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Abstract—Performance modeling is a crucial technique to
enable the vision of elastic computing in cloud environments.
Conventional approaches to performance modeling rely on two
antithetic methodologies: white box modeling, which exploits
knowledge on system’s internals and capture its dynamics using
analytical approaches, and black box techniques, which infer
relations among the input and output variables of a system based
on the evidences gathered during an initial training phase.

In this paper we investigate a technique, which we name
Bootstrapping, which aims at reconciling these two methodologies
and at compensating the cons of the one with the pros of the
other. We analyze the design space of this gray box modeling
technique, and identify a number of algorithmic and parametric
trade-offs which we evaluate via two realistic case studies, a Key-
Value Store and a Total Order Broadcast service.

I. INTRODUCTION

The vision of elastic computing is probably the main driver
at the basis of the disruptive success of the Cloud paradigm.
By acquiring resources based on actual applications’ demands,
both upfront capital investments and operational costs can be
significantly reduced. On the other hand, materializing the
potential gains of elastic computing demands the development
of performance prediction methodologies capable of accurately
estimating both the actual resource demands of cloud applica-
tions, as well as the impact on their performance (or other
relevant metrics such as availability, reliability, etc) of a num-
ber of factors, including workload characteristics and intensity,
configuration parameters, and deployment alternatives (e.g.,
public vs private cloud, number and capacity of virtualized
servers over which the system is deployed).

Classical approaches to performance modeling rely on two
techniques, typically regarded as antithetic: Machine Learning
(ML) [1] and Analytical Modeling (AM) [2]1.

ML-based techniques embody the black box approach,
which infers performance models based on the relations among
the input and output variables of a system that are observed
during an initial training phase. ML-based performance models
can typically achieve a very good accuracy when working in
interpolation, i.e., in areas of the feature space that have been
sufficiently explored. On the downside, the accuracy of such
techniques is typically hindered when used in extrapolation,
i.e., to predict values in regions of the parameter space not
observed during the training phase [1]. Another major issue
of ML techniques is that the number of configurations to be
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1For the sake of brevity, the acronyms ML and AM will also be used,
respectively, with the meaning “machine learner” and “analytical model”.

explored can grow, in the worst case, exponentially with the
number of variables (often referred to as features, in the ML
literature) characterizing the application — the so-called curse
of dimensionality [1]. This affects the time needed to gather
a sufficiently representative training set, which can quickly
become large enough to make the usage of such techniques
cumbersome or even prohibitive in complex systems.

Even employing dimensionality reduction techniques, such
as Principal Component Analysis [3], and optimized tech-
niques for the exploration of the parameter space, e.g., adaptive
sampling [4], the training phase of a black box learner to
predict the performance of complex applications can take
days [4]. This represents a major threat to the adoption of
pure ML-based approach for performance prediction in Cloud
environments: a change in a component of the deployment
infrastructure, e.g., virtual CPU processing power, or the shift
to another Cloud provider could severely hamper the accuracy
of a black box model trained over a data-set, and force a new,
potentially long training phase over the new infrastructure [5].

AMs, conversely, are based on the white box approach,
according to which the model designer exploits knowledge
about the dynamics of the target system in order to mathe-
matically express its input/output relations. AMs require no or
minimal training phase; on the other hand, in order to allow
for mathematical tractability, they rely on approximations and
simplifying assumptions. Hence, the accuracy of AMs can be
challenged in scenarios in which such approximations and
assumptions are not valid [2]. In addition, the virtualization
layer of Cloud infrastructures hides low-level details of the
physical platform that hosts an application; this makes it
cumbersome to derive detailed AMs of Cloud applications [6].

Being based on antithetic approaches, AM and ML are
typically regarded as alternative techniques to model the per-
formance of computer applications. In this paper we investigate
a technique, which we name Bootstrapping, that aims at
reconciling these two paradigms and achieve the best of the
two worlds, namely the extrapolation capabilities and low
training time of AM, combined with the high accuracy of ML
when working in interpolation.

The key idea at the basis of the Bootstrapping technique
consists in relying on an AM to generate a synthetic training
set over which a complementary machine learner is initially
trained. The synthetic training set is then updated over time
to incorporate new samples collected from the operational
system. By exploiting the knowledge of the white box AM,
the resulting model inherits its initial prediction capabilities,
avoiding, unlike traditional ML-based approaches, the need
for long, and potentially expensive, training phases. At the
same time, by updating the synthetic knowledge base with



samples coming from the actual system, the Bootstrapping
technique allows for progressively correcting initial errors due
to inaccuracies/approximations of the AM. The white box
model also allows for enhancing the robustness of the resulting
gray box predictor, by improving its accuracy in regions of the
feature space not observed enough during the training phase.

Note that the Bootstrapping technique relies on both the
white and the black box approaches, yet does not entail
doubling the effort of modeling the target application’s perfor-
mance. Conversely, it reduces the cost of building either of the
two models. On the one hand, one can use simpler/less accurate
AMs, as they are progressively enhanced by the corrections
applied via off-the-shelf ML. On the other hand, the availability
of a base AM reduces the costs of gathering training set data
in large multi-dimensional feature spaces.

