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Abstract
In this work we present a protocol ensuring the e-

Transaction guarantee (i.e. a recently proposed end-to-end
reliability guarantee) in a Web based, three-tier transac-
tional system. The protocol does not need any coordina-
tion among the replicas of the application server, thus ex-
hibiting negligible overhead in normal behavior. Addition-
ally, it achieves highly efficient fail-over especially forthe
case of back-end database employing Optimistic Concur-
rency Control (OCC), namely a type of concurrency con-
trol well suited for data access performed via Web. We
also present a comparative discussion with existing solu-
tions and a quantitative analysis of the proposed protocol,
which clearly quantifies its benefits, in terms of reduced user
perceived latency, especially when employed in combina-
tion with OCC.

1 Introduction
The concept of “e-Transaction” (exactly-once Transac-

tion) has been recently introduced in [5] as a reasonable
form of end-to-end reliability guarantee for a three-tier
transactional system. In this paper we consider the case of
three-tier systems with centralized back-end database, and
propose an e-Transaction protocol that introduces negligible
overhead in failure free computation, and achieves highly
efficient fail-over especially in case the back-end database
employs Optimistic Concurrency Control (OCC). The lat-
ter aspect gives our protocol a practical relevance deriv-
ing from that OCC is expected to be more adequate than
Pessimistic Concurrency Control (PCC) for data access via
Web. Specifically, PCC is attractive when (i) there is non-
minimal data contention (i.e. the cost of protecting data
through locking is less than the cost of rolling back trans-
actions due to data conflicts) and (ii) time intervals locks
are applied are relatively short, so that data are promptly
available for other transactions [14]. This is typical of en-
vironments where data access is done by an array of ter-
minal operators, who perform operations on the database
on behalf of end users. On the other hand, Web applica-
tions make every browser a data entry clerk, therefore they
allow the final user to directly access personal or financial
information, or specific information of interest. As such
a user will likely access its own data, contention is likely
to be low. In addition, the time interval data are being
accessed is typically increased, as compared to what hap-
pens in case of data access performed by a terminal opera-
tor, especially in case of access through wireless devices,
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such as palms and WAP enabled devices, due to the re-
duced transmission rate on wireless channels. Therefore,
OCC (which does not employ locks), looks generally more
attractive. These are just some of the reasons why some re-
cent databases and platforms specifically tailored for Web
applications (e.g. Tamino XML Server, Solid FlowEngine,
Adabas D and Microsoft ADO .NET) encourage the use of
OCC for “long-running activities” such as when users are
remotely interacting with data via Web.

Our protocol mainly relies on the use of recovery infor-
mation, locally manipulated at the database side, to guar-
antee that the transaction associated with a client request
is committed exactly one time. Manipulation of the recov-
ery information does not require coordination among the
replicas of the application server, which do even not need
to know each other existence. Our proposal is therefore in-
herently scalable, and well suited for both local and geo-
graphic distribution of the application server replicas them-
selves. With respect to the latter point, we recall that geo-
graphic distribution, with a very high degree of replication
of the application servers hosting the transactional logic, is
representative of recent Internet infrastructures referred to
as Application Delivery Networks (ADNs), such as those
provided by Sandpiper, Akamai or Edgix. These infrastruc-
tures are a natural evolution of classical Content Delivery
Networks (CDNs), where the edge server has not only the
functionality to enhance the proximity of contents to clients,
but also to enhance the proximity between clients and the
application (business) logic. Hence, the fact that our pro-
tocol reveals adequate for this type of settings further con-
tributes to its practical relevance.

Beyond providing the description of the protocol, we
present a comparative discussion with existing proposals in
support of reliability and a quantitative analysis highlight-
ing advantages from our protocol in terms of user perceived
latency for a wide range of system settings.

The remainder of this paper is structured as follows. In
Section 2 the three-tier system model we consider is pre-
sented. Section 3 is devoted to the introduction of our e-
Transaction protocol. The comparative discussion with ex-
isting proposals is provided in Section 4. Section 5 is de-
voted to the quantitative analysis.

