APART: Low Cost Active Replication for Multi-tier Data Acquisition Systems

Paolo Romano
INESC-ID, Lisbon, Portugal

Abstract

This paper proposes APART (A Posteriori Active Repli-
caTion), a novel active replication protocol specifically tai-
lored for multi-tier data acquisition systems. Unlike exist-
ing active replication solutions, APART does not rely on
a-priori coordination schemes determining a same sched-
ule of events across all the replicas, but it ensures repli-
cas’ consistency by means of an a-posteriori reconciliation
phase. The latter is triggered only in case the replicated
servers externalize their state by producing an output event
towards a different tier. On one hand, this allows coping
with non-deterministic replicas, unlike existing active repli-
cation approaches. On the other hand, it allows attaining
striking performance gains in the case of silent replicated
servers, which only sporadically, yet unpredictably, produce
output events in response to the receipt of a (possibly large)
volume of input messages. This is a common scenario in
data acquisition systems, where sink processes, which filter
and/or correlate incoming sensor data, produce output mes-
sages only if some application relevant event is detected.
Further, the APART’s replica reconciliation scheme is ex-
tremely lightweight as it exploits the cross-tier communica-
tion pattern spontaneously induced by the application logic
to avoid explicit replicas’ coordination messages.

1 Introduction

Recent advances in wireless sensor networks and RFID
technology have made sensor driven data acquisition ser-
vices enter the realms of mainstream applications in a vari-
ety of diverse mission critical domains, such as public se-
curity, environmental protection, access control and supply
chain management. The pervasive diffusion of this class
of applications is opening new promising business scenar-
ios and recent economic forecasts anticipate a huge eco-
nomic growth of the related market in the short term future
[21, 22]. However, in order to fully enable the widespread
diffusion of mission critical sensor-driven applications it is
necessary to develop solutions able to meet their stringent
performance and reliability requirements.

From an architectural’s view point, sensor based data ac-
quisition systems are typically deployed as three-tier sys-
tems. The first tier is formed by a set of distributed sensing
devices, such as RFID readers, wireless sensor networks or
network monitoring probes. The middle-tier servers, also

Diego Rughetti, Francesco Quaglia and Bruno Ciciani

Sapienza Universita di Roma

referred to as sinks, are in charge to gather, correlate and
filter out sensors’ data, so to propagate only application
relevant events towards the back-end tier. The latter tier,
in its turn, logs sink originated events, typically by means
of transactional components, and exposes these events to
user level applications via standard messaging protocols
(e.g. WS-RX [17] or XMMP [25]). The system’s partition-
ing into multiple tiers provides the potentialities to achieve
high modularity and flexibility, reflecting at both software
and hardware levels the logical decomposition of applica-
tions. On the other hand, ensuring stringent availability and
predictability requirements, proper of such mission criti-
cal applications, needs replication schemes, to be integrated
within the application’s architectural organization in order
to provide timely failure masking mechanisms. Actually,
there have been some proposals based on the exploitation
of replication in order achieve adequate reliability levels
for sensing devices (i.e. the aforementioned first tier) [20].
In this article we focus on the orthogonal issue of exploit-
ing replication at the level of the data acquisition servers,
namely the sinks within the middle-tier.

Among the replication approaches developed by the
fault-tolerance research community, active replication (also
referred to as state machine replication) [24] appears to be
a natural candidate to meet the constraints proper of mis-
sion critical data acquisition systems. Specifically, with ac-
tive replication schemes, transparent and instantaneous fail-
over can be achieved by having different replicas of a same
server involved in concurrent processing of the incoming
messages. This avoids delaying the application output due
to failure detection latency, as instead occurs in other repli-
cation strategies (e.g. passive replication), thus sensibly
enhancing performance predictability in failure-prone en-
vironments.

However, in order to ensure server replicas’ consistency
(typically linearizability of the replicated execution history
[10]), traditional active replication schemes regulate the
evolution of the replicas’ state trajectories by postponing the
processing of incoming messages until the termination of an
Atomic Broadcast group communication protocol, which is
aimed at enforcing replicas’ agreement on a common, Or-
dered, set of messages to be processed [4]. While a number
of optimizations have been proposed to reduce (see, e.g.,
[6, 18]), or amortize (see, e.g., [8, 15]) the Atomic Broad-

cast cost, this still represents a major source of overhead for
active replication.

In this paper, we present APART (A Posteriori Active
ReplicaTion), an innovative active replication protocol ex-
plicitly tailored for multi-tier data acquisition systems. Un-
like traditional active replication schemes, APART does not
rely on any replica coordination mechanism (e.g. group
communication protocols) to be actuated prior to message
processing. It rather enforces replicated sinks consistency
only when strictly required, namely when sink replicas ex-
ternalize their current state by producing an output message.
More in detail, the key intuition underlying our proposal is
that, since sinks play the role of filters for data provided by
sensing devices, they can be abstracted as replicated state
machines which only sporadically, yet unpredictably, pro-
duce output events in response to the receipt of a (large) set
of input messages. In other words sinks can be viewed as
state machines of a silent type.

