
APART+: Boosting APART Performance via

Optimistic Pipelining of Output Events

Paolo Romano
INESC-ID, Lisbon, Portugal

Francesco Quaglia and Bruno Ciciani
Sapienza Università di Roma, Italy

Abstract

APART (A Posteriori Active ReplicaTion) is a recently

proposed active replication protocol specifically tailored for

multi-tier data acquisition systems. It ensures consistency

of middle-tier sink replicas by means of an a-posteriori syn-

chronization phase based on reconciliation, which is acti-

vated only in case replicas react to an input message from

the sensors by generating an output event destined to the

back-end tier.

This paper enhances APART via a novel non-blocking

synchronization scheme which prevents replicas from

stalling while waiting for the outcome of an on-going syn-

chronization phase. Contrarily, replicas are allowed to op-

timistically process data from the sensors, and to immedi-

ately propagate any output event towards the back-end tier.

The removal of the blocking synchronization phase from the

critical path gives rise to striking performance gains via an

effective overlapping of event processing and synchroniza-

tion. On the other hand, system consistency is ensured by

enhancing the back-end tier synchronization logic in order

to filter out optimistically produced output events that are

incompatible with the reconciled state trajectory.

1 Introduction

Over the years we have witnessed the pervasive adop-

tion of sensor driven data acquisition systems in a variety

of mission-critical application domains, such as public se-

curity, environmental protection, access control and supply

chain management. From an architectural perspective, such

systems can be viewed as three-tier systems. The sensing

devices, such as RFID readers, sensor networks or network

monitoring probes, compose the first tier. The data streams

produced by these devices are gathered, correlated and fil-

tered by middle-tier servers, also referred to as sinks, whose

role is to identify relevant events and to propagate them to-

wards the back-end tier. The latter tier is in charge of archiv-

ing the output events generated by the sinks and of making

them available to user level applications via standard inter-

faces (e.g. WS-RX [12]).

One of the main challenges in these safety-critical sys-

tems is how to guarantee that the incoming data streams

are processed under strict timing constraints, while jointly

providing strong dependability guarantees in terms of high

availability and failure resiliency [14]. Clearly, in order to

ensure adequate fault-tolerance levels, proper mechanisms

need to be employed across all the tiers (i.e., sensors, sinks

and back-end) of the data acquisition system. In this paper

we focus on the issue of how to efficiently replicate middle-

tier sinks for fault-tolerance purposes. Orthogonal replica-

tion solutions aimed at enhancing the reliability of the sens-

ing devices and the back-end tier can be found, respectively,

in, e.g., [16] and [8].

Among the replication schemes presented in literature,

active replication (AR) [20] appears to be a natural candi-

date to meet the constraints of mission critical data acqui-

sition systems. In fact, AR ensures transparent and instan-

taneous fail-over, providing good performance and latency

predictability even in failure-prone environments. The com-

mon idea underlying the numerous variants of AR presented

in literature [2] is to first reach an agreement among the

replicas [4] on a common processing order for the incom-

ing messages, which are then actually processed in parallel.

Such an a-priori agreement, together with the assumption

on replicas determinism, suffice to ensure strong replicas

consistency. On the other hand, enforcing agreement on

the processing order of each incoming message introduces

a remarkable overhead which can significantly impact per-

formance [2, 4, 19].

In a recent paper [19], we have introduced APART (A

Posteriori Active ReplicaTion), an innovative AR scheme

that, by leveraging some key features of multi-tier data ac-

quisition systems, provides two main benefits with respect

to state of the art AR solutions: (i) the removal of repli-

cas determinism assumptions, which very often obliges AR

schemes to rely on additional, complex mechanisms aimed

at filtering out any source of non-determinism (such as

thread scheduling [10], or the interaction with external de-

vices); and (ii) a strong reduction of the replica synchro-

nization overhead, which allows APART to achieve remark-

able performance gains in terms of both maximum sustain-

able throughput, and latency reduction at low system load.

The main intuition underlying the APART protocol is

that, in modern multi-tier data acquisition systems, sink

components are not only in charge of processing the in-

coming data streams, but also play the role of filters for

the data generated by the sensing devices. In other words,

sinks can be abstracted as silent state machines which only

sporadically, yet unpredictably, produce output events in re-

sponse to the receipt of a (possibly large) set of input mes-

sages. APART exploits such a property by avoiding any

form of replica coordination in silent periods (i.e. periods

during which incoming data are processed without gener-

ating any output event), and by triggering an a-posteriori

replica reconciliation phase only when a sink externalizes

its state by generating an output event. This is done with-

out using explicit replica coordination messages, but rather

by exploiting the communication pattern spontaneously in-

duced at the application level for event notification towards

the back-end tier. The latter acts as the coordinator of the

replica synchronization process, which aims at installing the

reconciled state value on all the diverging replicas, if any.

