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Abstract—Replication plays an essential role for in-memory distributed
transactional platforms, given that it represents the primary means to
ensure data durability. Unfortunately, no single replication technique can
ensure optimal performance across a wide range of workloads and
system configurations. This paper tackles this problem by presenting
MORPHR, a framework that allows to automatically adapt the replication
protocol of in-memory transactional platforms according to the current
operational conditions. MORPHR presents two key innovative aspects.
On one hand, it allows to plug in, in a modular fashion, specialized
algorithms to regulate the switching between arbitrary replication pro-
tocols. On the other hand, MORPHR relies on state of the art machine
learning techniques to autonomously determine the best replication in
face of varying workloads. We integrated MORPHR in an open-source
in-memory NoSQL data grid, and evaluated it by means of an extensive
experimental study. The results highlight that MORPHR is accurate in
identifying the best replication strategy in presence of complex realistic
workloads, and does so with minimal overhead.

1 INTRODUCTION
With the advent of grid and cloud computing, in-memory dis-
tributed transactional platforms, such as NoSQL data grids [1]
and Distributed Transactional Memory systems [2], [3], have
gained an increased relevance. These platforms combine ease
of programming and efficiency by providing transactional
access to distributed shared state, and mechanisms aimed to
elastically adjust the resource consumption (nodes, memory,
processing) in face of changes in the demand.

In these platforms, replication plays an essential role, given
that it represents the primary means to ensure data durability.
The issue of transactional replication has been widely inves-
tigated in literature, targeting both classic databases [4], [5]
and transactional memory systems [3]. As a result, a large
number of replication protocols have been proposed, based on
significantly different design principles, such as, single-master
vs multi-master management of updates [6], [7], lock-based
vs atomic broadcast-based serialization of transactions [2], [4],
optimistic vs pessimistic conflict detection [3].

Unfortunately, as we clearly show in this paper, there is not a
single replication strategy that outperforms all other strategies
for a wide range of workloads and scales of the system. I.e.,
the best performance of the system can only be achieved
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by carefully selecting the appropriate replication protocol in
function of the characteristics of the infrastructure (available
resources, such as number of servers, CPU and memory
capacity, network bandwidth, etc) and workload characteristics
(read/write ratios, probability of conflicts, etc).

These facts raise two significant challenges. First, given that
both resources and workloads are dynamic, the data grid plat-
form must support the run-time change of replication protocols
in order to achieve optimal efficiency. Second, the amount of
parameters affecting the performance of replication protocols
is so large, that the manual specification of adaptation policies
is cumbersome (or even infeasible), motivating the need for
fully autonomic, self-tuning solutions.

This paper addresses these issues by introducing MORPHR,
a framework supporting automatic adaptation of the replication
protocols employed by in-memory transactional platforms.
The contributions of this paper are the following:
• We present the results of an extensive performance

evaluation study using an open source transactional data grid
(Infinispan by Red Hat/JBoss), which we extended to support
three different replication protocols, namely primary-backup
[6], distributed locking based on two-phase commit [7], and
total order broadcast based certification [4]. We consider
workloads originated by both synthetic and complex standard
benchmarks, and deployments over platforms of different
scales. The results of our study highlight that none of these
protocols can ensure the best performance for all possible
configurations, providing a strong argument to pursue the
design of abstractions and mechanisms supporting the online
reconfiguration of replication protocols.
• We introduce a framework, named MORPHR, which

formalizes a set of interfaces with precisely defined semantics
that need to be exposed (i.e. implemented) by an arbitrary
replication protocol in order to support its online reconfig-
uration, i.e. switching to a different protocol. The proposed
framework is designed to ensure both generality, by means
of a protocol-agnostic generic reconfiguration protocol, and
efficiency, whenever the cost of the transition between two
specific replication protocols can be minimized by taking
into account their intrinsic characteristics. We demonstrate
the flexibility of the proposed reconfiguration framework by
showing that it can seamlessly encapsulate the three replication
protocols mentioned above, via both protocol-agnostic and
specialized protocol switching techniques.
• We validate the MORPHR framework, by integrating
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it in Infinispan, which allows to assess its practicality and
efficiency in realistic transactional data grids. A noteworthy
result highlighted by our experiments is that the MORPHR-
based version of Infinispan does not incur in perceivable per-
formance overheads in absence of reconfigurations (which is
expected to be the most frequent case), with respect to the non-
reconfigurable version. We use this prototype to evaluate the
latencies of generic and specialized reconfiguration techniques,
demonstrating that the switching can be completed with a
latency in the order of a few tens of milliseconds in a cluster
of 10 nodes employing commodity-hardware.
• We show how to model the problem of determining

the best replication protocol given the current operational
conditions as a classification problem. Via an extensive experi-
mental study, relying on three machine learning techniques and
heterogeneous workloads and platform scales, we demonstrate
that this learning problem can be solved with high accuracy.

The remainder of the paper is structured as follows. Sec-
tion 2 reports the results of a performance evaluation study
highlighting the relevance of the addressed problem. The
system architecture is presented in Section 3 and its main com-
ponents are presented in Sections 4 and 5. The experimental
evaluation is reported in Section 6. Related work is analysed
in Section 7. Section 8 concludes the paper.

2 MOTIVATIONS

In the introduction above, we have stated that there is not
a single replication strategy that outperforms all others. In
this section, we provide the results of an experimental study
backing this claim. Before presenting the experimental data,
we provide detailed information on the experimental platform
and on the benchmarks used in our study.

2.1 Experimental Platform
We used an open-source in-memory transactional data grid,
namely Infinispan [8] by Red Hat/JBoss, as reference platform
for this study. At the time of writing, Infinispan is the reference
NoSQL platform and clustering technology for JBoss AS,
a mainstream open source J2EE application server. From a
programming API perspective, Infinispan exposes a key-value
store interface enriched with transactional support. Infinispan
maintains data entirely in memory, using a weakly consistent
variant of a multi-version concurrency algorithm to regulate
local concurrency. More in detail, the Infinispan prototype
used in this work (namely, version 5.2.0), ensures two non-
serializable consistency levels: repeatable read [9], and a vari-
ant that performs an additional test, called write-skew check,
which aborts a transaction T whenever any of the keys T read
and wrote is altered by any concurrent transaction [8]. In all
the experiments reported in this paper, we select as consistency
criterion the latter, stronger, consistency criterion.

Detection of remote conflicts, as well as data durability,
are achieved by means of a Two Phase Commit [7] based
replication protocol (2PC). To assess the performance of
alternative transaction replication protocols, we developed two
custom prototypes of Infinispan (ensuring the same consis-
tency levels originally provided by Infinispan), in which we

replaced the native replication protocol with two alternative
protocols, i.e. Primary-Backup (PB) and a replication protocol
based on Total Order Broadcast, which we refer to as TO.
Note that due to the vastness of literature on transactional
replication protocols, an exhaustive evaluation of all existing
solutions is clearly infeasible. However, the three protocols
that we consider, 2PC, PB, and TO, represent different well-
known archetypal approaches, which have inspired the design
of a plethora of different variants in literature. Hence, we
argue that they capture the key tradeoffs in most existing
solutions. However, the protocol-agnostic approach adopted
by MORPHR is flexible enough to cope with other replication
protocols, including, e.g., partial replication and quorum proto-
cols. Next, we briefly overview the three considered protocols:

2PC: Infinispan integrates a variant of the classic two phase
commit based distributed locking protocol. In this scheme,
transactions are executed locally in an optimistic fashion in
every replica, avoiding any distributed coordination until the
commit phase. At commit time, a variant of two phase commit
is executed. During the first phase, updates are propagated to
all replicas, but, unlike typical distributed locking schemes,
locks are acquired only by a single node (called the “primary”
node), whereas the remaining nodes simply acknowledge the
reception of the transaction updates (without applying them).
By acquiring locks on a single node, this protocol avoids
distributed deadlocks, a main source of inefficiency of classic
two phase commit based schemes. However, unlike the classic
two phase commit protocol, the locks on the primary need
to be maintained until all other nodes have acknowledged
the processing of the commit. This protocol produces a large
amount of network traffic, which typically leads to an increase
of the commit latency (of update transactions), and suffers
from a high lock duration, which can generate lock convoying
at high contention levels.