2 System Model
We consider a three-tier system where processes com-

municate through message exchange and can fail by crash-
ing. Communication channels between processes are reli-
able, therefore each message is eventually delivered unless
either the sender or the receiver crashes during the transmis-



sion.
Application servers have a primitivecompute, which

embeds the transactional logic for the interaction with the
database. This primitive is used to model the application
business logic while abstracting the implementation details,
such as SQL statements, needed to perform the data manip-
ulations requested by the client.compute executes the up-
dates on the database inside a transaction that is left uncom-
mitted, therefore the changes applied to data are not made
permanent as long as the database does not decide positively
on the outcome of the transaction. The result value returned
by the primitivecompute captures the output of the exe-
cution of the transactional logic at the database, which must
be communicated to the client. The primitivecompute re-
turns, together with the output of the execution of the trans-
actional logic, the identifier assigned by the database server
to the corresponding transaction.

The system back-end consists of a database server which
eventually recovers after a crash. The database server has a
primitive decide which can be used to invoke the com-
mitment of a pending transaction.decide returns com-
mit/rollback depending on the final decision the database
takes for the transaction, and any exception possibly raised
during the decision phase. Also, as in conventional database
technology, if the database server crashes while process-
ing a transaction, then, upon recovery, it does not recognize
that transaction as an active one. Therefore, if thedecide
primitive is invoked with an identifier associated with an
unrecognized transaction in input, then the return value of
this primitive is rollback.

The database offers a transaction abstraction called
“testable transaction”, originally presented in [4]. With
this abstraction, the database stores recovery information
that can be used to determine whether a given transaction
has already been committed. Specifically, each transaction
is associated with an identifier, which is stored within the
database as a part of the transaction execution itself, to-
gether with the result of the transaction. Hence, if the iden-
tifier is stored within the database, the corresponding trans-
action has already been committed. As in [4], we assume
the testable transaction abstraction is supported througha
primitive insert, available at the application servers, al-
lowing them to ask the database server to write the identifier
within the database together with the result obtained by the
execution of thecompute primitive. Finally, an additional
primitive lookup is used to retrieve the logged recovery
information.

3 The Protocol
The protocol we present ensures the following two prop-

erties synthesizing the e-Transaction problem as introduced
in [4, 5]: (i) The back-end database does not commit more
than one transaction for each client request (Safety- at most
once). (ii) If a client issues a request, then, unless it crashes,
it eventually receives a commit outcome for the correspond-
ing transaction, together with the result of the transaction
(Liveness- at least once) (1).

1According to the specification of liveness guarantees as proposed in
[4, 5], an e-Transaction protocol is not required to ensure liveness in the

issue(requestcontentreq){
1. generate a newid;
2. select an application serverAS;
3. setoutcome=ROLLBACK;
4. send Request[req,id] to AS;
5. while (outcome is not COMMIT){
6. await receive Outcome[outcome,res,id] or TIMEOUT;
7. if (TIMEOUT or outcome is not COMMIT){
8. select an application serverAS;
9. send Request[req,id,check] to AS;
10. } /* end if */
11. } /* end while */
12. return [COMMIT,res];
13.}

Figure 1. Client Behavior.

For space constraint we cannot report the protocol cor-
rectness proof wrt to the previously stated safety and live-
ness properties. The interested reader can find it in [9].

3.1 Client Behavior
The pseudo-code defining the client behavior is shown in

Figure 1. Within the functionissue, the client generates
an identifier associated with the request, selects one appli-
cation server and sends aRequest message to this server,
together with the request identifier. It then waits for the
reply. In case it receives commit as the outcome for the cor-
responding transaction,issue simply returns. In any other
case, it means that something wrong might have occurred.
Specifically: (i) Timeout expiration means that the applica-
tion server and/or the database server might have crashed.
(ii) Rollback outcome means instead that the database could
not commit the transaction, for example because of deci-
sions of the concurrency control mechanism. In both cases,
issue re-selects an application server (possibly different
from the last selected one) and re-sends theRequest mes-
sage to that application server. TheRequest message is
actually associated with the already selected request identi-
fier. Upon successive timeout expirations, the client keeps
on re-sending theRequest message (with that same iden-
tifier) until it receives the commit outcome. Each time the
client re-sends the request, it associates with theRequest
message an additional parameter, namelycheck, which no-
tifies to the application server that we are in the presence of
a re-transmission.

