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Abstract

Software Transactional Memory (STM) systems have emerged as a powerful paradigm to de-

velop concurrent applications. At current date, however, the problem of how to build distributed and

replicated STMs to enhanceboth dependability and performance is still largely unexplored. This

paper fills this gap by presenting D2STM, a replicated STM that makes use of the computing re-

sources available at multiple nodes of a distributed system. The consistency of the replicated STM

is ensured in a transparent manner, even in the presence of failures. In D2STM transactions are au-

tonomously processed on each node, avoiding any replica inter-communication during transaction

execution, and without incurring in deadlocks. Strong consistency is enforced at transaction commit

time by a non-blocking distributed certification scheme, which we name BFC (Bloom Filter Certifi-

cation). BFC exploits a novel Bloom Filter-based encoding mechanism that permits to significantly

reduce the overheads of replica coordination at the cost of auser tunable increase in the probability

of transaction abort. Through an extensive experimental study based on standard STM benchmarks

we show that the BFC scheme permits to achieve remarkable performance gains even for negligible

(e.g. 1%) increases of the transaction abort rate.

Keywords: Dependability, Software Transactional Memory, Replication, Bloom Filters

1 Introduction

Software Transactional Memory (STM) systems have emerged as a powerful paradigm to develop con-

current applications [23, 21, 17]. When using STMs, the programmer is not required to deal explicitly

with concurrency control mechanisms. Instead, she has onlyto identify the sequence of instructions, or

∗This work was partially supported by the Pastramy (PTDC/EIA/72405/2006) project.
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transactions, that need to access and modify concurrent objects atomically. As a result, the reliability of

the code increases and the software development time is shortened.

While the study of STMs has garnered significant interest, the problem of architecting distributed

STMs has started to receive the required attention only veryrecently [31, 8, 28]. Furthermore, the solu-

tions proposed so far have not addressed the important issueof how to leverage replication not only to

improve performance, but also to enhance dependability. This is however a central aspect of distributed

STM design, as the probability of failures increases with the number of nodes and becomes impossible

to ignore in large clusters (composed of hundreds of nodes [8]). Strong consistency and fault-tolerance

guarantees are also essential when STMs are used to increasethe robustness of classic service-oriented

applications. This is the case, for instance, of the FenixEDU system [13], a complex web-based Cam-

pus activity management system that is currently used in several Portuguese universities. FenixEDU

extensively relies on STM technology for transactionally manipulating the in-memory state of its (J2EE

compliant) application server. Providing critical services (such as students’ grading or research funds

management) to a population of more than 14000 users, the FenixEDU system deployed at the IST Cam-

pus of Lisbon is one of the main drivers of our research in the quest for efficient and scalable replication

mechanisms [10].

This paper addresses the problems above by introducing D2STM, a Dependable Distributed Software

Transactional Memory that allows programmers to leverage on the computing resources available in a

cluster environment, using a conventional STM interface, transparently ensuring non-blocking and strong

consistency guarantees even in the case of failures.

The replica synchronization scheme employed in D2STM is inspired by recent database replication

approaches [35, 26, 34], where replica consistency is achieved through a distributed certification proce-

dure which, in turn, leverages on the properties of an AtomicBroadcast [16] primitive. Unlike classic

eager replication schemes (based on fine-grained distributed locking and atomic commit), that suffer of

large communication overheads and fall prey of distributeddeadlocks [18], certification based schemes

avoid any onerous replica coordination during the execution phase, running transactions locally in an

optimistic fashion. The consistency of replicas (typically, 1-Copy serializability) is ensured at commit-

time, via a distributed certification phase that uses a single Atomic Broadcast to enforce agreement on

a common transaction serialization order, avoiding distributed deadlocks, and providing non-blocking

guarantees in the presence of (a minority of) replica failures. Furthermore, unlike classic read-one/write-

all approaches that require the full execution of update transactions at all replicas [6], only one replica

executes an update transactions, whereas the remaining replicas are only required to validate the transac-

tion and to apply the resulting updates. This allows to achieve high scalability levels even in the presence

of write-dominated workloads, as long as the transaction conflict rate remains moderate [35].

For the reasons above, certification based replication schemes appear attractive to apply in the STM
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context. Unfortunately, as previously observed in [38] (and confirmed by the experimental results pre-

sented later in this paper), the overhead of previously published Atomic Broadcast based certification

schemes can be particularly detrimental in STM environments. In fact, unlike in classical database sys-

tems, STMs incur neither in disk access latencies nor in the overheads of SQL statement parsing and plan

optimization. This makes the execution time of typical STM transactions normally much shorter than in

database settings [38] and leads to a corresponding amplification of the overhead of inter-replica coordi-

nation costs. To tackle this issue, D2STM, leverages a novel transaction certification procedure, named

BFC (Bloom Filter Certification), which takes advantage of aspace-efficient Bloom Filter-based encod-

ing to significantly reduce the overhead of the distributed certification scheme at the cost of a marginal,

and user configurable, increase of the transaction abort probability.