PB: This is a single-master protocol allowing the processing of
update transactions only on a single node, called the primary,
whereas the remaining ones are used exclusively for process-
ing read-only transactions. The primary regulates concurrency
among local update transactions using a deadlock-free commit
time locking strategy, and propagates synchronously its up-
dates to the backup nodes. Read-only transactions can be pro-
cessed in a non-blocking fashion on the backups, regulated by
Infinispan’s native multiversion concurrency control algorithm.
In this protocol, the primary is prone to become a bottleneck
in write dominated workloads. On the other hand, its commit
phase is simpler than in the other considered protocols (which
follow a multi-master approach). This alleviates the load
on the network and reduces the commit latency of update
transactions. Further, by intrinsically limiting the number of
concurrently active update transactions, it is less subject to
trashing due to lock contention in high conflict scenarios.

TO: Similarly to 2PC, this protocol is a multi-master scheme
that processes transactions without any synchronization during
their execution phase. Unlike 2PC, however, the transaction
serialization order is not determined by means of lock acqui-
sition, but by relying on a Total Order Broadcast service (TOB)
to establish a total order among committing transactions [10].
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Upon their delivery by TOB, transactions are locally certified
and either committed or aborted depending on the result of
the certification. Being a lock-free algorithm, TO does not
suffer from the lock convoying phenomena in high contention
scenarios. However, its TOB-based commit phase imposes a
larger communication overhead with respect to 2PC (and PB).
This protocol has higher scalability potential than PB in write
dominated workloads, but is also more prone to incur in high
abort rates in conflict intensive scenarios.

2.2 Benchmarks
We consider three benchmarks representative of very hetero-
geneous domains, namely TPC-C [11], Radargun1 and Geo-
graph [12]. The former is a standard benchmark for OLTP
systems, which portrays the activities of a wholesale supplier
and generates mixes of read-only and update transactions with
strongly skewed access patterns and heterogeneous durations.
We have developed an implementation of TPC-C that was
adapted to execute on a NoSQL key/value store, which include
three different transaction profiles: Order Status, a read-only
long running transaction; New Order, a computation intensive
update transaction that generates moderate contention; and
Payment, a short, conflict prone update transaction.

Radargun is a benchmarking framework designed by JBoss
to test the performance of distributed, transactional key-value
stores. The workloads generated by Radargun are simpler and
less diverse than those of TPC-C, but they have the advantage
of being very easily tunable, thus allowing to easily explore a
wide range of possible workload settings.

Geograph is a benchmarking tool that allows for injecting
complex and rich workloads representative of the most popular
geo-social applications. Geograph has been designed to be
flexible both in the heterogeneity and in the dynamics of the
generated workloads. In particular, it provides 19 different
geo-social services (i.e. actions) and 16 application specific
user simulators — called agents. Agents can be combined in
complex ways to generate dynamic workload profiles.

For TPC-C we consider three different workload scenarios,
which are generated by configuring the following benchmark
parameters: the number of warehouses, i.e. the size of the
keyset that is concurrently accessed by transactions, which has
a direct impact on the generated contention; the percentage of
the mix of transaction profiles generated by the benchmark;
and the number of active threads at each node, which allows
to capture scenarios of machines with different CPU power
(by changing the number of concurrent threads active on each
node). This last parameter allows to simulate, for instance,
changes of the computational capacity allocated to the virtual
machines hosting the data platform in a Cloud computing en-
vironment. The detailed configuration of the parameters used
to generate the three TPC-C workloads, which are referred to
as TW1, TW2, and TW3, are reported in Table 1.

For Radargun we also consider three workloads, which
we denote as RW1, RW2 and RW3. These three workloads
are generated synthetically, and their characteristics can be
controlled by tuning three parameters: the ratio of read-only

1. https://github.com/radargun/radargun/wiki

Parameters Settings for the TPC-C Workloads
#

Warehouses
% Order

Status
%

Payment
% New
Order

#
Threads

TW1 10 20 70 10 1
TW2 1 20 30 50 8
TW3 1 30 70 0 1

Parameters Settings for the Radargun Workloads
%Write

Tx
# Reads
RO Tx

# Reads
Wrt Tx

# Writes
(Wrt Tx)

#
Keys

#
Threads

RW1 50 2 1 1 5000 8
RW2 95 200 100 100 1000 8
RW3 40 50 25 25 1000 8

Parameters Settings for the Geograph Workloads

Agent Composition Location Description #
Threads

GW1
128 Read-

Post10UpdatePos90
Agents

128
different

sites

Normal state
of the

application
12

GW2

196 Read-
Post10UpdatePos90

Agents and 4
Blogger Agents

Rome Big event 12

GW3

160 Read-
Post10UpdatePos90

and 10 Blogger
Agents

Rome The event has
finished 12

TABLE 1
Parameters Settings

vs update transactions; the number of read/write operations
executed by (read-only/update) transactions; and the cardinal-
ity of the set of keys stored in the data grid — which are
accessed uniformly at random by each read/write operation.
The parameters settings used for these workloads is also
depicted in Table 1.

As for Geograph, we consider a simulation of a sports
fan geo-social application where fans can trace their trips to
sport events and share their opinions about it. The workload
simulates an application with a few hundreds of concurrent
simulated agents who submit requests with 0 think time. This
allows simulating actually a much larger population of users
considering that typically each user updates its position/sub-
mits requests in geo-social networks with a frequency of
tens of seconds/minutes. This is the workload that one would
expect from a fairly popular application with large populations
of registered users. Table 1 reports the parameters settings used
for the considered workloads. These experiments relied on
two different types of agents: bloggers, which make small text
posts (Twitter-style) without commenting, liking and searching
for posts; and ReadPost10UpdatePos90, a type of agent that
tracks its current position while reading posts in the vicinity
(in this case, it reads posts 10% of the time and updates the
position 90% of the time). Regarding the workloads, GW1
simulates a steady scenario in which users are spread across
the world in 128 different locations. GW2 simulates the start
of a major sport event in Rome, during which many users share
their position, read posts about the surroundings, and comment
on the event live. In GW3, the ceremony is over and the
number of agents who share their position starts diminishing
while more agents start blogging about the event.
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Fig. 1. Performance of 2PC, PB and TO protocols.

2.3 Analysis of the results

We now report and discuss experimental data that illustrates
the performance of 2PC, PB, and TO protocols under different
workloads. All the experiments reported in this paper have
been obtained using a commodity cluster of 10 nodes. The
machines are connected via a Gigabit switch and each one
has Ubuntu 10.04 installed, 8 cores (2 Intel(R) Xeon(R)
CPU E5506 @ 2.13GHz) and 32GB of RAM memory. We
performed experiments with different cluster sizes. However,
as the corresponding data sets show similar trends, for space
constraints, for most workloads we only report results using 10
nodes; the only exceptions are workload TW2, for which we
also depict results in a 3 nodes cluster (denoted as TW2(3N)),
and Geograph, for which we used a cluster of 5 nodes.

