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Abstract
In this paper, we introduce a technique that can be used by dis-
tributed transactional protocols to reduce the vulnerability window
of transactions. For this purpose, we propose a so far unexplored
(to the best of our knowledge) usage of hybrid clocks. On one
hand, loosely synchronized physical clocks are used to maximize
the freshness of the snapshots used by transactions to read. On the
other hand, logical clocks are used to reduce the extent to which
the snapshot of update transactions is advanced upon their commit.

We claim that the joint usage of these two techniques can po-
tentially reduce the abort rate in comparison to previous protocols
such as Clock-SI, GMU, and SCORe.

Categories and Subject Descriptors C.2.4 [Distributed Systems]:
Distributed Databases

Keywords hybrid clocks, concurrency control, transactional pro-
tocols, abort rate, snapshot isolation

1. Introduction
Capturing the passage of time and the cause-effect relations among
events is a key problem at the core of the design of distributed
systems. Unsurprisingly, this issue is also of paramount importance
in the design of cloud data stores that provide some meaningful
consistency guarantee, such as causal consistency [8], snapshot
isolation [3], and serializable snapshot isolation [5]. A variety of
clock mechanisms have been proposed to track and reason about
the order in which events happen, such as physical clocks, logical
clocks, and hybrid clocks.

A key characteristic of distributed transactional protocols that
impacts the performance of transactional cloud data stores is the
abort rate, which is affected by the degree of concurrency. Trans-
action abort probability depends, naturally, on the workload char-
acteristics. However, the concurrency control mechanism may also
play a role in reducing or increasing the likelihood of conflicts. We
define the vulnerability window as the time window defined be-
tween transaction’s starting point and its serialization point; other
transactions whose vulnerability window overlaps may potentially

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’15, April 21, 2015, Bordeaux, France.
Copyright c� 2015 ACM 978-1-4503-3537-9/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2746688

cause the transaction to abort (a more precise definition is given in
Section 3). In protocols that use clocks, the vulnerability window
depends on how the protocol handles time.

In this short paper we propose a novel technique that aims at
reducing the vulnerability window of transactions. Our technique
uses an hybrid clock implementation. The idea is to use the physical
part of the hybrid clock to set the starting time of the transaction;
therefore, moving the starting point forward in time as much as
possible. On the other hand, our technique proposes to use the
logical part of the hybrid clock in order to serialize transactions
at the earliest possible point in time. The combination of these two
techniques has the potential of reducing the vulnerability window;
and in consequence, the abort rate.

Despite the fact that this is still a work in progress, we believe
that this paper already discusses and flags interesting aspects of the
use of clocks in distributed transactional protocols. The contribu-
tions of this paper are the following:

• A technique that proposes a novel usage of hybrid clocks in
distributed transactional protocols that aims at reducing the
abort rate by shortening transactions’ vulnerability windows.

• Comparison and discussion of the implications that different
types of clocks pose in the implementation of a distributed
transactional protocol. The discussion uses protocols found in
the literature such as Clock-SI [4], GMU [12] and SCORe [11].

The rest of the paper is organized as follows. Section 2 gives
a brief overview of the different clocks that can be used to order
events in distributed systems. Section 3 describes our technique
by integrating it into a protocol in order to ease readers compre-
hension. Section 4 compares our solution to other proposed pro-
tocols that use different clock implementations. Finally, Section 5
discusses the next steps of our research and concludes the paper.

2. Clocks
In the design of distributed systems, one could use different clocks
techniques to reason about the order of events. A first type of clocks
are physical clocks. Each participant of a distributed system can
use its own physical clock to timestamp events, and reason about
the ordering by comparing timestamps. Nevertheless, these clocks
can never be perfectly synchronized which may increase system
latencies due to the need to keep into account drifts in the clock,
e.g., by introducing additional wait phases. Tightly synchronized
physical clocks can be achieved by leveraging GPS protocols at the
cost of expensive hardware; whereas, loosely synchronized physi-
cal clocks can be inexpensively produced by relying on distributed
clock synchronization algorithms, such as NTP [10] and PTP [2].