Contributions. This paper makes the following contributions:
1) We introduce the Bootstrapping technique, and we provide
a detailed algorithmic formalization thereof.
2) We identify two key factors in the design of the Boot-
strapping technique: i) which samples of the output of the
AM should compose the initial synthetic training set, and ii)
which technique should be used to update the (initially fully)
synthetic knowledge base with new evidences gathered from
the operational system. We thoroughly investigates these issues
and propose a set of alternative approaches to tackling them.
3) We provide an extensive experimental study aimed to assess
the effectiveness of the proposed technique based on two
realistic case studies: a popular distributed Key-Value Store
(Infinispan by Red Hat [7]) and a Total Order Broadcast
(TOB) service [8]. The former is representative of typical cloud
data stores, whose performance exhibits complex non-linear
trends and is affected by a large number of parameters. The
latter represents an incarnation of the consensus problem [8]
and is used as a fundamental building block in a number of
fault-tolerant platforms. Our experimental results highlight
the potentiality of the proposed Bootstrapping technique, and
allow us to derive insights regarding its sensitivity to several
non-trivial factors, such as the accuracy and density of the
initial synthetic training set, and the choice of the technique
used to incorporate new knowledge into it.

II. RELATED WORK

This paper is related to performance modeling techniques
that leverage AM and ML in synergy. The 2 solutions that are
closest to ours rely either on on-line [10] or off-line ML [11].

In the on-line domain, Romano and Leonetti propose the
use of UCB, a popular Reinforcement Learning algorithm, to
determine the optimal batching level for a TOB implementa-
tion [10]. In this solution, a UCB instance is responsible to
learn the optimal batching level for a given workload; an AM
is used to initialize the state of the UCB learners.

The Bootstrapping technique significantly differs from
these solutions because the issue of how to update the training
set is not a problem for on-line learning algorithms. In fact,
such approaches do not maintain a training set, as they already
specify how the state/knowledge of the learner (e.g., a UCB
instance) is updated whenever a new sample is received. Con-
versely, updating the training set to include factual knowledge
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Fig. 1. Main phases of the Bootstrapping technique.

coming from the real system is a key function in off-line
bootstrapped predictors. In this work, we propose and evaluate
several algorithmic variants to implement it.

In the off-line category, IRONMODEL [11] is, to the
best of our knowledge, the first attempt to combine AM and
regression techniques. IRONMODEL relies on human super-
vision to detect the deviation of an application/component’s
performance from the expected one (according to the model)
and to trigger a corrective phase. This phase consists in the
execution of a set of tests aimed to replicate the conditions
(i.e., workload) that led to the deviation between observed and
predicted performance and that aim to provide enough data to
induce the black box learner to correct such discrepancy.

The proposed technique, instead, relies on a totally auto-
mated work-flow, which corrects the inaccuracies of the base
AM with no human intervention. In addition, the work in [11]
does not address two crucial issues, which, as shown in our
evaluation, strongly impact the accuracy of a bootstrapped
model, namely how to initialize and update the knowledge
base of the ML model. Conversely, not only we describe
different implementations for these operations, but we also
thoroughly discuss and analyze their impact on the accuracy
of the resulting gray box model.

This work has also relations with other gray box modeling
techniques, which we classify in Parameter Fitting, Divide et
impera and Ensemble approaches. In Parameter fitting, black
box techniques (e.g., regression [12] and Kalman filters [13])
are used to estimate parameters of a white box model, which
is ultimately used to forecast performance. Bootstrapping is
orthogonal to these ones: as we shall detail in Section IV, the
AM employed for the TOB use case incarnates this approach.

The Divide et impera technique builds specialized models
for different components of the target system, that rely either
on AM or on ML [9], [14], [15]. The Bootstrapping approach
is orthogonal with respect to this methodology. Indeed, as
detailed in Section IV, the base predictor employed in the KVS
case study is based on the divide et impera approach.

In the Ensemble approach, the output of multiple white
and black box performance models is combined with the aim
of minimizing predictive error: either a black box classifier is
used to identify which is the best predictor to use depending
on the incoming query [16], [17], or black box models are
employed to learn how to correct the inaccuracies of a base
white box one [17], [18]. The Bootstrapping technique is
orthogonal also to these last solutions: thanks to their hybrid
nature, bootstrapped models can be seamlessly employed as
part of the aforementioned ensemble techniques.



Algorithm 1 Bootstrapping main loop
1: function MAIN()
2: ML ml . The machine learner
3: AM am . The analytical model
4: DataSet ST = initKB() . Generate the synthetic training set
5: ml.train(ST ) . Train the ML over the synthetic training set
6: while true do
7: DataSet D = collectSamples() . Collect samples at runtime
8: updateKB(ST,D) . Incorporate the new samples in the knowledge base
9: ml.train(ST ) . Re-train the ML over the updated training set

10: end while
11: end function

12: function QUERY(Configuration x)
13: return ml.query(x)
14: end function

III. THE BOOTSTRAPPING TECHNIQUE

In this section we describe the Bootstrapping technique
in a top-down fashion: first, a specification of the technique
is presented, in which several relevant building blocks are
encapsulated into abstract primitives. Next, in Sections III-A
and III-B, we shall discuss in detail the key parametric and
algorithmic trade-offs associated with each of these primitives.

