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Abstract

Software Transactional Memory (STM) systems have emergeal gowerful paradigm to de-
velop concurrent applications. At current date, however groblem of how to build distributed and
replicated STMs to enhand®th dependability and performance is still largely unexplordthis
paper fills this gap by presenting?BTM, a replicated STM that makes use of the computing re-
sources available at multiple nodes of a distributed sysfEine consistency of the replicated STM
is ensured in a transparent manner, even in the presenciéuoé$a In ’STM transactions are au-
tonomously processed on each node, avoiding any repliea@mmunication during transaction
execution, and without incurring in deadlocks. Strong éteacy is enforced at transaction commit
time by a non-blocking distributed certification schemejolitwe name BFC (Bloom Filter Certifi-
cation). BFC exploits a novel Bloom Filter-based encodireghanism that permits to significantly
reduce the overheads of replica coordination at the cosuskatunable increase in the probability
of transaction abort. Through an extensive experimentalsbased on standard STM benchmarks
we show that the BFC scheme permits to achieve remarkabigrpemce gains even for negligible

(e.g. 1%) increases of the transaction abort rate.

Keywords: Dependability, Software Transactional Memory, ReplmatiBloom Filters

1 Introduction

Software Transactional Memory (STM) systems have emergedpwerful paradigm to develop con-
current applications [23, 21, 17]. When using STMs, the m@ogner is not required to deal explicitly

with concurrency control mechanisms. Instead, she hastoritientify the sequence of instructions, or
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transactions that need to access and modify concurrent objects atdgmiéa a result, the reliability of
the code increases and the software development time ieskdc

While the study of STMs has garnered significant interest, piftoblem of architecting distributed
STMs has started to receive the required attention only regntly [31, 8, 28]. Furthermore, the solu-
tions proposed so far have not addressed the important adddw@v to leverage replication not only to
improve performance, but also to enhance dependabilitis iHhowever a central aspect of distributed
STM design, as the probability of failures increases withtlamber of nodes and becomes impossible
to ignore in large clusters (composed of hundreds of nodps $Bong consistency and fault-tolerance
guarantees are also essential when STMs are used to intheasibustness of classic service-oriented
applications. This is the case, for instance, of the Fenl¥Epstem [13], a complex web-based Cam-
pus activity management system that is currently used iarag¥ortuguese universities. FenixEDU
extensively relies on STM technology for transactionallgmpulating the in-memory state of its (J2EE
compliant) application server. Providing critical sepgc(such as students’ grading or research funds
management) to a population of more than 14000 users, theE2d system deployed at the IST Cam-
pus of Lisbon is one of the main drivers of our research in testjfor efficient and scalable replication
mechanisms [10].

This paper addresses the problems above by introduci&d B, a Dependable Distributed Software
Transactional Memory that allows programmers to leveragéhe computing resources available in a
cluster environment, using a conventional STM interfa@ndparently ensuring non-blocking and strong
consistency guarantees even in the case of failures.

The replica synchronization scheme employed #8DM is inspired by recent database replication
approaches [35, 26, 34], where replica consistency is astiithrough a distributed certification proce-
dure which, in turn, leverages on the properties of an AtoBrmadcast [16] primitive. Unlike classic
eager replication schemes (based on fine-grained digtddotking and atomic commit), that suffer of
large communication overheads and fall prey of distributeddlocks [18], certification based schemes
avoid any onerous replica coordination during the exeaugibase, running transactions locally in an
optimistic fashion. The consistency of replicas (typigall-Copy serializability) is ensured at commit-
time, via a distributed certification phase that uses a sidgbmic Broadcast to enforce agreement on
a common transaction serialization order, avoiding distad deadlocks, and providing non-blocking
guarantees in the presence of (a minority of) replica faguiFurthermore, unlike classic read-one/write-
all approaches that require the full execution of updatestrations at all replicas [6], only one replica
executes an update transactions, whereas the remainiigagegre only required to validate the transac-
tion and to apply the resulting updates. This allows to aehiégh scalability levels even in the presence
of write-dominated workloads, as long as the transactiaflicb rate remains moderate [35].

For the reasons above, certification based replicatiomseb@ppear attractive to apply in the STM



context. Unfortunately, as previously observed in [38]d(@onfirmed by the experimental results pre-
sented later in this paper), the overhead of previouslyightl Atomic Broadcast based certification
schemes can be particularly detrimental in STM environsielnt fact, unlike in classical database sys-
tems, STMs incur neither in disk access latencies nor intkeneads of SQL statement parsing and plan
optimization. This makes the execution time of typical STihsactions normally much shorter than in
database settings [38] and leads to a corresponding arapbficof the overhead of inter-replica coordi-
nation costs. To tackle this issue?®TM, leverages a novel transaction certification procecaened
BFC (Bloom Filter Certification), which takes advantage space-efficient Bloom Filter-based encod-
ing to significantly reduce the overhead of the distributedification scheme at the cost of a marginal,
and user configurable, increase of the transaction abdsapility.