3.2 Application and Database Server Behaviors
The application server behavior is shown in Figure 2.

Two execution paths are possible depending on the param-
eters associated with the client request. Ifcheck is not in-
cluded in theRequest message, then the application server
invokes the primitivecompute to start a transaction on the
back-end database. The application server then attempts
to make changes on the database permanent by invoking
TestableTransaction. Within this function, the ap-
plication server first executesinsert, in order to store the
client request identifier within the database, together with
the result of the transaction. It then sends aDecide mes-
sage to the database server and waits for the outcome. This

presence of client crash. This is because the e-Transactionframework deals
with thin clients having no ability to maintain recovery information. This
reflects a representative aspect of current Web-based systems where access
to persistent storage at the client side can be (and usually is) precluded for
a variety of reasons. These range from privacy and security issues (e.g. to
contrast malicious and/or intrusive Web sites invasively delivering cook-
ies) to constraints on the available hardware (e.g. in case of applications
accessible through cell phones).



Application Server:
1. resulttyperes;
2. transactionidentifiertid;
3. while(true){
4. cobegin
5. :: await receive Request[req,id] from client;
6. [res,tid]=compute(req);
7. outcome=TestableTransaction(res,id);
8. send Outcome[outcome,res,id] to client;
9. :: await receive Request[req,id,check];
10. if ((res=lookup(id))!=nil){
11. send Outcome[COMMIT,res,id] to client;
12. end thread;
13. } /* end if */
14. [res,tid]=compute(req);
15. outcome=TestableTransaction(res,id);
16. send Outcome[outcome,res,id] to client;
17. } /* end while */

outcomeTestableTransaction(result typeres, requestidentifierid){
18. insert(res,id); /* whereid is a primary key */
19. repeat{
20. send Decide[tid] to the database server;
21. await receive Outcome[outcome,exception,tid] or TIMEOUT;
22 }until(message received);
23. if (exception.type = duplicated primary key exception){
24. set res=exception.result;
25. return COMMIT;
26. } /* end if */
27. return outcome;
28.}

Figure 2. Application Server Behavior.

same message is periodically re-sent in case of subsequent
timeout expirations.

We assume the client request identifier to be a primary
key for the database, which is the mechanism we adopt
to guarantee the safety property. Therefore, any attempt
to commit multiple transactions associated with the same
client request identifier is rejected by the database itself,
which is able to notify the rejection event by rising an ex-
ception. This makes the client request for updating data
within the database an idempotent operation, i.e. the request
can be safely re-transmitted multiple times to different ap-
plication servers (2).

Upon the receipt of theOutcome message in reply from
the database server (3), the flagexception is checked to de-
termine whether the same request identifier was already in
the database. In the positive instance, a transaction associ-
ated with that same client request has already been commit-
ted. As a result, the exception allows the application sever
to return anOutcome message with the commit indication
to the client together with the already established result.In
any other case (i.e.exception is not raised), the outcome
received by the database server is sent back to the client.
The outcome might be rollback, e.g., due to decisions of the
concurrency control mechanism.

A slightly different behavior is triggered at the applica-
tion server upon the receipt of aRequest message which
includes the parametercheck. In this case, the applica-
tion server knows that we are in the presence of a re-
transmission of the same request from a client. There-
fore, we might take performance benefits by exploiting the
fact that a previous transmission of that same client request
might have originated a transaction that has already been
committed. To discover whether the transaction was already
committed, the identifier of the client request is used by the

2We note that assuming the client request identifier to be a primary key
is a viable solution in practice. In case we can modify the database schema,
this primary key can be easily added. In case the schema is predetermined
and not modifiable (e.g. legacy databases), as suggested in [4] while de-
scribing supports for the testable transaction abstraction, an external table
can be used.

3Given that the database server eventually recovers after a crash, a reply
is eventually delivered to the application server.

Database Server:
1. while(true){
2. await receive Decide[tid] from an application server;
3. [outcome,exception]=decide(tid);
4. send Outcome[outcome,exception,tid] to the application server;
5. }

Figure 3. Database Server Behavior.

primitive lookup that simply verifies whether the identi-
fier itself has been already stored within the database. In
the positive case,lookup returns the result of the trans-
action, stored together with the identifier, and the appli-
cation server sends anOutcome message with commit to
the client together with the associated result. This might
help saving time and resources since neithercompute nor
TestableTransaction are executed. Otherwise, the
application server processes the request as if the parameter
check were absent, and returns to the client the outcome of
its interaction with the database.