However, the APART’s reconciliation scheme operates

in a blocking mode, thus forcing all sink replicas to tem-

porarily suspend processing sensor messages. This pre-

vents replicas with inconsistent states from generating out-

put events, and suffices to ensure that any output event re-

ceived by the back-end tier is associated with an admissible

state trajectory. On the other hand, the presence of a block-

ing coordination scheme on the critical path of the end-to-

end interaction directly translates into an upper bound on

the system’s throughput (expressed in terms of number of

output events accepted by the back-end tier per time unit).

In this paper we present APART+, an enhanced version

of the APART protocol which relies on a novel reconcili-

ation scheme allowing sink replicas to keep on processing

incoming sensor data (and to possibly propagate any associ-

ated output event) in an optimistic fashion, without waiting

for the completion of any previously activated reconcilia-

tion phase. On one hand, this implies the need to determin-

istically discard the output events optimistically generated

by replicas in an inconsistent state. On the other hand, this

allows the set of sink replicas whose state is eventually cho-

sen by the reconciliation phase to seamlessly and uninter-

ruptedly process incoming data. Such replicas, de facto, do

not incur any stall of their processing activities caused by

the a-posteriori synchronization scheme.

We quantify the performance benefits from APART+

through a simulation study, which highlights the striking

gains in the maximum achievable throughputwith respect to

APART, which extends up to a 20x increase for data acqui-

sition systems deployed over wide area, or relatively slow,

networks.

The rest of this paper is structured as follows. Section

2 describes the reference system model. Section 3 presents

the APART+ protocol. Related work is discussed in Section

4. The performance study is carried out in Section 5.

2 System Model

The system model considered in this paper is the same

as the one in [19], and is here recalled for self-containment.

We consider a classical distributed, asynchronous system

model, in which there is no bound on message delay, clock

drift or process relative speed. Communication takes place

exclusively through message exchange on top of reliable

FIFO communication channels, i.e. every message is even-

tually delivered, in the same order in which it was originally

sent, unless either the sender or the receiver crashes [4] dur-

ing the transmission.

2.1 Sensor Processes

We model the sensing tier as a set of n distinct sensor

processes {sensor1, . . . , sensorn}. Note that we do not ex-

plicitly consider replication of sensing devices, even though

redundancy techniques at the sensors level [16] could be

leveraged in order to ensure adequate sensing accuracy. On

the other hand, we do not exclude the possibility of crash,

and, for simplicity of presentation, we assume that sensor

processes do not to recover after a crash.

A sensor process generates a stream of messages convey-

ing information on sensed environmental phenomena (e.g.

temperature values, video/audio samples, RFID tags posi-

tion, network traffic data for QoS or security purposes etc.)

to the sinks. We abstract over the details related to the sens-

ing activities, and only assume that, according to the active

replication paradigm [20], sensors are able to broadcast (via

plain best effort broadcast, see, e.g., [4]) their messages to

the set of sink processes.

2.2 Sink Processes

We assume the existence of a set of m replicated sink

processes {sinkR
1 , . . . , sinkR

m}, providing the illusion of

a single, highly-available sink. Sink replicas process the

messages arriving from the sensors, and generate output

events towards the back-end tier if the occurrence of any

application relevant condition is detected. The logic hosted

by sink processes is dependent on the specific application

domain. In general, the production of output events by a

sink process is triggered either when some statistical metric,

computed over the incoming sensors data, reaches predeter-

mined thresholds, or when the data is found to match some

known pattern.

We abstract over the details of the sink application logic

and model its behavior through a non-deterministic finite

state machine (FSM) [20], whose evolution is determined

by invoking the ProcessMessage primitive. This prim-

itive takes a sensor message as input parameter, updates

the FSM state and possibly returns an output event des-

tined to the back-end. We use the null return value

to model the case in which no output event is produced,

and say that, in such a case, the FSM is silent. In or-

der to quantify the “silentness degree” of the FSM as-

sociated with a sink over a given time window we use

the parameter Σ =
#input msgs

#output msgs
, where #input msgs

and #output msgs denote the number of invocations of

the ProcessMessage primitive over the considered time

window, and, respectively, the number of times this primi-

tive does not return null.

We additionally assume that two other primitives are

available at the sink process, namely getFSMState and

setFSMState. The former primitive returns the current

state of the FSM associated with the sink process, while the

latter primitive replaces the current state of the sink process

with the one passed as input parameter (in other words it

reinstalls the state of the sink process).

Finally, we assume that sink processes do not recover

after a crash. However, we assume that at least one sink

process in the set {sinkR
1 , . . . , sink

R
m} is correct, i.e., it does

not crash. Hence, we tolerate the crash of at most f < m

sink replicas.