D2STM is built on top of JVSTM[12], an efficient STM library thatipports multi-version concur-
rency control and, as a result, offers excellent perforradic read-only transactions. 28TM takes
full advantage of the JVSTM'’s multi-versioning scheme l&hing read-only transactions from the pos-
sibility of aborts due both to local or remote conflicts. Tingh an extensive experimental evaluation,
based on both synthetic micro-benchmarks, as well as cong§ii& benchmarks we show thatBTM
permits to achieve significant performance gains at theafasmarginal growth of the abort rate.

The rest of this paper is organized as follows. Section 2udses related work. A formal descrip-
tion of the considered system model and of the consisteritsriarensured by BSTM is provided in
Section 3, whereas Section 4 overviews the whole architectithe STM system and discusses the
issues related to the integration of JVSTM withiRSXM. The BFC scheme is presented in Section 5
and Section 6 presents the results of our experimental aiatustudy. Finally, Section 7 concludes the

paper.

2 Related Work

In this section we briefly survey related research. We begamalyzing the main design choices of exist-

ing distributed STM systems, critically highlighting thenain drawbacks from both the fault-tolerance

and performance perspectives. Next we review recent titeraon database replication schemes, dis-
cussing pros and cons of these approaches when adopted stributed STM context. Finally, we

discuss other works related t¢8TM in a wider sense.

2.1 Distributed STMs

The only distributed STM solutions we are aware of are tho§2d, 8, 31]. As already noted in the intro-
duction, unlike STM, none of these solutions leverages on replication iemia ensure cluster-wide

consistency and availability in scenarios of failures,alufe suspicions. While it could be possible to



somehow extend the distributed STM solutions proposedasehvorks with orthogonal fault-tolerance
mechanisms, this is far from being a trivial task and, peshrapre importantly, the overhead associated
with these additional mechanisms could seriously hampesr frerformance. In BSTM, on the other
hand, dependability is seen as a first class design goalhen8TtM performance is optimized through
a holistic approach that tightly integrates low level faolerance schemes (such as Atomic Broadcast)
with a novel, highly efficient distributed transaction deration scheme.

In the following, we critically highlight the most relevadtifferences, from a performance oriented
perspective, of the replica coherency schemes adoptedebgfttementioned schemes with respect
to D?’STM during failure-free runs. The work in[31] exploits theansiltaneous presence of differ-
ent versions of the same transactional dataset across filiease to implement a distributed multi-
versioning scheme (DMV). Like centralized multi-versiooncurrency control schemes [6] (including
JVSTM[12]), DMV allows read-only transactions to be execlutn parallel with conflicting updating
transactions. This is achieved by ensuring that the forsable to access older, committed snapshots
of the dataset. However, in DMV each replica maintains ongingle version of each data granule,
and explicitly delays applying (local or remote) updatesnrease the chance of not having to inval-
idate the snapshot of currently active read-only transasti(and to consequently abort them). This
allows DMV to avoid maintaining multiple versions of the samata at each node, unlike in conven-
tional multi-version concurrency control solutions (altigh DMV requires buffering the updates of not
yet applied transactions). On the other hand, while m@tsion concurrency control solutions pro-
vide deterministic guarantees on the absence of aborte&m-only transactions, the effectiveness of
the DMV scheme depends on the timing of the concurrent aesdssdata by conflicting transactions
(actually, with DMV a read-only transaction may be abortésb alue to the concurrent execution of
“younger”, local read-only transaction). Optimizing therfwrmance of read-only transactions, which
largely dominate in many realistic workloads, is an impeirtdesign goal common to both DMV and
D2STM. However, BSTM relies on a multi-versioned STM, namely JVSTM, which ntains a suf-
ficient number of versions of each transactionalized data ih order toguaranteethat no read-only
transaction is ever aborted. Further, this is done in amamtous manner by the local STM, in a trans-
parent manner for the replication logic, greatly simplifyithe design and implementation of the whole
system. Another significant difference betweetSIDM and DMV is in that the latter requires each com-
mitting transaction to acquire a cluster-wide unique tokehich globally serializes the commit phases
of transactions. Unfortunately, given that committing ansaction imposes a two communication step
synchronization phase (for updates propagation), thentakquisition phase can introduce considerable
overhead and seriously hamper performance [28]. ConyeliseD?STM the Atomic Broadcast-based
replica coordination phase can be executed in full conogyréoy the various replicas, which are re-

quired to sequentially execute only the local transactialidation phase aimed at verifying whether a



committing transaction must be aborted due to some conflict.

The work in[28] does not rely on multi-versioning schemas, Bnalogously to the one in [31], re-
lies on a distributed mutual exclusion mechanism schemeaudlexclusion is aimed at ensuring that at
any time there are no two replicas attempting to simultaslyaztommitconflictingtransactions. The use
of multiple leases, based on the actual datasets accessehggctions, permits to partially alleviate the
performance problems incurred by the serialization of thele (distributed) commit phase. However,
this phase may still become a bottleneck with conflict intengvorkloads. As already discussed, this
problem is completely circumvented i?BTM thanks to the use of an Atomic Broadcast based certi-
fication procedure. Additionally, in [28] the lease estsifathent mechanism is coordinated by a single,
centralized, node which is likely to become a performandddreck for the whole system as the num-
ber of replicas increase; In fact, the experimental evadnan [28] relies on a dedicated node for lease
management and does not report results for more than folicagsp