D2STM is built on top of JVSTM [12], an efficient STM library thatsupports multi-version concur-

rency control and, as a result, offers excellent performance for read-only transactions. D2STM takes

full advantage of the JVSTM’s multi-versioning scheme, sheltering read-only transactions from the pos-

sibility of aborts due both to local or remote conflicts. Through an extensive experimental evaluation,

based on both synthetic micro-benchmarks, as well as complex STM benchmarks we show that D2STM

permits to achieve significant performance gains at the costof a marginal growth of the abort rate.

The rest of this paper is organized as follows. Section 2 discusses related work. A formal descrip-

tion of the considered system model and of the consistency criteria ensured by D2STM is provided in

Section 3, whereas Section 4 overviews the whole architecture of the D2STM system and discusses the

issues related to the integration of JVSTM within D2STM. The BFC scheme is presented in Section 5

and Section 6 presents the results of our experimental evaluation study. Finally, Section 7 concludes the

paper.

2 Related Work

In this section we briefly survey related research. We begin by analyzing the main design choices of exist-

ing distributed STM systems, critically highlighting their main drawbacks from both the fault-tolerance

and performance perspectives. Next we review recent literature on database replication schemes, dis-

cussing pros and cons of these approaches when adopted in a distributed STM context. Finally, we

discuss other works related to D2STM in a wider sense.

2.1 Distributed STMs

The only distributed STM solutions we are aware of are those in [28, 8, 31]. As already noted in the intro-

duction, unlike D2STM, none of these solutions leverages on replication in order to ensure cluster-wide

consistency and availability in scenarios of failures, or failure suspicions. While it could be possible to
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somehow extend the distributed STM solutions proposed in these works with orthogonal fault-tolerance

mechanisms, this is far from being a trivial task and, perhaps more importantly, the overhead associated

with these additional mechanisms could seriously hamper their performance. In D2STM, on the other

hand, dependability is seen as a first class design goal, and the STM performance is optimized through

a holistic approach that tightly integrates low level fault-tolerance schemes (such as Atomic Broadcast)

with a novel, highly efficient distributed transaction certification scheme.

In the following, we critically highlight the most relevantdifferences, from a performance oriented

perspective, of the replica coherency schemes adopted by the aforementioned schemes with respect

to D2STM during failure-free runs. The work in [31] exploits the simultaneous presence of differ-

ent versions of the same transactional dataset across the replicas, to implement a distributed multi-

versioning scheme (DMV). Like centralized multi-version concurrency control schemes [6] (including

JVSTM [12]), DMV allows read-only transactions to be executed in parallel with conflicting updating

transactions. This is achieved by ensuring that the former is able to access older, committed snapshots

of the dataset. However, in DMV each replica maintains only asingle version of each data granule,

and explicitly delays applying (local or remote) updates toincrease the chance of not having to inval-

idate the snapshot of currently active read-only transactions (and to consequently abort them). This

allows DMV to avoid maintaining multiple versions of the same data at each node, unlike in conven-

tional multi-version concurrency control solutions (although DMV requires buffering the updates of not

yet applied transactions). On the other hand, while multi-version concurrency control solutions pro-

vide deterministic guarantees on the absence of aborts for read-only transactions, the effectiveness of

the DMV scheme depends on the timing of the concurrent accesses to data by conflicting transactions

(actually, with DMV a read-only transaction may be aborted also due to the concurrent execution of

“younger”, local read-only transaction). Optimizing the performance of read-only transactions, which

largely dominate in many realistic workloads, is an important design goal common to both DMV and

D2STM. However, D2STM relies on a multi-versioned STM, namely JVSTM, which maintains a suf-

ficient number of versions of each transactionalized data item in order toguaranteethat no read-only

transaction is ever aborted. Further, this is done in an autonomous manner by the local STM, in a trans-

parent manner for the replication logic, greatly simplifying the design and implementation of the whole

system. Another significant difference between D2STM and DMV is in that the latter requires each com-

mitting transaction to acquire a cluster-wide unique token, which globally serializes the commit phases

of transactions. Unfortunately, given that committing a transaction imposes a two communication step

synchronization phase (for updates propagation), the token acquisition phase can introduce considerable

overhead and seriously hamper performance [28]. Conversely, in D2STM the Atomic Broadcast-based

replica coordination phase can be executed in full concurrency by the various replicas, which are re-

quired to sequentially execute only the local transaction validation phase aimed at verifying whether a
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committing transaction must be aborted due to some conflict.

The work in [28] does not rely on multi-versioning schemes, but, analogously to the one in [31], re-

lies on a distributed mutual exclusion mechanism scheme. Mutual exclusion is aimed at ensuring that at

any time there are no two replicas attempting to simultaneously commitconflictingtransactions. The use

of multiple leases, based on the actual datasets accessed bytransactions, permits to partially alleviate the

performance problems incurred by the serialization of the whole (distributed) commit phase. However,

this phase may still become a bottleneck with conflict intensive workloads. As already discussed, this

problem is completely circumvented in D2STM thanks to the use of an Atomic Broadcast based certi-

fication procedure. Additionally, in [28] the lease establishment mechanism is coordinated by a single,

centralized, node which is likely to become a performance bottleneck for the whole system as the num-

ber of replicas increase; In fact, the experimental evaluation in [28] relies on a dedicated node for lease

management and does not report results for more than four replicas.

