
A Lightweight Heuristic-based Mechanism for Collecting Committed
Consistent Global States in Optimistic Simulation

Diego Cucuzzo, Stefano D’Alessio, Francesco Quaglia, Paolo Romano
Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma

Abstract
In this paper we study how to reuse checkpoints taken

in an uncorrelated manner during the forward execution
phase in an optimistic simulation system in order to con-
struct global consistent snapshots which are also committed
(i.e. the logical time they refer to is lower than the current
GVT value). This is done by introducing a heuristic-based
mechanism relying on update operations applied to local
committed checkpoints of the involved logical processes so
to eliminate mutual dependencies among the final achieved
state values. The mechanism is lightweight since it does
not require any form of (distributed) coordination to deter-
mine which are the checkpoint update operations to be per-
formed. At the same time it is likely to reduce the amount of
checkpoint update operations required to realign the con-
sistent global state exactly to the current GVT value, taken
as the reference time for the snapshot. Our proposal can
support, in a performance effective manner, termination de-
tection schemes based on global predicates evaluated on a
committed and consistent global snapshot, which represent
an alternative as relevant as classical termination check
only relying on the current GVT value. Another applica-
tion concerns interactive simulation environments, where
(aggregate) output information about committed and con-
sistent snapshots needs to be frequently provided, hence re-
quiring lightweight mechanisms for the construction of the
snapshots.

1 Introduction
Optimistic discrete event simulation systems are based

on state saving techniques used to support rollback opera-
tions when causality violations occur [9, 11]. Typically, the
state logs, also known as checkpoints, are used exclusively
for synchronization purposes (i.e. rollback management)
since they are discarded when a new value of the Global Vir-
tual Time (GVT) indicates that they refer to the committed
portion of the computation. According to this scheme, ter-
mination detection typically relies only on the current GVT
value, and on whether it indicates that a specific interval of
simulation time has been executed.

However, in general optimistic simulation contexts, the
termination condition might need to be implemented as a

global predicate to be evaluated on a Committed and Con-
sistent Global State (CCGS) [14] (1). Hence, an optimistic
simulation platform should include the facilities for identi-
fying CCGSs in order to support such a general termination
detection approach. This is exactly the objective of this pa-
per, which proposes a lightweight mechanism for the iden-
tification and construction of CCGSs formed by collections
of state values (one from each Logical Process - LP). The
mechanism is lightweight in a twofold sense:

• It does not impose any form of coordination among the
state saving activities across different LPs. Hence for
each LP we maintain a complete autonomy for what
concerns the scheme used to determine when to take
checkpoints during forward computation. This scheme
can be selected according to a spectrum of possibilities
(see, e.g., [8, 16, 17]) in order to optimize the tradeoff
between state saving and rollback overheads.

• It is based on an update policy of committed check-
points (supported according to an approach similar
to classical “coasting forward”) relying on a heuris-
tic method only exploiting local information available
at the LP. This information is used to determine when
the update phase of a committed checkpoint can end,
while ensuring at the same time the absence of mu-
tual dependencies among the LPs’ states forming the
global snapshot.

Our proposal can provide advantages also in interactive
simulation scenarios, where (aggregate) output data, con-
sistently reflecting changes in the global state of the whole
simulated system, need to be continuously provided to, e.g.,
an interactive end-user.

The proposed heuristic-based mechanism for the con-
struction of the CCGS has been integrated within an operat-
ing optimistic simulation platform, and we also report some
experimental results demonstrating its limited overhead.

1GVT calculation is a form of global predicate, termed distributed in-
fimum approximation in [20], which also relies on information associated
with messages in transit. However, this predicate only considers logical
time values, and does not take generic LP state information into account,
which could play a relevant role for termination detection in specific ap-
plicative contexts.

The remainder of this paper is structured as follows. In
Section 2 we describe the CCGS construction mechanism.
Related work is discussed in Section 3. The experimental
study is presented in Section 4.

2 Construction of the CCGS
2.1 Basics and Motivations

Our approach to the determination and construction of
the CCGS relies on the exploitation of the current GVT
value. This value is in fact used to initially determine which
checkpoints belong to the committed portion of the simu-
lation, and could form the base for the construction of the
CCGS. Also, we want to construct the CCGS formed by lo-
cal states of different LPs, whose simulation time is at least
equal to the simulation time of the latest checkpoints pre-
ceding GVT. This is because we want to provide a global
snapshot starting from the logs referring to the most part of
the committed computation.