Finally, Cluster-STM, presented in[8], focuses on the fobof how to partition the dataset across
the nodes of a large scale distributed Software Transaadtigiemory. This is achieved by assigning
to each data item a home node, which is responsible for niaiimggthe authoritative version (and
the associated metadata) of the data item. The home nodsoisnatharge of synchronizing the ac-
cesses of conflicting remote transactions. In[8] any cagchbinreplication scheme is totally delegated
to the application level, which has then to take explicitijoi account the issues related to data fetching
and distribution, with an obvious increase in the complegitthe application development. Currently,
D2STM only provides support for total replication of the traoonal dataset (even though leveraging
transparent, selective replication of data across thesogjgresents part of our future work). On the
other hand, BSTM provides programmers with the powerful abstractioningle system image, which
permits to port applications previously running on top ohrbstributed STMs with minimal modifi-
cations. Further, Cluster-STM treats the processors a$ seflanot distinguishing between processors
within a node and processors across nodes, and not exgltigravailability of shared memory between
multiple cores/processors on each replica to speed upnotta communication. Finally, Cluster-STM
does not exploit a multi-versioning local concurrency colio maximize the performance of read-only
transactions, and is constrained to run only a single thieaglach processor. Being layered on top of a

fully fledged, multi-version STM, BSTM overcomes all of the above limitations.

2.2 Database Replication

The problem of replicating a STM is naturally closely rethte the problem of database replication,
given that both STMs and DBs share the same key abstractiatoofic transactions. The fulcrum of
modern database replication schemes [35, 34, 15, 2, 26} igliance on an Atomic Broadcast (ABcast)
primitive [16, 20], typically provided by some Group Comnieation System (GCS) [33, 4]. ABcast



plays a key role to enforce, in a non-blocking manner, a dgloshasaction serialization order without in-
curring in the scalability problems affecting classicayeareplication mechanisms based on distributed
locking and atomic commit protocols, which require muchrfigeained coordination and fall prey of
deadlocks [18]. Existing ABcast-based database repicdiierature can be coarsely classified in two
main categories, depending on whether transactions aitexeoptimistically [35, 26] or conserva-
tively [27].

In the conservative case, which can be seen as an instarioe détsical state machine/active repli-
cation approach [39], transactions are serialized thraAABbastprior to their actual execution and are
then deterministically scheduled on each replica in coamgle with the ABcast determined serialization
order. This prevents aborts due to concurrent executiomiaflicting transactions in different replicas
and avoids the cost of broadcasting the transactions’ setgland write-sets. On the other hand, the
need for enforcing deterministic thread scheduling at eaplica requires a careful identification of the
conflict classes to be accessed by each transaction, pritsrdotual execution. Unfortunately, this re-
quirement represents a major hurdle for the adoption oftheshniques in STM systems which, unlike
relational DBMSs with SQL-like interfaces, allow users t&fide arbitrary, and much less predictable,
data layouts and transaction access patterns (e.g. deegtrtibugh direct pointer manipulations). In
practice, it is very hard or simply impossible to predict taasets that are to be accessed by a newly
generated transaction. This is particular troublesomveghat a labeling error can lead to inconsistency,
whereas coarse overestimations can severely limit coseeyrand hamper performance.

Optimistic approaches, such as [35], avoid these probleems,e appearing better suited to be adopted
also in STM contexts. In these approaches, transactioriecakty processed on a single replica and val-
idateda posterioriof their execution through an ABcast based certificatiort@doire aimed at detecting
remote conflicts between concurrent transactions. Théication based approaches can be further clas-
sified into voting and non-voting schemes [26, 37], wheréngoschemes, unlike non-voting ones, need
to atomic broadcast only the write-set (which is typicalluch smaller than the read-set in common
workloads), but on the other hand incur the overhead of artiadal uniform broadcast [20] along the
critical path of the commit phase. As highlighted in our poe work [38], the replica coordination
latency has an amplified cost in STM environments when coetptir conventional database environ-
ments, given that the average transaction execution tingI'M settings is typically several orders of
magnitude shorter than in database applications. This snakéng certification schemes, which intro-
duce an additional latency of at least 2 extra communicaiteps with regard to non voting protocols,
unattractive in replicated STM environments. On the otterdy as it will be demonstrated by our ex-
perimental study, and as one could intuitively expect, ttieia efficiency of non voting certification
protocols is, in practical settings, profoundly affectgdiie actual size of read-sets.

The replica coordination scheme employed ifSDM, namely BFC (Bloom Filter Certification),



can be classified as a non voting certification scheme thaoiexp Bloom Filter based encoding of the
transactions’ read-set to achieve the best of both thegyaetitd not voting approaches, requiring only a
single ABcast while avoiding to flood the network with largessages, at the cost of a small, and user

tunable increase in the transactions abort rate.