APART exploits such a property by avoiding any form
of a-priori replica coordination during silent periods, and by
relying on an a-posteriori reconciliation phase, coordinated
by the back-end tier, which is used to correct loss of align-
ment, if any, of the replicated sinks’ state trajectories. Also,
this is done without generating explicit replica coordination
messages. Instead, we exploit the communication pattern
spontaneously induced at the application level for event no-
tification towards the back-end tier, ultimately acting as the
coordinator for the reconciliation process. Further, the re-
liance on an a-posteriori replica reconciliation mechanism
allows avoiding any restrictive assumption on replica deter-
minism. In other words, the use of APART is not precluded
in scenarios with non-deterministic replicas. This makes of
APART a highly general solution, which does not require
the employment of complex (costly) mechanisms [16, 19]
(mandatorily imposed by traditional active replication pro-
tocols), explicitly aimed at sheltering the replicas from any
source of non-determinism (such as thread scheduling and
interrupt handling).

We also carry out a performance evaluation study
through a prototype implementation based on Java2 and the
Appia communication framework [13]. This study high-
lights how APART is able to achieve impressive perfor-
mance levels when compared to state of the art active repli-
cation schemes. As it will be shown, even in the case of
non-silent replicated servers, APART attains up to 400%
throughput increase compared to atomic broadcast, while
jointly reducing 4.5 times the latency at low system load.
In the case of “moderately” silent replicated servers, the la-
tency reduction with respect to traditional approaches re-
mains on the order of 400%, but the gain by APART in
terms of maximum sustainable throughput, inceases up to
1850%.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the reference system model. Section 3

presents the APART protocol. Related work is discussed in
Section 4. The performance study is carried out in Section
5.

2 System Model

We consider a classical distributed, asynchronous sys-
tem model, in which there is no bound on message delay,
clock drift or process relative speed. Process communica-
tion takes place exclusively through message exchange on
top of reliable FIFO communication channels. Hence we
assume that each message is eventually delivered, in the
same order in which it was originally sent, unless either the
sender or the receiver crashes during the transmission [9].

2.1 Sensor Processes

As already hinted in the Introduction, there are some lit-
erature proposals, based on replication techniques, which
are explicitly tailored to reliability at the level of sensors
[20]. These can support, e.g., a “good coverage” of the
sensed phenomena over time despite failures or other kinds
of anomalies. Given that we orthogonally focus on reliabil-
ity of the data acquisition system, we do not explicitly con-
sider replication techniques for sensing devices in our pro-
tocol, and we model the sensing tier as a set of n different
sensor processes {sensory, ..., sensory, }, each one possi-
bly implemented via the aforementioned reliability oriented
techniques. This does not exclude the possibility of crash,
and, for simplicity of presentation, we assume that sensor
processes do not to recover after a crash. The latter assump-
tion could however be relaxed to admit correct handling of
sensors’ recovery after a crash. This would only imply that
sensor processes are able to correctly tag their messages to
distinguish messages associated with different incarnations.

Sensor processes provide sinks with a stream of data
messages conveying information on sensed environmental
phenomena (e.g. temperature values, video/audio samples,
RFID tags’ position, network traffic data for QoS or secu-
rity purposes etc). We abstract over the details related to
the sensing and network management activities, and make
no assumptions on the sensor message production rate.
We only assume that, according to the active replication
paradigm [24], sensors are able to broadcast (via plain best
effort broadcast, see, e.g., [9]) their messages to the set of
sink processes.

2.2 Sink Processes

Logically, the middle-tier is formed by a unique sink.
However, we model the sink as a set of m replicated sink
processes {sink’?, ..., sinkZ }. In other words, replication
at the level of middle-tier data acquisition servers is explic-
itly taken into account in our protocol. Sink processes col-
lect and elaborate the messages arriving from sensor pro-
cesses. In case the occurrence of any application relevant
condition is detected, they generate an output event towards
the back-end. Accordingly, locating sink processes in the

proximity of sensor processes can support a reduction of
the network traffic associated with the whole application.

The logic hosted by the sink processes can be very di-
verse and strongly dependent on the specific application
domain. However, the production of output events by a
sink process is generally triggered either when some sta-
tistical metric, computed over the incoming sensors’ data,
reaches predetermined thresholds, or when the sensed data
is found to match some known pattern. Also, pattern match-
ing is used by the sink as the basis for triggering output
events in a wide class of applications such as, e.g., track-
ing of RFID tagged objects (whose movement direction is
detected by correlating positioning information provided by
distributed RFID gates) and distributed intrusion detection
systems (which generate alarms in case the data collected by
multiple network probes matches some known attack strate-
gies).

