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Abstract
Transactional Memory was recently integrated in Intel
processors under the name TSX. We show that its perfor-
mance can be significantly affected by the configuration
of its interplay with the software-based fallback: in fact,
there does not seem to exist a single configuration that
can perform best independently of the application and
workload. We address this challenge by introducing an
innovative self-tuning approach that exploits lightweight
reinforcement learning techniques to identify the opti-
mal TSX configuration in a workload-oblivious manner,
i.e. not requiring any off-line/a-priori sampling of the ap-
plication’s workload. To achieve total transparency for
the programmer, we integrated the proposed algorithm
in the GCC compiler. Our evaluation shows improve-
ments up to 2× over state of the art approaches, while
remaining within 5% from the performance achievable
using optimal static configurations.

1 Introduction

Multi-core and many-core processors are nowadays
ubiquitous. The consequence of this architectural evolu-
tion is that programmers need to deal with the complexity
of parallel programming to fully unveil the performance
potential of modern processors.

Transactional Memory (TM) [15] is a promising
paradigm for parallel programming, that responds pre-
cisely to the need of reducing the complexity of build-
ing efficient parallel applications. TM brings to parallel
programming the powerful abstraction of atomic trans-
actions, thanks to which programmers need only to iden-
tify the code blocks that should run atomically, and not
how atomicity should be achieved [22]. This is in con-
trast with the conventional lock-based synchronization
schemes, where the programmer has to specify how con-
current accesses to shared state are synchronized to guar-
antee isolation. The TM runtime implements this with
optimistic transactions, whose correctness is checked to
ensure an illusion of serial executions (possibly aborting
and rolling back the transaction), even though transac-
tions run concurrently.

Recently, the maturing of TM research has reached an
important milestone with the release of the first main-
stream commercial processors providing hardware sup-
port for TM. In particular, Intel has augmented their in-

struction set for x86 with Transactional Synchronization
Extensions (TSX), which represents the first generation
of mainstream and commodity Hardware Transactional
Memory (HTM): TSX is available in the 4th generation
Core processor, which is widely adopted and deployed
ranging from tablets to server machines.

One important characteristic of this hardware support
is its best-effort nature: due to inherent architectural lim-
itations, TSX gives no guarantees as to whether trans-
actions will ever commit in hardware, even in absence
of conflicts. As such, programmers must provide a soft-
ware fallback path when issuing a begin instruction, in
which they must decide what to do upon the abort of a
hardware transaction. One solution is to simply attempt
several times before giving up to software. However, un-
der which circumstances should one insist on using TSX
before relying on software to synchronize transactions?
We show that the answer to this question is clear: there
is no one-size fits all solution that yields the best perfor-
mance across all possible workloads. This means that the
programmer is left with the responsibility of finding out
the best choices for his application, which is not only a
cumbersome task, but may also not be possible to achieve
optimally with a static configuration. In fact, also Intel
has recently acknowledged the importance of developing
adaptive techniques to simplify the tuning of TSX [18].

1.1 Contributions and Outline
We study, to the best of our knowledge for the first time
in literature, the problem of automatically tuning the
policies used to regulate the activation of the fallback
path of TSX. We first highlight the relevance of this self-
tuning problem, and then present a solution that com-
bines a set of lightweight reinforcement learning tech-
niques designed to operate in a workload-oblivious man-
ner. This means that we do not require any a priori
knowledge of the application, and execute only runtime
adaptation based on the online monitoring of applica-
tions’ performance. We integrated the proposed self-
tuning mechanisms within libitm, the TM library of the
well-know GCC compiler. This allows achieving trans-
parency to the programmers: a property of paramount
importance that allows preserving the most compelling
motivation of TM, namely its ease of use [14].

To assess our contributions we used the C++ TM spec-
ification [1] and relied on a comprehensive set of bench-
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marks (most of which had to be ported to use this stan-
dard interface). More in detail, our evaluation study in-
cludes the well-known STAMP benchmark suite [21],
which comprehends several realistic transactional appli-
cations with varying contention levels, size of transac-
tions and frequency of atomic blocks. Besides STAMP,
we also used a recent TM-based version of the popu-
lar Memcached [27], an in-memory web cache used to
help scale web page servicing, which is widely used at
Facebook. Finally we consider an example of a concur-
rent data-structure synchronized with TM, namely, a red-
black tree. This is representative of important building
blocks that are very hard to parallelize efficiently with
locks, while generating typically short transactions (un-
like some STAMP benchmarks).