A second type of clocks are logical clocks. Introduced by Lam-
port in 1978 [8], these clocks order events based on passage of in-



formation rather than passage of time. Different forms of logical
clocks have been proposed, as scalar [8], vectors [6, 9] and ma-
trix [13, 16]. While scalar clocks are very efficient w.r.t. the mes-
sage size, they may insert extra dependences between events. Vec-
tor and matrix clocks fix this problem at the cost of increasing the
size of the messages to sometimes unbearable sizes.

Finally, the last type of clocks are a combination of the previous
categories, namely hybrid clocks. A good example of this type of
clocks is Hybrid Logical Clocks (HLC) [7]. It combines a physical
clock with a scalar logical clock. This approach can be used to (i)
avoid, at least in some circumstances, waiting periods due to clock
drift, and (ii) precisely identify cause-effect relations avoiding the
possibility of wrongly ordering events.

3. On Fully Distributed Transactional Protocols
In order to better understand and illustrate the benefits of our tech-
nique, we resort to a concrete protocol that embodies it. We have
observed that some of the fully distributed transactional protocols
in the literature, such as SCORe [11] and Clock-SI [4], share a com-
mon structure and mostly only differ for the type of clocks they
use. Thus, the protocol we use throughout the discussion shares
this common pattern and integrates our technique. In this section,
we first give an overview of the protocol and how we integrate our
technique. Then, we describe the protocol in detail.

3.1 Protocol Overview
The protocol implements snapshot isolation (SI) [3]. It satisfies the
following three properties: (i) each transaction reads from a con-
sistent snapshot, (ii) conflicting update transactions commit in total
order producing a new snapshot in the database, and (iii) a trans-
action aborts if introduces a conflict with a concurrent committed
transaction. In SI, two transactions conflict if their write-sets, which
is the set of updated data items, have common elements. This type
of conflicts are called write-write conflicts. In consequence, SI pre-
cludes read-only transactions to abort. Since workloads are usually
composed by mostly read-only transactions, SI is likely to improve
performance compared to stronger consistency criteria, such as se-
rializability where read-write conflicts abort transactions. SI is the
default consistency choice of popular data engines as Oracle and
Microsoft SQL Server.

In addition, the protocol can be characterized as a Genuine
Partial Replication (GPR) [14] and Deferred Update Replication
(DUR) [15] protocol. GPR protocols are those in which only the
servers that store data needed by the transaction are involved in
the coordination. This is a desirable characteristic for large-scale
systems. DUR is an optimization for transactional protocols where
updates are buffered in the coordinator and sent atomically in the
commit step. This reduces coordination and potentially latency.

The protocol is composed by three phases: (i) an initial phase
where transaction’s snapshot time is set, defining the versions that
transactions can read, (ii) an interactive phase where clients issue
read and update requests, and (iii) a two phase commit protocol that
sets transaction’s commit time, in case all involved servers agree
on committing. We define vulnerability window of a transaction as
the window time created between transaction’s snapshot time and
transaction’s commit time. Two transactions whose vulnerability
windows overlap are considered concurrent by the protocol. Since a
transaction is aborted if there is a concurrent conflicting transaction
already committed, one goal of this type of protocols should be to
shorten the vulnerability window as much as possible. This leads to
reduce the abort rate and improve protocol’s performance.

Our technique precisely focus on this observation. We propose
the use of hybrid clocks to identify consistent snapshots and order
committed transactions. The hybrid clock is composed by a phys-
ical clock and a scalar logical clock. The physical clock is always

equal to the value of the server’s physical clock and it is used to set
transaction’s snapshot time. We assume that physical clocks of dif-
ferent servers are loosely synchronized through a distributed clock
synchronization protocol as NTP; nevertheless, the protocol cor-
rectness does not depend on how synchronized clocks are. On the
other hand, the scalar logical clock will always be set to the largest
time stamp the server has seen. This means that the logical clock is
“infected” by the physical time. The protocol uses the logical part
of the hybrid clock to propose commit times.