The first plot in Figure 1 reports the throughput achieved
by each protocol normalized to the throughput of the best
performing protocol (in the same scenario). The second and
third plots report values on the transaction abort rate and
commit latency (both using logscale for the y axis).

The results clearly show that none of the protocols can
achieve optimal performance in all the considered workload
configurations. Furthermore, the relative differences among
the performance of the protocols can be remarkably high:
the average normalized throughput of the worst performing
protocol across all workloads is around 20% (i.e. one fifth)
of the the best performing protocol for each workload; also,
the average throughputs across all workloads of the PB, TO,
and 2PC are approximately, respectively, 30%, 40% and 50%
lower than that of the optimal protocol. Furthermore, by
contrasting the results obtained with TW2 using different
scales of the platform, it can be observed that, even for a
given fixed workload, the best performing replication protocol
can be a function of the number of nodes currently in the
system. These figures provide a direct measure of the potential
inefficiency of a statically configured system.

The reasons underlying the shifts in the relative performance
of the replication protocols can be quite intricate, as the
performance of the considered protocols is affected by a
number of inter-dependent factors affecting the degree of
contention on both logical (i.e. data) and physical (mostly
network and CPU) resources. Therefore, it may be extremely
hard to manually define policies that control the adaptation.
Next, we provide some insights on these factors.

In the workloads RW1, TW1 and GW1, 2PC has a good

leverage over the remaining protocols. This is explainable
considering that, in these low conflict configurations, 2PC does
not suffer of lock convoying. This allows it to leverage on its
ability to process update transactions at all nodes (unlike PB),
while enjoying lower commit latencies w.r.t. TO.

The workloads RW2, TW2 and GW2, conversely, are
favourable to PB in both these scenarios. In fact, the high de-
gree of contention causes the thrashing of the two multi-master
protocols (2PC and TO), which suffer from an extremely high
transaction abort rate.

In the scenarios favourable to TO, namely RW3, TW3 and
GW3, contention is sufficiently high to cause lock convoying
on 2PC, which results in a higher commit latency. Further-
more, the workloads contain a sufficient percentage of update
transactions to saturate the primary node with PB.

3 ARCHITECTURAL OVERVIEW

The architecture of MORPHR is depicted in Figure 2. The sys-
tem is composed by two macro components, a Reconfigurable
Replicated In-Memory Data Store (RRITS), and a Replication
Protocol Selector Oracle (RPSO).

The RRITS externalizes user-level APIs for transactional
data manipulation (such as those provided by a key/value store,
as in our current prototype, or an STM platform), as well as
APIs, used in MORPHR by the RPSO, that allow its remote
monitoring and control (to trigger adaptation). Internally, the
RRITS supports multi-layer reconfiguration techniques, which
are encapsulated by abstract interfaces allowing to plug in, in
a modular fashion, arbitrary protocols for replica coherency
and concurrency control. The Group Communication System
(GCS) coordinates the communication between all nodes in
the system and detects any faults that may occur. A detailed
description of this building block is provided in Section 4.

The RPSO is an abstraction that allows encapsulating dif-
ferent performance forecasting methodologies. The Remote
Monitoring and Control component relies on JMX to bridge
interactions between RPSO and the RRITS for collecting
statistics to feed the oracle and triggering a protocol switch.
The oracle implementation may be centralized or distributed.
In a centralized implementation, the RPSO is a single process
that runs in one of the replicas or in a separate machine. In
the distributed implementation, each replica has its own local
instance of the oracle that coordinates with other instances to
reach a common decision. In this work, we chose to implement
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Fig. 2. Architectural overview.

the centralized version, which will be discussed in more detail
in Section 5.

4 IN-MEMORY DATA STORAGE

The RRITS is composed by two main sub-components, the
Reconfigurable Replication Manager and the Reconfigurable
Transactional Store, which are described next.

4.1 Reconfigurable Replication Manager
The Reconfigurable Replication Manager (RRM) is the com-
ponent in charge of orchestrating the reconfiguration of the
replication protocol, namely the transition from a state of the
system in which transactions are processed using a replication
protocol A, to a state in which they are processed using a
protocol B. The design of RRM was guided by the goal of
achieving both generality and efficiency.

An important observation is that in order to maximize
efficiency, it is often necessary to take a white box approach:
by exploiting knowledge on the internals of the involved proto-
cols, it is usually possible to define specialized (i.e. highly ef-
ficient) reconfiguration schemes. On the other hand, designing
specialized reconfiguration algorithms for all possible pairs of
protocols leads to an undesirable growth of complexity, which
can hamper the platform’s extensibility.

MORPHR addresses this tradeoff by introducing a generic,
protocol-agnostic reconfiguration protocol that guarantees the
correct switching between two arbitrary replication protocols,
as long as these adhere to a very simple interface (denoted as
ReconfigurableReplicationProtocol in Figure 2). This interface
allows MORPHR to properly control their execution (stop and
boot them). In order to achieve full generality, i.e. to be able
to ensure consistency in presence of transitions between any
two replication protocols, MORPHR’s generic reconfiguration
protocol is based on a conservative “stop and go” approach,
which enforces the termination of all transactions in the old
protocol, putting the system in a quiescent state, before starting
executing the new protocol.

MORPHR requires that all pluggable protocols implement
the methods needed by this stop and go strategy (described
below), benefiting from its extensibility and guaranteeing the
generality of the approach. On the other hand, in order to

1 stop(boolean eager) {
2 block generation of new local transactions;
3 if eager then
4 abort any local executing transaction;
5 else
6 wait for completion of all local executing transactions;
7 end
8 broadcast (DONE);
9 wait received DONE from all processes;

10 wait for completion of all remote transactions;
11 }

Algorithm 1: stop() method of the 2PC protocol.

maximize efficiency, for each pair of replication protocols
(A,B), MORPHR allows for registering an additional protocol
switcher algorithm, which interacts with the RRM via a
well defined interface. The RRM also uses such specialized
reconfiguration protocols, whenever available, and otherwise
resorts to using the protocol-agnostic reconfiguration scheme.

Figure 3 depicts the state machine of the reconfiguration
strategies supported by MORPHR. Initially the system is in the
STEADY state, running a single protocol A. When a transition
to another protocol B is requested, two paths are possible.
The default path (associated with the generic “stop and go”
approach) first puts the system in the QUIESCENT state and
then starts protocol B, which will put the system back to
the STEADY state. The fast path consists of invoking the fast
switching protocol. This protocol will place the system in
a temporary TRANSITION state, where both protocol A and
protocol B will coexist. When the switch terminates, only
protocol B will be executed and the system will be again in
the STEADY state. For instance, the system may first switch
A→B using the fast switch, and then perform the transition
B→C using a stop and go switch (because it may be very hard
or impossible to implement a fast switch transition B→C).

We will now discuss, in turn, each of the two protocol
reconfiguration strategies supported by MORPHR.