We abstract over the detail of the sink application logic
and model its behavior through a non-deterministic finite
state machine (FSM) [24], whose evolution is determined
by invoking the ProcessMessage primitive at the sink
process. The latter takes a sensor message as input param-
eter, updates the FSM’s state and possibly returns an output
message encoding the output event destined to the back-
end. We use the null return value to model the case in
which no output message is produced, and say that, in such
a case, the FSM is silent. In order to quantify the “silentness
degree” of the FSM associated with a sink over a given time
window we use the parameter ¥ = %, where
#input_msgs and #Houtput_msgs denote the number of
invocations of the ProcessMessage primitive over the
considered time window, and, respectively, the number of
times this primitive does not return null. It is straight-
forward to see that feasible values for X lie in the inter-
val [1,+00), where the left-end value, namely ¥ = 1, cor-
responds to the case of FSMs producing an output event
for each input message, and the right-end value, namely
¥ = +oo, is representative of scenarios where no out-
put event is ever produced despite the arrival of whichever
amount of input messages. Obviously, the aforementioned
filtering and network traffic reduction effects will depend
(beyond sink processes locations) also on the actual value
of 3.

We additionally assume that two other primitives are
available at the sink process. namely getFSMState and
setFSMState. The former primitive returns the current
state of the FSM associated with the sink process, while the
latter primitive replaces the current sink process state with
the one passed as input parameter (in other words it rein-
stalls the state of the sink process).

Finally, we assume that sink processes do not recover af-
ter a crash. However, we assume that at least one sink pro-
cess in the set {sink%, ..., sinkZ'} is correct, i.e., it does
not crash. Hence, we tolerate the crash of at most f < m

sink replicas. These assumptions are introduced to simplify
the protocol’s presentation, and could be relaxed by relying
on some orthogonal group membership service [1] aimed at
notifying the changes in the group of replicated sink pro-
cesses (caused by both crash and recover events).

2.3 Back-end Data Server

The system back-end consists of a data server process
which receives the sinks’ output events and registers them
within a local database, used for event publication towards
external applications. We do not explicitly model the mech-
anisms used to publish the events, as these are orthogo-
nal to the APART protocol, and abstract over the details
of database updates viaa PublishTransaction primi-
tive. The latter takes two input parameters, namely a unique
identifier and a sink’s output message (representative of the
event to be published), and executes the transactional logic
that inserts such a tuple within the database. We assume the
execution of the PublishTransaction primitive with
a given input identifier to be idempotent, i.e. no two trans-
actions associated with the same input identifier can ever be
committed. This can be achieved by storing the identifier
passed as input parameter in a dedicated user level database
table within the boundaries of the application level trans-
action and leveraging standard primary key integrity con-
straints to filter out duplicate transactions [23].

Additionally, we assume that the data server has access
to a log on stable storage, which preserves its state in the
APART protocol despite crashes. Stable storage is used to
persist a single tuple conveying information on the proto-
col’s current state. At this end, we assume the presence
of the primitive 1og, which records the tuple passed as
input parameter onto stable storage, and of the primitive
readFromLog, which simply returns the value of the cur-
rently logged tuple, or the value null in case no tuple has
been yet logged.

We assume that the back-end data server eventually re-
covers after a crash and that there is a time after which it
stops crashing and remains up, allowing outgoing messages
to be eventually delivered to all the correct sink replicas. In
practice, this means assuming that the data server can expe-
rience a period of instability during which it can crash and
recover, and then a period during which it does not crash,
which is long enough to allow the conclusion of an interac-
tion round with correct sink processes.

3 The APART Protocol

In this section we first present an overview of the APART
protocol and then formalize it by providing the pseudo-code
description of the sink and the back-end data server pro-
cesses. We omit detailing the pseudo-code of the sensor
processes as they simply broadcast SENSORMSG messages
to the set of sink replicas, along with the following infor-
mation: msgld, namely a sequentially increasing identifier,

and data, which conveys information related to the sensed
phenomenon.

3.1 Overview

Unlike classical active replication schemes, in APART
sink replicas do not run any coordination protocol (such as,
e.g., atomic broadcast [4] or consensus [7]) to ensure an
“a-priori” agreement on the ordered set of sensor messages
to be processed. Conversely, sink replicas process incom-
ing sensor messages as soon as they are received and rely
on an “a-posteriori” coordination phase. The latter is trig-
gered when the sink’s FSM produces an output event (thus
saving any coordination overhead during silent periods) and
enforces the coherency of all the sink replicas states before
these start processing any additional sensor message.

The information exploited in the a-posteriori coordina-
tion phase includes not only the state of the local FSM as-
sociated with sink replicas, but also the state of the commu-
nication channels towards the sensors, which is concisely
encoded by a vector clock [12]. The latter information is
required to ensure that any replica sink!* which, according
to the outcome of the a-posteriori coordination phase, had
to reinstall its state to the state value associated with a dif-
ferent replica sinkf, is able to perform the following tasks:

1. Determine if it has already processed some sensor mes-
sage not yet received/processed by sinkf. These messages
must in fact be reprocessed by sinkZ? after a-posteriori co-
ordination, in order to to ensure at-least-once semantic for
the processing of each message produced by a sensor pro-
cess that does not eventually crash (!). This guarantees that
messages from correct sources are not eventually excluded
along the reconciliated FSM state trajectory, thus prevent-
ing biased observations of the sensed phenomena caused by
the exclusion of valid data. To enable message reprocessing
after a state reinstall operation, sink processes maintain the
received sensor messages in a volatile buffer. This is pruned
out of any obsolete message (i.e. messages known to be al-
ready processed by sinkf2 along the trajectory representative
of reconciliation) at each coordination round.