As sketched in the Introduction, we consider the typical
case in which it does not exist any distributed protocol for
taking local checkpoints of the LPs in a coordinated man-
ner. This is done in order to allow the maximal flexibility
concerning checkpoint decisions at different LPs in favor of
optimizing, for each LP, the tradeoff between checkpointing
and recovery costs. Hence a simple collection of committed
checkpoints, one per LP, does not ensure that the associated
global snapshot is consistent.

We base our mechanism on the assumption that each LP
can rebuild the value of its own state at any logical time be-
tween the latest checkpoint with time prior to GVT (i.e. the
latest committed checkpoint) and GVT. As we will show
while depicting the operating optimistic simulation plat-
form supporting our CCGS construction mechanism, this
can be realized in an effective and application transparent
manner by reprocessing events with timestamps in between
the checkpoint time and the target logical time, while redi-
recting the state updates to the checkpoint buffer (instead
of the current state buffer of the LP). Also, this assumption
does not contrast with classical optimistic simulation plat-
form design since these platforms always guarantee that, to-
gether with the latest checkpoint preceding GVT, all the in-
put events for the same LP with timestamps greater than
the logical time of that checkpoint are also retained, inde-
pendently of the schedule of operations performing memory
recovery.

As widely known, LPs can create mutual dependencies
by scheduling events for each other. Specifically, when the
execution of an event at an LP schedules a new event to
be executed by a different LP, the former sends a message
to the latter. To keep our graphical representation of the
dependencies simple in the example pictures, we draw mes-
sage exchanges in a way that the message send operation
exactly coincides with the execution of the first event, while
the message receipt operation exactly coincides with the ex-
ecution of the scheduled event. In other words, we are in-

(a) Missing message

(b) Orphan message

Figure 1. Some Examples.

terested in the dependencies in logical time. Thus interme-
diate buffering operations (and more in general the message
treatment within the operating simulation platform) are not
explicitly considered since they do not contribute to depen-
dencies between local states of the LPs in logical time.

Given this premise, Figure 1(a) shows a scenario where,
once computed the new GVT value, a consistent global state
can be obtained by simply collecting each LP latest check-
point preceding GVT. On the other hand, in Figure 1(b) we
show an example situation where the latest checkpoint of
LP2 preceding GVT records the execution of an event that
depends on an event of LP1, which is instead not recorded
as occurred by the latest checkpoint of LP1 preceding GVT.
In the distributed computing community, the message asso-
ciated with such a dependency is widely known as orphan
message [6]. Instead, in the reverse situation where a global
state records the sending of a message, but does not record
its receipt, we have a so called missing message (see again
Figure 1(a)). The presence of orphan messages makes a
global state not causally consistent, while missing messages
are admitted when the reference criterion is the consistency
of the global snapshot formed by a collection of local pro-
cess states.

In the case of optimistic simulation systems, it would
be sufficient that all LPs rebuild their own state at a same
logical time (taken as reference time for the snapshot) in or-
der to assure that the global state is causally consistent. In

fact, in this case it is not possible to record the receipt of a
message without also recording the corresponding send op-
eration. This is because, when executing whichever event,
an LP is allowed to schedule new events either with a future
logical time, or at least for the current logical time (this is
a classical rule for the consistency of Discrete Event Sim-
ulation models). Hence realigning all the LPs’ states to a
same reference logical time prevents the presence of orphan
message dependencies.

Given that the base for the construction of the global
snapshot is the preventive identification of the committed
portion of the simulation via the calculation of a new GVT
value, a straightforward application of the previous scheme
would be to arrange that each LP realigns its own state to
GVT (2). In this way, the LPs can immediately rebuild their
required local states after they have been notified about the
new GVT value. Furthermore, there is even no need for
waiting for the completion of any additional (distributed)
interaction round among the process instances involved in
the computation to determine a committed reference time
different from GVT. Moreover we totally exploit the com-
mitted computation, by providing the global snapshot ex-
actly at the latest GVT. That is, the resulting global state is
the most recent committed snapshot of the simulation.

However, a serious drawback of this method is that the
number of events each LP has to reprocess when starting
from the latest checkpoint preceding GVT is directly pro-
portional to the average checkpoint distance (or checkpoint
period), which we denote as χ. In particular, several works
have already shown that, if checkpoints are taken in an un-
correlated manner with respect to a specific simulation time
value T , then T is expected to fall within a checkpoint
interval according a uniform distribution. This is exactly
the case of GVT, since its value is determined a posteriori
of the execution and of the checkpointing activities refer-
ring to the committed portion of the simulation. Hence,
we have that the average distance (in terms of simulation
events) between the latest committed checkpoint and the
GVT value is (χ−1

2
). Realigning the global state to GVT

would hence produce an execution cost that is proportional
to (χ−1

2
× #LPs).