“Stop and Go” reconfiguration: The methods defined in the
ReconfigurableReplicationProtocol interface can be grouped
in two categories: i) a set of methods that allow the RRM to
catch and propagate the transactional data manipulation calls
issued by the application (e.g. begin, commit, abort, read and
write operations), and ii) two methods, namely boot() and
stop(), that every pluggable protocol must implement:
• boot() : This method is invoked to start the execution of

a protocol from a QUIESCENT state, i.e., no transactions from
any other protocol are active in the system, and implements
any special initialization conditions required by the protocol.
• stop(boolean eager): This method is used to stop the

execution of a protocol and putting the system in a QUIESCENT
state. The protocol dependent implementation of this method
must guarantee that, when it returns, there are no transactions
active in the system executing with that protocol. The eager
parameter is a boolean that allows to specify if on-going
transactions should be aborted immediately, or if the system
should allow for on-going transactions to terminate before
entering the QUIESCENT state.

Algorithm 1 exemplifies the implementation of this inter-
face, for the case of the 2PC. First, all new local transactions
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A.stop()

B.boot()

RRM.switchComplete()

A-B.switchTo() TRANSITION

STEADY

QUIESCENT

A-B.eventFromPrevEpoch()

A-B.eventFromNewEpoch()

Fig. 3. MORPHR reconfiguration finite state machine.

are blocked. When local transactions finish executing, a DONE
message is broadcast announcing that no more transactions
will be issued by this replica in the current protocol. Before
returning, the stop method waits for this message from all the
other replicas in the system and for the completion of any
remote transactions executing in the that replica.

Fast switching reconfiguration: The default “stop and go”
strategy ensures that, at any moment in time, no two trans-
actions originated by different protocols can be concurrently
active in the system. Non-blocking reconfiguration schemes
avoid this limitation by allowing overlapping the execution
of different protocols during the reconfiguration. In order to
establish an order on the reconfigurations, the RRM (i.e. each
of the RRM instances maintained by the nodes in the system)
relies on the notion of epochs. Each fast switching reconfigu-
ration triggers a new epoch and all transaction events (namely,
prepare, commit, and abort events) are tagged with the epoch
in which they were generated.

To support fast switching between a given pair of protocols
(oldProtocol, newProtocol), the MORPHR framework requires
that the programmer implements the following set of methods:
• switchTo() : This method is invoked to initiate fast switch-

ing. This triggers the increase of the local epoch counter on
the replica, and alters the state of the replica to TRANSITION.
• eventFromPrevEpoch (event): This method processes an

event of a transaction that was initiated in an epoch previous
to the one currently active in this replica.
• eventFromNewEpoch (event): This method processes an

event from a transaction that was initiated by a replica that is
either in the TRANSITION state of the new epoch, or that has
already completed the switch to new epoch and entered the
STEADY state.

As also depicted by the state machine in Figure 3, the
methods eventFromPrevEpoch and eventFromNewEpoch are
only executed by a replica that has entered the TRANSITION
state. Hence, whenever a replica receives either one of these
two events while it is still in the STEADY state of protocol
A, it simply buffers them, delaying their processing till the
switchTo() method is invoked2.

Further, the RRM exposes a callback interface, via the
switchComplete() method, which allows the protocol switcher

2. As an optimization, in this case our prototype actually avoids buffering
eventFromPrevEpoch events: this is safe because it means that the transac-
tion’s event has been generated in the same epoch as the one in which the
local node is currently executing.

1 2PC-PB.switchTo() {
2 broadcast (LOCALDONE);
3 }
4 2PC-PB.eventFromPrevEpoch(event) {
5 processEvent(event, tx);
6 }
7 2PC-PB.eventFromNewEpoch(event) {
8 processEvent(event, tx);
9 }

10 upon received LOCALDONE from all nodes {
11 wait for completion of prepared remote 2PC txs;
12 // guarantee reconfiguration completion globally
13 broadcast (REMOTEDONE);
14 wait received REMOTEDONE from all nodes;
15 switchComplete();
16 }

Algorithm 2: Fast Switching from 2PC to PB.

to notify the end of the transition phase to the RRM, and which
causes it to transit to the STEADY state. As for the stop()
method, a protocol switcher implementation must guarantee
that when the switchComplete() method is invoked, every
transaction active in the system is executing according to the
final protocol. In the following paragraphs we provide two
examples of fast switching algorithms, for scenarios involving
protocols whose concurrent coexistence raises different types
of issues, namely 2PC→PB and 2PC→TO.

Fast switch from 2PC to PB: Both PB and 2PC are lock based
protocols. Further, in both protocols, locks are acquired only
on a designated node, called primary (both in 2PC and PB).
Hence, provided that these two nodes coincide (which is the
case, for instance, in our Infinispan prototype), these two spe-
cific protocols can simply coexist, and keep processing their
incoming events normally. Algorithm 2 shows the pseudo-
code of the fast switching for this case. As the two protocols
can seamlessly execute in parallel, in order to comply with
the specification of the fast switching interface, it is only
necessary to guarantee that when the switchComplete callback
is invoked, no transaction in the system is still executing
using 2PC. To this end, when the switching is started, a
LOCALDONE message is broadcast and the protocol moves to
a TRANSITION state, causing the activation of a new epoch. In
the TRANSITION state, locally generated transactions will be
already processed using PB. When the LOCALDONE message
is received from node s by some node n, it derives from the
FIFO property of channels that n will not receive additional
prepare messages from s. By collecting LOCALDONE message
from each and every node in the system, each node n can attest
the local termination of the previous epoch, at which point it
broadcasts a REMOTEDONE message (line 13). The absence
of transactions currently executing with 2PC across the entire
system can then be ensured by collecting the latter messages
from all nodes (see lines 14-15).

Fast switch from 2PC to TO: 2PC and TO protocols are
radically different, as they use different concurrency control
schemes (lock-based vs lock-free) and communication primi-
tives (plain vs totally ordered broadcast) that require different
data-structures/algorithms at the transactional data store level.
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1 2PC-TO.switchTo() {
2 block generation of new local transactions;
3 wait for local transactions in prepared state;
4 broadcast (LOCALDONE);
5 }
6 2PC-TO.eventFromPrevEpoch(event) {
7 if event is of type Prepare then
8 rollback(tx);
9 end

10 processEvent(event, tx);
11 }
12 2PC-TO.eventFromNewEpoch(event) {
13 if tx conflicts with some tx’ that uses 2PC then
14 wait for tx’ to commit or abort;
15 end
16 processEvent(event, tx);
17 }
18 upon received LOCALDONE from all nodes {
19 // guarantee reconfiguration completion globally
20 broadcast (REMOTEDONE);
21 wait received REMOTEDONE from all nodes;
22 switchComplete();
23 }

Algorithm 3: Fast switching from 2PC to TO.

So, it is impossible for a replica to start processing transactions
with TO if any locally generated 2PC transaction is still active.
To this end, the fast switch implementation from 2PC to TO,
in Algorithm 3, returns from the switchTo method (entering
the new, TO-regulated epoch) only after it has committed
(or aborted) all its local transactions from the current epoch.
During the TRANSITION state, a node replies negatively to any
incoming prepare message for a remote 2PC transaction, thus
avoiding incompatibility issues with the currently executing
TO protocol. Transactions from the new TO epoch, on the
other hand, can be validated (and accordingly committed
or aborted). However, if they conflict with any previously
prepared but not yet committed 2PC transaction, the commit
of the TO transaction must be postponed until the outcome
of previous 2PC transactions is known. Otherwise, it can be
processed immediately according to the conventional TO pro-
tocol. Also in this case a second global synchronization phase
is required to ensure the semantics of the switchComplete.