In this large set of benchmarks our contributions al-
lowed an average improvement of 2× over existing ap-
proaches, including both static heuristics and a state of
the art adaptive solution [29] (although devised for soft-
ware implementations of TM, and not HTM). We orga-
nized the rest of the paper as follows. Section 2 provides
background on HTM and Intel TSX, whereas Section 3
motivates the relevance of devising self-tuning mecha-
nisms for TSX. Then, in Sections 4 and 5 we present our
learning techniques to self-tune TSX, as well as their in-
tegration in GCC in Section 6. Finally, we evaluate our
proposals in Section 7, describe the related work in Sec-
tion 8 and conclude in Section 9.

2 Background on Intel TSX

Intel TSX was released as part of the 4th generation of
Core processors (Haswell family). It has two main in-
terfaces, called Hardware Lock Elision (HLE) and Re-
stricted Transactional Memory (RTM). To support HLE,
two new prefixes (XACQUIRE and XRELEASE) were cre-
ated, which can be placed in LOCK instructions. In older
processors these prefixes are ignored, and the instruc-
tions are executed normally, meaning that locks are ac-
quired and released normally. However, in Haswell pro-
cessors these prefixes allow to elide the lock, such that
it is only read but not written, effectively allowing con-
current threads to execute the same critical section at
the same time. To ensure correctness, namely prevent
data races in such optimistic executions, the hardware
keeps track of the footprint accessed speculatively and
rolls-back the execution if such footprint is invalidated
by cache coherency. In such event, the thread re-executes
the critical section but this time acquires and releases the
lock normally. Such acquisition aborts concurrent eli-
sions of the same lock, because these hardware specula-
tions had read the lock and as such the lock state became
part of their transactional footprint.

RTM leverages on the same hardware but accom-
plishes better flexibility because it exposes new instruc-
tions, namely, XBEGIN and XEND. This interface maps

directly to the usual constructions of transactional pro-
gramming of beginning and committing a transaction.
Additionally, the XBEGIN instruction requires the pro-
grammer to provide a software handler to deal with trans-
action aborts. This has the advantage of allowing other
strategies rather than giving up immediately on hardware
transactions, which is the strategy followed by HLE.

The reason for requiring such software fallback is the
best-effort nature of Intel TSX. Due to the inherently
limited nature of HTMs [7, 16], TSX cannot guarantee
that a hardware transaction will ever succeed, even if
run in absence of concurrency. Briefly, TSX uses the
L1 cache (private to each physical core) to buffer trans-
actional writes, and on the cache coherence protocol to
detect data conflicts. A plausible reason for a transaction
never to succeed is because its data footprint does not fit
in the L1 cache. Hardware transactions are also subject
to abort due to multiple reasons that are not justified by
concurrency alone, such as page faults and system calls.

In Alg. 1 we illustrate how GCC compiles transac-
tional applications to use TSX (in the latest stable version
4.8.2 of GCC). In this approach (that we refer as GCC)
transactions are attempted in hardware at most twice; if a
hardware transaction aborts, the flow of execution reverts
back to line 2 with an error code (the transaction can be
aborted at any point between lines 3-15). This means that
if TSX was always successful, then lines 4-8 would not
be executed. When all attempts are exhausted, the execu-
tion falls through the fallback and acquires a global lock
to execute normally, i.e., without hardware speculation.

To ensure correctness, a hardware transaction reads
the lock (line 9) and aborts, either immediately if it finds
it locked, or if some concurrent pessimistic thread ac-
quires it before the hardware transaction commits. This
mechanism safeguards the correctness of pessimistic ex-
ecutions that run without any instrumentation [4].

Note that HLE can be seen as a degenerate case of
Alg. 1 in which the variable attempts is initialized with
the value 1. In Fig. 1 we use a concurrent red-black tree

Algorithm 1 TSX in GCC
1: int attempts← 2
2: int status← XBEGIN
3: if status 6= ok then
4: if attempts = 0 then
5: acquire(globalLock)
6: else
7: attempts−−
8: goto line 2
9: if is locked(globalLock)

10: XABORT
11: . ...transactional code
12: if attempts = 0 then
13: release(globalLock)
14: else
15: XEND
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Fig. 1: Red-black tree syn-
chronized with TSX.