In order to reduce this cost, a possible solution is to re-
align the state of each LP to a reference logical time preced-
ing GVT. As an example, consider the set in Figure 2 com-
posed by the checkpoints that the LPs have taken just before
GVT. This set is obviously defined only after GVT com-
putation. A good realignment time would be T ′, namely
the maximum logical time of the checkpoints belonging to
that set. In this way we could expect, at least in princi-
ples, a reduction of the number of events to be reprocessed.
Compared to the previous method this one would leads to

2Given that GVT is evaluated considering the timestamps of unpro-
cessed events and of events associated with messages still in transit, we
intend realignment to GVT as the rebuild of the LP state value at the time
of its latest committed event with timestamp less than GVT.

Figure 2. Realignment to a Reference Time
Different from GVT.

re-executing only the events represented by black circles,
instead of all the events towards GVT. However, such a re-
duction is likely to occur only in the case the number of LPs
is relatively small, since this reduces the likelihood that at
least one LP has its latest committed checkpoint very close
to GVT. Also, as sketched above, taking T ′ as the refer-
ence time for the snapshot would require an additional (dis-
tributed) interaction round, executed just after the calcula-
tion of the GVT, to notify T ′ to all the LPs.

2.2 The Heuristic-based Mechanism
To address all the issues raised in the previous section

concerning the overhead for the collection of the CCGS, we
base our solution on a heuristic approach. The basic idea for
this approach is that each LP can determine its own realign-
ment time by simply analyzing its own data structures, with
no need for additional (distributed) interaction rounds with
other LPs after GVT calculation. Depending on the current
value of these data structures, in the worst case the LP must
reprocess all its events till GVT, while in the best case the
LP must reprocess no event (hence its latest checkpoint pre-
ceding GVT can immediately be used for the construction
of the CCGS).

As the base for computing the value of its own realign-
ment time, the LP exploits the fact that the heuristic method
will push whichever LP to realign its own state at most
to GVT (this is exactly the worst case scenario depicted
above). Hence, in order to identify which events must be
reprocessed to ensure the absence of orphan message de-
pendencies among the local states eventually forming the
global snapshot, each LP must determine the set of its exe-
cuted events defined by the following conditions:

(A) The event execution was scheduled in the simulation
time interval in between the logical time of the last
committed checkpoint and GVT (i.e. the timestamp
of the event is within that interval).

(B) The event execution has scheduled new events for

other LPs at a logical time that precedes GVT.

After having identified the set of all the events, if any,
for which both conditions A and B are verified, the LP must
determine which event belonging to this set is nearest to
the current GVT. The timestamp of that event is exactly the
realignment time for the LP. In fact, realigning to that time
ensures the absence of orphan dependencies caused by mes-
sages sent by this LP with timestamps up to GVT (all the
events corresponding to the send operations are recorded as
occurred by the realigned LP state). Hence, given that LPs
realign their states at most to GVT, the final global state
after the realignment of each LP is consistent.

An example of the behavior of this heuristic method is
shown in Figure 3. In this example, the different LPs need
to realign their states up to the events x, y, z and t, respec-
tively. This is because, starting from the last taken check-
points prior to GVT, these are the latest events generating
dependencies (via the scheduling of new events for other
LPs) with logical time up to GVT. Considering in more
details the behavior of LP1 allows us to further provide
explanations about the tradeoff provided by our heuristic.
Specifically, this LP re-executes three events starting from
the last taken checkpoint prior to GVT. On the other hand,
compared to the case of realignment exactly to GVT, we
avoid at LP1 the reprocessing of other two events. This is
achieved with no coordination with other LPs during both
checkpointing activities and the realignment phase.

From a methodological point of view, this approach dif-
fers from the ones discussed in Section 2.1 since it aims
at exploiting (in a lightweight manner) partial information
about the structure of the computation locally available at
each LP (in terms of real dependencies among the events),
for the identification and construction of the CCGS. Instead,
the other approaches only exploit a reference simulation
time value for realignment operations and elimination of the
dependencies. As an example, in case the LPs communicate
infrequently and/or the timestamps of new scheduled events
are relatively far in the future, our solution exploits these
features to reduce the number of events to be reprocessed
while realigning the state of each LP (since we can track
the absence of dependencies concerning processed events
starting from the last committed checkpoint up to GVT).