Coping with failures: MORPHR ensures fault tolerance as
long as its three main elements are fault tolerant, namely the
replication protocols, RPSO, and RRITS:
• Replication protocols must (and typically do) implement

their own recovery schemes; for instance, in 2PC, if a node
crashes, the protocol must be able to deal appropriately with
this scenario, in order to ensure that locks are eventually re-
leased. Since the current implementation of MORPHR relies on
a group membership service, nodes leverage on this building
block to detect and recover from failures.
• As for the RPSO, standard replication techniques, such as

primary-backup or quorum-based approaches, can be used to
ensure the oracle’s fault-tolerance.
• Concerning the RRITS, the algorithms that govern both

the ”stop-and-go” and the ”fast-switching” schemes were
presented assuming no faults for simplicity. They contain
various wait conditions that require gathering messages from
all replicas; in order to avoid blocking arbitrarily on these

wait conditions, a simple approach is to rely on the group
membership service and wait for messages from all the nodes
currently in the group.

4.2 Reconfigurable Transactional Store

MORPHR assumes that, when a new replication protocol is
activated, the boot() method performs all the setup required
for the correct execution of that protocol. In some cases, this
may involve performing some amount of reconfiguration of the
underlying data store, given that the replication protocol and
the concurrency control algorithms are often tightly coupled.
Naturally, this setup is highly dependent of the concrete data
store implementation in use.

When implementing MORPHR on Infinispan, our approach
to the protocol setup problem has been to extend the original
Infinispan architecture in a principled way with the aim to
minimize intrusiveness. To this end, we systematically encap-
sulated the modules of Infinispan that required reconfiguration
using software wrappers. The wrappers intercept calls to the
encapsulated module, and re-route them to the implementation
associated with the current replication protocol configuration.

The architectural diagram in Figure 2 illustrates how this
principle was applied to one of the key elements of Infinispan,
namely the interceptor chain that is responsible for i) capturing
commands issued by the user and by the replication proto-
cols, and ii) redirecting them towards the modules managing
specific subsystems of the data store (such as the locking
system, the data container, or the group communication sys-
tem). The interceptors whose behaviours had to be replaced
due to an adaptation of the replication protocol, shown in
gray in Figure 2, were replaced with generic reconfigurable
interceptors, for which each replication protocol can provide
its own specialized implementation. This allows to flexibly
customize the behaviour of the data container depending on
the replication protocol currently in use.

5 SELECTOR ORACLE

The Replication Protocol Selector Oracle component is a con-
venient form of encapsulating different performance forecast-
ing techniques. In fact, different approaches, including analyt-
ical models [13] and machine learning (ML) techniques [14],
[15], might be adopted to identify the replication protocol on
the basis of the current operating conditions. In MORPHR we
have opted for using ML-based forecasting techniques, as they
can cope with arbitrary replication protocols, maximizing the
generality and extensibility of the proposed approach, thanks
to their black-box nature.

The selection of the best replication protocol lends itself
naturally to be cast as a classification problem [14], in which
one is provided with a set of input variables (also called
features) describing the current state of the system and is
required to determine, as output, a value from a discrete
domain (i.e., the best performing protocol among a finite set
in our case). We integrated MORPHR with three distinct ML-
based classification techniques: the C5.0 [16] decision tree
algorithm, Neural Networks (NN) [17], and Support Vector
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Machines (SVM) [18]. C5.0 builds a decision-tree classifica-
tion model during an off-line training phase in which a greedy
heuristic is used to partition, at each level of the tree, the
training dataset according to the input feature that maximizes
information gain [16]. The output model is a decision-tree that
closely classifies the training cases according to a compact
(human-readable) rule-set, which can then be used to classify
(i.e., decide the best performing replication strategy for) future
scenarios. Regarding NN and SVM, we used the implementa-
tions available in Weka [19], a popular open-source framework
that provides a common interface to a large number of ML
algorithms. The NN algorithm implemented in the Weka
framework trains a multi-layered network using the classic
back-propagation algorithm [20] to classify instances. We used
the default configuration in Weka, which generates a number
of hidden layers equal to half the number of input features.
Concerning the Support Vector Machine technique, we also
rely on the default configuration of the Weka’s SMO package,
which implements John Platt’s sequential minimal optimiza-
tion algorithm for training a support vector classifier [21].
We shall discuss the methodology adopted in MORPHR to
build ML-based performance models shortly, and focus for the
moment on discussing how these models are used at runtime.

In our current reference architecture, the RPSO is a cen-
tralized logical component, which is physically deployed on
one of the replicas in the system. Although the system is
designed to transparently support the placement of the RPSO
on a dedicated machine, the overhead imposed to query the
ML model is so limited (on the order of the microseconds),
and the query frequency is so low (on the order of the minutes
or of the tens of seconds), that the RPSO can be collocated
on any node of the data platform without causing perceivable
performance interferences.

The RPSO periodically queries each node in the system,
gathering information on several metrics describing different
characteristics of the current workload in terms of both con-
tention on logical (data) and physical resources. This informa-
tion is transformed into a set of input features used to query the
machine learner about the most appropriate configuration. If
the current protocol configuration matches the predicted one,
no action is taken; otherwise a new configuration is triggered.

This approach results in an obvious tradeoff: the more often
the RPSO queries the ML, the faster it reacts to changes in
the workloads. However, it also increases the risk to trigger
unnecessary configuration changes upon the occurrence of
momentary spikes that do not reflect a real sustained change
in the workload. In our current prototype we use a simple
approach based on a moving average over a window time of 30
seconds, which has proven successful with all the workloads
we experimented with. As with any other autonomic system,
in MORPHR there is also a tradeoff between how fast one
reacts to changes and the stability of the resulting system3.
In the current prototype, we simple use a fixed “quarantine”
period after each reconfiguration, to ensure that the results of
the previous adaptation stabilise before new adaptations are

3. Stability refers to the unlikelihood that a transient workload oscillation
induces a spurious protocol switch.

evaluated. Of course, the system may be made more robust
by introducing techniques to filter out outliers [22], detect
statistically relevant shifts of system’s metrics [23], or predict
future workload trends [24]. These techniques are orthogonal
to the contributions of this paper, and fall outside of its scope.

Construction of the ML model. The accuracy achievable by
any ML technique is well known to be strictly dependent on
the selection of appropriate input features [14]. These should
be, on one hand, sufficiently rich to allow the ML algorithm
to infer rules capable of closely relating fluctuations of the
input variables with shifts of the target variable. On the other
hand, considering an excessively high number of features leads
to an exponential growth of the training phase duration and
to an increase of the risk of inferring erroneous/non-general
relationships (a phenomenon called over-fitting [14]).

After conducting an extensive set of preliminary experi-
ments, we decided to let MORPHR gather a base set of 14
metrics, namely: percentage of write transactions, number of
read and write operations per read-only and write transactions
and their local and total execution time, abort rate, throughput,
lock waiting time and hold time, duration of the commit phase,
average CPU and memory utilization.

As we will show in Section 6, this set of input features
proved sufficient to achieve high prediction accuracy, at least
for the set of replication protocols considered in this paper.
Nevertheless, to ensure the generality of the proposed ap-
proach, we allow protocol developers to enrich the set of input
features for the ML by specifying, using an XML descriptor,
whether the RPSO should track any additional metric that the
protocol exposes via a standard JMX interface.

