at the
gest to delay the processing of the terminate messages alatabase, which is accessed via a lookup phase. Our pro-
the application servers, so to enforce correct processing o tocol is based on a request transmission interaction, analo
der at the database (i.e. a rollback operation must be exegous to the one of the protocol in [4], shown in Figure 4.a,
cuted after the corresponding transaction was already acti and on a request retry interaction, shown in Figure 4.c. The
vated). Unfortunately, delaying the processing of terri@na retry interaction includes théieck parameter. This allows
messages would penalize the user perceived system resporchecking, again through a lookup phase, whether the trans-

siveness during the fail-over phase.

5 Performance Analysisand Results
In this section we concentrate on a quantitative compari-

son between our protocol and the solution presented in [4],

which, as previously discussed, is the closest one to our pro

posal. We focus on the analysis of the user perceived la-

tency. This is done through the introduction of relatively
simple analytical models suitable for comparing the two
protocols in a wide range of environmental settings. While
modeling protocol behaviors, we follow a bottom-up ap-
proach. Specifically, we first present a schematizationef th
main client-initiated interactions allowed by the two mrot

cols (e.g. a termination interaction in case of the protocol

action has been already committed before activating any
new instance. In the negative case, the new instance is acti-
vated, and the outcome is reported to the client. We denote
as P..mmq the probability that the application server finds
the transaction already committed during either the reiques
termination interaction in Figure 4.b for the protocol ifj [4

or during the request retry interaction in Figure 4.c for our
protocol. In other wordsP.,,..;¢ indicates the probabil-

ity that the lookup phase returns with an already estaldishe

result for the transaction. )
We can now derive expressions for the expected latency

of the request transmission interaction in Figure 4.a, @rop
of both protocols, which we denote d%.,, and the ex-
pected latency of both the request termination and retry in-
teractions (in Figure 4.b and in Figure 4.c, respectively),

in [4]). Latency models for those interactions are used aseach one proper of a specific protocol, which we denote as

building blocks for the construction of complete models for
the expected end-to-end latency at the client side. Wealeriv

the models assuming the back-end database provides OCC
which, as already pointed out in Section 4, is expected to

exalt the features of our proposal. This allows a quantifica-
tion of its potential when employed with settings it reveals
tailored for.

Models for Basic Client-Initiated Interactions. In this
paragraph, we provide latency models for the differentdasi
client-initiated interactions allowed by the protocol$ieEe

Tierm andly.q.ry. These expressions are:
Treq = RTTCL/AS + RTTAS/DB + Tcompute + Tins
Tierm = RTTgrjas + RTTas)pB + Trotiback + Tiookup
Tretry = RTTorjas + RTTas/pB + Tiookup +

+ (1 - Pcommit)[Tcompute + Tins] (3)
where: (i) Teompute IS the average time required to exe-
cute the transactional business logic. (i), is the av-
erage time required to log the recovery information at the

database. (ii)RTTcr a5 and RTTs/pp represent, re-
spectively, the average latency for a request/responee int

@
@)

models express mean latency values for interactions suc@ction between a client and an application server, and be-
cessfully completed with no timeout expiration at the diien tween an application server and the database server. (iv)

side (the effects of timeouts will be included while compos-

Trouvack 1S the time required for handling a forced rollback

ing these models to evaluate the whole end-to-end protocolreguest for a transaction. (¥),,x..,, represents the time for

latency perceived by the end user).

The protocol in [4] is based on a request transmission
interaction, as schematized in Figure 4% é@nd on a re-
guest termination interaction, as schematized in Figuse 4.

performing a lookup operation in the table maintaining the
recovery information.

We note that the expression f@f.,.,,, does not depend
on P.,.mit- This is because the termination phase for

(°). Note that the request termination interaction can end the protocol in [4] has the same pattern independently of

with either a commit or a rollback indication to the client,

4\We consider the case of transactional logic activated atiéttabase
via a single message from the application server, e.g. liketared pro-
cedures. This is done, without loss of generality, in oradeatoid the
introduction of an arbitrary delay in the model for the requemsmission
interaction caused by an arbitrary number of message exchaegeeen
application and database servers for the management of tieattional
logic. Similarly, the insertion of the recovery informatiare. the request
identifier and the result of SQL manipulations, is also managéun the
stored procedure at the database side.