2.3 An Implementation
In this section we concisely describe an implemen-

tation of the heuristic-based CCGS construction mecha-
nism within an operating optimistic simulation environ-
ment. This description allows us to provide practical evi-
dence of the viability of such a mechanism.

One main point our work is based on is the ability to re-
process already committed events (like in a classical coast-
ing forward phase) while applying the state updates to the
checkpoint buffer (not to the current LP state buffer). This
should be achieved in an application transparent manner.

Figure 3. Heuristic Method Example.

Application level software

ProcessEvent()
CheckTermination()

ScheduleNewEvent() Simulation kernel

intermediate

buffering

scheduling and

event execution manager

state buffer and

state log manager

CCGS managerinput/output event

queues manager

GVT manager

Message Passing Interface (MPI)

Figure 4. Software Architecture of the Oper-
ating Simulation Platform.

Figure 4 schematizes the software architecture of our
simulation platform, developed using C technology. By the
scheme, the application level software is completely sepa-
rated from the underlying housekeeping management soft-
ware (that we also refer to as simulation kernel), which ex-
ploits standard MPI facilities for the management of the dis-
tributed message passing environment. The interaction be-
tween the application layer and the simulation kernel occurs
via:

• Two callback services offered by the application
level software, namely ProcessEvent() and
CheckTermination().

• A service offered by the underlying simulation kernel
called ScheduleNewEvent().

In this design, the ProcessEvent() callback has a
set of parameters identifying the event to be processed and
the specific state buffer associated with the LP on which the
event is occurring. The underlying intermediate buffering
facilities handle, in a transparent manner to the application
programmer, the messages associated with new events pro-
duced by ProcessEvent() and inserted in the system

via the invocation of the ScheduleNewEvent() service
offered by the platform. The latter service only needs to re-
ceive in input the new event content and a numerical code
identifying the destination LP within the whole set of active
LPs.

The underlying platform also supports checkpointing fa-
cilities for recording the state of an LP periodically before
invoking the ProcessEvent() callback for that same
LP. In case ProcessEvent() is invoked by the under-
lying software due to the re-execution of events in a coast-
ing forward phase, the intermediate buffering facilities han-
dle the discarding of the output events in a totally transpar-
ent manner to the application programmer. All the other
facilities for the management of housekeeping operations
(such as CPU scheduling when multiple LPs are hosted by
the same instance of the simulation kernel, and input/output
event queues management) are also handled by the under-
lying platform in a totally transparent manner.

The callback CheckTermination() can be used to
evaluate a global predicate indicating whether the compu-
tation has ended. The master instance of the distributed
simulation kernel, invokes this callback after GVT has been
calculated and it has collected the CCGS, which is passed
as input parameter to the callback in the form of an array
of state values (one for each LP). On the other hand, when
the new GVT value is known, the master and all the slave
instances of the simulation kernel apply the heuristic-based
mechanism described in Section 2.2. The slaves eventually
communicate to the master the reconstructed local states of
the LPs they are handling, which will belong to the CCGS,
so that the master is eventually able to correctly invoke
the CheckTermination() callback passing as input the
committed, consistent global state for the evaluation of the
global predicate associated with termination detection. To
optimize run-time behavior, the master performs the col-
lection of the LPs’ states forming the CCGS in an asyn-
chronous manner.

This type of software organization supports the heuristic-
based mechanism for the identification and construction of
the CCGS in a totally transparent manner to the application
software since the underlying platform can drive the execu-
tion of the re-update phase of a committed checkpoint by
simply invoking the ProcessEvent() callback passing
as input the pointer to the checkpoint buffer instead of the
pointer to the current LP state buffer. Also, no output is re-
ally produced during the checkpoint re-update phase since
(always transparently to the application level software) the
output messages are filtered via the facilities offered by the
intermediate buffering subsystem.

Given that the CCGS for which the predicate is evalu-
ated is periodically determined in an application transparent
manner when the new GVT is computed, the type of pred-
icate supported by CheckTermination() is monotonic
[14], namely it is associated with a monotonic function of
the global state of the simulation.