As reported in the pseudo-code of Algorithm 1, the Boot-
strapping technique consists of two main phases: the initial-
ization of the black box model based on the predictions of the
analytical one (Lines 4-5), and its update, which is performed
every time that new samples from the running application
become available (Lines 6-10).

The initialization phase, depicted in Figure 1(a) and de-
tailed in Section III-A, is composed, in its turn, of two steps:
i) generation of the synthetic training set (Line 4): a subset T
of the AM’s parameter space (PS) is generated and is used to
bootstrap the knowledge base of a machine-learner. As already
mentioned, the number of samples in PS that are necessary
to characterize an arbitrary function defined over such space
grow, in the worst case, exponentially with the dimensionality
of PS. A first challenge addressed in this step is, thus, to
determine which samples to include in the initial synthetic
training set such that PS is sufficiently covered.

Once T has been obtained, the AM is queried to compute a
prediction of the performance of the application for each of its
elements. The output of this phase is a new set ST , whose ele-
ments are tuples of the form < x,am.query(x)>, where x ∈ T
and am.query(x) is the corresponding prediction computed by
the AM. This step will be detailed in Section III-A;
iii) black box model construction (Line 5): the ML is trained
on ST and produces a statistical model of the application’s
performance; note that the ML can be based on alternative
algorithms, e.g., Decision Trees (DT), Artificial Neural Net-
works (ANN) and Support Vector Machines (SVM) [1].

The update phase, shown in Figure 1(b), consists of 3 steps:
i) collection of real samples (Line 7): a new dataset D of
< x, per f (x) > tuples is collected, where x is a configura-
tion/workload of the target application, and per f (x) is the real
performance, i.e., measured on the live system, corresponding
to x. Such factual knowledge can either be spontaneously orig-
inated by the on-line production system (e.g., corresponding to
workloads that are generated by end users), or can be collected
during a dedicated off-line training phase, thus steering the

Algorithm 2 Initialization phase
1: function INITKB(ML ml, AM am, int initSize, double ε)
2: double error . Fitting error of ml over am’s function
3: int currSize = initSize . Current size of the synth. training set
4: do
5: Set T = SampleCon f igSpace(currSize) . Training configurations
6: DataSet ST = /0 . AM-based training set
7: for all x ∈ T do
8: ST = ST ∪{x,am.query(x)} . Query the analytical model
9: end for

10: error = estimateFittingError(ST,ML) . Evaluate ml fitting over am
11: currSize = nextSize() . Select a new value for the size of T
12: while (!isAccurate(error,ε)) . Ensure ml has learnt am’s function
13: return ST
14: end function

workloads and configurations to experiment with;
ii) update of the training set (Line 8): the ST set is updated
in order to incorporate knowledge represented by the samples
in D. There are several ways to perform this operation, which
will be discussed in Section III-B;
iii) black box model update (Line 9): the ML is trained on the
updated ST and outputs a new application performance model.

A. Synthetic Knowledge Base Initialization

The first step of the Bootstrapping technique is embodied
by the INITKB function, whose pseudo-code is reported in
Algorithm 2. This function iteratively performs two main
operations. The first one consists in selecting a subset T
of samples from the whole space of possible configurations
for the application. The second one consists in generating a
training set ST by exploiting the predictions output by the
AM for each of the elements in T . The goal of the function
is to output a synthetic training set ST that is representative
of the target performance function to be modeled, i.e., such
that the black box learner trained over it is able to accurately
represent the performance function embedded in the base AM.

The initKB function takes as input an AM of the target
application (noted am), a ML algorithm (ml), an initial value
for the size of the synthetic training set (init) and a threshold
value (ε). Then, proceeding iteratively, it aims to find a value
x such that training ml over a synthetic training set of size x
produces a black box model which well approximates am.

To this end, the initKB function relies on 4 primitives. We
introduce their high-level functionalities the following, and de-
scribe how we implemented them to conduct our experimental
evaluation in Section IV-C.
•SAMPLECONFIGSPACE: it determines which samples of the
feature space to include in the synthetic training set, given its
size. This function can embody arbitrary sampling strategies,
based, e.g., on random sampling or Active Learning [19].
•ESTIMATEFITTINGERROR: it estimates how much the perfor-
mance model encoded by ml is similar to the one embedded
by am. Also this primitive lends itself to several possible
instantiations, e.g., leave-one-out or cross-validation [20].
•ISACCURATE: it returns true if ml approximates am suffi-
ciently well; false otherwise.
•NEXTSIZE: it determines the size of the set to sample from
the whole parameter space at the next iteration. The initKB
function basically aims at minimizing the difference between



Algorithm 3 Update phase
1: function UPDATEKB(DataSet D)
2: setWeight(D,w) . Set the weight to the new samples
3: function update = any function in {MERGE,RNN,RNR,RNR2}
4: update(D); . Include real samples of D into the synthetic training set
5: ml.train(ST ) . Retrain the ML with the new dataset

6: end function

am’s and ml’s predictions as a function of ST ’s size. Therefore,
this primitive can implement different search techniques, e.g.,
iterative or binary search, to identify a cardinality of ST such
that, under the provided sampling algorithm, ml ' am.