2.3 Other Related Works

The large body of literature on Distributed Shared Memo(@SM) is clearly related to our work,
sharing our same base goal of providing developers withithple abstraction of a single system im-
age transparently leveraging the resources availablesschigtributed nodes. To overcome the strong
performance overheads introduced by straightforward D&klémentations [30] ensuring strong con-
sistency guarantees with the granularity of a single menaggess [29], several DSM systems have
been developed that achieve better performance througkimgl memory consistency guarantees [25].
Unfortunately, developing software for relaxed DSM’s detency models can be challenging as pro-
grammers are required to fully understand sometimes ceatpli consistency properties to maximize
performances without endangering correctness. Conyerd® simplicity of the atomic transaction
abstraction, at the core of STMs and of oltSTM platform, allows to increase programmers’ produc-
tivity [11] with respect to both locking disciplines and aged memory consistency models. Further,
the strong consistency guarantees provided by atomicadcingas can be supported through efficient
algorithms that, like in BSTM, incur only in a single synchronization phase per tratisa, effectively
amortizing the unavoidable communication overhead a@as of (possibly large) memory accesses.
Finally, the notion of atomic transaction plays a key rolgoaih the recent Sinfonia [3] platform,
where these are referred to as “mini-transactions”. Howewndike in conventional STM settings and in
D2STM, Symphonia assumes transactions to be static, i.ethbiatdatasets and operations are known

in advance, which limits the generality of this solution.

3 System Model

We consider a classical asynchronous distributed systedelz0] consisting of a set of procesdés=
{p1,...,pn} that communicate via message passing and can fail accduatihg fail-stop (crash) model.
We assume that a majority of processes is correct and thaysiem ensures a sufficient synchrony level
(e.g. the availability of &S failure detector) to permit implementing an Atomic BroasicABcast)
service, with the following properties [16Yalidity: If a correct participant broadcasts a message, then
all correct participants eventually deliver iUniform Agreementlf a participant delivers a message,
then all correct participants eventually deliver Wniform Integrity Any given message is delivered

by each participant at most once, and only if it was previpusbadcast. Uniform Total Order If
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Figure 1: Components of ad3TM replica.

some participant delivers message A after message B, tleen participant delivers A only after it has
delivered B.

D?STM preserves the weak atomicity [32] and opacity [19] prtips of the underlying JVSTM. The
former property implies that atomicity is guaranteed ordyaconflicting pairs of transactional accesses;
conflicts between transactional and non-transactionasses are not protected. Weak atomicity is less
composable than strong atomicity (protecting all pairsnetat least one is a transactional access). It also
raises subtle problems, e.g., granular lost updates. Hawthe runtime overhead of strong atomicity
can be prohibitively high in the absence of hardware sugfatt Opacity [19], on the other hand, can
be informally viewed as an extension of the classical dalisarializability property with the additional
requirement that even non-committed transactions aresptest from accessing inconsistent states.

Finally, concerning the consistency criterion for theestftthe replicated (JV)STM instances’®M
guarantees 1-copy serializability of reads and writesaogactional data[6], which ensures that trans-
action execution history across the whole set of replicagjisvalent to a serial transaction execution

history on a not replicated (JV)STM.



4 D?STM Architecture

4.1 Node Components

The components of a node of thé ®TM platform, depicted in Figure 1, is structured into 4 maiical
layers. The bottom layer is a Group Communication Servic@34J16] which provides two main build-
ing blocks: view synchronous membership [20], and an AtdBrimadcast service. Our implementation
uses a generic group communication service (GCS) [14], whigpports multiple implementations of
the GCS (all the experiments described in this paper have pedormed using the Appia GCS [33]).
The core component of I3TM is represented by the Replication Manager, implemagritia distributed
coordination protocol required for ensuring replica cetesicy (i.e. 1-copy serializability); this com-
ponent is described in detail in Section 5. The Replicaticaniyer interfaces, on one side, the GCS
layer and, on the other side, with a local instance of a SeéWaansactional Memory, more precisely
JVSTM[11]. A detailed discussion of the integration betwdke replication manager and JVSTM,
along with a summary of the most relevant JVSTM internal raesms, is provided in Section 4.2.
Finally, the top layer of BSTM is a wrapper that intercepts the application level dalisransaction de-
marcation (i.e. to begin, commit or abort transactions),imerfering at all with the application accesses
(read/write) to the VBoxes which are managed directly byuhderlying JVSTM layer. This approach
allows D’STM to transparently extend the classic STM programmingehathile requiring only minor

modifications to pre-existing JVSTM applications.

4.2 Integration with JVSTM

JVSTM implements a multi-version scheme which is based embistraction of &ersioned boXVBox)

to hold the mutable state of a concurrent program. A VBox isrdainer that keeps a tagged sequence of
values - the history of the versioned box. Each of the higmglues corresponds to a change made to the
box by a successfully committed transaction and is tagg#utive timestamp of the corresponding trans-
action. To this end, JVSTM maintains an integer timestaooppmitTimestampwhich is incremented
whenever a transaction commits. Each transaction staesnéstamp in a locasnapshotiDvariable,
which is initialized at the time of the transaction actieatiwith the current value cfommitTimestamp
This information is used both during transaction execyttonidentify the appropriate values to be read
from the VBoxes, and, at commit time, during the validatidrage, to determine the set of concurrent
transactions to check against possible conflicts. JVSTMgsan an optimistic approach which buffers
transactions’ writes and detects conflicts only at commigtiby checking whether any of the VBoxes
read by a committing transactidh was updated by some other transactinwith a larger timestamp
value. In this cas€ is aborted. Otherwis€]'s commitTimestamps increased, itsnapshot/Dis set

to the new value otommitTimestammand the new values of all the VBoxes it updated are atomically
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stored within the VBoxes.