Concerning GVT calculation, we have implemented an
optimized asynchronous approach based on a message ac-
knowledgement mechanism to solve the well-known tran-
sient message problem. Within this scheme, each kernel
instance keeps track of all messages sent to the other in-
stances. However, to keep the memory consumption lim-
ited, this information is retained in an aggregate manner (i.e.
via counters). Also, to reduce the communication overhead
due to acknowledgment messages, each instance acknowl-
edges received messages periodically, thus sending cumu-
lative acknowledgment messages according to a window-
based approach. Finally, to overcome the simultaneous
reporting problem [18], each kernel instance temporarily
stops sending acknowledgment messages during the execu-
tion of the GVT protocol.

As a final note, in order to manage the heuristic-based
mechanism efficiently, we just needed to tweak the data
structures commonly used for event queues by adding the
appropriate information. Specifically, for each executed
event, we need to identify the minimum logical time of
(possibly) scheduled new events, destined to other LPs. The
timestamps of events destined to the very same LP are not
relevant since the scheduling of these events cannot origi-
nate (orphan) messages across different LPs. Hence, during
forward execution, the simulation platform must consider
the events destined to other LPs and must record the min-
imum of all their timestamps in an appropriate field (i.e.
min output timestamp) of the data structure which
currently buffers the event just executed. This minimum
value is determined by analyzing the information about
new events provided by the intermediate buffering level.
In order to assure the consistency of such information, the
min output timestamp field is invalidated when the
corresponding event is rolled back.

Let us now consider the actual application of the
heuristic-based mechanism. As pointed out before we can
determine a consistent global state after the new GVT value
is evaluated. By exploiting the previously mentioned infor-
mation, the simulation kernel must consider for each LP the
set of all its executed events that satisfy the below condi-
tions:

• The event timestamp is greater than the logical time of
the last checkpoint taken before GVT.

• The event timestamp is less than GVT.

• The min output timestamp value associated
with the event is less than GVT.

Then the kernel must determine the maximum timestamp
across all the events in that set, which represents the final
realignment time for the LP local state. In case the set is
empty, no realignment takes place, and the latest checkpoint
of that LP preceding GVT is selected for the CCGS.

3 Related Work
The issue of identifying and recording consistent global

states in (distributed) applications involving multiple pro-
cesses has been thoroughly studied in the context of fault
tolerance in order to avoid the so called domino effect (i.e.
restoration to the initial state due to the lack of a more re-
cent consistent snapshot) [7]. The two most common ap-
proaches for addressing this problem are referred to as co-
ordinated checkpointing (see, e.g., [4]), where an explicit
coordination scheme is adopted by the processes to take
mutually consistent local checkpoints, and communication
induced checkpointing, where control information is pig-
gybacked on application messages in order to direct forced
checkpoints on the recipient process on the basis of local
predicates evaluated by exploiting this information (see [2]
for a performance analysis of various protocols). Compared
to these approaches, we leave complete autonomy in the
checkpointing activities of the LPs, so that they can take
checkpoints at their own pace while the execution proceeds
(3). On the other hand, we reconstruct a consistent global
snapshot via a re-update phase of the logged local states. In
the latter aspect, our approach shows similarities with fault
tolerance techniques based on both uncoordinated check-
pointing and message logging (see, e.g., [7, 19]). In fact,
these techniques rely on a replay phase for eliminating mu-
tual dependencies among the originally restored state logs.
However, compared to these solutions, we do not require the
execution of an explicit distributed protocol for the identifi-
cation and elimination of the dependencies. Instead, we ex-
ploit the result of the last GVT calculation (anyway required
for memory recovery purposes) in order to heuristically de-
termine where to realign the local states of the involved
LPs while guaranteing global snapshot consistency. Similar
considerations can be made when comparing our proposal
to the global snapshot collection protocols in [6, 10, 13, 14],
some of which have been proposed just in the context of de-
tection of global predicates in distributed systems. These
solutions require an explicit distributed algorithm to be ex-
ecuted among the processes participating in the computa-
tion for the determination of the consistent global snapshot,
which is avoided in our proposal thanks to the exploitation
of the results of the GVT protocol.