2. Detect if sinkfz has already processed some message not
yet received by sink*. These messages must be discarded
by sink? (if eventually received), since they have been al-
ready incorporated into the reconciliated FSM trajectory.
This must be done in order to ensure at-most-once process-
ing of sensor messages.

In APART the a-posteriori coordination phase is mas-
tered by the back-end data server, which waits for
mainProposals output events from the replicated sink pro-
cesses, selects (and accepts) one of them, and then broad-

1Recall that a message broadcasted by a correct sensor process is even-
tually received by any correct sink replica.

casts it back to all the sink replicas. Note that the choice to
rely on the back-end data server to coordinate sink replicas
allows merging into a single phase both replica consistency
management, and the externalization of output events to-
wards back-end applications.

Concerning min Proposals, as well as the logic driving
the selection of the representative sink output event (among
the proposals), over which we abstract by means of the
select primitive, these are treated as tunable protocol’s
parameters. Legal values for minProposals, matching
failure resiliency assumption for replicated sink processes,
span in the domain [1,m-f]. Also, the real selected value
allows trading-off the latency of output production vs the
data server ability to filter out “anomalous” output events.
In fact, given that any divergence in the states of the repli-
cated sink processes is corrected by forcing all replicas to
coherently reinstall a same state (?), it is guaranteed that
any output event produced by a sink replica is representa-
tive of a linearizable processing history [10]. Hence, since
all the output events generated by sink replicas provide lin-
earizability semantic, the back-end data server could just
set minProposals = 1, with the objective to select the
first output event it receives as the representative event, thus
enabling timely event delivery, and timely activation of a-
posteriori replica coordination. On the other hand, by set-
ting minProposals > 1, the back-end data server can ac-
tuate some voting procedure to select a specific processing
history’s linearization among those externalized by the sink
replicas through their output events. At this end, the data
server might rely either on general-purpose logics, such as
majority voting strategies, or on more complex ones, lever-
aging the application semantic, such as discarding output
events generated by sinks whose vector clocks highlight
missed message receipts from a specific subset of sensor
processes.

3.2 Sink Behavior

The pseudo-code for sink processes is shown in Figure
1. A sink maintains (i) a msgBuffer used to buffer incom-
ing messages, which is assumed to provide FIFO semantic,
(ii) a vector clock localVC, keeping track of communica-
tion histories with sensor processes, and (iii) a sequentially
increasing identifier, curRoundld, which is used to tag out-
put events destined to the back-end. Further, the sink relies
on the awaitingDecision boolean variable to temporarily in-
hibit the processing of incoming messages in case it is wait-
ing for a reply (i.e. for a decision) from the back-end data
server for a previously externalized output event.

If the sink process receives a message from a sensor
process while it is not waiting for a decision (i.e. await-
ingDecision is set to false), the local vector clock is used

2Divergencies are imputable to, e.g, different processing orders of the
incoming sensor messages, or to non-determinism of the sink processes
FSMs.

FIFOQueue msgBuffer;
VectorClock localVC[n];

int curRoundId=0;

boolean awaitingDecision=false;

//FIFO ordered message buffer
//sensor messages’ history

upon receive(SENSORMSG, msgld, data) from sensor; A —awaitingDecision do
if (msgld > localVC[sensor;]) //filter out obsolete sensor messages
msgBuffer.push([msgld,sensor; data]); /buffer the incoming message
handlelnputMsg(msgld, sensor;, data);

upon receive(DECISION, roundld, FSMState, vectorClock) from back-end server do
if (roundId > curRoundId) /filter out obsolete coordination messages

unsetRetransmissionTimeout(); /unset the retransmission timeout
curRoundlId = roundId; // set round counter
setFSMState(FSMState); //set FSM internal state
localVC = vectorClock; /fupdate local vector clock
clearBuffer(); // prune message buffer
awaitingDecision=false; /funblock processing of sensor messages
while (msgBuf fer # 0 A —awaitingDecision) do

[msgld,sensor; ,data]=msgBuffer.pop();

handleInputMsg(msgld,sensor; ,data); /reprocess buffered messages

upon timeoutExpired do //triggers retransmission of the latest output event
send(OUTPUTEVENT, courRoundld, outputMsg, getFSMState (), localVC)
to back-end server;
setRetransmissionTimeout(); //set the retransmission timeout
void handleInputMsg(int msgld, int source, SensorData data)
localVC[source] = msgid; /fupdate the corresponding vector clock’s entry
Message outputMsg=ProcessMessage(data); /FSM update
if (outputMsg # null) //the FSM produces an output event
curRoundld++; // update output messages counter
send(OUTPUTEVENT, curRoundld, outputMsg, getFSMState(), localVC)
to back-end server;
setRetransmissionTimeout(); //set the rentransmission timeout
awaitingDecision=t rue; // block processing of sensor messages

void clearBuffer() // message buffer pruning
Vmsg € msgBuffer where msg.id < localVC[msg.source]
msgBuffer.remove(msg);