To minimize performance overheads, théSIM'’s replica coordination protocol, namely BFC, is
tightly integrated with the JVSTM'’s transaction timestangpmechanisms. The integration of JVSTM
within the D’STM required the implementation of three main (non-intresimodifications to JVSTM,

extending its original APl in order to allow the Replicatibtanager layer to:

1. extract information concerning internals of the tratisacexecution, i.e., its read-set, write-set,
and snapshotiDtimestamp. In the remaining, we refer to the methods progidhe aforemen-
tioned services for a transacti@h, respectively, agetReadset(Transactian ), getWriteset(Transaction
T,.) andgetSnapshotID(Transactidn.).

2. explicitly trigger the transaction validation proceel{methodvalidate(Transactioff,)), that aims
at detecting any conflict raised during the execution ph&adransactior?, with any other (local

or remote) transaction that committed afférstarted.

3. atomically apply, through thepplyRemoteTransaction(Writeset WiSkthod, the write-set WS
of a remotely executed transaction (i.e. atomically updathe VBoxes of the local JVSTM
with the new values written by a remote transaction) and k&neously increasing the JVSTM'’s

commitTimestamp

4. permit cluster wide unique identification of the VBoxeslafed by (remote) transactions, as well
as of any object, possibly dynamically generated withinean@te) transaction, whose reference
could be stored within a VBox. This is achieved by tagginghe®STM VBox (and each object,
mutable or immutable, assigned to a VBox within a Transagtiwith a unique identifier. A
variety of different schemes may be used to generate uaiversque identifiers (UIDs), as long
as it is possible to guarantee the cluster-wide uniquenies$is and to enable the independent
generation of UIDs at each replica. The current implemartasf D’STM relies on a widely
recognized international standard, namely the ISO/IEC781E98, which uses a 128 bits long
encoding schenfethat includes the identifier of the generating node and d tooastamp based

on a 100-nanosecond intervals.

5 Bloom Filter Certification

Bloom Filter Certification (BFC) is a novel non-voting céidation scheme that exploits a space-efficient
Bloom Filter-based encoding [7], allowing to drasticalgduce the overhead of the distributed certifica-

tion phase at the cost of a reduced (but controlled) increebee risk of transaction aborts.

1Also ITU-T Rec. X.667 - ISO/IEC 9834-8:2005, and integratethin the official Java library since version 1.5.
2The standard Leach-Salz variant layout encoding was used.
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int oldestActiveXactp]={0.. . .,0};
Set ActiveXacts, CommittedXacts, AbortedXadis=
int avgBFQueriesmitial Avg BF Queries;

Transaction begin()

Transactiorl’,=JVSTM begin);
ActiveXacts=ActiveXacts/T; ;
return Ty;

boolean commit(Transactich;)

/I Read-only transactions are processed locally
if (getWritesefT . )=0)

ActiveXacts=ActiveXact§7% ;

return true;

/I Update transactions are first locally validated
if (—validate(,))

ActiveXacts=ActiveXact§7% ;

return false;
int BFSize=estimateBFSize(avgBFQueries);
BloomFilter BF=new BloomFilter(BFSize);

upon AB-deliver[Transactiori;, int snapshotlD, BloomFilter BF,
WriteSet WS, int oldestActiveXact] from; do
/l Garbage collect th&€ommittedXactset
if (oldestActiveXack oldestActiveXact[j])
oldestActiveXact[j]=oldestActiveXact;
VT, € CommittedXacts s.t.
getSnapshotlQl', )< min;e (1 ) (oldestActiveXact[i])do
CommittedXact=CommittedXakTk ;

/I Validate Transaction
int BFQueries=0;
VT, € CommittedXacts s.tgetSnapshotlI},)>snapshotiDdo
VY < UID,- >¢€ getWriteset(T,) do
BFQueries++;
if (BF.contains(U1D))
/I Xact failed validation and is aborted
AbortedXacts=AbortedXaats{ T }
if (isLocal(%))
ActiveXacts=ActiveXact§T% ;
return;

YUID € getReadset(T;) BF.addUID);
AB- send[T, getSnapshotIQI'; ), BF, getWritesetT;. ),
MiN T, € Active X acts( getSnapshotiRly) ) I;
/I The xact's outcome is determined upon AB-delivery
wait T, € (AbortedXactsJ CommittedXacts )
ActiveXacts=ActiveXact§T% ; ActiveXacts=ActiveXact§7% ;
if (Te € AbortedXacts) JVSTM.commif(T);
AbortedXacts=AbortedXactg: ; else
return false; applyRemoteTransaction\WW&'S);
else returntrue;

/] Xact passed validation: update estimator foand commit xact
avgBFQueries=updateAvg(BFQueries;Com X acts);
CommittedXacts=CommittedXactq 7 ;
if (isLocal(l;))

Figure 2: Pseudo-code of the BFC algorithm executed by tipdid¢ion Manager at Process p