Abort code
retry: Transient failure

conflict: Contention to data
capacity: Exceeded cache
explicit: XABORT invoked
other: Faults, preemption, ...

Fig. 2: Error codes in TSX.
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synchronized with both interfaces of Intel TSX and show
the speedup relatively to a sequential execution without
synchronization. All the experimental results shown in
this paper were obtained using an Intel Haswell Xeon
E3-1275 processor with 32GB RAM, which has 8 virtual
cores (4 physical, each with hyper-threading). Note that,
for the time being, this is the maximum number of cores
available in a machine with Intel TSX. We ran our ex-
periments in a dedicated machine running Ubuntu 12.04,
by using a minimum of 10 trials to obtain statistically
meaningful results.

We focus our attention on the significant discrepancy
in the performances in Fig. 1. This difference stems from
the importance of insisting on the hardware support even
when it fails (transiently). Since HLE gives up after one
failed attempt, this creates a chain of failed speculations
that acquire the lock and prevent concurrent speculations
from proceeding via hardware — naturally, this occurs
more often with higher concurrency, as the plot shows.

These considerations motivate the use of RTM over
HLE (unless there are backwards compatibility con-
cerns). However, as we shall discuss next, the use of
RTM raises concerns of different nature, in particular re-
lated to the difficulty of properly tuning it.

3 Static Tuning of TSX

So far, we have motivated the usage of RTM, but only
presented the simple approach that is implemented cur-
rently in GCC, which, as we shall see, is far from op-
timal. Indeed, in the light of recent findings [8, 17, 31],
and based on the experience that we gathered after ex-
perimenting extensively with TSX, more effective mech-
anisms can be used to regulate the activation of the fall-
back path of TSX. We describe such mechanisms (which
we call HEURISTIC) in Alg. 2.

The first point that we raise is that GCC (in Alg. 1)
ignores the error codes returned by TSX’s begin opera-
tion. The error codes available are briefly described in
Fig. 2. Taking this into account, we consider that RETRY
and CONFLICT codes represent ephemeral aborts, and as
such we do not consume the attempts’ budget in those
cases (line 9). Furthermore, we consider CAPACITY er-
rors to be permanent, and drop all attempts left (line 11).
The objective is to avoid trying fruitlessly to use the hard-
ware when it is not able to complete successfully, and
short-cut right away to the fallback path.

Secondly, we set the attempts to 5 as that was reported
by recent works as the best all-around figure [17, 31].
Choosing a given number is always going to be sub-
optimal in some scenario, as it depends tremendously on
the workload. Thirdly, we perform a lazy check for the
global lock, which safely allows some concurrency with
a pessimistic thread and hardware transactions [4].

Finally, we note that GCC suffers from the so-called
lemming effect [8], in which one thread proceeding to the

Algorithm 2 HEURISTIC based approach for TSX.
1: int attempts← 5

. avoid the lemming effect
2: while(is locked(global-lock)) do pause . x86 instruction
3: int status← XBEGIN
4: if status 6= ok then
5: if attempts = 0 then
6: acquire(global-lock)
7: else
8: if status = explicit ∨ status = other then
9: attempts← attempts - 1 . skipped if transient

10: else if status = capacity then
11: attempts← 0 . give up, likely that it always fails
12: goto line 2
13: . ...code to run in transaction
14: if attempts = 0 then
15: release(global-lock)
16: else
17: if is locked(global-lock) then
18: XABORT . check for concurrent pessimistic thread
19: XEND

fallback (by acquiring the global-lock) causes all other
concurrent transactions to do so too. This chain reaction
can exhaust the attempts, and make it difficult for threads
to resume execution of transactions in hardware. One
way to avoid it, is by checking the lock before starting
the transaction, and waiting in case it is locked (line 2).