These primitives are employed in the initKB function as fol-
lows: i) sample the parameter space via the sampleConfigSpace
primitive, to obtain a set T of cardinality currSize (Line 5); ii)
for each element in T , query am to obtain the corresponding
performance prediction, and generate the synthetic set ST
(Lines 6-9); iii) train ml over ST and evaluate its accuracy in
predicting the performance function encoded by am, by means
of the isAccurate primitive (Line 10); iv) if the fitting error
(or its improvement over past iterations) is less than a given
threshold ε , then return ST ; else determine the next value for
currSize and go to step i) (Lines 11-13)2.

Note that, given a sampling algorithm, the cardinality of
ST plays a role of paramount importance in determining the
effectiveness of the Bootstrapping methodology. It represents,
in fact, a key trade-off between the accuracy with which the
function encoded by the white box model can be approximated
by the black box learner, and the effectiveness with which
the latter can incorporate new knowledge deriving from the
availability of samples collected from the operational system.

Reducing the number of samples can, in general, yield
several benefits. These include reducing the duration of the
initial training phase of the black box learner; also, it may favor
the subsequent update phase of the training set: the lower the
number of synthetic samples, the higher the relative density of
the real samples in the updated training set. This can reduce
the time it takes for the real samples to outweigh the synthetic
ones, and correct possible errors of the AM.

Using a lower number of synthetic samples, however, also
yields the black box model to approximate more coarsely the
original white box one, which may degrade accuracy. On the
other hand, a very large training set provides more detailed
information to the black box learner on the function embodied
by the AM, and can favor a better approximation of such
function. However, it comes with the downside of an increased
training time and may induce a longer transient phase before
runtime samples can take over synthetic ones.

Note that the initial training phase of the ML is performed
over the output of the AM on a sampling of the whole
parameter space PS of the target application. Hence, even if
provided only with a set R of real samples corresponding to
narrow regions of PS, the bootstrapped learner still inherits the
predictive power of the base AM when working in extrapola-
tion with respect to R.

2For simplicity, we do not show how to handle cases in which the fitting
error never goes below the ε . Coping with this case could simply entail
returning the ST that minimizes the error after a given number of attempts.

B. Update of the Knowledge Base

The UPDATEKB function, reported in Algorithm 3, is the
core of the Bootstrapping methodology, as it allows for the
incremental refinement of the initial performance model. This
function is responsible for incorporating real samples coming
from the running application into the initial synthetic training
set, thus allowing the black box model to gradually correct
inaccurate performance predictions by the white box model.

The UPDATEKB function takes as input the dataset D con-
taining new samples and injects them into the current training
set. The key issue here is that the new samples contained in
D may contradict the synthetic samples generated by the AM
that are in the training set. This happens whenever D contains
samples belonging to regions of the feature space in which
the AM achieves unsatisfactory accuracy: in such a case, in
fact, the AM generates outputs (i.e., performance predictions)
that may differ significantly from the corresponding values in
D (i.e., having similar or identical input mapped to different
output). In this work, we consider two techniques that aim at
reconciling possible divergences between synthetic and actual
samples: weighting and replacing.

Weighting is a well-known and widely employed technique
in the ML area [21]: the higher the weight for a sample, the
more the ML will try to minimize the fitting error around
it when building the statistical model. In the Bootstrapping
case, weighting can be used to suggest the ML to give more
relevance and trust to real samples than to synthetic ones.
The replacing approach consists in removing preexisting “close
enough” (synthetic) samples from the training set, whenever
new real samples are incorporated. We consider four imple-
mentations of the UPDATEKB function, which incorporate new
knowledge according to different principles.
1) Merge. This is the simplest considered variant, and it
consists in adding the new samples to the existing set ST . This
implies the possible co-existence of real and synthetic samples
that map very similar (or equal) input features to very different
performance. Hence, the use of weights is the only means to
induce the ML to give more importance to real samples over
(possibly contradicting) synthetic ones.
2) Replace based on Nearest Neighbor (RNN). This variant
consists of two steps, which are repeated for each element
(x,y) in D: i) find the element (xr,yr) that is closest (according
to a distance function) to (x,y) in ST and ii) replace (xr,yr)
with (x,y). Also in this case the newly injected sample is given
a weight w. Note that, once an element from D is inserted in
ST , it becomes eligible to be evicted from the set, even in favor
of another sample contained in D itself. This algorithm aims to
progressively replace all the synthetic samples from ST with
real ones; by switching a real sample with its nearest neighbor
in ST , moreover, this algorithm aims at keeping unchanged the
density of samples in ST .
3) Replace based on Nearest Region (RNR). This algorithm
represents a variant of RNN. A first difference is that, in order
to avoid “losing” knowledge gathered from the running system,
RNR policy only evicts synthetic samples from the training
set. Moreover, instead of replacing a single sample in ST ,
a sample in D replaces all the ones in ST whose distance
from it is less than a given cut-off value c. If a sample in D
does not replace any sample in ST , it is added to ST , as it is



considered representative of a portion of the feature space that
is not covered by pre-existing elements in ST . On one side,
this implementation speeds up the process of replacement of
synthetic samples with real ones; on the other side, depending
on the density of the samples in ST and on the cut-off value,
it may cause imbalances in the density of samples present in
the various regions of the feature space for which T contains
information. In fact, a single sample from D may potentially
take the place of many others in ST .
4) Replace based on Nearest Region 2 (RNR2). This algo-
rithm represents a variant of RNR. Also RNR2 policy, in fact,
only evicts synthetic samples from the training set; however, it
differs from RNR in the way samples corresponding to actual
measurements are incorporated in the training set. For each
element (x,y) ∈ ST , the closest neighbor (xr,yr) ∈D is found:
if the distance between the two is less than a cut-off value c,
then the output relevant to x is changed from y to yr. Like in
RNR, if a sample in D does not match any sample in ST , it is
added to ST . This implementation inherits from RNR the speed
in replacing samples in ST with real, new ones, but avoids its
downside of changing the density of samples in ST : instead
of removing samples from ST , for each element (xr,yr) in D,
the target value of all the points in the training set for which
it is nearest neighbor and within distance c is approximated
with yr.