A key challenge to address in order to build accurate ML-
based predictors of the performance of multiple replication
protocols is that several of the metrics measurable at run-time
can be strongly affected by the replication protocol currently
in use. Let us consider the example of the transaction abort
rate: in workloads characterized by high data contention, the
2PC abort rate is typically significantly higher than when
using the PB protocol for the same workload, due to the
presence of a higher number of concurrent (and distributed)
writers. In other words, the input features associated with the
same workload can be significantly different when observed
from different replication protocols. Hence, unless additional
information is provided that allows the ML to contextualize the
information encoded in the input features, one risks feeding
the ML with contradictory inputs that can end up confusing
the ML inference algorithm and ultimately hinder its accuracy.

In order to address this issue, we consider three alterna-
tive strategies for building ML models: i) a simple baseline
scheme, which does not provide any information to the ML
concerning the currently used replication protocol; ii) an
approach in which we extend the set of input features with the
protocol used while gathering the features; iii) a solution based
on the idea of using (training and querying) a distinct model
for each different replication protocol. The second approach
is based on the intuition that, by providing information con-
cerning the “context” (i.e., the replication protocol) in which
the input features are gathered, the ML algorithm may use
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this information to disambiguate otherwise misleading cases.
The third approach aims at preventing the problem a priori,
by avoiding the usage of information gathered using different
protocols in the same model. An evaluation of these alternative
strategies can be found in Section 6.1.

Finally, the last step of the model building phase consists
in the execution of an automated feature selection algorithm,
which is aimed at minimizing the risk of overfitting and maxi-
mizing the generality of the model by discarding features that
are either too closely correlated among each other (and hence
redundant), or too loosely correlated with the output variable
(and hence useless). We rely on the Forward Selection [25]
technique, a greedy heuristic that progressively extends the set
of selected features till the accuracy it achieves when using
ten-fold cross-validation on the training set is maximized.

6 EVALUATION

This section presents the results of an experimental study
aimed at assessing three main aspects: the accuracy of the ML-
based selection of the best-fitting replication protocol (Section
6.1); the efficiency of the alternative protocol switching strate-
gies discussed in Section 4 (Section 6.2); the overheads intro-
duced by the online monitoring and re-configuration supports
employed by MORPHR to achieve self-tuning (Section 6.3).

6.1 Accuracy of the RPSO
In order to assess the accuracy of the RPSO with the three
different ML approaches, we generated approximately 75
workloads for both TPC-C and Radargun (results for Geograph
are omitted for space constraints and because they show
similar trends), varying uniformly the parameters that control
the composition of transaction mixes and their duration. In
particular, for each of the 3 TPC-C workloads described in
Section 2, we explored 25 different configurations, varying
the percentages of Order Status, Payment and New Order
Transactions. Analogously, starting from each of the three
Radargun workloads reported in Table 1, we explored 27 dif-
ferent variations of the parameters that control the percentage
of write transactions, and the number of read/write operations
both in read-only and update transactions. This workload
generation strategy allowed us to obtain a balanced data set
containing approximately the same number of workloads for
which each of the three considered protocols results to be the
optimal choice.

We ran each of the above workloads with the three con-
sidered protocols, yielding a data set of approximately 1350
cases that serves as the basis for this study. Figure 4 provides
an interesting perspective on our data set, reporting the nor-
malized performance (i.e., committed transactions per second)
of the 2nd and 3rd best choice with respect to the optimal
protocol (i.e., the protocol that had the best performance) for
each of the considered workloads. The plot highlights that,
when considering the Radargun workloads, the selection of
the correct protocol configuration has a striking effect on
system’s throughput: in 50% of the workloads, the selection
of the 2nd best performing protocol is at least twice slower
than the optimal protocol; further, the performance decreases
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ML Model Type Radargun TPCC

C5.0
w/o Prot. 9.90% 17.40%

With Prot. 3.30% 13.30%
Three Models 3.30% 10.00%

SVM
w/o Prot. 14.4% 15.06%

With Prot. 14.4% 15.52%
Three Models 12.66% 12.32%

NN
w/o Prot. 5.43% 11.87%

With Prot. 3.7% 12.32%
Three Models 2.88% 9.13%

TABLE 2
Percentage of misclassification.

by a factor up to 10x in 50% of the workloads in case the
worst performing protocol were to be erroneously selected by
the RPSO. On the other hand, the TPC-C workload shows
less dramatic, albeit still significant, differences in the relative
performances of the protocols. Being the performance of
the three protocols relatively closer with TPC-C than with
Radargun, the classification problem at hand is indeed harder
in the TPC-C scenario, at least provided that one evaluates
the accuracy of the ML-based classifier exclusively in terms
of misclassification rate. On the other hand, in practical
settings, the actual relevance of a misclassification is clearly
dependent on the actual throughput loss due to the sub-optimal
protocol selection. In this sense, the Radargun’s workloads
are significantly more challenging than TPC-C’s ones. Hence,
whenever possible, we will evaluate the quality of our ML-
based classifiers using both metrics, i.e. misclassification rate
and throughput loss vs optimal protocol.

The first goal of our evaluation is to assess the accuracy
achievable by using the three alternative model building strate-
gies described in Section 5, namely i) a baseline that adopts
a single model built using no information on the protocol in
execution when collecting the input features, ii) an approach
in which we include the protocol currently in use among the
input features, and iii) a solution using a distinct model per
each protocol.

Table 2 shows the percentage of misclassification for each
of the above approaches and for each of the three considered
ML algorithms. These results were obtained by averaging the
results of ten models (for each ML algorithm), each built using
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ML Train Radargun TPCC
Miscl. Thr. Loss Miscl. Thr. Loss

C5.0
90% 12% 1% 18% 1%
70% 15% 2% 22% 4%
40% 14 % 4% 25% 9%

SVM
90% 8% 0.3% 18% 1%
70% 17% 7% 14% 2%
40% 13% 2% 17% 1%

NN
90% 0% 0% 27% 5%
70% 5% 1% 9% 2%
40% 8% 0.5% 12% 2%

2nd prot. 100% 14% 100% 23%
3rd prot. 100% 51% 100% 75%

Random Choice 33% 45% 33% 35%

TABLE 3
Accuracy of the considered ML algorithms.

ten-fold cross validation. The results show that the misclassifi-
cation rate can be significantly lowered by incorporating in the
model information on the protocol in use when characterizing
the current workload and system’s state. In particular, using
distinct models for each protocol, as expected, we minimize
the chances that the ML is misled by the simultaneous
presence of training cases exhibiting similar values for the
same feature but associated with different optimal protocols
(due to being measured when running different protocols), or,
vice versa, of training cases associated with the same optimal
protocol but exhibiting different values for the same feature
(again, because they were observed using different protocols).
At the light of this result, in MORPHR, as well as in the
remainder of this section, we opted for using a distinct model
for each protocol.

The data in Table 3 allows us also to compare the three
considered ML methodologies from the two-fold perspective
of absolute and relative accuracy in the selection of the
replication protocol, by reporting the misclassification rate
(i.e., the percentage of wrongly classified workloads) and the
relative loss in throughput with respect to the optimal protocol.
The table presents information concerning models based on
training sets of different sizes, as well as for the 2nd and 3rd
best performing protocol for each scenario, and for a trivial
uniformly random selection strategy.