An alternative way to deal with the lemming effect is
to use an auxiliary lock [2]. Briefly, the idea is to guard
the global lock acquisition by another auxiliary lock.
Aborted hardware transactions have to acquire this auxil-
iary lock before restarting speculation, which effectively
serializes them. However, this auxiliary lock is not added
to the read-set of hardware transactions, which avoids
aborting concurrent (and successful) hardware transac-
tions. If this procedure is attempted some times before
actually giving up and acquiring the global lock, then
the chain reaction effect can be avoided, as the auxil-
iary lock serves as a fallback manager preventing hard-
ware transactions from continuously acquiring the fall-
back lock and preventing hardware speculations.

3.1 No One-size Fits All
The previous algorithms have a number of tuning knobs
that needs to be properly configured. Summarizing: 1)
How many times should a transaction be retried in hard-
ware? 2) Should we trust the error codes to guide the
decision to give up? and 3) What is the best way to man-
age the contention on the fallback path?

In order to assess the performance impact that these
configuration options can have in practice, we conducted
an experimental study in which we considered a config-
uration’s space containing all possible combinations of
feasible values of the following three parameters:
• Contention management — wait uses the simple wait
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and pause approach of Alg. 2; aux uses the auxiliary
lock [2]; none allows transactions to retry freely.
• Capacity aborts — giveup exhausts all attempts upon
a capacity abort; half drops half of the attempts on a ca-
pacity abort; stubborn decreases one attempt only.
• Budget of attempts — varying from 1 to 16.

We tested all these combinations in our suite of bench-
marks, with varying concurrency degrees, reaching the
conclusion that there is no one-size fits all solution. In
Table 1 we show some of the results from these exper-
iments. Naturally, it is impossible to show all the 144
combinations for each benchmark and workload of our
suite. We focus only on experiments with 4 threads, one
workload per benchmark, and show only the best variant
together with GCC (Alg. 1) and HEURISTIC (Alg. 2).

In general, the HEURISTIC algorithm yields some con-
siderable improvements over GCC (notice Genome and
Yada, with over 50% reduction in time), although in the
other benchmarks it performs either similarly or slightly
worse (notice Vacation, with 30% increase in time).
However, the most important results are on the rightmost
column, where we can see that the best performing vari-
ant varies a lot in its characteristics. Furthermore, the
best result obtained is also typically better than those ob-
tained by the algorithms seen so far: the geometric mean
loss (i.e., additional time) of using GCC or HEURISTIC
is of 30% and 21% (respectively) when compared to the
best variant that we experimented with. These losses can
extend up to 4× and 2× (e.g., Yada). To complement
those results, we also show the performance of different
TSX configurations in Genome when varying the num-
ber of threads, in Fig. 3: we can see that the best perfor-
mance is obtained with widely different settings, and that
even GCC and HEURISTIC can perform better than each
other at different concurrency degrees.

The bottom line here is that static configurations of
TSX can deliver suboptimal performance as a conse-
quence of the high heterogeneity of the workloads gen-
erated by TM applications. The numbers above illustrate
how much we could win in this set of benchmarks, work-
loads and concurrency degree, if we had a dynamic ap-
proach that adapts to the workload. Naturally, it is unde-
sirable to require the programmer to come up with an op-
timal configuration for each workload, in particular be-
cause they may be unpredictable or even vary over time.

Another interesting result highlighted by this study is
that the parameters’ search space can be reduced by one
dimension, i.e. contention management, as the wait or
aux had in the vast majority of the cases similar speedups
over none; whereas, whenever none reported to be the
best, it was only by a very small margin. This finding
suggests therefore to focus on the tuning of two main
tuning knobs: i) the policy used to cope with capacity
aborts and ii) the settings of the maximum number of
attempts for a hardware transaction.

Table 1: Completion time (seconds, less is better) when
using different RTM variants (described in Section 3.1).

Benchmark GCC HEURISTIC Best Variant
genome 3.46 1.69 1.59 wait-giveup-4
intruder 7.06 7.92 4.79 wait-giveup-4

kmeans-h 0.41 0.42 0.37 none-stubborn-10
rbt-l-w 6.25 6.40 5.27 aux-stubborn-3
ssca2 5.92 5.97 5.72 wait-giveup-6

vacation-h 6.81 8.99 5.83 aux-half-5
yada 28.5 11.6 6.96 wait-stubborn-15

4 Self-Tuning TSX

The proposed self-tuning solution for TSX adopts an on-
line, feedback based design, which performs lightweight
profiling of the applications at runtime. This allows to
better fit the workloads of typical irregular applications
that benefit most from synchronization facilities such as
TSX [14], for which fully offline solutions are likely to
fall prey of the over-approximations of solutions based
on static analysis techniques. Another appealing char-
acteristic of the proposed approach is that it does not
necessitate any preliminary training phase, unlike other
self-tuning mechanisms for Software TM (STM) based
on off-line machine-learning techniques [10, 24].