2.3 Backend Data Server

The system back-end consists of a data server process

which receives output events from the sinks and registers

them within a local database, used to make events avail-

able to external applications. We do not explicitly model the

mechanisms used to publish the events, which are orthog-

onal to the APART+ protocol, and abstract over the details

of database updates via a PublishTransaction primi-

tive. The latter takes two input parameters, namely a unique

identifier and a sink output message (representative of the

event to be published), and executes the transactional logic

that inserts such a tuple within the database. We assume the

execution of the PublishTransaction primitive with

a given input identifier to be idempotent, i.e. no two trans-

actions associated with the same input identifier can ever

be committed, see, e.g., [18, 17]. Additionally, we assume

that the data server has access to a log on stable storage,

which preserves its current state in the APART+ protocol by

persisting a single tuple. At this end, we assume the pres-

ence of the primitive log, which records the tuple passed

as input parameter onto stable storage, and of the primitive

readFromLog, which simply returns the value of the cur-

rently logged tuple, or the value null in case no tuple has

been yet logged.

The back-end data server is assumed to eventually re-

cover after a crash. It is further assumed that there is a

time after which the back-end data server stops crashing

and remains up, allowing outgoing messages to be even-

tually delivered to all the correct sink replicas. In practice,

this means assuming that the data server can experience a

period of instability during which it can crash and recover,

and then a period during which it does not crash, which is

long enough to allow the conclusion of an interaction round

with correct sink processes.

3 The APART+ Protocol

In order to better highlight the differences between

APART+ and the original APART protocol, we first re-

call the main structure and features of APART. Then, we

provide an overview of the novel features of APART+, to-

gether with the pseudo-code formalization for the behavior

of sink and back-end data server processes. We omit de-

tailing the pseudo-code for sensor processes as they simply

broadcast SENSORMSG messages to the set of sink repli-

cas, along with the following information: msgId, namely

a sequentially increasing identifier, and data, which con-

veys information related to the sensed phenomenon.

3.1 Overview of the APART Protocol

As hinted, in APART sink replicas do not run a coordina-

tion protocol (such as, e.g., atomic broadcast [2] or consen-

sus [4]) to ensure an “a-priori” agreement on the process-

ing order of the incoming sensor messages. Conversely,

sink replicas rely on an “a-posteriori” coordination phase,

which is triggered whenever the sink FSM produces an out-

put event (thus saving any coordination overhead in silent

periods). During the coordination phase, sinkR
i stops pro-

cessing incoming data from the sensors, awaiting for the

back-end data server to decide which one, among the (pos-

sibly diverging) output events/state trajectories generated by

the sink replicas, should be globally accepted by the whole

replicas’ set. If the coordination phase decides to accept

replica sinkR
j ’s (where j 6= i) output event/state trajectory,

and this differs from that generated by sinkR
i , then sinkR

i is

forced to install the local state of sinkR
j before processing

further incoming messages.

In the a-posteriori coordination scheme, the sink piggy-

backs two main pieces of information on its output event

message: (i) the state of the local FSM, and (ii) the state of

the communication channels towards the sensors, concisely

encoded by a vector clock [9]. The latter information is re-

quired to ensure that any replica sinkR
i which, according to

the outcome of the a-posteriori coordination phase, had to

reinstall its state to the state value associated with a different

replica sinkR
j , is able to perform the following tasks:

1) Determine if it has already processed some sensor

messages not yet received/processed by sinkR
j . These mes-

sages must in fact be reprocessed by sinkR
i after the a-

posteriori coordination, in order to to ensure at-least-once

processing semantic. To enable message reprocessing after

a state reinstall operation, sink processes maintain the re-

ceived sensor messages in a volatile buffer. This is pruned

out of any obsolete message (i.e. messages known to be al-

ready processed by sinkR
j along the trajectory representative

of reconciliation) at each a-posteriori coordination round.

2) Detect if sinkR
j has already processed some message

not yet received by sinkR
i . These messages, which have

been already incorporated into the reconciled FSM trajec-

tory, must be discarded by sinkR
i to ensure at-most-once

processing semantic.

In the a-posteriori synchronization phase, the back-end

data server waits for minProposals output events from

the replicated sink processes. Afterwards, the data server

selects (and accepts) one of them, and broadcasts it back

to all the sink replicas. The value of minProposals, as

well as the logic driving the selection of the sink output

event, are treated as tunable protocol parameters, which al-

low trading-off the latency of output production vs the data

server ability to filter out “anomalous” output events. In

fact, since APART guarantees that any output event pro-

duced by a sink replica is representative of a linearizable

processing history [5], the back-end data server could just

set minProposals = 1, with the objective to externalize

the output event as soon as possible, i.e. as soon as the first

output event from whichever sink is received. On the other

hand, by choosing larger values of minProposals in the

admissible range, [1,m-f], the back-end data server could

leverage some voting scheme to select a specific processing

history linearization among those externalized by the sink

replicas.

3.2 From APART to APART+

Unlike APART, where sink replicas interrupt the mes-

sage processing activity while waiting for the a-posteriori

coordination phase to be concluded, APART+ allows sink

replicas to continue processing the data incoming from the

sensors and to generate new output events, even if there are

on-going coordination phases. This is achieved by relying

on more refined state management techniques which allow

to identify, and deterministically discard, any output event

that is not representative of the eventually selected lineariz-

able processing history.