IV. EXPERIMENTAL EVALUATION

In this section we evaluate the algorithmic and parametric
trade-offs discussed in the previous section via an experimental
evaluations based on two case studies: a distributed Key-Value
Store and a Total Order Broadcast primitive.

A. Case studies

As already mentioned, we consider two case studies: In-
finispan [7], a popular distributed Key-Value Store (KVS) and
a sequencer-based Total Order Broadcast (TOB) service [22].

1) Key-Value Store: In this study we consider Infinispan, a
popular NoSQL data store, which provides a key-value data
model. Infinispan is a in-memory transactional platform that
relies on replication to ensure data durability.

The performance of this type of platforms is affected
by several factors: contention on physical (e.g., CPU) and
logical (i.e., data items) resources, workload characteristics
(e.g., transactional mix) and platform configuration (e.g., scale
and replication degree). This case study is, thus, an example of
a modeling/learning problem defined over a large dimensional
space (spanning 7 dimensions in our case) and characterized
by a complex performance function.
Base AM. The reference model used as base predictor for this
case study is PROMPT [9]. In PROMPT, an AM captures the
effects of workload and platform configuration on CPU and
data contention. On the other hand, it relies on ML to predict
latencies of network bound operations. Therefore, PROMPT
represents by itself an instance of gray box modeling (divide
et impera); in order to treat PROMPT as a plain white box
model, we fix its black box network model, by training it with
the same samples of [9].
Experimental dataset and test bed. We consider a dataset

composed by approximately 900 samples, collected by de-
ploying Infinispan on a private Cloud infrastructure, consisting
of 140 Virtual Machines (VM) hosted on a cluster composed
by 18 physical servers equipped with two 2.13 GHz Quad-
Core Intel(R) Xeon(R) processors and 32 GB of RAM and
interconnected via a private Gigabit Ethernet. The employed
virtualization software is Openstack Folsom. The VMs are
equipped with 1 Virtual CPU and 2GBs of RAM.

The considered application is a transactional porting of
YCSB [23], the de facto standard benchmark for key-value
stores. The dataset consists of YCSB workloads A, B and F,
generated using a local thread that injects requests in closed
loop. Performance samples correspond to different workloads’
throughputs, while varying the number of nodes N in the
platform in the set {2,5,10,25,50,75,100,125,140} and the
replication factor in {1,2,3, N

2 ,N}.
2) Total Order Broadcast: TOB [8] is a primitive that

allows a group of processes to achieve consensus on a common
delivery order of messages that can be broadcast (possibly
concurrently) by processes in this group. TOB is a fundamental
building block at the basis of a number of fault-tolerant
replication mechanisms. Specifically, we consider a sequencer-
based implementation of TOB [22], which relies on a single
process, called sequencer, to impose a common total order of
messages delivery. Batching [24] is a well-known optimization
technique for STOB algorithms: by buffering messages, and
processing them together, the sequencer can amortize the
sequencing cost and achieve higher throughput; the message
delivery latency, however, can be negatively affected at low
load, due to the additional time spent by the sequencer waiting
(uselessly) for the arrival of additional messages.
Base AM. The AM used as starting point to implement the
Bootstrapping algorithm is described in [10]: the sequencer
node is modeled as a M/M/1 queue, for which each job
corresponds to a batch of messages of size b. The message
delivery latency is computed as the response time for a queue
that is subject to an arrival rate λ equal to the frequency of
arrival of a batch of messages of size b and whose service
time µ accounts both for the CPU time spent for sequencing
a message of size b and for the average time waited by a
message to see its own batch completed.

This AM takes as input the CPU costs of processing the
first and subsequent messages in a batch. In this study, the
estimation of these costs has been performed by finding the
values that minimize the AM’s prediction error over all the
samples in our data-set. Therefore, this baseline allows us
to assess the effectiveness of the Bootstrapping technique in
improving the accuracy also of parameter estimation-based
gray box models, discussed in Section II. Since the fitting has
been performed over the whole set of available measurements,
the accuracy of this baseline already represents an upper-bound
of the one achievable by the parameter estimation technique.
The following evaluation, therefore, shows that Bootstrapping
can also improve over this other gray box modeling technique.

Experimental dataset and test bed. We consider a data set
containing a total of 250 observations, corresponding to a
uniform sampling of the aforementioned bi-dimensional space,
and drawn from a cluster of 10 machines equipped with two
Intel Quad-Core XEON at 2.0 GHz, 8 GB of RAM and
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Fig. 2. Error distribution of the base AMs.

interconnected via a private Gigabit Ethernet. In the experiment
performed to collect the samples, the batching level was varied
between 1 and 24, and 512 bytes messages were injected at
arrival rates ranging from 1 msgs/sec to 13K msgs/sec.