Figure 1. Sink Process Behavior.

to detect whether the sensor message has already been in-
corporated into the execution history currently seen by the
sink (®). In the positive case the message is simply dis-
carded. Otherwise the sink buffers the message, updates its
vector clock to reflect the message receipt and invokes the
ProcessMessage primitive to feed its FSM with the sen-
sor data. If the FSM is silent, namely ProcessMessage
returns null, the sink starts waiting again for incoming
messages. Otherwise, it delivers the FSM’s output event to
the back-end data server by means of an OUTPUTEVENT
message, piggy-backing the current output event identi-
fier, namely curRoundld, the state of the local FSM, re-
trieved via the primitive get FSMState, and the local vec-
tor clock. Also, in order to ensure the termination of the co-
ordination phase despite crashes of the back-end data server,
the sink periodically re-transmits the OUTPUTEVENT mes-
sage towards the back-end. Finally, the sink sets await-
ingDecision to true so to temporarily suspend the process-

3Recall that this may happen in case the sink has installed the state of

a different replica that already received and processed that message.

set sinkSet = {sinky,. . .,sinky, };
Set proposals ={};
int curRoundld = 1;

upon receive(OUTPUTEVENT, roundld, outputMsg, FSMState, localVC)
from sink; A curRoundId=roundId

proposals.add([outputMsg,FSMState,local VC]);

if | proposals | > minProposals do
[outputMsg,FSMState,VC]= select(proposals);
log([curRoundId,outputMsg,FSMState,VC]);
send(DECISION,roundld,FSMState,VC) to each sink; € sinkSet;
PublishTransact ion(curRoundld,outputMsg);
curRoundId++;
proposals={ };

upon recoverFromCrash do
if (([roundId,outputMsg,FSMState,VC] = readFromLog()) # null)
send(DECISION,roundIld, FSMState,VC) to each sink; € sinkSet;
PublishTransaction(roundld,outputMsg);
curRoundld=roundId+1;

Figure 2. Back-end Data Server Behavior.

ing of any additional incoming sensor message.

If a DECISION message is received from the back-end
server, the sink first makes sure that this is not an obso-
lete message (associated with some obsolete coordination
phase). Then it unsets the timeout used to retransmit the
OUTPUTEVENT message and updates the local FSM state,
its local vector clock and curRoundld according to the pay-
load of the received DECISION message. Next it unsets
awaitingDecision to signal the termination of the coordi-
nation phase, and removes any obsolete message from its
buffer, which results as already incorporated in the execu-
tion history of the sink replica whose state has been selected
as representative for replicas reconciliation (i.e. whose
state is installed by all the other replicas as the effect of
a-posteriori coordination). This is done on the basis of the
vector clock piggybacked on the DECISION message. Fi-
nally, it starts reprocessing sensor messages left in its buffer.

3.3 Back-end Data Server Behavior

Figure 2 shows the back-end data sever pseudocode. The
main data structures kept by the data server are (i) a mono-
tonically increasing identifier, namely curRoundld, which
is used to keep track of the current round of interaction
with sink processes, and (ii) a set, namely proposals, used
to gather the OUTPUTEVENT messages received from the
sinks in the current round.

If an OUTPUTEVENT message associated with the cur-
rent round is received, this is inserted in the proposals set.
As soon as the cardinality of the proposals set reaches the
value min Proposals, the data server invokes the select
primitive to choose the output event selected as represen-
tative for publication (as well as the corresponding sink
replica’s FSM state and vector clock), logs the choice on
persistent storage and sends back the decision (i.e. the re-
sult of the selection) to the sink replicas. Then it invokes
the PublishTransaction primitive passing the current

round identifier and the selected output event as input pa-
rameters, so to execute the corresponding database update.
Finally, it empties the proposals set and increments the
round counter.

Upon recovery after a crash, the data server retrieves
from the log the information related to its latest decision,
sends back a DECISION message to the sink replicas and in-
vokes the PublishTransaction primitive. Note that,
being these operations idempotent, they can be safely exe-
cuted multiple times (e.g. in the case of multiple subsequent
crashes of the data server). Finally, the current round iden-
tifier is updated on the basis of the one retrieved from the
log.

4 Related Work

Replication solutions developed by the fault-tolerance
research community are typically classified as either pas-
sive (also known as primary-backup) [2] or active [24].

In active replication, the coherency of the replicas, which
are assumed to be deterministic, is guaranteed by delaying
the processing of incoming messages until the termination
of an Atomic Broadcast (AB) [4] protocol aimed at ensur-
ing the agreement on a common message processing order.
The works in [6, 18] aim at reducing the AB overheads by
employing optimistic approaches based on the idea to ex-
ploit the spontaneous ordering property over LANs so to
overlap message processing and the execution of the AB
protocol. Other works, such as [14], have introduced mech-
anisms aimed at “inducing” spontaneous ordering also over
WAN:Ss [14], so to reduce the abort probability of optimistic-
AB protocols. An other orthogonal technique for reducing
the AB overhead, investigated e.g. in [8, 15], is based on
delaying the activation of the AB protocol, so to order a
batch of input messages with a single run. This approach
has been shown to provide remarkable performance bene-
fits at high system’s load, where replicas more likely have
to order multiple input messages over short time windows.
The semi-active replication scheme proposed in [19] allows
relaxing the assumption on replica determinism. Each time
replicas have to execute a non-deterministic step, they rely
on a process, called the leader, to make and notify the choice
to be followed by all the replicas.