In order to allow the back-end data server to detect any

non-linearizable (optimistic) output event, the sink exter-

nalizes output events towards the back-end via two differ-

ent types of messages, depending on whether the event is

generated optimistically (i.e. based on the processing of

sensor messages occurred while there are still pending co-

ordination phases) or not. If the event is generated in a con-

servative manner, like in APART the output message pig-

gybacks the local FSM state and the corresponding vector

clock [9]. On the other hand, if the output event is gener-

ated optimistically, the sink outputmessage also piggybacks

the digest (computed through a standard cryptographic hash

function, such as MD5 or SHA1 [11]) of its FSM state

at the time of the generation of the previous output event.

This information is exploited by the back-end data server

during the coordination phase in order to identify and filter

out any optimistic output produced by sink replicas in non-

consistent states. More precisely, in APART+, the back-end

data server discards any output event e optimistically gen-

erated by a sink in round r (of the coordination phase), if

the state globally imposed in round r − 1 differs from the

state reached by that sink at the end of round r − 1. We call

this class of optimistic output events illegal and, conversely,

term as legal any output event that is either conservative or

optimistic but not illegal.

Once the back-end data server gathers minProposals

legal output events, this selects one of them, and broad-

casts it back to the sink replicas, along with the corre-

sponding FSM state and vector clock. At this point, when

a sink replica receives a decision message for round r of

the coordination phase, it verifies if the vector clock and

the (digest of the) FSM state selected by the coordination

scheme coincide with those locally maintained when the

output event was generated for round r. In the positive case,

the sink replica can just keep on processing the incoming

data streams, without any performance penalty. Contrar-

ily, replicas that detect a misalignment with respect to the

outcome of a coordination phase, re-install a globally con-

sistent state. Then, they re-process any sensor message that

had been already optimistically processed.

Note that state comparison and transfer is based on the

digest representation just to reduce the communication de-

lay, the storage requirements (to store state histories at the

sink side) and to allow scalability of operations at the back-

end tier.

3.3 Sink Behavior

Figure 1 shows the pseudo-code for the behavior of sink

processes, single threaded for presentation simplicity. The

sink maintains the following data structures: i) msgBuffer

used to buffer incomingmessages, which is assumed to pro-

vide FIFO semantic; ii) a vector clock VC, keeping track of

communication histories with sensor processes; iii) two se-

quentially increasing counters, stableRId, and optRId, used,

respectively, to identify the latest coordination rounds in

which the sink externalized a conservative and an opti-

mistic output event; iv) a boolean variable optimisticMode

whose value reflects whether there are pending coordina-

tion phases, in whose case new output events, if any, are to

be considered optimistic; v) an array of digests SinkState-

Hist, which is indexed via coordination round identifiers

and whose entries store a compact fingerprint of the FSM

state and vector clock at the time in which the sink gener-

ated an output event for a given coordination round.

If the sink process receives a message from a sensor

process, independently of whether there are still pending

coordination phases, the local vector clock is used to de-

tect whether the sensor message has already been incorpo-

rated into the execution history currently seen by the sink

(1). In the positive case the message is simply discarded.

Otherwise the sink buffers the message, updates its vector

clock to reflect the message reception and, by calling the

HandleInput function, invokes the ProcessMessage

primitive to feed its FSMwith the sensor data. If the FSM is

silent, namely ProcessMessage returns null, the sink

starts waiting again for incoming messages. Otherwise, it

first computes the digest of its FSM state and vector clock

through the hash primitive. Then, depending on whether

there are currently on going coordination phases or not, the

sink generates either an optimistic output event, or a con-

servative one. In the latter case, it delivers the FSM output

event to the back-end data server by means of a STABLE-

OUTPUT message, piggy-backing the current stable output

event identifier, namely stableRId, the state of the local

FSM, retrieved via the primitive getFSMState, the lo-

cal vector clock, and the current state digest. Also, the sink

aligns the optimistic round identifier with the stableRId and

flags the optimisticMode variable to signal the existence of

active coordination phases. On the other hand, if the gen-

erated output event is an optimistic one, the sink sends out

an OPTOUTPUTmessage, which is tagged not only with the

1This may happen if the sink has installed the state of a different replica,
which already received and processed that message.