3) Relevance of the Case Studies: We selected the two
aforementioned case studies for three main reasons.
1. Relevance and wide adoption: using a KVS and a TOB prim-
itive allows us to assess the viability of Bootstrapping when
applied to mainstream distributed platforms and applications.
2. Diversity of the performance functions: the feature spaces of
the two case studies have very different dimensionality (2 for
TOB vs 7 for KVS), and the corresponding base performance
models exhibit different distribution of errors, as depicted in
Figure 2. This allows us to evaluate the proposed solution in
very heterogeneous scenarios, increasing the representativeness
of our experimental study.
3. Diversity of the base performance models: the AM for the
TOB case describes the system performance at a high level
of detail by means of a simple M/M/1. The KVS model,
conversely, goes to great lengths to capture the complex dy-
namics of a number of internal components of the system (e.g.,
concurrency control, data locality and replication). Hence, the
selected case studies allow us to assess the Bootstrapping
technique using base models that differ significantly in terms
of design complexity and level of detail at which they capture
the dynamics of the target system.

B. Black box modeling

We employ, as black box learner, Cubist, a DT regressor
that approximates non-linear multivariate functions by means
of piece-wise linear approximations [25]. As already men-
tioned, the Bootstrapping technique can be implemented with
any black box learner. One may argue that the choice of the
learner to couple with the AM can be considered another tun-
ing parameter of the Bootstrapping technique. However, identi-
fying the learner that maximizes the prediction accuracy given
a training and a test sets is a general challenge, which falls
beyond the sole boundaries of the Bootstrapping technique,
and that can be addressed with standard techniques [26]3.

C. Initialization

We begin our study by evaluating the impact on the gray
model’s accuracy and construction time depending on the

3Analogous considerations apply for the issue of feature selection, which
is an intrinsic, and well studied [27], problem of any ML technique.
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Fig. 3. Fitting an AM via ML: training size vs training time and MAPE.

number of samples of the feature space used to populate
the initial synthetic training set. We start by describing
the implementation of the primitives invoked in the initKB
function, used to create the initial synthetic training set ST .
• SAMPLECONFIGSPACE is based on a uniform random sam-
pling of the parameter space: the rationale behind this choice
is that a random policy is the most simple sampling strategy
to implement, yet it has been shown to be very effective [26].
• ESTIMATEFITTINGERROR implements 10-fold cross-
validation, i.e, it i) partitions ST into 10 bins ST1 . . .ST10; ii)
iteratively ∀i= 1 . . .10, trains the ML over ST \Si and evaluates
its accuracy against Si and iii) returns the average accuracy.
• ISACCURATE is based on a simple predicate that returns
true if the accuracy of the black box model has not increased
enough (i.e., more than ε in relative value) over the last n
iterations (with ε = 0.01 and n = 3 in our evaluation).
• NEXTSIZE returns the size of ST at the current iteration plus
a fixed value (set to 500 in our evaluation).

Therefore, the implemented initKB evolves by increasing
the size of ST by a fixed step and randomly sampling the
parameter space to build the new ST ; it terminates when the
accuracy on the black box learner trained over ST plateaus.

Figure 3 reports, for both case studies, the gray box
model building time and the Mean Average Percentage Error
(MAPE), computed as Avg.( |real−pred|

pred ), of the gray box model
with respect to the predictions produced by the AM evaluated
by means of ten-fold cross validation. On the x-axis we let the
number of initial synthetic samples included in the training
set of the gray box model. For both case studies, our initKB
function returns a synthetic training set of 10K samples, as it
detects no noticeable improvements in the black box model’s
accuracy. Indeed, Figure 3 shows that even proceeding up to
15K samples the accuracy gain is negligible.

The model building time portrayed in the plots corresponds
to the sum of the time needed to query the AM in order to
generate the synthetic data set of a given cardinality plus the
time needed to train the ML over such set. We report that, in
our experiments with Cubist, the training time for both case
studies has been less than half a second; the gray box model
building time in the plots is, thus, largely dominated by the
cost needed to query the AM. As shown by Figure 3, in the
KVS case this cost is much higher than in the TOB one, as
the corresponding AM is solved through multiple iterations [9].
However, the cost to query the AM has to be paid only once,
upon initializing the bootstrapped learner, as the update phase
only requires to re-train the black box learner.
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Fig. 4. Impact of the weight parameter for the Merge updating policy, using 1K and 10K synthetic samples.

Figure 3 shows that, by fitting the AM using ML tech-
niques, a loss of accuracy is unavoidable. The actual extent of
this accuracy degradation depends on factors such as the num-
ber of samples used to construct the initial synthetic training
set and the intrinsic capability of the learner to approximate
the target function. The plot shows that, as expectable, larger
training sets yield a lower approximation error, at the cost of
a longer training time; it also shows that Cubist is able to fit
the TOB response time function encoded in the AM very well
(3% of MAPE with a 10K samples training set) but it is unable
to achieve similar accuracy for the KVS case. We argue that
this depends on the fact that Cubist approximates non-linear
functions by means of piece-wise linear approximation in the
leaves of the decision tree that it builds. Such model may be
unable to properly approximate the performance function of
PROMPT, which is defined over a multi-dimensional space
and exhibits strongly non-linear behaviors. On the other hand,
a preliminary experimentation with alternative learners (ANN
and SVM) provided significantly worse approximation errors,
especially for the KVS case.