3.2 Protocol
Algorithm 1 shows the pseudocode of the protocol running in
the coordinator of the transaction (lines 1-24) and on the servers
(lines 25-43). Notice that any server can act as a coordinator. A
transaction issued by a client would take the following steps:

1. Upon a start transaction request, the coordinator initializes the
transaction and sets the snapshot time as the maximum between
its physical clock and logical clock (lines 2-5). The snapshot
time will be used by the transaction to identify the consistent
snapshot from where to read.

2. Clients interactively send operations (read/update) to the coor-
dinator. Updates are buffered in the coordinator (line 14). Reads
are sent to the partition responsible for the data item (if not
buffered). Upon a read request for key, the server first updates
its logical clock (line 26). Then, it waits for prepared conflicting
transactions with smaller prepare time than transaction’s snap-
shot time to commit (lines 27-30). Otherwise, the server may
return a version that misses writes of concurrent transactions.
Finally, the server returns the largest version with a smaller or
equal commit time than transaction’s snapshot time.

3. Upon a commit transaction request, the coordinator starts a two
phase commit protocol (2PC) to either commit or abort.
• First, the coordinator sends a prepare request to the servers

storing part of the transactions’s write set (lines 17-18).
• Each server first updates its logical clock (line 33). Then,

it waits for already prepared conflicting concurrent transac-
tions to either commit or abort (lines 34-35). Otherwise, SI
may be violated. Next, the server runs a certification check
that look for conflicting concurrent committed transactions
(line 36). If none, the server increases its logical clock (line
37) and uses it as prepare time. The proposed prepare time
is sent to the coordinator. Otherwise, an abort message is
sent back to the coordinator.

• The coordinator waits for all the partitions to reply. If all
partitions agree on committing, the coordinator sets the
commit time of the transaction to the maximum of the gath-
ered prepare times. Finally, it sends committed to the client
and the commit time to the involved servers.

• When a server receives the commit time, it applies the up-
dates to its local store using the commit time as version id.

Our protocol has two points where the execution may need to
be delayed in order to ensure correctness. The first can be found
in lines 27-30. A server waits until conflicting concurrent prepared
transactions are committed or aborted if their commit time may be
smaller than current transaction’s snapshot time. For instance, let
us assume two potentially concurrent transactions T1 and T2. T1

starts before T2, updates data items x and y, and tries to commit in
servers P1 and P2. On the other hand, T2 is a read-only transaction
that reads data item x in P1. When the read request reaches P1, T1

has not been committed yet; therefore, P1 does not know whether
T1 has to be included in T2’s snapshot or not. If P1 proposed a
prepare times for T1 smaller than T2’s snapshot time, there is a



Algorithm 1: Protocol
// Coordinator operations
1 upon receive start tx() from Client do
2 T.TxId generate txid()
3 T.SnapshotTime max(Server.PhysicalClock, Server.MaxTS)
4 T.State active
5 T.Client Client
6 send T to Client

7 upon receive read (T, Key) from Client do
8 if is buffered(T, Key) then
9 send get buffered value(T, Key) to Client
10 else
11 Server get responsible(Key)
12 send read(T, Key) to Server

13 upon receive update(T, Key, Value) from Client do
14 buffer value(T, Key, Value)
15 send ok to Client

16 upon receive commit(T) from Client do
17 foreach Server in T.UpdatePartitions do
18 send prepare(T) to Server
19 wait until receiving PrepareTime from T.UpdatePartitions
20 T.CommitTime max(all prepare times)
21 T.State committed
22 foreach Server in T.UpdatePartitions do
23 send commit(T) to Server
24 send ok to Client

// Server operations
25 upon receive read (T, Key) from Coordinator do
26 Server.MaxTS max(Server.MaxTS, T.SnapshotTime)
27 if Key is updated by T’ ^
28 T’.State = prepared ^
29 T.SnapshotTime > T’.PrepareTime then
30 wait until T’.State = committed
31 send get(Server.Backend, Key, T.SnapshotTime) to T.Client

32 upon receive prepare(T) from Coordinator do
33 Server.MaxTS max(Server.MaxTS, T.SnapshotTime)
34 if Key is updated by T’ ^ T’.State = prepared then
35 wait until T’.State = committed
36 if CertificationCheck(T) then
37 Server.MaxTS Server.MaxTS + 1
38 T.PrepareTime Server.MaxTS
39 T.State prepared
40 send T.PrepareTime to Coordinator