Finally, Cluster-STM, presented in [8], focuses on the problem of how to partition the dataset across

the nodes of a large scale distributed Software Transactional Memory. This is achieved by assigning

to each data item a home node, which is responsible for maintaining the authoritative version (and

the associated metadata) of the data item. The home node is also in charge of synchronizing the ac-

cesses of conflicting remote transactions. In [8] any caching or replication scheme is totally delegated

to the application level, which has then to take explicitly into account the issues related to data fetching

and distribution, with an obvious increase in the complexity of the application development. Currently,

D2STM only provides support for total replication of the transactional dataset (even though leveraging

transparent, selective replication of data across the nodes represents part of our future work). On the

other hand, D2STM provides programmers with the powerful abstraction of single system image, which

permits to port applications previously running on top of non distributed STMs with minimal modifi-

cations. Further, Cluster-STM treats the processors as a flat set, not distinguishing between processors

within a node and processors across nodes, and not exploiting the availability of shared memory between

multiple cores/processors on each replica to speed up intra-node communication. Finally, Cluster-STM

does not exploit a multi-versioning local concurrency control to maximize the performance of read-only

transactions, and is constrained to run only a single threadfor each processor. Being layered on top of a

fully fledged, multi-version STM, D2STM overcomes all of the above limitations.

2.2 Database Replication

The problem of replicating a STM is naturally closely related to the problem of database replication,

given that both STMs and DBs share the same key abstraction ofatomic transactions. The fulcrum of

modern database replication schemes [35, 34, 15, 2, 26] is the reliance on an Atomic Broadcast (ABcast)

primitive [16, 20], typically provided by some Group Communication System (GCS) [33, 4]. ABcast
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plays a key role to enforce, in a non-blocking manner, a global transaction serialization order without in-

curring in the scalability problems affecting classical eager replication mechanisms based on distributed

locking and atomic commit protocols, which require much finer grained coordination and fall prey of

deadlocks [18]. Existing ABcast-based database replication literature can be coarsely classified in two

main categories, depending on whether transactions are executed optimistically [35, 26] or conserva-

tively [27].

In the conservative case, which can be seen as an instance of the classical state machine/active repli-

cation approach [39], transactions are serialized throughABcastprior to their actual execution and are

then deterministically scheduled on each replica in compliance with the ABcast determined serialization

order. This prevents aborts due to concurrent execution of conflicting transactions in different replicas

and avoids the cost of broadcasting the transactions’ read-sets and write-sets. On the other hand, the

need for enforcing deterministic thread scheduling at eachreplica requires a careful identification of the

conflict classes to be accessed by each transaction, prior toits actual execution. Unfortunately, this re-

quirement represents a major hurdle for the adoption of these techniques in STM systems which, unlike

relational DBMSs with SQL-like interfaces, allow users to define arbitrary, and much less predictable,

data layouts and transaction access patterns (e.g. determined trough direct pointer manipulations). In

practice, it is very hard or simply impossible to predict thedatasets that are to be accessed by a newly

generated transaction. This is particular troublesome, given that a labeling error can lead to inconsistency,

whereas coarse overestimations can severely limit concurrency and hamper performance.

Optimistic approaches, such as [35], avoid these problems,hence appearing better suited to be adopted

also in STM contexts. In these approaches, transactions arelocally processed on a single replica and val-

idateda posterioriof their execution through an ABcast based certification procedure aimed at detecting

remote conflicts between concurrent transactions. The certification based approaches can be further clas-

sified into voting and non-voting schemes [26, 37], where voting schemes, unlike non-voting ones, need

to atomic broadcast only the write-set (which is typically much smaller than the read-set in common

workloads), but on the other hand incur the overhead of an additional uniform broadcast [20] along the

critical path of the commit phase. As highlighted in our previous work [38], the replica coordination

latency has an amplified cost in STM environments when compared to conventional database environ-

ments, given that the average transaction execution time inSTM settings is typically several orders of

magnitude shorter than in database applications. This makes voting certification schemes, which intro-

duce an additional latency of at least 2 extra communicationsteps with regard to non voting protocols,

unattractive in replicated STM environments. On the other hand, as it will be demonstrated by our ex-

perimental study, and as one could intuitively expect, the actual efficiency of non voting certification

protocols is, in practical settings, profoundly affected by the actual size of read-sets.

The replica coordination scheme employed in D2STM, namely BFC (Bloom Filter Certification),
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can be classified as a non voting certification scheme that exploits a Bloom Filter based encoding of the

transactions’ read-set to achieve the best of both the voting and not voting approaches, requiring only a

single ABcast while avoiding to flood the network with large messages, at the cost of a small, and user

tunable increase in the transactions abort rate.

2.3 Other Related Works

The large body of literature on Distributed Shared Memories(DSM) is clearly related to our work,

sharing our same base goal of providing developers with the simple abstraction of a single system im-

age transparently leveraging the resources available across distributed nodes. To overcome the strong

performance overheads introduced by straightforward DSM implementations [30] ensuring strong con-

sistency guarantees with the granularity of a single memoryaccess [29], several DSM systems have

been developed that achieve better performance through relaxing memory consistency guarantees [25].