Before delving into the details of the BFC protocol, we ravitghe fundamentals of Bloom filters
(the interested reader may refer to [9] for further detail&) Bloom filter for representing a s&t =
{z1,29,...,z,} of n elements from a univers€ consists of an array o bits, initially all set to 0.
The filter uses: independent hash functions, . . . , iy with range{1, ..., m}, where it is assumed that
these hash functions map each element in the universe tadamanumber uniformly over the range.
For each element € S, the bitsh;(z) are setto 1 for £ i < k. To check if an itemy is in S, we check
whether allh;(y) are set to 1. If not, then clearlyis not a member of. If all h;(x) are setto 1z is
assumed to be i, although this may be wrong with some probability. Hence @oBi filter may yield
afalse positive where it suggests that an elemenits in S even though it is not. The probability of a
false positivef for a single query to a Bloom Filter depends on the number tsfused per itemn /n

and the number of hash functiohsaccording to the following equation:
f=@0—etmmt (1)

where the optimal nhumbér of hash functions that minimizes the false positive proligbif givenm

andn can be shown to be equal to:
k=1[ln2-m/n] )
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We now describe BFC in detail, with the help of the pseudcecddpicted in Figure 2. Read-
only transactions are executed locally, and committed auithincurring in any additional overhead.
Leveraging on the JVSTM multi-version scheme&3IM read-only transactions are always provided
with a consistent committed snapshot and are spared fronsthef aborts (due to both local or remote
conflicts).

A committing transaction with a non-null write-set (i.e.héis updated some VBox), is first locally
validated to detect any local conflicts. This prevents thexation of the distributed certification scheme
for transactions that are known to abort using only locabrimfation. If the transaction passes the local
validation phase, the Replication Manager encodes thedcdion read-set (i.e., the set of identifiers of
all the VBoxes read by the transaction) in a Bloom Filter, ABgasts it along with the transaction write-
set (which is not encoded in the Bloom Filter). The size ofBh@om Filter encoding the transaction’s
read-set is computed to ensure that the probability of ess#etion abort due to a Bloom Filter's false
positive is less than a user-tunable threshold, which wetgessmaxAbortRate The logic for sizing of
the Bloom Filter is encapsulated by tlkstimateBFSize(primitive, which will be detailed later in the
text.

As in classical non-voting certification protocols, updadmsactions are validated upon their ABcast-
delivery. At this stage, it is checked whetliérs Bloom Filter contains any item updated by transactions
with a snapshotiDtimestamp larger than that @f,'s. If no match is found, theff,, can be safely com-
mitted. Committing a transactidfi, consists of the following steps. ¥, is a local transaction, it just
suffices to request the local JVSTM to commit it. If, on theesthand,T, is a remote transaction, its
write-set is atomically applied using tlaplyRemote Transaction(W.S) method.

Given that the validation phase of a transacfi@mrequires the availability of the write-sets of concur-
rent transactions previously committed, the Replicaticanifer locally buffers the UIDs of the VBoxes
updated by any committed transaction in tiemmittedXactsset. To avoid an unbounded growth of
this data structure, we rely on a distributed garbage dodlescheme (analogous to the one employed
in [36]), in which each replica exchange (as a piggyback &AB-casted transaction validation mes-
sage) the minimunsnapshotiDof all the locally active update transactions. This allowslereplica to
gather global knowledge on the oldest timestamp among tbba# the update transactions currently
active on any replica. This information is used to garbadleciothe CommitXactsset by removing the
information associated with any committed transactionesehexecution can no longer invalidate any of
the active transactions.

We now describe how the size of the Bloom Filter (BF) of a cotting transaction is computed.
The reader should note that for a transactignto be aborted due to a false positive it is sufficient to
incur in a false positive for any of the items updated by taatisns concurrent with JJs. In other

words, determining the size of the Bloom Filter for a commgttransactions, so to guarantee that a
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target maxAbortRateis never exceeded, would require to knewactlythe numberg of queries that
will have to be performed against the Bloom Filter once ttangaction gets validated (i.e. once it
is ABcast-delivered). On the other hand, at the time in whighenters the commit phase, it is not
possible to exactly foresee neither how many transactiaghsemnmmit before T, is ABcast-delivered,
nor what will be the size of the write-sets of each of thesasmations. On the other hand, any error
in estimatingg does not compromise safety, but may only lead to (positiveegative) deviations from
the targetmaxAbortRatehreshold. Hence, BFC uses a simple and lightweight héjrishich exploits
the fact that each replica can keep track of the number ofiepiperformed to the BF of any locally
ABcast-delivered transaction. In detail, we rely on the mgwaverage across the number of BF queries
performed during the validation of phase of the l@stComXactdransactions as an estimatorgfOnce

q is estimated, we can then determine the numbeaf bits in the Bloom Filter by considering that the
false positives for any distinct query are independent dadtically distributed events which generate a
Bernoullian process. At the light of this observation, tihelability of aborting a transaction because of

a false positive in the Bloom Filter-based validation phoe, maxAbortRatecan be expressed as:

maxAbortRate= 1 — (1 — f)4

which, combined with Equations 1 and 2, allows us to estimates:

. {_ loga(1— (1 - maxAbortRatQ%)]
n?2

The striking reduction of the amount of information exchethgachievable by the BFC scheme, is
clearly highlighted by the graph in Figure 3, which showsB#C’s compression factor (defined as the
ratio between the number of bits for encoding a transadiogad-set with the ISO/IEC 11578:1996
standard UID encoding, and with BFC) as a function of thedargaxAbortRateparameter and of
the numberg of queries performed during the validation phase. The gibttata shows that, even for
marginal increases of the transaction abort probabilithérange of [1%-2%], BFC achieves a [5x-12x]
compression factor, and that the compression factor extepdo 25x in the case of 10% probability of
transaction aborts induced by a false positive of the BlodtarF