Existing active replication schemes rely on a-priori
replica synchronization schemes, which ensure that any in-
coming state update is processed only after having ensured
its durability, as well as the replicas’ agreement on its de-
livery order (i.e. if a replica processes an update in some
order, then any correct replica eventually processes it in the
same order). Conversely, APART relies on an a-posteriori
synchronization scheme, which is triggered only if repli-
cas externalize their state, and which relies on the back-end
data server to enforce state durability and consistency of
the replicated sinks (i.e. if the data server logs a state up-
date, then every correct sink eventually accordingly aligns

its own state). This has several two fundamental implica-
tions. On one hand, it allows APART to handle not de-
terministic replicas, saving the complexity and overheads
of the additional mechanisms required to enforce the de-
terministic behavior of replicated FSMs [16, 19]. On the
other hand, as it will be demonstrated in Section 5, APART
provides strong performance benefits vs classic active repli-
cation schemes, especially in the case of silent FSMs.

In passive replication schemes a single process, referred
to as the primary, is in charge of processing incoming re-
quests and of delivering state updates to its backup repli-
cas. Like APART, passive replication can handle non-
determinism. However, given that there is no primary pro-
cess in APART, our proposal avoids system transient un-
availability that is caused, in the event of a primary fail-
ure, by a reconfiguration procedure aimed at electing a new
primary (recall that this also entails the latency for detect-
ing the failure of the original primary). Recently, a vari-
ant of the classical passive scheme, named semi-passive
replication, was proposed in [5], which does not rely on
a fixed primary, but is rather based on the rotating coordi-
nator paradigm [3]. It allows using more aggressive failure
detection timeouts without incurring the cost for updating
group membership [1], which helps reducing the fail-over
latency. However, there is no complete masking of fail-
ure occurrences as in APART, and more in general in active
replication strategies.

5 Performance Evaluation

This section is devoted to compare the APART protocol
with classical active replication techniques. To carry out the
evaluation, we developed a prototype implementation of a
multi-tier middleware for data acquisition, which is based
on the Appia group communication framework [13]. Our
study is focused on system normal behavior, namely the
scenario in which no failure suspicion occurs. In the com-
parison, we consider a sequencer based uniform total order
algorithm [9], which we will refer to as AB in the follow-
ing. This choice is motivated by the fact that this protocol
achieves the lower bound for Atomic Broadcast message
delivery latency [11]. We compare the performance of the
APART protocol also with the one provided by the opti-
mistic atomic broadcast protocol in [18], hereafter named
OAB. This protocol delivers broadcast message as soon as
they are received from the network, thus immediately ac-
tivating their processing, but waits for the termination of
a sequencer based uniform total order algorithm, prior to
processing any further incoming message or producing any
output event. In other words, there is an overlapping be-
tween the processing phase and the execution of the atomic
broadcast validating the processing order. This is effective
in case the incoming messages are spontaneously received
in the same order by all the replicas. On the other hand,
OAB requires replica rollback if the spontaneous message

End-to-End Latency

1000
I

1000

900 ‘ 900
800 800

700
600

700

[
J
l
600 [
!
l
1

500

500

400

End-to-End Latency

300 300 %
200 200 [4«

AB —— B ——
100 100

OAB
o APART —o— o — 1
0 5 10 15 20 25 0 10 20 30 40 50
Messages per Second Messages per Second

(@ ¥=1 (b) = =10
Figure 3. Average latency (LAN scenario).

delivery is found to differ from that determined by the uni-
form total order algorithm.

To the best of our knowledge, there is currently no stan-
dard benchmark for data acquisition systems. Hence, in our
performance evaluation study we choose to rely on a syn-
thetic application. We model the processing of an incoming
sensor message at sinks by introducing 20 milliseconds de-
lay (implemented as a non-costly sleep operation). In order
to determine whether the processing of a sensor message
should trigger the generation of an output event we rely on
Y. (see Section 2), which we treat as an independent param-
eter in the study, and for which two different values have
been adopted, namely 1 and 10. The former value mod-
els a worst case scenario for APART, in which FSMs are
non-silent. On the other hand, the latter value allows us to
quantify the performance benefits achievable by the APART
protocol while modeling “moderately silent” FSMs.

In order to evaluate different deployments, we artificially
delay the inter-process communication (which is layered on
top of TCP channels). Specifically we consider two oppo-
site scenarios, representative of local vs geographical scale
distribution of system components. The LAN scenario is
emulated by delaying messages by a time internal expo-
nentially distributed in the range [1-10] milliseconds, with
mean value equal to 2 milliseconds. For the WAN sce-
nario, the message delay latencies were determined accord-
ing to an exponential distribution constrained in the range
[50-100], with mean value equal to 75 milliseconds.