Unfortunately, developing software for relaxed DSM’s consistency models can be challenging as pro-

grammers are required to fully understand sometimes complicated consistency properties to maximize

performances without endangering correctness. Conversely, the simplicity of the atomic transaction

abstraction, at the core of STMs and of our D2STM platform, allows to increase programmers’ produc-

tivity [11] with respect to both locking disciplines and relaxed memory consistency models. Further,

the strong consistency guarantees provided by atomic transactions can be supported through efficient

algorithms that, like in D2STM, incur only in a single synchronization phase per transaction, effectively

amortizing the unavoidable communication overhead acrossa set of (possibly large) memory accesses.

Finally, the notion of atomic transaction plays a key role also in the recent Sinfonia [3] platform,

where these are referred to as “mini-transactions”. However, unlike in conventional STM settings and in

D2STM, Symphonia assumes transactions to be static, i.e. thattheir datasets and operations are known

in advance, which limits the generality of this solution.

3 System Model

We consider a classical asynchronous distributed system model [20] consisting of a set of processesΠ =

{p1, . . . , pn} that communicate via message passing and can fail accordingto the fail-stop (crash) model.

We assume that a majority of processes is correct and that thesystem ensures a sufficient synchrony level

(e.g. the availability of a♦S failure detector) to permit implementing an Atomic Broadcast (ABcast)

service, with the following properties [16]:Validity: If a correct participant broadcasts a message, then

all correct participants eventually deliver it.Uniform Agreement: If a participant delivers a message,

then all correct participants eventually deliver it.Uniform Integrity: Any given message is delivered

by each participant at most once, and only if it was previously broadcast. Uniform Total Order: If
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Figure 1: Components of a D2STM replica.

some participant delivers message A after message B, then every participant delivers A only after it has

delivered B.

D2STM preserves the weak atomicity [32] and opacity [19] properties of the underlying JVSTM. The

former property implies that atomicity is guaranteed only as to conflicting pairs of transactional accesses;

conflicts between transactional and non-transactional accesses are not protected. Weak atomicity is less

composable than strong atomicity (protecting all pairs where at least one is a transactional access). It also

raises subtle problems, e.g., granular lost updates. However, the runtime overhead of strong atomicity

can be prohibitively high in the absence of hardware support[32]. Opacity [19], on the other hand, can

be informally viewed as an extension of the classical database serializability property with the additional

requirement that even non-committed transactions are prevented from accessing inconsistent states.

Finally, concerning the consistency criterion for the state of the replicated (JV)STM instances, D2STM

guarantees 1-copy serializability of reads and writes to transactional data [6], which ensures that trans-

action execution history across the whole set of replicas isequivalent to a serial transaction execution

history on a not replicated (JV)STM.
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4 D2STM Architecture

4.1 Node Components

The components of a node of the D2STM platform, depicted in Figure 1, is structured into 4 mainlogical

layers. The bottom layer is a Group Communication Service (GCS) [16] which provides two main build-

ing blocks: view synchronous membership [20], and an AtomicBroadcast service. Our implementation

uses a generic group communication service (GCS) [14], which supports multiple implementations of

the GCS (all the experiments described in this paper have been performed using the Appia GCS [33]).

The core component of D2STM is represented by the Replication Manager, implementing the distributed

coordination protocol required for ensuring replica consistency (i.e. 1-copy serializability); this com-

ponent is described in detail in Section 5. The Replication Manager interfaces, on one side, the GCS

layer and, on the other side, with a local instance of a Software Transactional Memory, more precisely

JVSTM [11]. A detailed discussion of the integration between the replication manager and JVSTM,

along with a summary of the most relevant JVSTM internal mechanisms, is provided in Section 4.2.

Finally, the top layer of D2STM is a wrapper that intercepts the application level callsfor transaction de-

marcation (i.e. to begin, commit or abort transactions), not interfering at all with the application accesses

(read/write) to the VBoxes which are managed directly by theunderlying JVSTM layer. This approach

allows D2STM to transparently extend the classic STM programming model, while requiring only minor

modifications to pre-existing JVSTM applications.

4.2 Integration with JVSTM

JVSTM implements a multi-version scheme which is based on the abstraction of aversioned box(VBox)

to hold the mutable state of a concurrent program. A VBox is a container that keeps a tagged sequence of

values - the history of the versioned box. Each of the history’s values corresponds to a change made to the

box by a successfully committed transaction and is tagged with the timestamp of the corresponding trans-

action. To this end, JVSTM maintains an integer timestamp,commitTimestamp, which is incremented

whenever a transaction commits. Each transaction stores its timestamp in a localsnapshotIDvariable,

which is initialized at the time of the transaction activation with the current value ofcommitTimestamp.

This information is used both during transaction execution, to identify the appropriate values to be read

from the VBoxes, and, at commit time, during the validation phase, to determine the set of concurrent

transactions to check against possible conflicts. JVSTM relies on an optimistic approach which buffers

transactions’ writes and detects conflicts only at commit time, by checking whether any of the VBoxes

read by a committing transactionT was updated by some other transactionT ′ with a larger timestamp

value. In this caseT is aborted. Otherwise,T ’s commitTimestampis increased, itssnapshotIDis set

to the new value ofcommitTimestampand the new values of all the VBoxes it updated are atomically
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stored within the VBoxes.