The behavior of the database server is shown in Figure 3.
For simplicity we only show the relevant operations related
to transaction commitment, while skipping the data manip-
ulation associated with the business logic. This server waits
for a Decide message from an application server which
asks to take a final decision for a transaction associated with
a giventid, and then attempts to make the transaction up-
dates permanent through thedecide primitive. The final
result (commit/rollback) is then sent back to the application
server, together with theexception, possibly indicating the
attempt to duplicate a primary key (i.e. the identifier of the
client request) within the database. Recall that, as stated
in Section 2, in case the parametertid passed in input to
the primitivecompute is associated with an unrecognized
transaction (recall this might happen in case the database
server has crashed after the activation of that transaction
and then has recovered before receiving theDecide mes-
sage from the application server), this primitive returns a
rollback outcome.

4 Related Work and Discussion
A typical solution for providing reliability consists of en-

capsulating the processing of the client request within an
atomic transaction to be performed by the middle-tier (ap-
plication) server [6]. This is the approach taken, for ex-
ample, by Transaction Monitors or Object Transaction Ser-
vices such as OTS or MTS. However, this solution does not
deal with the problem of loss of the outcome due, for ex-
ample, to middle-tier server crash. The work in [7] tackles
the latter issue by encapsulating within the same transac-
tion both processing and the storage of the outcome at the
client by means of cookies. This solution imposes the use
of a distributed commit protocol, i.e. two-phase commit
(2PC), since the client is required to be included within the
boundaries of a distributed transaction. Therefore, it relies
on the exchange of prepare/vote messages among parties,
thus exhibiting larger communication/processing overhead
as compared to our protocol, in fact we do not include the
client within the transaction boundaries and we do not make
use of 2PC.

Several solutions based on the use of persistent queues
have also been proposed in literature [1, 2], which are com-



monly used in industrial mission critical applications and
supported by standard middleware technology (e.g. JMS
in the J2EE architecture, Microsoft MQ and IBM MQ
series). However, persistent queues are transactional re-
sources, whose updates must be performed within the same
transactional context in which the application data are ac-
cessed. This needs coordination among several transac-
tional resources just through a distributed commit protocol
(e.g. 2PC). Therefore, compared to our protocol, also in this
case the communication/processing overhead is higher.

Message logging has also been used as a mean to re-
cover from failures in multi-tier systems [8]. A client logs
any request sent to the server, which also logs any request
received. This allows the server to reply to multiple in-
stances of the same request from a client without producing
side effects on the back-end database multiple times. The
server also logs read/write operations on the database, in
order to deal with recovery of incomplete transaction pro-
cessing. Differently from our proposal, this solution pri-
marily copes with statefull client/middle-tier applications,
e.g. like CAD or work-flow systems. Also, this solution
needs to provide high availability of recovery information
(i.e. the logs of received requests and of read/write opera-
tions) over the middle-tier to handle the fail-over. Given that
this is typically obtained through replication of the recovery
information, this protocol imposes some form of overhead
and exhibits reduced scalability because of the handling of
the coherency of the replicated information. We avoid such
a problem by maintaining the application servers (i.e. the
middle-tier) stateless.

Frolund and Guerraoui have presented three different e-
Transaction protocols [3, 4, 5]. The solutions in [3, 5] are
based on an explicit coordination scheme among the repli-
cas of the application server, so they have to pay an addi-
tional overhead due to coordination. As a consequence, they
are mainly tailored for the case of replicas of the application
server hosted by a cluster environment, where the cost of
coordination can be kept low thanks to low delivery latency
of messages among the replicas. Since coordination among
the replicas is not required in our protocol, we can avoid
that overhead at all, with performance benefits especially in
case of high degree of replication of the application server
and distribution of the replicas on a geographical scale, e.g.
like in ADNs.