41 upon receive commit(T) from Coordinator do
42 T.State committed
43 put(Server.Backend, T.WriteSet, T.CommitTime)

possibility that the maximum of all proposed prepare time, and in
consequence T1’s commit time, is smaller than T2’s snapshot time.
In this case, T1 has to be included in T2’s snapshot, otherwise SI
is violated. The only way to ensure correctness in this scenario,
without adding extra coordination, is to wait for T1 to finish, as
our protocol does. Clock-SI [4], which uses physical clocks to set
transactions snapshot times, solves the problem similarly.

The second point where waiting can be required is found in lines
34-35. The intuition behind this is that prepared transactions are not
considered in the certification check (line 36) and they may pose
write-write conflicts, and thus, violate SI. Therefore, we suggest
to wait until there is no conflicting transaction committing before
starting the certification phase. Let us discuss an example to clarify
this safety property. Let us assume two transactions T1 and T2

whose write sets intersect in data item x stored in P1. P1 receives a
prepare request first for T1. Then, it receives the prepare request for
T2. Since T1’s commit time is unknown at this point, there is always
the possibility that T1 and T2 are concurrent. Therefore, only one
should successfully commit. If P1 do not wait for T1 to commit or

abort before preparing T2 both may commit, and thus, violate SI.
Even when T1 and T2 are known to be concurrent, one should not
abort T2 immediately since T1 may abort.

4. Comparison with Related Work
We now focus on discussing the implications and the trade-offs that
our clock choice poses in comparison to other clock mechanisms
proposed in the literature. We consider three protocols to compare:
SCORe [11] that uses a simple scalar logical clock, GMU [12]
that uses a vector clock with an entry per server in the cluster, and
Clock-SI [4] that uses a single physical clock. All these protocols
share a very similar protocol skeleton to the one described above.
In addition, we also use Hybrid Logical Clocks (HLC) [7] in our
discussion. In fact, it would be relatively straightforward to use
them in our protocol skeleton. Furthermore, HLCs have already
been used in transactional databases, such as CockroachDB [1].

As we have seen, there are two crucial points in which the type
of clock used characterizes a GPR protocol: assigning the snapshot
time when the transaction starts and proposing a commit time in the
commit phase. We analyse them in the following paragraphs.

Assigning snapshot time This step (i) defines how recent the read
data is, and (ii) impacts the transaction’s vulnerability window by
setting its starting point. Physical clocks are in general desirable for
this task since, with logical clocks, the rate in which each server’s
clock advances directly depends on how often they participate in
transactions. Thus, if a server that was isolated for a while happens
to assign the snapshot time of a transaction, this is likely to (i) read
quite stale data, and (ii) abort since the beginning of the transaction
will be set way in the past for active servers. For instance, let us
discuss a example with three servers P1, P2, and P3 whose initial
logical clocks are the same. After executing a large number of
transactions in which only P1 and P2 participate, P3’s logical clock
will be set way behind in the past in comparison to P1 and P2’s
clocks. In this situation, we say that P3 is isolated. In consequence,
next time that P3 sets the snapshot time of a transaction that updates
data items in any of the other servers, the transaction is likely to
abort. In the contrary, physical clocks advance automatically even
for servers that are isolated by the workload. Thus, physical clocks
are capable to avoid both problems. SCORe and GMU suffer from
these problems. GMU tackles them by advancing the snapshot time
as a transaction reads if possible. This, however, comes at the cost
of storing and shipping a vector instead of a single scalar.

On the other hand, physical clocks also have a major disadvan-
tage: protocol’s performance depends on the clock skew. This has
two implications. First, a read request and a prepare request of a
transaction with a snapshot time in the future (w.r.t. local server’s
clock) has to be delayed until the local clock catches up. Second,
while logical clocks always assign snapshot times that represent, at
least, already prepared transactions, physical clocks may assign a
snapshot time that is in the future. This means that a server is more
likely to have prepared conflicting transactions that make the snap-
shot to be unavailable; and thus, delay the transaction (first waiting
period of our protocol, lines 27-30). Clock-SI suffers from both
problems. On the contrary, our protocol avoids the first by the use
of the scalar in conjunction to the physical. Thus, instead of waiting
for the physical clock to catch up, our protocol simply updates the
logical one. This is possible because snapshot times are set as the
maximum between the physical and the logical clock. Notice that
we are not first to notice this improvement of hybrid clocks over
physical clocks, as the HLC paper already mentions it.