To minimize performance overheads, the D2STM’s replica coordination protocol, namely BFC, is

tightly integrated with the JVSTM’s transaction timestamping mechanisms. The integration of JVSTM

within the D2STM required the implementation of three main (non-intrusive) modifications to JVSTM,

extending its original API in order to allow the ReplicationManager layer to:

1. extract information concerning internals of the transaction execution, i.e., its read-set, write-set,

andsnapshotIDtimestamp. In the remaining, we refer to the methods providing the aforemen-

tioned services for a transactionTx, respectively, asgetReadset(TransactionTx), getWriteset(Transaction

Tx) andgetSnapshotID(TransactionTx).

2. explicitly trigger the transaction validation procedure (methodvalidate(TransactionTx) ), that aims

at detecting any conflict raised during the execution phase of a transactionTx with any other (local

or remote) transaction that committed afterTx started.

3. atomically apply, through theapplyRemoteTransaction(Writeset WS)method, the write-set WS

of a remotely executed transaction (i.e. atomically updating the VBoxes of the local JVSTM

with the new values written by a remote transaction) and simultaneously increasing the JVSTM’s

commitTimestamp.

4. permit cluster wide unique identification of the VBoxes updated by (remote) transactions, as well

as of any object, possibly dynamically generated within a (remote) transaction, whose reference

could be stored within a VBox. This is achieved by tagging each JVSTM VBox (and each object,

mutable or immutable, assigned to a VBox within a Transaction) with a unique identifier. A

variety of different schemes may be used to generate universal unique identifiers (UIDs), as long

as it is possible to guarantee the cluster-wide uniqueness of UIDs and to enable the independent

generation of UIDs at each replica. The current implementation of D2STM relies on a widely

recognized international standard, namely the ISO/IEC 11578:19961, which uses a 128 bits long

encoding scheme2 that includes the identifier of the generating node and a local timestamp based

on a 100-nanosecond intervals.

5 Bloom Filter Certification

Bloom Filter Certification (BFC) is a novel non-voting certification scheme that exploits a space-efficient

Bloom Filter-based encoding [7], allowing to drastically reduce the overhead of the distributed certifica-

tion phase at the cost of a reduced (but controlled) increasein the risk of transaction aborts.

1Also ITU-T Rec. X.667 - ISO/IEC 9834-8:2005, and integratedwithin the official Java library since version 1.5.
2The standard Leach-Salz variant layout encoding was used.
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int oldestActiveXact[n]={0,. . .,0};
Set ActiveXacts, CommittedXacts, AbortedXacts=∅;
int avgBFQueries=initialAvgBFQueries;

Transaction begin()
TransactionTx=JVSTM.begin();
ActiveXacts=ActiveXacts∪Tx ;
return Tx;

boolean commit(TransactionTx)
// Read-only transactions are processed locally

if (getWriteset(Tx )=∅)
ActiveXacts=ActiveXacts\Tx ;
return true;
// Update transactions are first locally validated

if (¬validate(Tx ))
ActiveXacts=ActiveXacts\Tx ;
return false;

int BFSize=estimateBFSize(avgBFQueries);
BloomFilter BF=new BloomFilter(BFSize);
∀UID ∈ getReadset(Tx) BF.add(UID);
AB-send[Tx, getSnapshotID(Tx ), BF,getWriteset(Tx ),

min Ty∈ActiveXacts( getSnapshotID(Ty ) ) ];
// The xact’s outcome is determined upon AB-delivery
wait Tx ∈ ( AbortedXacts∪ CommittedXacts )
ActiveXacts=ActiveXacts\Tx ;
if (Tx ∈ AbortedXacts)

AbortedXacts=AbortedXacts\Tx ;
return false;

else return true;

upon AB-deliver[TransactionTx, int snapshotID, BloomFilter BF,
WriteSet WS, int oldestActiveXact] frompj do

// Garbage collect theCommittedXactsset
if (oldestActiveXact<oldestActiveXact[j])

oldestActiveXact[j]=oldestActiveXact;
∀Tk ∈ CommittedXacts s.t.

getSnapshotID(Tk )≤ mini∈[1,n](oldestActiveXact[i])do
CommittedXact=CommittedXact\Tk ;

// Validate Transaction
int BFQueries=0;
∀Ty ∈ CommittedXacts s.t.getSnapshotID(Tk )>snapshotIDdo
∀ < UID, · >∈ getWriteset(Ty) do

BFQueries++;
if (BF.contains(UID))

// Xact failed validation and is aborted
AbortedXacts=AbortedXacts∪{Tx}
if (isLocal(Tx))

ActiveXacts=ActiveXacts\Tx ;
return ;

// Xact passed validation: update estimator forq and commit xact
avgBFQueries=updateAvg(BFQueries,recComXacts);
CommittedXacts=CommittedXacts∪Tx ;
if (isLocal(Tx))

ActiveXacts=ActiveXacts\Tx ;
JVSTM.commit(Tx);

else
applyRemoteTransactionWS(WS);

Figure 2: Pseudo-code of the BFC algorithm executed by the Replication Manager at Process pi

Before delving into the details of the BFC protocol, we review the fundamentals of Bloom filters

(the interested reader may refer to [9] for further details). A Bloom filter for representing a setS =

{x1, x2, . . . , xn} of n elements from a universeU consists of an array ofm bits, initially all set to 0.