FIFOQueue msgBuffer; // FIFO ordered message buffer
VectorClock VC; // sensor messages history
int stableRId=0; // stable round identifier
int optRId=0; // optimistic round identifier
boolean optimisticMode=false; // current processing mode
array of Digest SinkStateHist={⊥,. . .,⊥}; // stores hashes of sink states externalized but not yet validated

upon receive(SENSORMSG, msgId, data) from sensori do
if (msgId > VC[sensori]) // filter out obsolete sensor messages

VC[sensori] = msgId; // update the corresponding vector clock entry
msgBuffer.push([msgId,sensori ,data]); // buffer the incoming message
HandleInputMsg(msgId, data);

upon receive(DECISION, roundId, FSMState, vectorClock) from back-end server do
if (roundId ≥ stableRId) // filter out obsolete coordination messages

// unset the retransmission timers of all the output events generated up to the roundId-th coordination round
∀ Msg m where (isSetRetransmissionTimer(m) ∧ m.roundId≤ roundId) do unsetRetransmissionTimeout(m);
stableRId = roundId; // set round counters
clearBuffer(vectorClock); // prune message buffer
if (stableRId=optRId) optimisticMode=false; // enter non-optimistic mode
if (SinkStateHist[roundId]6= hash(FSMState,vectorClock)) // local state requires re-alignment

setFSMState(FSMState); // align FSM internal state
VC = vectorClock; // align local vector clock
optId=stableRId; // align optimistic and stable round id
optimisticMode=false; // enter non-optimistic mode
while (msgBuffer 6= ∅) do // re-process buffered messages

[msgId,sensori,data]=msgBuffer.pop();
HandleInputMsg(msgId,data);

∀i<stableRId do FSMStateHist[i]=⊥; // remove obsolete FSM state hashes

void HandleInputMsg(int msgId, SensorData data)
Msg m;
OutputEvent outEv=ProcessMessage(data); // update local FSM
if (outEv 6= null) // the FSM producds an output event

Digest dgst=hash(getFSMState(), VC); // compute hash of the current sink’s state
if (¬optimisticMode)

stableRId++; // increase stable round id
optRId=stableRId; // accordingly align optimistic round id
m=[STABLEOUTPUT, stableRId, outEv, getFSMState(), VC, dgst];
optimisticMode=true; // enter optimistic mode

else
// get hash of FSM state at the time of the last output generation;
Digest prevDgst=SinkStateHist[optRId];
optRId++; // increase optimistic round id
m=[OPTOUTPUT, optRId, outMsg, prevDgst, getFSMState(), VC, dgst];

send(m) to back-end server;
setRetransmissionTimeout(m); // set rentransmission timeout for m
FSMStateHist[optRid]=dgst; // store hash of the current sink’s state

void clearBuffer(VectorClock stableMsgs) // message buffer pruning
∀msg ∈ msgBuffer where msg.id ≤ VC[msg.source] do msgBuffer.remove(msg);

upon timeoutExpired(Message m) do
send(m) to back-end server;
setRetransmissionTimeout(m); // set the retransmission timeout for m

Figure 1. Sink Process Behavior.

local FSM state, vector clock and digest, but also with the

digest associated with the last pending coordination phase

and the current optRId value.

Independently of whether the generated output event was

optimistic or conservative, the sink stores the digest of its

current state in the SinkStateHist array’s entry associated

with the just generated output event. Finally, in order to

ensure the termination of the coordination phase despite

crashes of the back-end data server, the sink sets a retrans-

mission timer to periodically re-transmit the output message

to the back-end.

If a DECISION message for the coordination round

rounId is received from the back-end server, the sink first

makes sure that this is not an obsolete message (associated

with some obsolete coordination round). Then it unsets

the timeout used to retransmit any output event message

generated in any coordination round up to (and including)

roundId. Note that a sink that is relatively slow with re-

spect to the other replicas may receive DECISION messages

notifying the outcome of coordination rounds that it did not

yet activate, but that were triggered by some other faster

replica. To cope with such situations, the sink aligns its sta-

bleRId with the roundId conveyed by the DECISION mes-

sage (rather than just sequentially increasing it). Then the

sink prunes out of its buffer any message whose process-

ing was already incorporated in the processing history as-

sociated with the output event selected by the coordination

phase. Next, by comparing the optRId and the stableRid

values, the sink determines whether the DECISION message

notifies the conclusion of the last coordination phase acti-

vated by that same sink. If this is true, it means that the re-

ception of this DECISION message will enforce the consis-

tency (assuming there had actually been any disalignment)

of the current sink state. Hence, since the next output event

to be generated by the sink is necessarily a legal one, the op-

timisticMode flag is unset, signalling that the conservative

processing mode was entered. At this point, the sink de-

tects if it needs to re-install the state of some other replica,

whose output event was selected by the roundId-th round

of the coordination phase. As already hinted, this can be

efficiently achieved by comparing the digest of the sink’s

state stored in the roundId-th entry of the SinkStateHist ar-

ray with the digest of the FSM state and vector clock carried

by the DECISIONmessage. If a disalignment is detected, the

sink updates the local FSM state and its local vector clock

according to the payload of the received DECISION mes-

sage. In this case, de facto, the sink is discarding the effects

of the optimistic processing of any sensor data. Hence it

can safely enter the conservative processing mode, and start

processing any sensor messages left in its buffer. Finally,

the locally maintained digests of the sink state for all the

coordination rounds up to (and including) the roundId-th

one are discarded, so to ensure timely removal of unneeded

state logs at the sink.