In the context of Parallel Discrete Event Simulation, the
work in [1] has addressed issues concerning global termi-
nation conditions. This is done via categorization of non-
trivial termination predicates, and via the introduction of
algorithms suited for detecting predicates in different cate-
gories. These algorithms implicitly assume the availability
of LPs’ state histories for evaluating the termination con-

3As already hinted, autonomy is fundamental for allowing performance
effectiveness since checkpointing in optimistic simulation is a support for
synchronization. Hence, compared to stable storage state logs for fault
tolerance purposes, it requires to be executed relatively more frequently in
order to cope with the endemic phenomenon of rollback occurrence in the
optimistic run.

dition. In this aspect, our proposal is orthogonal to this
work since we focus on the lower level mechanisms used
for the treatment of state logs in order to provide the input
data required by the module implementing the termination
condition. Also, our approach is specialized and optimized
for supporting the category of termination conditions rely-
ing on stable predicates (since we provide supports for the
iterative evaluation of the termination condition on the ba-
sis of the periodic calculation of a new GVT value and the
identification of an associated CCGS).

To the best of our knowledge, there has been a sin-
gle proposal based on consistent global checkpoints in the
context of optimistic simulation systems [15], which uses
control information piggybacked on application messages
in order to track the state dependencies and direct forced
checkpoints to construct consistent global snapshots to be
exploited for synchronization purposes. However, this has
been shown to provide adequate performance only for re-
duced simulation model sizes. Hence approaches based on
independent checkpointing activities of the LPs, as we have
assumed in our proposal, remain the most effective ones in
general applicative scenarios. Also, compared to the work
in [15], our solution addresses the issue of exploiting con-
sistency of global states not for synchronization purposes,
but for the evaluation of global predicates in synergy with
GVT advancement.

4 Experimental Data
4.1 The Case Study

The application level code we have used in this exper-
imental study is a parameterizable simulation software of
a mobile Personal Communication System (PCS). In the
used configuration, we explicitly simulate power regula-
tion, by taking into account both fading effects and chan-
nel interference, so to perform statistical inferences on the
signal strength (or signal quality) based on the Signal-to-
Interference Ratio (SIR) [12]. In the experiments we have
simulated a large coverage area with 1024 cells, each man-
aging 200 channels, in a peak load configuration where
the call duration is exponentially distributed, with average
value of 2 minutes, and the call arrival rate (also exponen-
tially distributed [3, 5]) is set to determine an average uti-
lization factor of 75% for each channel. The supported
mobility model is random-walk, with mobile permanence
time within each cell exponentially distributed with mean
equal to 10 minutes. Each cell is modeled by a different
LP, and the adjacency between different cells in the cover-
age area (determining the possibility of call handoff in case
the corresponding mobile switches between neighbor cells)
is evaluated by assuming hexagonal shape for the cells. Fi-
nally, SIR calculation and power assignment for a specific
call is triggered upon the assignment of a channel to the call
(hence upon the call arrival or when the handoff event for an
ongoing call occurs, which requires channel reassignment at
the destination cell). This gives rise to a mixture of both fine

grain events (e.g. end call events, with no costly recalcula-
tion upon channel release) and coarser grain events (e.g. the
previously mentioned call arrival events, with costly calcu-
lation of the SIR). Hence, we have an execution scenario
with an intermediate average event granularity. Also, the
LP state size is about 5 KB.

As a final note, although the employed simulation plat-
form supports parallelization and optimistic synchroniza-
tion in a totally transparent manner to the application pro-
grammer, who is therefore required to structure the appli-
cation level code with no particular concern towards par-
allel execution, we have used at the application level a
classical pre-scheduling technique for the handoff events
spanning across different cells (i.e. different LPs). With
this technique, the handoff events for both the source cell
and the destination cell are scheduled together (via the
ScheduleNewEvent() service) just when processing
the arrival event of the call that will generate the handoff.
This tends to increase the actual lookahead of the simula-
tion, thus typically favoring parallel execution performance.

4.2 Test Settings and Measured Parameters
All the runs have been carried-out on an SMP machine

equipped with 4 Xeon CPUs (2.0 GHz) and 4 GB of RAM
memory, running LINUX (kernel 2.6). Four instances of the
simulation kernel have been activated on this machine, each
managing 256 LPs.

To assess the effectiveness of our CCGS construction
mechanism, we have measured the event rate (i.e. the num-
ber of committed simulation events per wall-clock time
unit), which is a typical parameter representative of the ex-
ecution speed. The event rate achieved via our mechanism
has been compared against the event rate achieved via the
following two schemes:

(i) Realignment of the committed consistent global state
to the new computed value of GVT. As mentioned be-
fore, this method allows the exploitation of the maxi-
mal portion of the committed computation. However,
it does not exploit the structure of the computation (in
terms of real dependencies among local states) to re-
duce the realignment overhead.