The filter usesk independent hash functionsh1, . . . , hk with range{1, . . . ,m}, where it is assumed that

these hash functions map each element in the universe to a random number uniformly over the range.

For each elementx ∈ S, the bitshi(x) are set to 1 for 1≤ i ≤ k. To check if an itemy is in S, we check

whether allhi(y) are set to 1. If not, then clearlyy is not a member ofS. If all hi(x) are set to 1,x is

assumed to be inS, although this may be wrong with some probability. Hence a Bloom filter may yield

a false positive, where it suggests that an elementx is in S even though it is not. The probability of a

false positivef for a single query to a Bloom Filter depends on the number of bits used per itemm/n

and the number of hash functionsk according to the following equation:

f = (1 − e−kn/m)k (1)

where the optimal numberk of hash functions that minimizes the false positive probability f givenm

andn can be shown to be equal to:

k = ⌈ln 2 · m/n⌉ (2)
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We now describe BFC in detail, with the help of the pseudo-code depicted in Figure 2. Read-

only transactions are executed locally, and committed without incurring in any additional overhead.

Leveraging on the JVSTM multi-version scheme, D2STM read-only transactions are always provided

with a consistent committed snapshot and are spared from therisk of aborts (due to both local or remote

conflicts).

A committing transaction with a non-null write-set (i.e. ithas updated some VBox), is first locally

validated to detect any local conflicts. This prevents the execution of the distributed certification scheme

for transactions that are known to abort using only local information. If the transaction passes the local

validation phase, the Replication Manager encodes the transaction read-set (i.e., the set of identifiers of

all the VBoxes read by the transaction) in a Bloom Filter, andABcasts it along with the transaction write-

set (which is not encoded in the Bloom Filter). The size of theBloom Filter encoding the transaction’s

read-set is computed to ensure that the probability of a transaction abort due to a Bloom Filter’s false

positive is less than a user-tunable threshold, which we denote asmaxAbortRate. The logic for sizing of

the Bloom Filter is encapsulated by theestimateBFSize()primitive, which will be detailed later in the

text.

As in classical non-voting certification protocols, updatetransactions are validated upon their ABcast-

delivery. At this stage, it is checked whetherTx’s Bloom Filter contains any item updated by transactions

with a snapshotIDtimestamp larger than that ofTx’s. If no match is found, thenTx can be safely com-

mitted. Committing a transactionTx consists of the following steps. IfTx is a local transaction, it just

suffices to request the local JVSTM to commit it. If, on the other hand,Tx is a remote transaction, its

write-set is atomically applied using theapplyRemoteTransaction(WSTx ) method.

Given that the validation phase of a transactionTx requires the availability of the write-sets of concur-

rent transactions previously committed, the Replication Manager locally buffers the UIDs of the VBoxes

updated by any committed transaction in theCommittedXactsset. To avoid an unbounded growth of

this data structure, we rely on a distributed garbage collection scheme (analogous to the one employed

in [36]), in which each replica exchange (as a piggyback to the AB-casted transaction validation mes-

sage) the minimumsnapshotIDof all the locally active update transactions. This allows each replica to

gather global knowledge on the oldest timestamp among thoseof all the update transactions currently

active on any replica. This information is used to garbage collect theCommitXactsset by removing the

information associated with any committed transactions whose execution can no longer invalidate any of

the active transactions.

We now describe how the size of the Bloom Filter (BF) of a committing transaction is computed.

The reader should note that for a transactionTx to be aborted due to a false positive it is sufficient to

incur in a false positive for any of the items updated by transactions concurrent with Tx’s. In other

words, determining the size of the Bloom Filter for a committing transactions, so to guarantee that a

12



targetmaxAbortRateis never exceeded, would require to knowexactly the numberq of queries that

will have to be performed against the Bloom Filter once the transaction gets validated (i.e. once it

is ABcast-delivered). On the other hand, at the time in whichTx enters the commit phase, it is not

possible to exactly foresee neither how many transactions will commit before Tx is ABcast-delivered,

nor what will be the size of the write-sets of each of these transactions. On the other hand, any error

in estimatingq does not compromise safety, but may only lead to (positive ornegative) deviations from

the targetmaxAbortRatethreshold. Hence, BFC uses a simple and lightweight heuristic, which exploits

the fact that each replica can keep track of the number of queries performed to the BF of any locally

ABcast-delivered transaction. In detail, we rely on the moving average across the number of BF queries

performed during the validation of phase of the lastrecComXactstransactions as an estimator ofq. Once

q is estimated, we can then determine the numberm of bits in the Bloom Filter by considering that the

false positives for any distinct query are independent and identically distributed events which generate a

Bernoullian process. At the light of this observation, the probability of aborting a transaction because of

a false positive in the Bloom Filter-based validation procedure,maxAbortRate, can be expressed as:

maxAbortRate= 1 − (1 − f)q

which, combined with Equations 1 and 2, allows us to estimatem as:

m =

⌈

− n
log2(1 − (1 − maxAbortRate)

1
q )

ln 2

⌉

The striking reduction of the amount of information exchanged, achievable by the BFC scheme, is

clearly highlighted by the graph in Figure 3, which shows theBFC’s compression factor (defined as the

ratio between the number of bits for encoding a transaction’s read-set with the ISO/IEC 11578:1996

standard UID encoding, and with BFC) as a function of the target maxAbortRateparameter and of

the numberq of queries performed during the validation phase. The plotted data shows that, even for

marginal increases of the transaction abort probability inthe range of [1%-2%], BFC achieves a [5x-12x]

compression factor, and that the compression factor extends up to 25x in the case of 10% probability of

transaction aborts induced by a false positive of the Bloom Filter.