Overall, these results highlight that ML techniques may
introduce approximation errors with respect to the original
AM. This initial accuracy loss of the gray box model, as we
shall see, can actually make it less accurate than the base AM.

D. Updating

We now evaluate the alternative algorithms for the updating
of the knowledge base that we presented in Section III-B.
We first assess the sensitivity of each algorithm to its key
parameters. Finally, we compare their accuracy assuming an
optimal tuning of such parameters.

We start by showing in Figure 4 the results of a study
aimed at assessing the impact of the weight parameter on the
resulting accuracy of the bootstrapped model, while consider-
ing synthetic training sets of different initial sizes, namely 1K
(Fig. 4(a) and 4(c)) and 10K samples (Figure 4(b) and 4(d)).
We consider two scenarios, in which we assume the availability
of 20% and 70% of the entire data set composed of collected,
real samples, which we feed as input to both the Merge
algorithm and to Cubist (non-bootstrapped) that serves as first
baseline. As a second reference, we show also the accuracy
achieved by using the AM, which incurs a MAPE that is
independent of the initial size of the synthetic training set.
On the x-axis we vary the weight parameter of the Merge
algorithm, and report on the y-axis the MAPE computed with
respect the whole set of actual samples (i.e., unlike in the

previous section, here the MAPE is not computed with respect
to the output of the AMs).

The first finding revealed by the plots is that employing
10K synthetic samples (rather than 1K) is beneficial for the
accuracy achieved by the bootstrapped learner. This happens
because, as already discussed, larger synthetic training sets
allow the black box learning algorithm to learn more accurately
how to approximate the base performance models; this, in turn,
yields to inherit a predictive accuracy that is closer to the one
exhibited by the white box model itself.

The other finding highlighted by the plots is the relevance
of correctly tuning the weighting parameter, regardless of the
size of the initial synthetic training set. However, it is possible
to observe, by comparing Figures 4(a) and 4(b), that the best
setting of this parameter may be relatively larger in the case of
larger synthetic training set than for the case of smaller one.
This can be explained by considering that, by increasing the
size of the initial training set, the ratio of real vs synthetic
samples correspondingly decreases. From the ML perspective
this translate into decreasing the relevance of the real samples
with respect to that of the “surrounding” synthetic samples. In
fact, the Merge update method never evicts synthetic samples
from the knowledge base: if the initial synthetic training set is
significantly larger than the number of available real samples,
these are always surrounded by a large number of synthetic
ones, which end up obfuscating the information conveyed by
the real ones. By increasing the weight of the samples gathered
from the running system, the statistical learner is guided to
minimize the fitting error on these points. On the other hand,
using excessively large weight values can be detrimental, as it
makes the learner more prone to over-fitting.

Overall, the experimental data show that both with large
and small initial synthetic training set, Merge achieves signif-
icantly higher accuracy than both Cubist and the white box
model, when provided with 70% of the data in their training
set. When the training set percentage is equal to 20%, the
scenario is rather different. In both scenarios, the gray box
model still achieves a higher accuracy than a pure ML-based
technique. However, the gray box is only marginally better
than the AM with the large initial synthetic training set, and
slightly worse than AM with small initial synthetic training set.
This can be explained by considering that the gain achievable
using the 20% training set is relatively small, and can be even
outweighed by the loss of accuracy introduced by the learning
of the initial white box model (see Section IV-C).

In Figure 5 we focus the comparison on the updating
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Fig. 5. Impact of the weight and cut-off parameters for RNN, RNR, and RNR2, using 10K synthetic samples.

policies RNN, RNR, and RNR2. We recall that, unlike Merge,
these techniques strive to avoid the coexistence in the training
set of “neighboring” synthetic and real samples, by removing
or replacing synthetic samples close enough to the real ones.
The intuition underlying these approaches is that the AM
may be erroneous, and hence contradict the actual samples
and confuse the learner. With the exception of the RNN
method, which uses exclusively the weight parameter, RNR
and RNR2 also use a cut-off parameter, which defines the
relative amplitude (normalized over a maximum distance) of
the radius that is used to determine which synthetic points are
to be removed (RNR) or updated (RNR2), whenever a new
real sample is incorporated in the training set.

For the sake of presentation, only two cut-off values are
considered, namely 1% and 5%, and the weight parameter is
treated as the independent variable. The choice of reporting
results with these cut-off values is motivated by the fact that
they suffice to illustrate the main dynamic related to the setting
of this parameter: the higher is the cut-off, the more the
training set is composed by only real samples, thus making
the bootstrapped model eventually collapse to the pure black
box one. In all the performed experiments, the employed
distance function is the Euclidean one, but any could be used.
Before computing the distance between two samples, a feature
normalization process is performed, i.e., the value of every
feature is normalized so as to lie in the range [0,1]. When using
scale-sensitive distance functions like the Euclidean one, this
avoids features that naturally assume larger absolute values to
have more weight in determining the distance than other ones.