The data highlights that NN achieves globally the highest
accuracy, both in absolute and relative terms, with C5.0 and
SVM closely following. Interestingly, when looking at the
average throughput loss due to the choice performed by the
predictive models, one can notice that all the considered
models achieve efficiency levels very close to the optimal
one. The fact that the misclassification rate is typically sig-
nificantly larger than the average throughput loss w.r.t. the
optimum means that, in the cases in which the predictive
models misclassify a workload, the selected protocol delivers
a performance relatively close to the optimal choice. These
are scenarios in which, on one hand, it is naturally harder to
predict which protocol delivers the best performance, given
that the two best protocols achieve very similar performance.
On the other hand, precisely because of this, in these scenarios
the relative gain achievable by using a “perfect” model (one
that is always correct) w.r.t. either of the considered ML
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algorithms is typically very modest and always less than
10%. Finally, the last three rows of the table confirm that
the selection of the correct replication protocol can have a
strong impact on system’s performance, at least for the set of
workloads considered in this study. This perspective allows for
better appreciating the actual effectiveness of the considered
ML-based predictors. Overall, the fact that all the considered
ML algorithms achieve a quite good, and relatively close,
accuracy suggests that, at least considering the dataset used
in this study, the problem of identifying the best performing
protocol for a given workload lends itself nicely to solutions
based on statistical, black-box approaches.

In order to assess the time each ML technique requires to
build a model, we used the entire data set for the Radar-
gun benchmark and ran the previously mentioned Forward
Selection technique to obtain the most accurate model. C5.0
was the fastest algorithm, taking 22 seconds, while SVM and
NN were 14x and 17x slower, respectively, to build the best
model. When considering these figures, however, one should
take into account that C5.0 is a commercial quality product
implemented in C, whereas the NN and SVM implementations
used in this study are coded in Java and are part of a research-
oriented framework (Weka) designed to ensure extensibility
and flexibility rather than maximizing performance.

In Figure 5 we show data highlighting the relevance of
choosing the most appropriate combination of features when
building ML based models. To this end the plot reports
the misclassification rate achieved when using models (w/o
protocol information, using C5.0 and the TPC-C benchmark)
based on the several combinations of features tested during
the feature selection process. The plot clearly shows the
impact of the correct selection of the set of features during
the model construction phase, which is in practice the most
time consuming one as it typically requires generating and
comparing tens of different models.

Figure 6 evaluates the accuracy of the RPSO from a
different perspective, reporting the cumulative distribution of
the throughput achievable by the RPSO’s predictions for each
workload, normalized to the throughput of the optimal protocol
for that workload. In order to assess the extrapolation power
of the classifiers built using the proposed methodology we
progressively reduce the training set from 90% to 40% of the
entire data set, and use the remaining cases as test sets.

Both benchmarks show the same trend for all ML ap-
proaches. As the training set becomes larger, the percentage
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Fig. 6. Cumulative distribution of the normalized throughput vs the optimal protocol.

of cases with sub-optimal throughput decreases. Furthermore,
in these cases, the loss of throughput in absolute value, when
compared to the optimal choice, also decreases. In fact, even
for models built using the smallest training set, and consid-
ering the most challenging benchmark (namely TPC-C), the
performance penalty with respect to the optimal configuration
is lower than 10% in around 85% of the workloads. On the
other hand, for models built using the largest training set, the
throughput penalty is lower than 10% in about 90% of the
cases. Again, the plots confirm that the accuracy achieved by
the three ML approaches is, globally, quite similar.

Overall, the data highlights the remarkable accuracy achiev-
able by the proposed ML-based forecasting methodology,
providing an experimental evidence of its practical viability
even with complex benchmarks such as TPC-C.

6.2 Fast switch vs Default Switch
We now analyse the performance of specialized fast switching
algorithms, contrasting it with that achievable by the generic,
but less efficient, stop and go switching approach. For this
purpose we built a simple synthetic benchmark designed to
generate transactions with tunable duration, varying from 15
milliseconds to 20 seconds. Furthermore, we have experi-
mented with different fast switching algorithms and both with
the eager and the lazy versions of the stop and go algorithm
(recall that with the eager version ongoing transactions are
simply aborted, whereas with the lazy version we wait for
pending transactions to terminate before switching).

We start by considering the fast switching specialized that
commutes from 2PC to PB (Alg. 2). Figure 7(a) shows the
average blocking time, i.e., the period during which new
transactions are not accepted in the system due to the switch
(the shorter this period the better); the y axis is presented in
logscale. Figure 7(b) shows the abort rate during the switching
process. The figures show values for the fast-switching algo-
rithm, and for both the lazy and eager version of stop-and-go.

The fast switching algorithm has no blocking phase and
for the scenarios where the duration of transactions is larger,
this can be a huge advantage when compared with the lazy
stop and go approach, which in the eager version has the
lowest blocking time of 10ms. As expected, the fast switching
algorithm is independent of the transaction duration, as it
is not required to abort or to wait for the termination of
transactions started with 2PC before accepting transactions

with PB. On the other hand, the lazy stop and go approach,
while avoiding aborting transactions, can introduce a long
blocking time (which, naturally, gets worse for scenarios
where transactions have a longer duration that can go up to
10000ms). In conclusion, the eager stop and go trades a lower
stopping time for a high abort rate, which can result in the
abort of 80% of the transactions during switch time.

Let us now consider the fast switching algorithm for com-
muting from 2PC to TO (Alg. 3), whose performance is
evaluated in the Figure 8. In this fast switch algorithm nodes
must first wait for all local pending transactions initiated with
2PC to terminate before accepting transactions to be processed
by TO. Therefore, this algorithm also introduces some amount
of blocking time that, although smaller than in the case of
the stop and go switching algorithm, is no longer negligible.
Nevertheless, the advantages of fast switching are still very
significant when transactions are very long since its blocking
time does not depend of the transactions’ duration (10000 ms
vs. 0.1ms). The eager version of stop and go still provides a
constant low blocking time (10ms), but at the cost of aborting
on average 80% of the transactions during switch time.

These results show that, whenever available, the use of
specialized fast switching algorithms is preferable. On the
other hand, the stop and go algorithm can be implemented
without any knowledge about the semantics of the replication
protocols. Also, the eager version can provide reasonably small
blocking times (in the order of 10ms) at the cost of aborting
some transactions during the reconfiguration.

6.3 Performance of MORPHR
Figures 9(a) and 9(b) compare the throughput of MORPHR
with that of a statically configured, non-adaptive version of In- 0.01
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finispan. In addition to the real-time performance of MORPHR,
we also report the average performance achieved by the three
baseline protocols for all the presented workloads. The models
were trained with the previously presented Radargun and TPC-
C datasets, from which we removed the workloads RW1-3 and
TW1-3 reported in Table 1. In this experiment, we injected
load in the system for a duration of 6 minutes and configured
the RPSO to query the system state every 30 seconds to predict
the protocol to be used. The plots show that, whenever the
workload changes, the RPSO detects it and promptly switches
to the most appropriate protocol. As expected, the performance
of MORPHR keeps up with that of the best static configuration,
independently of the benchmark. We can also observe that the
overheads introduced by the supports for adaptivity are very
reduced given that, when MORPHR stabilizes, its throughput
is very close to one achieved when using a static configuration.