The correctness of the BFC scheme can be (informally) prbyeabserving that i) replicas validate
all write transactions in the sme order (the one determiryettido Atomic Broadcast primitive), and that,
i) the validation procedure, despite being subject tofglssitives, is deterministic given that all replicas
rely on the same set of hash functions to query for the pre¢éeiermine the encoding of data items in
the Bloom filter. Hence, as already highlighted, the ocaweeof false positives results in an increase of

the transaction abort rate, but can never lead to inconsiste of the replicas’ states.
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Compression Factor

Figure 3: Compression Factor achieved by BFC consideriadSB/IEC 11578:1996 UUID encoding.

As a final note, in order to speed up the Bloom Filter consimacfmore precisely the insertion of
items within the Bloom Filter), BSTM exploits a recently proposed optimization [1] which geates
thek = [in 2 - m/n] hash values required for encoding a data item within the Bl&dter via a plain
(and very efficient) linear combination of the output of otwyo independent hash functions. The choice
of the hashing algorithm to be employed withid$TM has been based on an experimental comparison
of a spectrum of different hash functions trading off comjile speed, and collision resistance. The one
that exhibited the best performance while matching theyainally forecast false positive probability
turned out to be MurmurHash2 [5], a simple, multiplicativassh function whose excellent performances

have been also confirmed by some recent benchmarking rgjlts

6 Evaluation

We now report results of an experimental study aimed at atialgi the performance gains achieved by
the BFC scheme in a real distributed STM system, namely wiemwur [FSTM prototype, in face

of a variety of both synthetic and more complex STM workload$ese results allow to assess the
practical impact of the benefits estimated in the previogtia® using the analytical model. The target
platform for these experiments is a cluster of 8 nodes, enetequipped with an Intel QuadCore Q6600
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Abort rate due to false positives in BFC
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Figure 4: Transaction abort rate due to false positiveseérBloom Filter-based validation.

at 2.40GHz equipped with 8 GB of RAM running Linux 2.6.27. damerconnected via a private Gigabit
Ethernet. The Atomic Broadcast implementation used isasea classic sequencer-based algorithm
[20, 16].

We start by considering a synthetic workload (obtained p#idg the Bank Benchmark originally
used for evaluating DSTMZ2 [22]) which serves for the soleppge of validating the analytical model
introduced in Section 5 for determining the Bloom Filteigesas a function of a targebaxAbortRate
factor. In detail, we initialize the STM at each replica wathiector ofnumThreadsiumMachines 0.000
items. Each threadl€ [0, numThreads- 1] executing on replicg € [0, numMachines- 1] accesses a
distinct fragment (of indexeRi + j - numThreads- 10.000, (1 + i + j - numThreads- 10.000 — 1])
of 10.000 elements of the array, reading all these elements and rdpdgdating a number of elements
uniformly distributed in the range [50-100]. Given that fregments of the array accessed by different
threads never overlap, this ensures that any transactint ialonly due to false positives in the Bloom
Filter based validation.

The plots in Figure 4 show the percentage of aborted trainsacivhen using the BFC scheme with
a targetmaxAbortRateof 1%, 5%, 10% as we vary the number of active replicas from & ¢with 4
threads executing on each replica), highlighting the tightching between the analytical forecast and

the experimental results in presence of heterogeneoustoatitions.
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Next we consider a more complex micro-benchmark, namelydiBRack tree (again obtained by
adapting the implementation originally used for evalug@5TM2 [22]). In this case we consider a mix
of three different transactions: i) a read-only transawtigerforming a sequence of searches, ii) a write
transaction performing a sequence of searches and insgrand iii) a write transaction performing a
sequence of searches and removals. More in detail, thedrnpeeipopulated with 50.000 (randomly
determined) integer values in the range [-100.000,100.@&ad-only transactions consist of 200 range
queries, each one spanning 5 tree’s entries around a rapdbiwden integer value. The insertion, resp.
removal, write transactions perform first of all 20 rangerogge where each query range spans 50 tree’s
entries, which are aimed at identifying at least a valwehich is absent, resp. present, in the tree. If the
sequence of range queries fail to identify any such elentleatree is sequentially scanned starting from
arandomly chosen value as longeds found or the maximum value storable by the tree, namelyQD@D
is reached (though this case is in practice extremely r&iaglly, if v was found, it is inserted in, resp.
removed from, the tree. Note that this logic is aimed at énguhat the insertion/removal transactions
actually perform an update of the tree without, in the casasafrtions, introducing duplicate keys. Also,
the initial size of the data structure is sufficiently largeyteld a light/moderate contention level.