Actually, the protocol in [4] is the closest one to our so-
lution since it does not need coordination among the repli-
cas of the application server and relies on recording some
recovery information (having the same content as the one
used in our proposal) at the back-end database during the
processing of the transaction. However, the relevant dif-
ference between this proposal and our protocol is that we
use part of the content of the recovery information (i.e. the
client request identifier) as a primary key. This feature, in
its turn, leads to a strong difference in the fail-over phase
of the two protocols. Specifically, to maintain safety, the
solution in [4] does not allow the client to simply re-submit
its request to a possibly different replica of the application
server, as instead we admit in our protocol. The proposal
in [4] ensures safety via a so called “termination” phase,
to be executed upon timeout expiration at the client side.

During this phase, the client sends, on a timeout basis, ter-
minate messages to the application servers until it receives
a reply indicating whether the transaction associated with
the last issued request message has been committed or has
been rolled back. In case the client is notified of a rollback
outcome, it can safely start a new round of interaction by
re-sending the request message with a different identifier
to whichever application server. On the other hand, upon
the receipt of a terminate message, an application server
forces a rollback operation on the database in order to en-
sure the abort of the corresponding transaction, in case it
were still uncommitted. At this point the application server
determines whether the transaction was already committed
by checking if the recovery information associated with the
transaction is stored within the database. In the positive
case, the application server retrieves the transaction result
to be sent to the client.

For what concerns the impact of the different structure of
the two protocols on the fail-over, we need to consider the
effect of the type of concurrency control used at the back-
end database. With PCC, the termination phase executed
by the protocol in [4] might help system responsiveness.
This is because forced termination of a transaction, possi-
bly left pending due to crash of the application server taking
care of it, allows releasing the acquired locks. As a conse-
quence, a new instance of the transaction will not be tem-
porarily blocked by a previous instance accessing the same
data within the database. Given that our protocol does not
rely on any forced termination, a new instance of the trans-
action associated with the client request could be blocked by
a pending previous instance until it experiences lock time-
out for deadlock detection at the back-end database. On the
other hand, with OCC our protocol is expected to provide
better responsiveness while handling the fail-over. Specifi-
cally, a new instance of the transaction, originated by the re-
transmission of the client request upon timeout, can access
data within the database with no additional delay caused by
a previous instance possibly left pending due to crash of the
application server taking care of it (this is because OCC al-
lows each transaction to execute without blocking data be-
ing read/written). Therefore, in this circumstance, we pay
no penalty possibly caused by the presence of a previous
pending instance of the transaction, and no penalty due to
the end-to-end additional interaction required to supportthe
termination phase, as instead occurs for the protocol in [4].

As a last point, we note that forced rollback of pending
transactions, required by the protocol in [4] during the ter-
mination phase, implies that explicit transaction demarca-
tion must be performed at the database server side. By the
admission of the authors, this should be done through the
XA standard API [12]. However, XA specifications pre-
scribe that upon a rollback operation of a transaction asso-
ciated with a given identifier, namely XID in the XA ter-
minology, the database system can reuse that XID value for
a successive transaction activation. Hence, if a terminate
message were processed before the corresponding request
message in the protocol in [4], the latter message could pos-
sibly give rise to a transaction that gets eventually commit-
ted. On the other hand, upon the receipt of the reply to a
terminate message indicating the rollback of the previously



issued request, the client would activate a new transaction,
with a different XID, which could eventually get commit-
ted, thus leading to multiple updates at the database and
violating safety. To prevent this problem, the authors sug-
gest to delay the processing of the terminate messages at
the application servers, so to enforce correct processing or-
der at the database (i.e. a rollback operation must be exe-
cuted after the corresponding transaction was already acti-
vated). Unfortunately, delaying the processing of terminate
messages would penalize the user perceived system respon-
siveness during the fail-over phase.

5 Performance Analysis and Results
In this section we concentrate on a quantitative compari-

son between our protocol and the solution presented in [4],
which, as previously discussed, is the closest one to our pro-
posal. We focus on the analysis of the user perceived la-
tency. This is done through the introduction of relatively
simple analytical models suitable for comparing the two
protocols in a wide range of environmental settings. While
modeling protocol behaviors, we follow a bottom-up ap-
proach. Specifically, we first present a schematization of the
main client-initiated interactions allowed by the two proto-
cols (e.g. a termination interaction in case of the protocol
in [4]). Latency models for those interactions are used as
building blocks for the construction of complete models for
the expected end-to-end latency at the client side. We derive
the models assuming the back-end database provides OCC,
which, as already pointed out in Section 4, is expected to
exalt the features of our proposal. This allows a quantifica-
tion of its potential when employed with settings it reveals
tailored for.

