
Poster: Self-tuning Batching in Total Order Broadcast
via Analytical Modelling and Reinforcement Learning ∗

Paolo Romano
INESC-ID, Lisbon, Portugal

Matteo Leonetti
DIS, Rome University “Sapienza”, Italy

1. INTRODUCTION
Total order broadcast [2] (TOB) is a fundamental prob-

lem in distributed computing, which requires a set of pro-
cesses to reach agreement on the delivery order of concur-
rently broadcast messages. Batching is a well known tech-
nique that allows boosting the throughput of Total Order
Broadcast (TOB) protocols by amortizing the per-message
ordering overhead across a set of incoming messages. Unfor-
tunately, the manual configuration of the optimal batching
level is a time consuming and delicate process, as incorrect
tuning can lead to severe performance degradation.

In this paper, we overview an innovative mechanism for
self-tuning the batching level of TOB protocols (a detailed
description of which can be found in [3]), which combines
analytical modeling and Reinforcement Learning (RL) tech-
niques, to take the best of the two worlds: minimizing learn-
ing time and accumulating feedback from the operation of
the system to enhance the self-tuning accuracy over time.

2. THE SELF-TUNING MECHANISM
We model analytically the node that sequences the mes-

sages (typically called sequencer) via a M/M/1 queue whose
jobs are batches of size b. We denote with λ(b,m), respec-
tively µ(b,m), the arrival, respectively sequencing, rate of a
batch of b messages, when the message arrival rate is equal
to m. We express λ(b,m) simply as m/b, and µ(b) as:

µ(b,m) =
1

T1st + (b−1)
2m

+ Tadd(b− 1)

By using classic queuing theory results, we can then derive
the TOB latency (as a function of m and b) as the response
time of a M/M/1 queue.

As already mentioned, in order to compensate for the
errors of the analytical model, we use a RL technique to
update the knowledge of the model based on the feedback
gathered during the operation of the system. We cast the
problem of deciding the optimal batching level to a classical
RL problem: the multi-armed bandit [1]. In this problem,
a gambling agent is faced with a bandit (a slot machine)
with k arms, each associated with an unknown reward dis-
tribution. The gambler iteratively plays one arm per round
and observes the associated reward, adapting its strategy in
order to maximize the average reward.

Our system relies on the UCB algorithm [1], a recent so-
lution to the multi-armed bandit problem that provides log-
∗This work was supported by the EU project “Cloud-TM”
and by FCT (INESC-ID multiannual funding) through the
PIDDAC Program Funds and the ARISTOS project.

 0

 5000

 10000

16 17 18 19 20 21 22
Hour of the day

m
sg

s/
se

c

 1

 10

 100

La
te

nc
y 

(m
se

c)

Model
Model+RL

Figure 1: Evaluation of the self-tuning scheme

arithmic bounds on the number of suboptimal choices of
the agent. We discretize the parameters space, given by the
Cartesian product b×m, and create for each message arrival
rate interval an instance of the bandit with an arm for each
discretized batching level. Further, we define a function to
map the observed delivery latency to rewards distributed in
the range [0,1] (as required by UCB). We combine UCB and
the analytical model by initializing the statistics of every
arm of each UCB instance with the corresponding latency
predicted by the analytical model.

Our experimental results (see Fig. 1) highlight that, thanks
to the initial knowledge of the analytical model, UCB avoids
blind explorations of inadequately low batching values which
would otherwise rapidly lead the system to trashing at high
load. On the other hand, the usage of RL makes the self-
tuning policy more accurate than when using exclusively
the analytical model, whose initial, and partially incorrect,
knowledge can be quickly updated by using UCB.

3. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002.

[2] X. Defago, A. Schiper, and P. Urban. Total order
broadcast and multicast algorithms: Taxonomy and
survey. ACM Comput. Surv., 36(4):372–421, 2004.

[3] P. Romano and M. Leonetti. Self-tuning batching in
total order broadcast protocols via analytical modelling
and reinforcement learning. Technical Report 9,
INESC-ID, February 2011.