Figure 5(a) and 5(c), resp. Figure 5(b) and 5(d), report
the MAPE achieved when using 20%, resp. 70%, of the real
data set as training set, reporting, as before, the reference
values achieved by the white box model and by Cubist (non-
bootstrapped). The first result highlighted by these plots is
that, also in the replace-based update variants, the weight
parameter plays a role of paramount importance. Also the cut-
off parameter has a huge impact on the final accuracy of the
hybrid model, when implementing RNR and RNR2.

Overall, the cut-off based replace policies result more
effective into increasing predictive accuracy in the two con-
sidered case studies. The improvement with respect to RNN
is more evident in the KVS case: this is because RNN entails
the possibility of evicting real samples from the training set,
whereas RNR and RNR2 do not. As a result, RNN discards
some of the information conveyed by real samples, thus losing
some of its corrective power.

This effect is tightly related to the characteristics of the
target performance function and of the distribution of the real
samples. For the TOB case, in fact, both real and synthetic
samples are drawn uniformly at random from the whole space
of possible arrival rates and batching levels. Moreover, the 10K
synthetic samples are very cluttered in the two-dimensional
space in which they lie, thus reducing the probability that RNN
evicts a real sample instead of a synthetic one.

Conversely, for the KVS case, the samples in the synthetic
training set are drawn uniformly at random but the real ones are
not as they are, instead, representative of typical configurations
and workloads for that kind of platforms. For example, the
density of the points characterized by a number of nodes
smaller than 25 is higher than the one relevant to points
corresponding to more than 100 nodes in the platform; in the
same guise, the replication degree for data items is defined
over the set {1,2,3, N

2 ,N}, being N the number of nodes.
This, together with the relative sparseness of the 10K synthetic
samples in the seven-dimensional space in which they lie,
induces RNN to evict, in some cases, real samples.

E. Lessons learnt

In this section we summarize the most important and
insightful findings that our evaluation has highlighted.
Importance of parameterization. Previous sections have
highlighted the sensitivity of the Bootstrapping technique to
the setting of its internal parameters: if properly tuned, this
technique can yield considerable gains in terms of accuracy
with respect to AM and ML employed singularly; conversely,
if poorly parametrized, the resulting hybrid model can even be
worse than the individual black and white box models. It is
important to underline that this is not an idiosyncrasy or flaw
of the Bootstrapping technique; rather, it is an inherent issue
for any black box model: the accuracy of any ML algorithm is
strictly dependent on the quality of its parameterization. Iden-
tifying proper values for the parameters of a Bootstrapping-
based model can be accomplished via standard techniques for
the optimization of the hyper-parameters of ML algorithms,
e.g., random search or Bayesian Optimization [26].
On the updating policy. Our study suggests that it may be
preferable to opt for a simple update heuristic, such as Merge,
over more convoluted ones, such as Replace-based variants.
This conclusion is backed by Figure 6, which compares
the accuracy achieved by the two best performing updating
heuristics, Merge and RNR2, with that achieved by pure white
and black box approaches. The size of the initial synthetic
training set is 10K, and the parameters used by the update
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policies are the ones that resulted in the best performance in
the evaluation cases considered so far. The accuracy of the
various predictors is evaluated while varying the size of the
available training set from 10% to 90%.

Figure 6 clearly highlights the advantages that the Boot-
strapping technique can provide, eventually outperforming
both the reference white and black box models. It also shows
that, in the considered case studies, and for the considered
parameters values, there is no clear winner between the two
updating variants, at least provided that their parameters are
properly tuned (e.g., using cross-validation). In particular, the
weighting parameter results to be the one that affects accuracy
the most, up to the point that its careful tuning allows the
Merge updating policy to perform similarly to the —relatively
more complex— RNR2.

Therefore, our evaluation indicates that the Merge update
policy has the potential to deliver an accuracy that is
comparable to the one achieved by Replace-based methods,
while requiring the tuning of only one parameter, namely the
weight given to real samples, over the two that characterize
Replace-based policies.
Relevance of the synthetic training set’s size. The size
of the synthetic training set ST influences a key trade-off
between the accuracy of the initial statistical model4 and
the timeliness with which errors/biases of the AM can be
corrected by incorporating real samples. A small ST set
yields a coarse approximation of the analytical function, but
real samples can rapidly outweigh fabricated ones (since the
density of the latter is low). Conversely, a larger ST allows
the ML to better approximate the AM; this, however, comes
at the cost of a higher training time and possibly slower
correction process, given the high density of synthetic samples
in the training set.

V. CONCLUSIONS

In this paper we have proposed a technique, named Boot-
strapping, that aims to reconcile the white box and black
box methodologies by compensating the cons of the one
with the pros of the other. We have identified several crucial
design choices in Bootstrapping algorithms, proposed a set of
alternative approaches to tackling these issues, and evaluated
the impact of these alternatives by means of an extensive
experimental study targeting two popular distributed platforms
(a distributed Key-Value Store and a Total Order Broadcast

4More precisely the accuracy with which the initial ML model fits the AM.

service). Our results highlight the potentiality of this technique,
but also shed light on a number of trade-offs that have to be
taken into account in order to maximize its effectiveness, and
has also opened interesting research avenues.
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