(ii) Simple collection of the latest checkpoints preceding
the new GVT value, hence providing no guarantee of
consistency of the identified global snapshot. This is
a baseline configuration showing no realignment over-
head at all, which is used as the reference for the eval-
uation of the overhead of our mechanism.

For the previously mentioned test case the application
level callback function CheckTermination() imple-
ments a termination predicate based on the total number of
calls locally started at all the LPs (i.e. calls activated at
an LP due to handoff events among different LPs are not
counted). This has been done to achieve correct predicate

evaluation even for the scheme in point (ii), which does
not guarantee consistency of the global snapshot. Hence
we allow comparative analysis of the different schemes un-
der correct computing steps despite the different guarantees
provided by these schemes. Correctness is ensured by the
fact that the LPs’ attributes involved in the selected global
predicate are actually independent of each other (i.e. no
event scheduled across different LPs changes the value of
the counter indicating the number of calls locally activated
on the basis of the call generation pattern).

We have varied two independent parameters in the simu-
lation study. The first one is the checkpoint interval χ of the
LPs. Variation of this parameter allows us to comparatively
observe the performance of the considered global snapshot
collection schemes at the point in which the best balance
between checkpointing and event replay costs is achieved,
where the event replay cost is due to both coasting forward
operations upon rollback occurrences and realignment (if
any) for the global snapshot construction.

The second independent parameter in the study is the
time period for GVT calculation and global snapshot col-
lection. Lower values may tend to represent, e.g., inter-
active scenarios, where an end-user might require frequent
(committed) intermediate outputs on the global state of the
simulated system. On the other hand, larger values are rep-
resentative of situations where, e.g., termination detection
via global predicate evaluation is not a time critical opera-
tion. Thus it can be triggered on a reduced frequency basis
according to GVT calculations whose primary target is the
periodic recovery of memory.

4.3 Results
In Figure 5 we report the execution speed, in terms of

event rate, while varying the checkpoint interval of the LPs
for three different values of the GVT period, namely 2 secs,
5 secs and 10 secs. Each reported value refers to the event
rate evaluated while simulating about 30 virtual time min-
utes of the previously described peak load scenario for the
PCS system. Also, each value results as the average over 5
samples, all executed with different random seeds.

By the results we can draw the following main conclu-
sions. Our proposal shows minimal overhead when com-
pared to the baseline configuration not ensuring consistency
of the collected global snapshot. Also, compared to the case
of realignment of the global state to GVT, for this specific
test-bed application, our mechanism allows improvements
of the execution speed at the point where the performance
is maximized vs the checkpoint interval of the LPs. As
expected, this is noted especially for the case of more fre-
quent GVT calculation and global snapshot collection (i.e.
the case of GVT calculation each 2 secs, where the maxi-
mum achieved gain in the execution speed is on the order
of 10%). We recall this is the case well representing, e.g.
interactive environments requiring frequent output data pro-
duction based on frequently refreshed consistent snapshots

of the simulated system state. However, the execution speed
gain provided by our mechanism remains on the order of 4%
also in the case of GVT calculation each 10 secs, namely the
typical case where the new GVT value is computed accord-
ing to a relatively stretched period, mostly tailored to the
avoidance of excessive growth of memory usage, so to not
incur performance degradation phenomena due to reduced
locality and its impact on the underlying memory hierarchy.

Beyond peak gain in execution speed at the point where
the performance is maximized vs the checkpoint interval,
we observe that, compared to CCGS realignment to GVT,
our proposal allows much more flat performance vs vari-
ations of the checkpoint interval. This is an indication of
better performance guarantees even in the case of subopti-
mal choice of the checkpoint interval value.

As a final note, always compared to the case of CCGS
realigned to GVT, the gain from our proposal just comes
from its ability to achieve a better balance between state
saving and event replay costs (the latter being paid both in
classical coasting forward phases when rollbacks occur, and
in realignment phases of the local states of the LPs when
the construction of the CCGS takes place), and not due
to variations of the rollback pattern in the parallel execu-
tion. Specifically, we have noted that the rollback pattern
(in terms of both rollback frequency and rollback length)
remains the same over all the runs, with a flat efficiency
value vs the checkpoint interval, which is on the order of
about 85% (4).

References
[1] M. Abrams and D. Richardson. Implementing a global termination condition

and collecting output measures in parallel simulation. In Proceedings of SCS
Multi-Conference on Parallel and Distributed Simulation, pages 86–91, Jan.
1991.