Models for Basic Client-Initiated Interactions. In this
paragraph, we provide latency models for the different basic
client-initiated interactions allowed by the protocols. These
models express mean latency values for interactions suc-
cessfully completed with no timeout expiration at the client
side (the effects of timeouts will be included while compos-
ing these models to evaluate the whole end-to-end protocol
latency perceived by the end user).

The protocol in [4] is based on a request transmission
interaction, as schematized in Figure 4.a (4), and on a re-
quest termination interaction, as schematized in Figure 4.b
(5). Note that the request termination interaction can end
with either a commit or a rollback indication to the client,

4We consider the case of transactional logic activated at thedatabase
via a single message from the application server, e.g. like instored pro-
cedures. This is done, without loss of generality, in order to avoid the
introduction of an arbitrary delay in the model for the request transmission
interaction caused by an arbitrary number of message exchanges between
application and database servers for the management of the transactional
logic. Similarly, the insertion of the recovery information,i.e. the request
identifier and the result of SQL manipulations, is also managedwithin the
stored procedure at the database side.

5Note that no delay has been introduced within this interaction for the
processing of the terminate request at the application server, which, as dis-
cussed in Section 4, is required by the protocol in [4] to ensure safety. This
choice derives from that no clear indication has been provided by the au-
thors on the delay value. However, we underline that omittingthis delay
even favors the protocol in [4] in the comparative analysis.

depending on whether the transaction was already commit-
ted upon the issue of the rollback request by the applica-
tion server to the database server. Actually, the real out-
come is discovered by using the recovery information at the
database, which is accessed via a lookup phase. Our pro-
tocol is based on a request transmission interaction, analo-
gous to the one of the protocol in [4], shown in Figure 4.a,
and on a request retry interaction, shown in Figure 4.c. The
retry interaction includes thecheck parameter. This allows
checking, again through a lookup phase, whether the trans-
action has been already committed before activating any
new instance. In the negative case, the new instance is acti-
vated, and the outcome is reported to the client. We denote
asPcommit the probability that the application server finds
the transaction already committed during either the request
termination interaction in Figure 4.b for the protocol in [4]
or during the request retry interaction in Figure 4.c for our
protocol. In other words,Pcommit indicates the probabil-
ity that the lookup phase returns with an already established
result for the transaction.

We can now derive expressions for the expected latency
of the request transmission interaction in Figure 4.a, proper
of both protocols, which we denote asTreq, and the ex-
pected latency of both the request termination and retry in-
teractions (in Figure 4.b and in Figure 4.c, respectively),
each one proper of a specific protocol, which we denote as
Tterm andTretry. These expressions are:

Treq = RTTCL/AS + RTTAS/DB + Tcompute + Tins (1)

Tterm = RTTCL/AS + RTTAS/DB + Trollback + Tlookup (2)

Tretry = RTTCL/AS + RTTAS/DB + Tlookup +

+ (1 − Pcommit)[Tcompute + Tins] (3)

where: (i)Tcompute is the average time required to exe-
cute the transactional business logic. (ii)Tins is the av-
erage time required to log the recovery information at the
database. (iii)RTTCL/AS andRTTAS/DB represent, re-
spectively, the average latency for a request/response inter-
action between a client and an application server, and be-
tween an application server and the database server. (iv)
Trollback is the time required for handling a forced rollback
request for a transaction. (v)Tlookup represents the time for
performing a lookup operation in the table maintaining the
recovery information.

We note that the expression forTterm does not depend
on Pcommit. This is because the termination phase for
the protocol in [4] has the same pattern independently of
whether the transaction the application server attempts to
terminate through forced rollback was already committed
or not. Anyway, as we shall show, the parameterPcommit

plays a role in the expression for the whole end-to-end la-
tency provided by the protocol in [4] since, in case the ter-
mination phase finds the transaction not committed, a new
instance of request needs to be transmitted by the client.