The correctness of the BFC scheme can be (informally) provedby observing that i) replicas validate

all write transactions in the sme order (the one determined by the Atomic Broadcast primitive), and that,

ii) the validation procedure, despite being subject to false positives, is deterministic given that all replicas

rely on the same set of hash functions to query for the presence/determine the encoding of data items in

the Bloom filter. Hence, as already highlighted, the occurrence of false positives results in an increase of

the transaction abort rate, but can never lead to inconsistencies of the replicas’ states.
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Figure 3: Compression Factor achieved by BFC considering the ISO/IEC 11578:1996 UUID encoding.

As a final note, in order to speed up the Bloom Filter construction (more precisely the insertion of

items within the Bloom Filter), D2STM exploits a recently proposed optimization [1] which generates

thek = ⌈ln 2 · m/n⌉ hash values required for encoding a data item within the Bloom Filter via a plain

(and very efficient) linear combination of the output of onlytwo independent hash functions. The choice

of the hashing algorithm to be employed within D2STM has been based on an experimental comparison

of a spectrum of different hash functions trading off complexity, speed, and collision resistance. The one

that exhibited the best performance while matching the analytically forecast false positive probability

turned out to be MurmurHash2 [5], a simple, multiplicative hash function whose excellent performances

have been also confirmed by some recent benchmarking results[24].

6 Evaluation

We now report results of an experimental study aimed at evaluating the performance gains achieved by

the BFC scheme in a real distributed STM system, namely when using our D2STM prototype, in face

of a variety of both synthetic and more complex STM workloads. These results allow to assess the

practical impact of the benefits estimated in the previous section, using the analytical model. The target

platform for these experiments is a cluster of 8 nodes, each one equipped with an Intel QuadCore Q6600
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Figure 4: Transaction abort rate due to false positives in the Bloom Filter-based validation.

at 2.40GHz equipped with 8 GB of RAM running Linux 2.6.27.7 and interconnected via a private Gigabit

Ethernet. The Atomic Broadcast implementation used is based on a classic sequencer-based algorithm

[20, 16].

We start by considering a synthetic workload (obtained by adapting the Bank Benchmark originally

used for evaluating DSTM2 [22]) which serves for the sole purpose of validating the analytical model

introduced in Section 5 for determining the Bloom Filter’s size as a function of a targetmaxAbortRate

factor. In detail, we initialize the STM at each replica witha vector ofnumThreads·numMachines·10.000

items. Each threadi ∈ [0, numThreads− 1] executing on replicaj ∈ [0, numMachines− 1] accesses a

distinct fragment (of indexes[(i + j · numThreads) · 10.000, (1 + i + j · numThreads) · 10.000 − 1])

of 10.000 elements of the array, reading all these elements and randomly updating a number of elements

uniformly distributed in the range [50-100]. Given that thefragments of the array accessed by different

threads never overlap, this ensures that any transaction abort is only due to false positives in the Bloom

Filter based validation.

The plots in Figure 4 show the percentage of aborted transactions when using the BFC scheme with

a targetmaxAbortRateof 1%, 5%, 10% as we vary the number of active replicas from 1 to8 (with 4

threads executing on each replica), highlighting the tightmatching between the analytical forecast and

the experimental results in presence of heterogeneous loadconditions.
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Next we consider a more complex micro-benchmark, namely a Red Black tree (again obtained by

adapting the implementation originally used for evaluating DSTM2 [22]). In this case we consider a mix

of three different transactions: i) a read-only transaction, performing a sequence of searches, ii) a write

transaction performing a sequence of searches and insertions, and iii) a write transaction performing a

sequence of searches and removals. More in detail, the tree is pre-populated with 50.000 (randomly

determined) integer values in the range [-100.000,100.000]. Read-only transactions consist of 200 range

queries, each one spanning 5 tree’s entries around a randomly chosen integer value. The insertion, resp.

removal, write transactions perform first of all 20 range queries, where each query range spans 50 tree’s

entries, which are aimed at identifying at least a valuev which is absent, resp. present, in the tree. If the

sequence of range queries fail to identify any such element,the tree is sequentially scanned starting from

a randomly chosen value as long asv is found or the maximum value storable by the tree, namely 100.000

is reached (though this case is in practice extremely rare).Finally, if v was found, it is inserted in, resp.

removed from, the tree. Note that this logic is aimed at ensuring that the insertion/removal transactions

actually perform an update of the tree without, in the case ofinsertions, introducing duplicate keys. Also,

the initial size of the data structure is sufficiently large to yield a light/moderate contention level.