3.4 Backend Data Server Behavior

set sinkSet = {sinkR

1
,. . .,sinkR

m};
Set proposals = {};
int curRoundId = 1;
Digest curStateDig = ⊥;

upon receive(OPTOUTPUT,rId,outMsg,prevDgst,FSMState,VC,newDgst)
from sinki ∧ curRoundId=roundId

if (prevDgst=curStateDig)
decide(rId, outMsg, FSMState, localVC, newDgst);

upon receive(STABLEOUTPUT,rId,outMsg,FSMState,VC,newDgst)

from sinkR

i
∧ curRoundId=roundId

decide(rId,outMsg,FSMState,VC,newDgst);

void decide(int rId,Msg outMsg,FSMState s,VectorClock VC,Digest d)
proposals.add([outMsg, s, VC, d]);
if | proposals | ≥ minProposals do

[selOutMsg, selState, selVC, selDig]= select(proposals);
log([curRoundId, selOutMsg, selState, selVC, selDig]);

send(DECISION,curRoundId,selState,selVC) to all sinkR

i
∈ sinkSet;

PublishTransaction(curRoundId,outMsg);
proposals={};
curRoundId++;
curStateDig=selDig;

upon recoverFromCrash do
if (([roundId,outMsg,FSMState,VC,digest] = readFromLog())6= ⊥)

send(DECISION,roundId,FSMState,VC) to all sinkR

i
∈sinkSet;

PublishTransaction(roundId,outMsg);
curRoundId=roundId+1;
curStateDig=digest;

Figure 2. Backend Data Server Behavior.

Figure 2 shows the back-end data sever pseudo code.

The main data structures kept by the data server are: (i)

a monotonically increasing identifier, namely curRoundId,

which is used to keep track of the current round of inter-

action with sink processes; (ii) a set, namely proposals,

used to gather the legal output events generated by the sinks

for the current round; (iii) the digest of the sink FSM state

and vector clock associated with the latest accepted output

event, maintained by the curStateDif variable.

In the case of receipt of a conservative output event via

a STABLEOUTPUT message, since this is guaranteed to be

representative of a linearizable processing history, the event

is directly included in the proposals set. On the other

hand, if an OPTOUTPUT message associated with the cur-

rent round is received, it is first of all checked whether the

corresponding output event is legal. To this end, the digest

of the sink FSM state and vector clock at the time of gener-

ation of the former output event (i.e. at round curRoundId-

1), which is piggybacked on the OPTOUTPUT message, is

compared with the one locally maintained in curState. If

the two digests do not match, the event is simply discarded,

otherwise (i.e. if the optimistic output event is found to be

legal) the event is inserted in the proposals set.

As soon as the cardinality of the proposals set reaches

the minProposals value, the data server invokes the

select primitive to choose the output event selected as

representative for publication (as well as the corresponding

sink replica FSM state and vector clock), logs the choice

on stable storage and sends back the decision (i.e. the re-

sult of the selection) to the sink replicas. Then it invokes

PublishTransaction passing the current round iden-

tifier and the selected output event as input parameters, so to

execute the corresponding database update. Finally, it emp-

ties the proposals set, increments the round counter and

stores the digest of the selected sink replica state in curState.

Upon recovery after a crash, the data server retrieves

from the log the information related to its latest decision,

sends back a DECISION message to the sink replicas and in-

vokes the PublishTransaction primitive. Note that,

being these operations idempotent, they can be safely re-

executed multiple times (e.g. in the case of multiple subse-

quent crashes of the data server). Finally, the current round

identifier and the digest of the latest stable sink’s state are

updated on the basis of the info retrieved from the log.

4 Related Work

APART+ inherits the same advantages of APART [19]

with respect to classical replication schemes (namely, those

based on a-priori agreement on the processing order). Since

these advantages have already been highlighted in the In-

troduction section, rather than focusing on a comparison

with the state of the art of replication solutions (for which

we remind the interested reader to [19]), in this section we

discuss the relations between the APART+ optimistic syn-

chronization scheme and classical optimistic approaches in

literature.

APART+ allow multiple non-deterministic replicas to

optimistically carry on processing activities based on po-

tentially inconsistent initial state. Replicas speculate in

parallel on tentative execution paths, among which one is

eventually selected as the committed path. In this aspect,

APART+ supports an execution model where logical time

advances according to a committed horizon and an uncom-

mitted one [3, 6]. This is typical of speculative high perfor-

mance computing approaches, especially in the context of

virtual reality and simulation systems. Compared to these

approaches, one main distinguishing feature of APART+

is the presence of reconciliation, typically not employed

in synchronization schemes for high performance comput-

ing due to the fact that speculation operates on a per com-

ponent basis (instead of across multiple replicas). Similar

considerations can be made when comparing the APART+

optimistic approach with speculative execution techniques

used in pipelined computing architectures [13], or with op-

timistic concurrency control [1] in transactional systems. In

the former scenario, optimistic branch predictions that are

contradicted by later pipeline stages result in a re-execution

of a different branch. In the case of optimistic concurrency

control, analogously, the detection of a conflict due to in-

correct speculative data accesses forces transactions to roll-

back, and (possibly) re-execute.