5Note that no delay has been introduced within this intepadibr the
processing of the terminate request at the application seviéch, as dis-
cussed in Section 4, is required by the protocol in [4] to emsafety. This
choice derives from that no clear indication has been peaVigy the au-
thors on the delay value. However, we underline that omittirig delay
even favors the protocol in [4] in the comparative analysis.

whether the transaction the application server attempts to
terminate through forced rollback was already committed
or not. Anyway, as we shall show, the parame®ey,,,,.i:
plays a role in the expression for the whole end-to-end la-
tency provided by the protocol in [4] since, in case the ter-
mination phase finds the transaction not committed, a new
instance of request needs to be transmitted by the client.

End-to-end Latency Models. To build complete end-to-
end latency models for the two protocols we need to con-
sider timeout expiration at the client side. Actually, the
timeout mechanism can give rise to false failure suspicions
The accuracy of such an approach to failure detection can
be affected by a large number of factors, e.g. the choice of



. case of previous
instances not committed

client AS DB client AS B client AS DB

. case of a previous
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Figure 4. Basic Client-Initiated Interactions.

the timeout value with respect to the average system speed,

as well as the variance of the average system speed, and the [Teomzyte ¥ Tins [ Tiookup [ Trolipack ]
probability of failure of any process involved in the inter-

action. For simplicity, we abstract over these details, and ol *TTorsas | FTTas/pn
model the effects of timeout expiration by a single parame- Scenario B 150 5

ter Pro, namely the probability for a client to experience a ,

timeout during any client-initiated interaction. Figure 5. Parameter Values (msecs).

As a last preliminary observation, we note that
the typical behavior of a Web browser (contacting the fa
Web/application server through HTTP(S)) is to close the +Pro(TO+ Tiaiove,) ©
underlying TCP connection in case of timeout [11]. Hence, ~ T24777! = (1 — Pro)Treury + Pro(TO + TH 7o) (7)
while deriving end-to-end latency models, we consider the g, 020 of simple algebraic transformations and replace-
case in which the client-initiated interaction during wWhic . an45™\ve finally obtain the following expressions for the
timeout is experienced does not get eventually completedgng-to-end latency provided by the two protocols:
(just because the channel for the reply to the client is dose

upon timeout). ptg _ (L= Pro)Treq + Pro(TO + Tierm + =) ©
On the basis of the above considerations, we can express ©~  — 1— (1 — Peommit)Pro
the average user perceived latency for the considered-proto . ProTO
cols, which we denote @879 and7°* -, as follows: T = (1= Pro)Treq + Pro(TO + Tretry + 17— PTo) ®)
TF9 = (1= Pro)Treq + Pro(TO+T}%,,...) @ Parameter Treatment. In order to use realistic values for
Tour-prot — 1- PTO)Treq + Pro(TO + T;Z;;I;:;t) (5) Tcomputev /I’ins: Trollback and /I’look:up: we have developed

_ ) ) _ _ _ prototype implementations of (i) basic modules supporting
where: ()70 is the timeout value at the client side and (i) the actions required by the protocols at the database side,

Tf Jover @nd TJ?;‘ZTZ;Z’;T represent the expected latency for and of (ii) the Payment Transaction profile, specified by the
the fail-over phase of the two protocols. well known TPC BENCHMARK™ C [13]. The top table
By expressions (4) and (5), the timeout latefia9 and in Figure 5 lists the costs of the activity on the back-end

the latency for fail-over operations are experienced at thedatabase, which have been measured by running the Solid
client side only in case of timeout expiration, i.e. withpro ~ FlowEngine 4.0 DBMS [10] on top of a multi-processor
ability Pro. In case of no timeout, the user perceived la- server equipped with 4 Xeon 2.2 GHz, 4 GB of RAM and 2
tency simply consists of the time for a request transmission SCSI disks in RAID-0 configuration. The application logic
interaction”’.., as expressed in (1). was implemented in JAVAZ with stored procedure technol-

To complete the models, we have now to derive expres-0gy. Each FEDOFt(f?d vaIuIe, e:<hprtessed in msec%‘_,dls the a\{[erag:e