End-to-end Latency Models. To build complete end-to-
end latency models for the two protocols we need to con-
sider timeout expiration at the client side. Actually, the
timeout mechanism can give rise to false failure suspicions.
The accuracy of such an approach to failure detection can
be affected by a large number of factors, e.g. the choice of
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Figure 4. Basic Client-Initiated Interactions.

the timeout value with respect to the average system speed,
as well as the variance of the average system speed, and the
probability of failure of any process involved in the inter-
action. For simplicity, we abstract over these details, and
model the effects of timeout expiration by a single parame-
terPTO, namely the probability for a client to experience a
timeout during any client-initiated interaction.

As a last preliminary observation, we note that
the typical behavior of a Web browser (contacting the
Web/application server through HTTP(S)) is to close the
underlying TCP connection in case of timeout [11]. Hence,
while deriving end-to-end latency models, we consider the
case in which the client-initiated interaction during which
timeout is experienced does not get eventually completed
(just because the channel for the reply to the client is closed
upon timeout).

On the basis of the above considerations, we can express
the average user perceived latency for the considered proto-
cols, which we denote asT fg andT our prot, as follows:

T
fg = (1 − PTO)Treq + PTO(TO + T

fg
failover

) (4)

T
our prot = (1 − PTO)Treq + PTO(TO + T

our prot
failover

) (5)

where: (i)TO is the timeout value at the client side and (ii)
T

fg
failover andT

our prot
failover represent the expected latency for

the fail-over phase of the two protocols.
By expressions (4) and (5), the timeout latencyTO and

the latency for fail-over operations are experienced at the
client side only in case of timeout expiration, i.e. with prob-
ability PTO. In case of no timeout, the user perceived la-
tency simply consists of the time for a request transmission
interactionTreq as expressed in (1).

To complete the models, we have now to derive expres-
sions forT fg

failover andT
our prot
failover . Actually, these expres-

sions can be derived by thinking that fail-over is supported
by the two protocols by simply composing client-initiated
interactions, among those modeled in the previous para-
graph, on a timeout basis. Specifically, the protocol in [4]
lets the client activate request termination interactionson a
timeout basis until an outcome is notified to the client. In
case the outcome is rollback, the client selects a new request
identifier and regenerates its initial behavior by activating a
new request transmission interaction. Instead, our protocol
lets the client simply activate request retry interactionsuntil
one of them is eventually completed with positive outcome
for the transaction. As a consequence, the expected fail-
over latencies can be expressed as follows:

T
fg
failover

= (1 − PTO)[Tterm + (1 − Pcommit)T
fg)] +

Tcompute + Tins Tlookup Trollback
47.30 1.42 0.55

RT TCL/AS RT TAS/DB
Scenario A 150 150
Scenario B 150 5

Figure 5. Parameter Values (msecs).

+ PTO(TO + T
fg
failover

) (6)

T
our prot
failover

= (1 − PTO)Tretry + PTO(TO + T
our prot
failover

) (7)

By means of simple algebraic transformations and replace-
ments, we finally obtain the following expressions for the
end-to-end latency provided by the two protocols:

T
fg =

(1 − PTO)Treq + PTO(TO + Tterm + PT OTO
1−PT O

)

1 − (1 − Pcommit)PTO
(8)

T
our prot = (1 − PTO)Treq + PTO(TO + Tretry +

PTOTO

1 − PTO
) (9)

Parameter Treatment. In order to use realistic values for
Tcompute, Tins, Trollback andTlookup, we have developed
prototype implementations of (i) basic modules supporting
the actions required by the protocols at the database side,
and of (ii) the Payment Transaction profile, specified by the
well known TPC BENCHMARKTM C [13]. The top table
in Figure 5 lists the costs of the activity on the back-end
database, which have been measured by running the Solid
FlowEngine 4.0 DBMS [10] on top of a multi-processor
server equipped with 4 Xeon 2.2 GHz, 4 GB of RAM and 2
SCSI disks in RAID-0 configuration. The application logic
was implemented in JAVA2 with stored procedure technol-
ogy. Each reported value, expressed in msec, is the average
over a number of samples that ensures confidence interval
of 10% around the mean at the 95% confidence level.