Proposing commit time This step impacts the size of transac-
tion’s vulnerability window. As argued before, the protocol should
try to shorten it in order to reduce the abort rate. Thus, there will be
less overlapping between the transactions and less chance to find



Protocol Clocks Freshness
Vulnerability Unavailable Clock

Window Snapshot skew
SCORe Scalar Low f1(wl) No No
GMU Vector Medium f2(wl) No No

Clock-SI Physical High f3(wl, cs) Yes Yes
HLC Hybrid High f3(wl, cs) Yes No

Our protocol Hybrid High  min(f1, f3) Yes No

Table 1. Summary of GPR protocols with different clock choices
and its implications. In the vulnerability window column, wl stands
for workload and cs stands for clock skew. This column gives an
intuition on which factors the size of the vulnerability window de-
pends. The last column refers to the technique of delaying transac-
tion’s execution to cope with potential clock skews.

conflicts. Based on this assumption, logical clocks are more suit-
able for this task. They only move forward when necessary while
physical clocks automatically advance, potentially proposing larger
commit times. SCORe and GMU use logical clocks for this task,
while Clock-SI uses a physical clock. On the other hand, HLC
would take the maximum between the physical clock and the logi-
cal clock, potentially leading to similar results than Clock-SI. Our
protocol, instead, only uses the logical clock for this task.

Discussion We claim that our protocol takes the best clock choice
in both steps, by reducing the vulnerability window of transactions
and maximizing data freshness. Table 1 summarizes the advantages
and disadvantages of different clocks techniques applied to GPR
protocols. As the table shows, our protocol is the best among all
the protocols. It will (i) serve the most recent data, (ii) generate the
smallest vulnerability windows (with the exception of GMU that is
incomparable), and (iii) avoid points where the execution have to
be delayed due to clock skew.

Regarding the size of the vulnerability window in other proto-
cols, it will depend on different factors. For instance, in SCORe and
GMU, it will depend on how often servers are isolated by the work-
load. In those scenarios, the vulnerability window created for the
first transaction after a period of inactivity can be arbitrarily large.
Nevertheless, even when the workload does not isolate servers, our
protocol will always generate, on average, smaller windows that
SCORe since the starting time of the transaction is the maximum
between the physical and the logical clock. Thus, if the physi-
cal clock is ahead of the logical one, the window’s size would be
smaller than the one generated by SCORe. On the other hand, if the
physical clock is behind, due to clock skew, our protocol will gen-
erate window’s sizes equivalent to the ones generated by SCORe.
Notice that our protocol and GMU are incomparable. Since GMU
may advance transaction’s snapshot time, it may generate smaller
windows in some cases.

On the other hand, in Clock-SI and HLC, the size of the vul-
nerability window will depend on the workload and the clock skew.
Both would generate the same sizes, since the only improvement
of HLC over Clock-SI is that avoids points where the execution has
to be delayed due to clock skew. In comparison to our protocol,
there are two scenarios to discuss. First, in the hypothetical sce-
nario with perfectly synchronized clocks, our protocol will always
generate smaller windows because the logical clock will always be
behind the physical one due to network latencies. Thus, the commit
time of transactions will always be smaller that the ones generated
by Clock-SI and HLC. On the other hand, when clocks are only
loosely synchronized, if the logical is ahead of the physical one,
the three protocols would generate the same window size. Other-
wise, our protocol would generate smaller sizes.

5. Future work
We plan to implement the proposed protocol and compare its per-
formance and other parameters, as the abort rate, to other fully dis-
tributed transactional protocols. We are mostly interested to com-
pare to systems with a similar protocol but using different type
of clocks. This will lead us to experimentally prove or disprove
whether our initial conclusions are right.
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