Our test-bed consists of two machines, namely an AMD
Sempron 2400+ with 1GB of RAM, and an Intel Core 2
Duo T7250 with 2GB of RAM, both running Linux (Ker-
nel 2.6.22-14). The former machine hosts six sink replicas,
whereas the latter one is used both to generate the sensors
messages (via 12 RFID reader emulators) and to host the
data server logic. Note that the choice to deploy both the
sensors and the data server on the same physical machine
allows us to accurately measure the end-to-end message la-
tency for traversing the whole chain of components (i.e. the
sinks and data center, as well as the communication chan-
nels), without the need for using (intrusive) clock synchro-
nization protocols. In Figures 3 and 4 we report the average
end-to-end latency since the production of a message at a

End-to-End Latency

2000
1800

2000
1800

1600 1600

1400
1200

1400

|

|

1200 |
I
|

1000

1000 /
800 800 [
600 600 J
400 400 /eL
AB ——

200 OAB 200

o APART —o— o
0 2 4 6 8 10 0 10 20 30 40 50

Messages per Second Messages per Second

(@¥=1 (b) £ =10
Figure 4. Average latency (WAN scenario).

End-to-End Latency

sensor and the back-end data server’s publication of the cor-
responding output event to external applications through the
PublishTransaction primitive, when considering, re-
spectively, the LAN and the WAN scenarios.

Figure 3(a) shows the performance of the compared pro-
tocols in the case of non-silent sink replicas (3 = 1), high-
lighting how, even in this worst case scenario, the APART
protocol sensibly outperforms state of the art active repli-
cation schemes both at low and high system’s load. In
fact, at low loads, e.g. around 1 msgs/sec, the average
end-to-end latency for APART is on the order of 50 mil-
liseconds, whereas both AB and the OAB are nearly 4
times slower, achieving, respectively, 210 milliseconds and
190 milliseconds processing time. For what concerns the
maximum throughput, APART reaches the saturation point
at around 20 msgs/sec, whereas AB and OAB saturate at
around 5 msgs/sec. Such a striking performance gain for
the APART protocol, even in this worst case scenario, is
mainly imputable to the avoidance of message handling
costs proper of atomic broadcast, which provides benefits
especially when the message traffic increases.

The plots in Figure 3(b) show how the APART per-
formances can sensibly improve as 3, namely the replica
silentness degree, increases. With respect to the case of
a non-silent FSM, here the maximum throughput attained
by APART doubles, overcoming 40 messages per seconds
and falling very close to the theoretical throughput achiev-
able by the system, namely 50 messages per second (re-
call that the processing of each message by a sink replica
takes 20 milliseconds). Overall, the maximum throughput
of APART is twice that of AB, and four times that of OAB
which starts trashing much earlier than AB due to high roll-
back frequency as the load increases.

The performance gap between APART and the two con-
sidered atomic broadcast protocols drastically increases
when considering the WAN scenario, as shown in Figure
4. In this case, in fact, the increase in the message trans-
mission latency translates into a sensible increase of the
atomic broadcast’s latency, which becomes the main sys-
tem’s bottleneck for both the AB and OAB protocols limit-
ing their maximum throughput to around 1.5 msgs/sec, in-
dependently of the considered value of . The increased

message transmission latency has also an impact on the per-
formance of the APART protocol in the worst case scenario
of non-silent FSM, see Figure 4(a), which drops from the
20 msgs/sec of the corresponding LAN scenario, to around
6 msgs/sec. This is due to that, in the WAN scenario, the
bottleneck for the APART protocol is represented by the
coordination phase driven by the data server. Since this
takes two communication steps, its average latency, accord-
ing to our system settings, is of about 150 milliseconds.
This places an upper bound on the maximum throughput
achievable by APART in this specific configuration at about
6.7 msgs/sec. On the other hand, as X is increased to 10, see
Figure 4(b), the coordination phase does not result any more
to be the system’s bottleneck, as this is triggered only af-
ter having processed, in average, 10 sensor messages. This
justifies the sixfold relative increase of the maximum sus-
tainable throughput (with respect to the case of non-silent
FSMs) which in this configuration is around 37 msgs/sec
for APART. Finally, it is noteworthy to highlight that, in the
WAN scenario, APART reduces the low load end-to-end la-
tency with respect to AB and OAB by a factor of 4.5 inde-
pendently of the considered ¥ value, and increases the max-
imum sustainable throughput by a factor of 4, when =1,
and by a factor of 18.5, when ¥=10.

6 Conclusion

In this paper we presented APART, a novel active repli-
cation protocol specifically tailored for multi-tier data ac-
quisition systems. Unlike traditional active replication
schemes, APART does not rely on an a-priori replica co-
ordination mechanism, such as atomic broadcast, to guar-
antee the replicas’ agreement on a common total order of
the execution history. Conversely, APART enforces repli-
cas’ consistency a-posteriori (i.e. only when sink repli-
cas externalize their current state by producing an output
message), exploiting the cross-tier communication patterns
spontaneously induced by the application logic to avoid
generating explicit replicas’ coordination messages.