In Figure 5, Figure 6 and Figure 7, we depict the throughptih@kystem (i.e. number of committed
transactions per second) for the three considered workledwn using BFC with thenaxAbortRate
parameter set to 1%. Each plot shows the system throughpat different combinations of number
of replicas and number of server threads in each replica. ntingber of replicas is varied from 2 to 8
and the number of threads in each replica is varied from 1 O interesting aspect of these results
is that one can observe linear speedups when the number lmfarepcreases, even in the scenario
where 90% of the transactions are write transactions (Eig)r The latter is, naturally, the scenario
with worse performance, given that almost all transactitgiire the write set to be AB-casted and
applied everywhere. Still, even in this case, we can douidethhroughput of the system when we
move from 2 to 6 replicas. As expectable, when the percertggdate transactions is smaller, the
system’s performance remarkably improve. For instancel®%6 updates (Figure 7) a configuration
with 8 replicas and 4 threads achieves a throughput above §80(against the 1600 tps for the 90%
update case). Also, when considering the workload with 1@#ates, the configuration with 8 replicas
and 4 threads per replica almost triplicates the performaridhe same system with only 2 replicas
(more precisely, throughput grows from 3000 tps to more 8@00 tps).

In Figure 8 we show the improvement in the execution time dfearansactions that is obtained
by the use of Bloom Filters for the scenario with 90% writenfactions with respect to a standard
non-voting certification algorithm requiring to atomigabiroadcast the whole transaction’s readset, e.g.
[2]. As below, Bloom Filters are configured to induce less 1B& of aborts due to false positives. As

it can be observed in the plot, our optimizations reduce ®ezw@ion time of write transactions up to
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Figure 5: Throughput - Red Black TremaxAbortRate1%, 90 % writes

RBTree (50% writes) - Throughput (commits/sec)
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Figure 6: Throughput - Red Black TremaxAbortRate1%, 50 % writes
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Figure 7: Throughput - Red Black TremaxAbortRate1%, 10 % writes

approximately 37% in scenarios with a large number of regliand threads. This is due to the 10x
compression of the messages achieved thanks to the Bloden &flcoding and to the corresponding
reduction of the ABcast latency, which represents a donticamponent of the whole transaction’s
execution time. Note that since the cost of multicast growk the number of replicas, the reduction
also grows proportionally.

We finally show results using the STMBench7 benchmark. Teigehmark features a number of op-
erations with different levels of complexity which maniptéd an object-graph with a millions of objects
heavily interconnected and three types of workload (readidated, read-write and write dominated).
This benchmark can generate very demanding workloads irfitirde, for instance, heavy-weight write
transactions performing long traversals of the object lyggnerating huge readsets. In order to avoid
the excessive growth of the size of the messages exchangadwging a standard non-voting certifica-
tion algorithm (which would lead to the saturation of thewatk even with a small number of replicas),
we found necessary to reduce the size of some of the benclsndattia structures with respect to their
default configuration. The exact settings of the benchreaskale parameters is reported in Table 1 in
order to ensure reproducibility of our experiments.

Figure 9 depicts the performance of the system using thed“desninated with long traversals”

workload. As before, each plot shows the system throughgnua flifferent combination of number of
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RBTree (90% writes) - % Execution Time Reduction of Write Transactions
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Figure 8: Reduction of the Execution Time of Write Transawsi - Red Black TreenaxAbortRate1%

Parameter Value
NumAtomicPerComp 100
NumConnPerAtomic 3
DocumentSize 20000
ManualSize 1000000
NumCompPerModulg 250
NumAssmPerAssm 3
NumAssmLevels 7
NumCompPerAssm 3
NumModules 1

Table 1: Parameters used to build the initial data struati&TMBench7 benchmark.
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replicas (from 2 to 8) and threads per replica (from 1 to 4)e $heedup results are consistent with the
results obtained with the Red Black tree benchmark. Lookiritpe throughput numbers in Figure 9(a),
we can also observe linear speedups with the increase inuthbar of replicas. For instance, by moving
from 2 to 8 replicas, the system performance increases otarfdx independently of the number. Figure
9(b) highlights the performance gains achievable thankbhdaisage of Bloom Filter with respect to a
classic non voting certification scheme. To this purposerepert the reduction of execution time for
write transactions (namely the only ones to require a thsteid certification) which fluctuates in the
range from around 20% to around 40%. These gains were achievehis case, thanks to the 3x
message compression factor permitted by the use of Bloders:il

An interesting finding highlighted by our experimental & is that, in realistic settings, the BFC
scheme achieves significant performance gains even for ligihdg (i.e. 1%) additional increase of
the transaction’s abort rate. This makes the BFC schemdeyiab practice, even in abort-sensitive
applications.

In conclusion, the Bloom Filter Certification procedure lemented in BSTM provides fault-
tolerance, makes it possible to use additional replicamfmave the throughput of the system (mainly, in
the presence of read dominated workloads) and, last buhadeast, permits to use (faster) non-voting

certification approaches in the presence of workloads \aitel read sets.

7 Conclusions

In this work we introduced BSTM, which is, to the best of our knowledge, the first DisttémiSoftware
Transactional Memory ensuring both strong consistencyhégiu availability despite the occurrence of
(a minority of) replicas’ failures.

The replica consistency mechanism at the core‘TM'’s, namely the BFC protocol, leverages on
a novel Bloom Filter based encoding scheme which allowseaohg striking reductions of the overhead
associated with the transaction certification phase. Egrthanks to a tight integration with a multi-
versioned STM, BSTM can process read-only transactions locally, withoeuiring in the risk of

aborts induced by local or remote conflicts and avoiding amgraunication overhead.
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