The aforementioned optimistic approaches are character-

ized by an inherent tradeoff. If the “optimistic” assumptions

turn out to be valid, optimism pays off, providing a signifi-

cant performance boost. However, if the optimistic assump-

tions do not hold, these protocols execute more slowly than

a pessimistic one due to the costs imposed to rollback the

system to a correct state. In other words, the gain in perfor-

mance outweighs the overhead of repairing actions that exe-

cute incorrectly only if the optimistic assumptions hold fre-

quently enough. Contrarily, in nice runs where no failures

occur, the performance of the APART+ optimistic synchro-

nization scheme is in practice unaffected by the probability

that the optimistic assumption actually holds. This depends

on that, in absence of failures, at least one replica is never

aborted by reconciliation.

5 Performance Evaluation

The performance evaluation study presented in this sec-

tion is based on a process-oriented simulation model devel-

oped in JAVA2 on top of the JavaSim 0.3 library. Our anal-

ysis if focused on a failure free scenario, as this is typically

the most frequent in practice. We consider a system com-

posed of 10 sensors, 3 sinks, and one back-end data server.

The minProposals parameter is set to 1, so to to minimize

the end-to-end data processing latency.

Each sensor acts as a poissonian source, generating in-

puts for the sinks with an average interarrival rate which

is treated as an independent parameter. The sinks and the

back-end data server process incomingmessages with expo-

nential service rates, whose mean values are, respectively,

2000 msgs/sec and 20000 msgs/sec. The choice of these

parameters is intentionally aimed at preventing the back-

end data server from becoming the system’s bottleneck.

Such a choice allows us to identify the upper bound on the

throughput achievable by the replica coordination schemes

employed by APART and APART+, which is the actual fo-

cus of this study, i.e. we exclude any performance limiting

effect caused by the saturation of the back-end server. Fur-

ther, in large scale data acquisition systems, the back-end

is typically deployed over carefully dimensioned clustered

systems in order not to represent a performance bottleneck,

as well as to ensure its high availability.

To evaluate how the two considered protocols fare in

the presence of diverse application level logics at the sink’s

side, we rely on two independent parameters: i) Σ, namely

the sink’s “silentness-degree”, (see Section 2.2), and ii)

pabort, namely the probability for the back-end data server

to send Decision messages informing a sink (whose out-

put event is not selected during a synchronization phase) to

install the state of some other replica.

In our study, we consider two typical deployment scenar-

ios, characterized by different inter-process communication

latencies. In the first one (namely the LAN scenario), com-

ponents are distributed over the same local area network and

message delivery latencies are assumed to be exponentially

distributed with a 5 milliseconds’ mean value. In the second

one (namely the WAN scenario) components are deployed

over a wide area network and the mean communication la-

tency (one-way) is set to 50 milliseconds.

Figure 3(a) and Figure 3(b) report the average end-to-end

latency (evaluated as the time interval since the production

of a sensor message and the publication of the correspond-

ing output event at the back-end data server) for the two

scenarios. The plots report experimental results obtained by

setting pabort to 0.5. However, it was found out that the per-

formance of both protocols are only negligibly affected by

the probability of replicas to undergo a state re-installation

upon completion of a reconciliation phase. This depends on

that, in both protocols, at least one replica is never aborted

in each synchronization round, and hence does not incur any

performance penalization. The simulation results also high-

light that, in APART+, a sink that succeeds in imposing its

state in early coordination rounds accumulates a remarkable

advantage over other replicas while optimistically process-

ing input data (this phenomenon was particularly evident at

high load).

For the APART protocol we report performances when

considering both the cases of: i) a non-silent FSM, pro-

ducing an output event per each incoming sensor message

(Σ = 1), and ii) a FSM producing an output event each

10 processed sensor messages (Σ = 10). The Σ value,

in fact, has a strong impact on the frequency of activa-

tion of the replica synchronization phase, which represents

the APART’s bottleneck for the considered parameters’ set-

tings. This is confirmed by the plots in Figure 3, which

clearly show that an increase in the FSMs’ silentness-degree

causes a proportional increase of the maximum sustainable

throughput in APART. On the other hand, the performances

of the APART+ protocol are almost independent of the Σ

parameter (which is the reason why we here report only the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 250 500 750 1000 1250 1500 1750 2000

E
n

d
-t

o
-E

n
d

 L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Messages per Second

APART
+

APART (Σ=1)
APART (Σ=10)

(a) LAN Scenario

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 100 1000 2000

E
n

d
-t

o
-E

n
d

 L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Messages per Second

APART
+

APART (Σ=1)
APART (Σ=10)

(b) WAN Scenario

Figure 3. Average EndtoEnd Message Processing Latency.

results obtained with Σ = 1). In APART+, in fact, since

the synchronization phase is not blocking, the sinks’ pro-

cessing activities are never halted, even in the presence of

pending synchronization phases. Hence, the only cost to be

affected by variations of the Σ parameter is related to the

corresponding alteration in the frequency of generation of

output messages at the sink. However, in our simulation we

do not explicitly model the costs associated with sending

output events at the sink (in terms of both local processing

activities and network bandwidth consumption), which are

assumed to be negligible when compared to the sensor mes-

sages’ processing latency (2).