[2] L. Alvisi, E. N. Elnozahy, S. Rao, S. A. Husain, and A. D. Mel. An analysis of
communication induced checkpointing. In Proceedings of the 29th Annual In-
ternational Symposium on Fault-Tolerant Computing (FTCS), pages 242–249,
1999.

[3] A. Boukerche, S. K. Das, A. Fabbri, and O. Yildz. Exploiting model indepen-
dence for parallel PCS network simulation. In Proceedings of the 13th Work-
shop on Parallel and Distributed Simulation, pages 166–173. IEEE Computer
Society, May 1999.

[4] G. Cao and M. Singhal. On coordinated checkpointing in distributed systems.
IEEE Transactions on Parallel Distributed Systems, 9(12):1213–1225, 1998.

[5] C. D. Carothers, R. M. Fujimoto, and Y. B. Lin. A case study in simulating PCS
networks using Time Warp. In Proceedings of the 9th Workshop on Parallel and
Distributed Simulation, pages 87–94. IEEE Computer Society, June 1995.

[6] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems,
3(1):63–75, 1985.

[7] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Sur-
veys, 34(3):375–408, 2002.

[8] J. Fleischmann and P. Wilsey. Comparative analysis of periodic state saving
techniques in Time Warp simulators. In Proceedings of the 9th Workshop on
Parallel and Distributed Simulation, pages 50–58. IEEE Computer Society,
June 1995.

[9] R. M. Fujimoto. Parallel discrete event simulation. Communications of the
ACM, 33(10):30–53, Oct. 1990.

[10] J.-M. Hélary. Observing global states of asynchronous distributed applications.
In Proceedings of the 3rd International Workshop on Distributed Algorithms.
pringer-Verlag, LNCS 392, 1989.

4In an optimistic simulation run, the efficiency is evaluated as the per-
centage of executed events which are not eventually rolled back.

GVT period 2 secs

20000

21000

22000

23000

24000

25000

26000

27000

0 10 20 30 40 50 60

checkpoint interval

e
v

e
n

t
ra

te

our CCGS collection mechanism

CCGS realigned to GVT

baseline (no guarantee of
consistency of the global snapshot)

GVT period 5 secs

20000

21000

22000

23000

24000

25000

26000

27000

0 10 20 30 40 50 60

checkpoint interval

e
v

e
n

t
ra

te

our CCGS collection mechanism

CCGS realigned to GVT

baseline (no guarantee of
consistency of the global snapshot)

GVT period 10 secs

20000

21000

22000

23000

24000

25000

26000

27000

0 10 20 30 40 50 60

checkpoint interval

e
v

e
n

t
ra

te

our CCGS collection mechanism

CCGS realigned to GVT

baseline (no guarantee of
consistency of the global snapshot)

Figure 5. Execution Speed Results.

[11] D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages
and System, 7(3):404–425, July 1985.

[12] S. Kandukuri and S. Boyd. Optimal power control in interference-limited fad-
ing wireless channels with outage-probability specifications. IEEE Transac-
tions on Wireless Communications, 1(1):46–55, 2002.

[13] A. Kshemkalyani and B. Wu. Detecting arbitrary stable properties using effi-
cient snapshots. IEEE Transactions on Software Engineering, 33(5):330–346,
May 2007.

[14] F. Mattern. Efficient algorithms for distributed snapshots and global virtual
time approximation. Journal of Parallel Distributed Computing, 18(4):423–
434, 1993.

[15] E. M. Moreira, R. H. C. Santana, and M. J. Santana. Using consistent global
checkpoints to synchronize processes in distributed simulation. In Proceedings
of the 9th IEEE International Symposium on Distributed Simulation and Real-
Time Applications (DS-RT), pages 43–50, 2005.

[16] F. Quaglia. A cost model for selecting checkpoint positions in Time Warp
parallel simulation. IEEE Transactions on Parallel and Distributed Systems,
12(4):346–362, Feb. 2001.

[17] R. Ronngren and R. Ayani. Adaptive checkpointing in Time Warp. In Proc.
of the 8th Workshop on Parallel and Distributed Simulation, pages 110–117.
Society for Computer Simulation, July 1994.

[18] B. Samadi. Distributed Simulation Algorithms and Performance Analysis. PhD
thesis, Computer Science Department, University of California, Los Angeles,
1985.

[19] R. E. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems, 3(3):204–226, 1985.

[20] G. Tel. Topics in Distributed Algorithms. PhD thesis, Cambridge University
Press, Cambridge, 1991.