For what concerns the parametersRTTCL/AS and
RTTAS/DB, we note that they are typically dependent on
the relative locations of clients, application servers and
database server. In the analysis we consider the follow-
ing two classical scenarios for Web based transactional sys-
tems:

Scenario-A: Clients, application and database servers are
all geographically distributed and communicate with
each other through the Internet.

Scenario-B: Geographically spread clients, connected to
the application servers through the Internet. Applica-
tion and database servers residing either on the same



LAN or on a geographically distributed infrastructure
with low/controlled message delivery latency, e.g. a
(private) dedicated WAN.

The bottom table in Figure 5 shows the considered values
for RTTCL/AS andRTTAS/DB in each scenario.

PTO andPcommit have been left as independent param-
eters in the performance study. This choice has been taken
mostly because the real value of these parameters might de-
pend on a large set of unpredictable environmental factors
like, for example, (i) the ratio between the selected timeout
value and the current system speed (if for some reason, e.g.
host/network overload, the system speed gets reduced then
we might get an increase in the likelihood of timeout) and
(ii) the likelihood for a failure to occur before the transac-
tion is committed at the database (in this case we need to
re-execute the transaction during the fail-over) or after the
commit, i.e. just while reporting the result to the client (in
this case the fail-over will simply retrieve the transaction re-
sult to be communicated to the client). Therefore, the treat-
ment ofPTO andPcommit as independent parameters has
the advantage of allowing us not to exclude any possibility
for what concerns those environmental factors.

Finally, for bothScenario-A andScenario-B, the time-
out valueTO has been set to 30 seconds.

Results. We use the end-to-end latency models previ-
ously presented to plot the Additional Overhead Percentage
(AOP), defined as follows:

AOP =
T fg

− T our prot

Treq
(10)

AOP represents the expected additional latency perceived
by the end user when employing the protocol in [4] with re-
spect to the one provided by our proposal, normalized to the
expected latencyTreq for a request transmission that nicely
ends with no timeout expiration at the client side.

In Figures 6 and 7 we report the AOP values respectively
for the two considered scenarios. While drawing, we let
PTO vary from 0 to 0.1, selected as a reasonable interval.
The second independent parameter, namelyPcommit, has
instead been varied in an interval centered around 0.5. This
choice follows from that the likelihood for the lookup phase
to return an already established result, or a null value, re-
spectively, depends on whether the lookup primitive is exe-
cuted before, or after, the commit of the transaction associ-
ated with the previously issued request. Given that failures
or overloads might occur at any time instant, it is reason-
able that the lookup phase equally likely returns with either
an already established result for the transaction or a null
result indicating that the transaction was not already com-
mitted, which it the reason why the observation interval for
Pcommit is centered around the value 0.5. The dotted lines
on the surfaces are level curves and are traced at the distance
of 10% of AOP.

The plotted surfaces show similar shapes, indicating that
the protocol in [4] exhibits significant additional overhead
(i.e. of at least of 25%), as compared to our proposal, as
soon as we have minimal likelihood of timeout expiration
at the client side. On the other hand, with an additional
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Figure 6. AOP for Scenario-A.
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Figure 7. AOP for Scenario-B.

slight growth ofPTO, our protocol shows an overhead per-
centage of two order of magnitudes lower that the one in
[4]. Such a gain appears independently of the considered
scenario. However, fixed some specific values forPTO

andPcommit, the maximum reduction of the overhead per-
centage thanks to our protocol is achieved forScenario-
B. This phenomenon is due to the fact that, when mov-
ing from Internet distribution of all the involved processes
(i.e. Scenario-A) to the case of an infrastructure with
lower communication latency among application servers
and database server (i.e.Scenario-B), the value ofTreq,
expressing the end-to-end latency in case of normal behav-
ior (i.e. no timeout expiration at the client) gets reduced.
At the same time, the contribution of the Internet latency
between client and application servers still plays a relevant
role for the protocol in [4] due to its impact on the termina-
tion phase required by the protocol itself in case of timeout
expiration. Hence, normalization of the difference of the
latencies provided by the two protocols byTreq exalts the
performance of our protocol thanks to its avoidance of the
termination phase.
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