The reliance on an a-posteriori, rather than a-priori,
replica coordination schemes allows APART to manage
non-deterministic replicas with no additional overhead or
complexity. While relaxing this base assumption of classi-
cal active replication solutions has clearly a theoretical rele-
vance, it is worthy highlighting that it has also a strong prag-
matical impact. The need to enforce replica determinism in
real life systems, in fact, often requires the employment of
costly error prone mechanisms, e.g. [16, 19] aimed at shel-
tering the replicas from any source of non-determinism.

Further the APART’s design choice to rely on an a-
posteriori replica coordination phase, allows it to strikingly
outperform state of art active replication schemes, espe-
cially in the case of silent replicated servers, namely servers
that only sporadically, yet unpredictably, produce output
events in response to the receipt of a (possibly large) vol-

ume of input messages. This is a common scenario in data
acquisition systems, where processes act as sinks that filter
and/or correlate incoming sensor data.

References

[1] K. P. Birman. Distributed Computing with the Isis toolkit. TEEE Computer
Society Press, 1994.

[2] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary-backup
approaches. ACM Press/Addison-Wesley Publishing Co., 1993.

[3] T.D. Chandraand S. Toueg. Unreliable failure detectors for reliable distributed
systems. Communications of the ACM, 43(2):225-267, 1996.

D. Powell (ed.). Special Issue on Group Communication, volume 39. ACM,
1996.

[5] X. Défago. Agreement-Related Problems: From Semi-Passive Replication to
Totally Ordered Broadcast. PhD thesis, Ecole Polytechnique Fédérale de Lau-
sanne, SwitzerlandMa, 2000.

P. Felber and A. Schiper. Optimistic active replication. In Proc.of the The 21st

International Conference on Distributed Computing Systems (ICDCS), pages

333-341, Washington, DC, USA, 2001. IEEE Computer Society.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374-382, 1985.

[8] R. Friedman and E. Hadad. Adaptive batching for replicated servers. In In

Proc. of the 25th Symposium on Reliable Distributed Systems (SRDS), pages
311-320. IEEE Computer Society, 2006.

R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Program-
ming. Springer, 2006.

[4

[6

[9

[10] M. Herlihy and J. Wing. Linearizability: a correctness condition for concur-
rent objects. ACM Transactions on Programming Languages and Systems,
12(3):463-492, July 1990.

[11] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there
are no faults. SIGACT News, 32(2):45-63, 2001.

[12] F. Mattern. Virtual time and global states of distributed systems. In Proc.
Workshop on Parallel and Distributed Algorithms, pages 215-226, 1989.

[13] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel
supporting multiple coordinated channels. In In Proc. of the 21st International
Conference on Distributed Computing Systems (ICDCS), pages 707-710. IEEE
Computer Society, 2001.

[14] J. Mocito, A. Respicio, and L. Rodrigues. On statistically estimated optimistic
delivery in large-scale total order protocols. In In Proc. of the 12th IEEE In-
ternational Symposium on Pacific Rim Dependable Computing (PRDC), pages
202-209. IEEE Computer Society, 2006.

[15] P. Narasimhan, L. Moser, and P. Melliar-Smith. Message packing as a per-
formance enhancement strategy with application to the Totem protocols. In
In Proc. of the 39th Global Telecommunications Conference (GLOBECOM),
pages 649-653 vol.1, 1996.

[16] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Enforcing determinism
for the consistent replication of multithreaded corba applications. In Proc. of
the 18th Symposium on Reliable Distributed Systems (SRDS), pages 263-273.
IEEE Computer Society Press, 1999.

[17] OASIS. Web Services Reliable Messaging, 2008.

[18] F. Pedone and A. Schiper. Optimistic atomic broadcast. In Proc. of the 12th
International Symposium on Distributed Computing (DISC), pages 318-332.
Springer-Verlag, 1998.

[19] D. Powell, M. Chéreque, and D. Drackley. Fault-tolerance in Delta-4*. ACM
Operating Systems Review (SIGOPS), 25(2):122-125, 1991.

[20] A.Rahmati, L. Zhong, M. Hiltunen, and R. Jana. Reliability techniques for rfid-
based object tracking applications. In DSN ’07: Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
pages 113-118, Edinburgh, UK, 2007. IEEE Computer Society.

[21] Research and Market. RFID industry a market update, July 2005.

[22] RNCOS. Global RFID market analysis till 2010, December 2007.

[23] P. Romano, F. Quaglia, and B. Ciciani. A lightweight and scalable e-
Transaction protocol for three-tier systems with centralized back-end database.
IEEE Transactions on Knowledge and Data Engineering, 17(11):1578-1583,
2005.

[24] F. B. Schneider. Replication management using the state-machine approach.
ACM Press/Addison-Wesley Publishing Co., 1993.

[25] XMPP Standards Foundation (XSF). Extensible Messaging and Presence Pro-
tocol (XMPP) 1.0, 2003.