Figure 9(c) evaluates the effectiveness of the MORPHR with
Geograph. The models were trained using various Geograph
workloads containing a varying percentage of agent types. The
RSPO was configured to query the system every two minutes.
We injected a variable workload in which the three workloads
reported in Table 1, GW1-3, take place sequentially, each
one lasting 30 minutes. We configure Infinispan to operate
initially with the PB protocol, which is suboptimal given
that, as shown in Figure 1, the optimal protocol for GW1
is 2PC. The plot highlights that the change in the workload
at minute 30 leads to a drastic degradation of performance
when using 2PC due to the very high data contention level
of GW2. MORPHR switches to PB, the optimal protocol for
this workload, two minutes later. At minute 60 the workload
GW3 is triggered, and we can observe an increase in the
throughput due to the decrease in the workload mix of the
percentage of transactions injected by Blogger agents, which
are longer to process, more prone to conflict, and which
generate larger commit messages than the other transaction
classes. However, the optimal replication protocol for this
workload is TO, which, despite generating higher contention
and network load than PB, lets all nodes process update
transactions. This opportunity is correctly identified by the
RPSO, which triggers the switch towards TO at around minute
62, ensuring, again, the optimality of the configuration.

7 RELATED WORK

We classify related work into the following categories: i) work
on protocol reconfiguration in general; ii) work on automated

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

15 msec 150 msec 2 sec 5 sec 20 secAv
er

ag
e 

Bl
oc

k 
D

ur
at

io
n 

(m
illi

se
co

nd
s)

Transaction duration

Fast Switch
Stop and Go (lazy)

Stop and Go (eager)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

15 msec 150 msec 2 sec 5 sec 20 secAv
er

ag
e 

Bl
oc

k 
D

ur
at

io
n 

(m
illi

se
co

nd
s)

Transaction duration

Fast Switch
Stop and Go (lazy)

Stop and Go (eager)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

15 msec 150 msec 2 sec 5 sec 20 secAv
er

ag
e 

Bl
oc

k 
D

ur
at

io
n 

(m
illi

se
co

nd
s)

Transaction duration

Fast Switch
Stop and Go (lazy)

Stop and Go (eager)
(a) Blocking time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

15 msec 150 msec 2 sec 5 sec 20 sec

Nu
m

be
r O

f A
bo

rte
d 

Tr
an

sa
ct

io
ns

Transaction duration

Fast Switch Stop and Go (eager)
(b) Aborts.

Fig. 8. Switch between 2PC and TO.

resource provisioning; iii) work on self-tuning in databases
systems, both distributed and centralized; iv) work on adaptive
STMs; and v) decision making in adaptive systems. We will
address each of these categories in turn.

An extensive set of works has been produced on dynamic
protocol reconfiguration [26], [27], [28]. A large part of this
work has focused on the reconfiguration of communication
protocols. For instance, the work in [28] proposes an Atomic
Broadcast (AB) generic meta-protocol that allows to stop an
executing instance of an AB protocol, and to activate a new
one. Our work encompasses a larger stack of software layers,
and takes into account the inter-dependencies between the
replica control and concurrency control schemes. Also, in
MORPHR we address also the issue of how to automatically
determine when to trigger adaptation, and not only how.

The area of automated resource provisioning is related to
this work as it aims at reacting to changes in the workload
and access patterns to autonomically adapt the system’s re-
sources. Examples include works in both transactional [13],
[29] and non-transactional domains, such as Map-Reduce [30],
[31] and VM sizing [32]. Analogously to MORPHR, several
of these systems also use machine-learning techniques to
drive the adaptation. However, the problem of reconfiguring
the replication protocol raises additional challenges, e.g. by
demanding dedicated schemes to enforce consistency during
the transitioning between two replication strategies.

To the best of our knowledge, the work in [33] pioneers
the issues associated with adaptation in transactional systems
(specifically, DBMSs). In particular, this paper identifies a set
of sufficient conditions for supporting non-blocking switches
between concurrency control protocols. However, in order to
satisfy them it is necessary to enforce very stringent assump-
tions (such as knowing a-priori whether the transactions will
exhibit any data dependency). Our solution, on the other hand,
relies on a framework that supports switching between generic
replication protocols without requiring any assumption on the
workload generated by applications. Several other approaches
have also been proposed based on the idea to automatically
analyse the incoming workload, e.g. [34], to automatically
identify the optimal database physical design or self-tune some
of the inner management schemes, e.g. [35]. However, none of
these approaches investigated the issues related to adapt the
replication scheme. Even though the work in [36] presents a
meta-protocol for switching between replication schemes, it
does not provide a mechanism to autonomically determine the
most appropriate scheme for the current conditions.

A number of works have been aimed at automatically tuning
the performance of Software Transactional Memory (STM)
systems, even if most of these works do not consider replicated
systems. In [37], the authors present a framework for auto-
matically tuning the performance of the system by switching
between different STM algorithms. This work was based in
RSTM [38], which allows changing both STM algorithms and
configuration parameters within the same algorithm. The main
difference between RSTM and our work is that the latter
system must stop processing transactions whenever changing
the (local) concurrency control algorithm, whereas MORPHR
provides mechanisms allowing the coexistence of protocols
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Fig. 9. MORPHR performance vs static configurations.

while the switch is in process. The works in [39] and [40] also
allow changing configuration parameters, but our framework
targets the problem of changing the protocol as a whole.
Other works addressing adaptability in transaction processing
include [41], [42] but they tackle different issues non-related
to the reconfiguration of replication protocols.

Hybrid Transactional Replication [43] proposes an hybrid
scheme allowing concurrent transactions to execute using the
state machine replication or a deferred update approach. Con-
trarily to MORPHR’s generic approach, this hybrid replication
scheme supports switching exclusively between these two
specific approaches. Also, this work does not address the
problem of how to determine which replication protocol to
use when faced with a given workload.

Our previous work, PolyCert [44], uses ML techniques [45]
to determine which is the most appropriate replication pro-
tocol according to each transaction’s characteristics for in-
memory transactional data grids. However, in Polycert it is
only possible to use protocols from the same family, namely
certification based replication protocols, which only differ in
the way transactions are validated. In this work, we address the
more complex and generic problem of adaptive reconfiguration
among arbitrary replication schemes.

MORPHR is also related to the body of research on the spec-
ification of adaptation policies [46]. These approaches provide
an infrastructure that allows experts (such as programmers
or system administrators) to control the adaptation policies
of a complex system by means of different types of rules’
systems. Our approach, however, relies on ML techniques
to automate the determination of the adaptation policy (an
idea already explored in different contexts [13], [32], [47]).
Also, it adopts a generic software architecture that promotes
extensibility/development of specialized protocols, and support
arbitrary adaptations in efficient ways.

Finally, recent middleware for building distributed appli-
cations, such as Sinfonia [48] and Chubby [49], also uses
consensus as a building block. In the literature, a number
of alternative consensus implementations have been proposed,
optimized for different workloads, platform’s scale etc. There-
fore the ideas and techniques presented in this paper could also
be applied to these systems.

8 CONCLUSIONS
This paper has presented MORPHR, a framework aimed to
automatically adapt the replication protocol of in-memory

transactional platforms according to the current operational
conditions. MORPHR uses a modular approach supporting
both general-purpose switching strategies, as well as opti-
mized fast switch algorithms that can support non-blocking
reconfiguration. We modelled the problem of identifying the
optimal replication protocol given the current workload as a
classification problem, and exploited several ML techniques to
drive adaptation. MORPHR has been implemented in a well-
known open source transactional data grid and extensively
evaluated, demonstrating its high accuracy in the identification
of the optimal replication strategy and the minimal overheads
introduced to support adaptability.
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