In Figure 5, Figure 6 and Figure 7, we depict the throughput ofthe system (i.e. number of committed

transactions per second) for the three considered workloads when using BFC with themaxAbortRate

parameter set to 1%. Each plot shows the system throughput for a different combinations of number

of replicas and number of server threads in each replica. Thenumber of replicas is varied from 2 to 8

and the number of threads in each replica is varied from 1 to 4.One interesting aspect of these results

is that one can observe linear speedups when the number of replicas increases, even in the scenario

where 90% of the transactions are write transactions (Figure 5). The latter is, naturally, the scenario

with worse performance, given that almost all transactionsrequire the write set to be AB-casted and

applied everywhere. Still, even in this case, we can double the throughput of the system when we

move from 2 to 6 replicas. As expectable, when the percentageof update transactions is smaller, the

system’s performance remarkably improve. For instance, for 10% updates (Figure 7) a configuration

with 8 replicas and 4 threads achieves a throughput above 8000 tps (against the 1600 tps for the 90%

update case). Also, when considering the workload with 10% updates, the configuration with 8 replicas

and 4 threads per replica almost triplicates the performance of the same system with only 2 replicas

(more precisely, throughput grows from 3000 tps to more than8000 tps).

In Figure 8 we show the improvement in the execution time of write transactions that is obtained

by the use of Bloom Filters for the scenario with 90% write transactions with respect to a standard

non-voting certification algorithm requiring to atomically broadcast the whole transaction’s readset, e.g.

[2]. As below, Bloom Filters are configured to induce less the1% of aborts due to false positives. As

it can be observed in the plot, our optimizations reduce the execution time of write transactions up to
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approximately 37% in scenarios with a large number of replicas and threads. This is due to the 10x

compression of the messages achieved thanks to the Bloom Filter encoding and to the corresponding

reduction of the ABcast latency, which represents a dominant component of the whole transaction’s

execution time. Note that since the cost of multicast grows with the number of replicas, the reduction

also grows proportionally.

We finally show results using the STMBench7 benchmark. This benchmark features a number of op-

erations with different levels of complexity which manipulate an object-graph with a millions of objects

heavily interconnected and three types of workload (read dominated, read-write and write dominated).

This benchmark can generate very demanding workloads whichinclude, for instance, heavy-weight write

transactions performing long traversals of the object graph generating huge readsets. In order to avoid

the excessive growth of the size of the messages exchanged when using a standard non-voting certifica-

tion algorithm (which would lead to the saturation of the network even with a small number of replicas),

we found necessary to reduce the size of some of the benchmark’s data structures with respect to their

default configuration. The exact settings of the benchmark’s scale parameters is reported in Table 1 in

order to ensure reproducibility of our experiments.

Figure 9 depicts the performance of the system using the “read dominated with long traversals”

workload. As before, each plot shows the system throughput for a different combination of number of
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Parameter Value
NumAtomicPerComp 100
NumConnPerAtomic 3
DocumentSize 20000
ManualSize 1000000
NumCompPerModule 250
NumAssmPerAssm 3
NumAssmLevels 7
NumCompPerAssm 3
NumModules 1

Table 1: Parameters used to build the initial data structureof STMBench7 benchmark.
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replicas (from 2 to 8) and threads per replica (from 1 to 4). The speedup results are consistent with the

results obtained with the Red Black tree benchmark. Lookingat the throughput numbers in Figure 9(a),

we can also observe linear speedups with the increase in the number of replicas. For instance, by moving

from 2 to 8 replicas, the system performance increases of a factor 4x independently of the number. Figure

9(b) highlights the performance gains achievable thanks tothe usage of Bloom Filter with respect to a

classic non voting certification scheme. To this purpose, wereport the reduction of execution time for

write transactions (namely the only ones to require a distributed certification) which fluctuates in the

range from around 20% to around 40%. These gains were achieved, in this case, thanks to the 3x

message compression factor permitted by the use of Bloom Filters.

An interesting finding highlighted by our experimental analysis is that, in realistic settings, the BFC

scheme achieves significant performance gains even for a negligible (i.e. 1%) additional increase of

the transaction’s abort rate. This makes the BFC scheme viable, in practice, even in abort-sensitive

applications.

In conclusion, the Bloom Filter Certification procedure implemented in D2STM provides fault-

tolerance, makes it possible to use additional replicas to improve the throughput of the system (mainly, in

the presence of read dominated workloads) and, last but not the least, permits to use (faster) non-voting

certification approaches in the presence of workloads with large read sets.

7 Conclusions

In this work we introduced D2STM, which is, to the best of our knowledge, the first Distributed Software

Transactional Memory ensuring both strong consistency andhigh availability despite the occurrence of

(a minority of) replicas’ failures.

The replica consistency mechanism at the core of D2STM’s, namely the BFC protocol, leverages on

a novel Bloom Filter based encoding scheme which allows achieving striking reductions of the overhead

associated with the transaction certification phase. Further, thanks to a tight integration with a multi-

versioned STM, D2STM can process read-only transactions locally, without incurring in the risk of

aborts induced by local or remote conflicts and avoiding any communication overhead.
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