Overall, by the plots in Figures 3(a) and 3(b), the

blocking synchronization strongly hinders APART’s perfor-

mance, especially in the WAN scenario, whose higher com-

munication latencies imply a longer duration of the syn-

chronization phase, limiting its maximum throughput to 10

msgs/sec for Σ = 1. On the other hand, the optimistic

pipelining of output events in APART+ reveals extremely

effective, permitting to achieve, in both the LAN and WAN

scenarios (and independently of the sinks’ silentness de-

gree) a maximum throughput that is just slightly lower than

the theoretical bound in absence of replication overheads

for the considered parameters’ settings.

6 Conclusions

In this paper we have shown how the adoption of opti-

mistic processing techniques can significantly boost the per-

formance of a recently proposed active replication scheme,

called APART. Through a simulation based study, we have

shown that, in nice runs, the performance of the APART+

optimistic synchronization scheme is not affected by the

probability that the optimistic assumption holds. This de-

pends on that, in each reconciliation phase, there is at least

one replica that is never aborted, which can steadily advance

2This assumption is introduced primarily to simplify the simulation
model, but the approximation error is expected to be small if the size of the
output events’ messages is relatively small, which is often true in practice.

in the processing of incoming data with no or very limited

performance penalization.

References
[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and

recovery in database systems. Addison-Wesley Longman Publishing, 1987.

[2] X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast al-
gorithms: Taxonomy and survey. ACM Comp. Surveys, 36(4):372–421, 2004.

[3] R. M. Fujimoto. Parallel discrete event simulation. Communications of the
ACM, 33(10):30–53, Oct. 1990.

[4] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Program-
ming. Springer, 2006.

[5] M. Herlihy and J. Wing. Linearizability: a correctness condition for concur-
rent objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, July 1990.

[6] D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages
and System, 7(3):404–425, July 1985.

[7] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there
are no faults. SIGACT News, 32(2):45–63, 2001.

[8] B. Kemme and G. Alonso. A suite of database replication protocols based on
group communication primitives. In Proc. of the the 18th International Confer-
ence on Distributed Computing Systems (ICDCS), page 156. IEEE Computer
Society, 1998.

[9] F. Mattern. Virtual time and global states of distributed systems. In Proc.
Workshop on Parallel and Distributed Algorithms, pages 215–226, 1989.

[10] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Enforcing determinism
for the consistent replication of multithreaded corba applications. In Proc. of
the 18th Symposium on Reliable Distributed Systems (SRDS), pages 263–273.
IEEE Computer Society Press, 1999.

[11] National Institute of Standards and Technology. Secure hash standard, 2002.

[12] OASIS. Web Services Reliable Messaging, 2008.

[13] D. Patterson and J. Hennessy. Computer Organization and Design: The Hard-
ware/software Interface. Morgan Kaufmann, 2005.

[14] P. R. H. Place and K. C. Kang. Safety-critical software: status report and an-
noted bibliography. Tech.report, CMU/SEI-92-TR-5 (ESC-TR-93-182), 1993.

[15] A. Rahmati, L. Zhong, M. Hiltunen, and R. Jana. Reliability techniques for
rfid-based object tracking applications. In Proc.of the 37th Conference on De-
pendable Systems and Networks (DSN), pages 113–118, 2007.

[16] A. Rahmati, L. Zhong, M. Hiltunen, and R. Jana. Reliability techniques for rfid-
based object tracking applications. InDSN ’07: Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
pages 113–118, Edinburgh, UK, 2007. IEEE Computer Society.

[17] F. Quaglia and P. Romano. Ensuring e-Transaction with asynchronous and
uncoordinated application server replicas. IEEE Transactions on Parallel and
Distributed Systems, 18(3), 2007.

[18] P. Romano, F. Quaglia, and B. Ciciani. A lightweight and scalable e-
Transaction protocol for three-tier systems with centralized back-end database.
IEEE Trans. on Knowledge and Data Engineering, 17(11):1578–1583, 2005.

[19] P. Romano, D. Rughetti, F. Quaglia, and B. Ciciani. Apart: Low cost active
replication for multi-tier data acquisition systems. In Proc. of the IEEE Symp.
on Network Computing and Applications (NCA), pages 1–8, 2008.

[20] F. B. Schneider. Replication management using the state-machine approach.
ACM Press/Addison-Wesley Publishing Co., 1993.