; fg our_prot ~ over a number of samples that ensures confidence interva
o T T Al s e S ML ST U S
For what concerns the parametefsl' T, 45 and

by the two protocols by simply composing client-initiated ;
interactions, among those modeled in the previous para-2L L4s/pp, We note that they are typically dependent on

graph, on a timeout basis. Specifically, the protocol in [4] the relative locations of clients, application servers and
lets the client activate request termination interactoms. ~ database server. In the analysis we consider the follow-
timeout basis until an outcome is notified to the client. In NG two classical scenarios for Web based transactional sys
case the outcome is rollback, the client selects a new requestems:

identifier and regenerates its initial behavior by activgi® ) ) o

new request transmission interaction. Instead, our pobtoc Scenario-A: Clients, application and database servers are

lets the client simply activate request retry interactionsl all geographically distributed and communicate with
one of them is eventually completed with positive outcome each other through the Internet.
for the transaction. As a consequence, the expected fail- . . .
over latencies can be expressed as follows: Scenario-B: Geographically spread clients, connected to
the application servers through the Internet. Applica-
T}cj”over = (1= Pro)[Trerm + (1 — Peommit)T19)] + tion and database servers residing either on the same



7fg_pourprot
Treq

LAN or on a geographically distributed infrastructure ~ 4or=

with low/controlled message delivery latency, e.g. a 120%
(private) dedicated WAN. oo
%
60%
The bottom table in Figure 5 shows the considered values 40% _
for RTTor a5 andRTT s/ pp in €ach scenario. L = ST
Pro andP,,,...:: have been left as independent param- o \,\I s Pro
eters in the performance study. This choice has been taken Peommie o 0250
mostly because the real value of these parameters might de- Figure 6. AOP for Scenario-A.

pend on a large set of unpredictable environmental factors
like, for example, (i) the ratio between the selected tinteou

Tf9 _qour_prot

AOP =
value and the current system speed (if for some reason, e.g. ° oot
host/network overload, the system speed gets reduced then 180%
we might get an increase in the likelihood of timeout) and 1200
(i) the likelihood for a failure to occur before the transac )
tion is committed at the database (in this case we need to 40%
re-execute the transaction during the fail-over) or afer t s =—=
commit, i.e. just while reporting the result to the client (i
this case the fail-over will simply retrieve the transantie- | Teommit .
sult to be communicated to the client). Therefore, the treat Figure 7. AOP for Scenario-B.

ment of Pro and P.,.,m:¢ @S independent parameters has
the advantage of allowing us not to exclude any possibility
for what concerns those environmental factors.

Finally, for bothScenario-A andScenario-B, the time-
out valueT'O has been set to 30 seconds.

slight growth of Pro, our protocol shows an overhead per-
centage of two order of magnitudes lower that the one in
[4]. Such a gain appears independently of the considered
scenario. However, fixed some specific values ip
~and P.ommit, the maximum reduction of the overhead per-
Results. We use the end-to-end latency models previ- centage thanks to our protocol is achieved Soenario-
ously presented to plot the Additional Overhead Percentageg  This phenomenon is due to the fact that, when mov-

(AOP), defined as follows: ing from Internet distribution of all the involved processe
Tfg _ pour_prot (i.e. Scenario-A) to the case of an infrastructure with
AOP = T T (10) lower communication latency among application servers

. _and database server (i.&cenario-B), the value ofT..,,

AOP represents the expected additional latency perceivecexpressing the end-to-end latency in case of normal behav-
by the end user when employing the protocol in [4] with re- jor (j.e. no timeout expiration at the client) gets reduced.
spect to the one provided by our proposal, normalized to theat the same time, the contribution of the Internet latency
expected latency’.., for a request transmission that nicely petween client and application servers still plays a releva
ends with no timeout expiration at the client side. ~ role for the protocol in [4] due to its impact on the termina-

In Figures 6 and 7 we report the AOP values respectively tion phase required by the protocol itself in case of timeout
for the two considered scenarios. While drawing, we let expiration. Hence, normalization of the difference of the
Pro vary from 0 to 0.1, selected as a reasonable interval. |atencies provided by the two protocols By., exalts the
The second independent parameter, nani@ly,.i:, has  performance of our protocol thanks to its avoidance of the
instead been varied in an interval centered around 0.5. Thisermination phase.
choice follows from that the likelihood for the lookup phase
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