Clearly, keeping the overhead of our techniques very
low is a crucial requirement, as otherwise any gain is eas-
ily shadowed, for instance due to profiling inefficiencies
or constant decision-making. Another challenge is the
constant trade-off between exploring alternative configu-
rations versus exploiting the current one, with the risk of
getting stuck in a possibly sub-optimal configuration.

The proposed technique pursues overhead minimiza-
tion in a twofold way. It employs efficient and con-
currency friendly profiling techniques, which infer sys-
tem’s performance by sampling the x86’s TSC cycle
counter (avoiding any system call) and relying solely on
thread-local variables to avoid inter-thread synchroniza-
tion/interference. Besides that, it employs a combina-
tion of lightweight techniques, borrowed from the liter-
ature on reinforcement learning and gradient descent al-
gorithms, which were selected, over more complex tech-
niques, precisely because of their high efficiency.

Another noteworthy feature of the proposed self-
tuning mechanism is that it allows for individually tun-
ing the configuration parameters of each application’s
atomic block, rather than using a single global config-
uration. This feature is particularly relevant in programs
that include transactions with heterogeneous character-
istics (e.g., large vs small working sets, are contention-
prone or not, etc.), which could benefit from using radi-
cally different configurations.

Before detailing the proposed solution, we first
overview a state of the art solution [3] for a classical
reinforcement learning problem, the multi-armed ban-
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Figure 3: Speedup in Genome (higher is better).

dit [28]. This reinforcement learning technique is the
key building block of the mechanism that we use to adapt
the capacity abort management policy, which will be de-
scribed in Section 4.2. We then explain the adaptation of
how stubborn should one be in using TSX, i.e. the bud-
get of attempts, in Section 4.3. The combination of those
techniques is presented in Section 5.

4.1 Bandit Problem and UCB

The ”bandit” (a.k.a. ”multi-armed bandit”) is a classic
reinforcement learning problem that states that a gam-
bling agent is faced with a bandit (a slot machine) with
k arms, each associated with an unknown reward distri-
bution. The gambler iteratively plays one arm per round
and observes the associated reward, adapting its strategy
to maximize the average reward. Formally, each arm i
(0≤ i≤ k) is associated with a sequence of random vari-
ables Xi,n representing the reward of the arm i, where n
is the number of times the lever has been used. The goal
is to learn which arm i maximizes the average reward :

µi =
∞

∑
n=1

1
n Xi,n. To this purpose, the learning algorithm

needs to try different arms to estimate their average re-
ward. On the other hand, each suboptimal choice of an
arm i costs, on average, µ∗−µi, where µ∗ is the aver-
age obtained by the optimal lever. Several algorithms
have been studied to minimize the regret (defined as

µ∗n−µi
K
∑

i=1
E[Ti(n)], where Ti(n) is the number of times

arm i has been chosen).
Building on the idea of confidence bounds, the tech-

nique of Upper Confidence Bounds (UCB) creates an
overestimation of the reward of each possible decision,
and lowers it as more samples are drawn. Implement-
ing the principle of optimism in the face of uncertainty,
the algorithm picks the option with the highest current
bound. Interestingly, this allows UCB to achieve a log-
arithmic bound on the regret value not only asymptoti-
cally, but also for any finite sequence of trials. More in
detail, UCB assumes that rewards are distributed in the

[0,1] interval, and associates each arm with a value:

µ̄i = x̄i +

√
2

logn
ni

(1)

where µ̄i is the current estimated reward for lever i; n is
the number of the current trial; x̄i is the reward for lever
i; and ni is the number of times the lever i has been tried.
The right-hand part of the sum is an upper confidence
bound that decreases as more information is acquired.
By choosing, at any time, the option with maximum µ̄i,
the algorithm searches for the option with the highest re-
ward, while minimizing the regret along the way.

4.2 Using UCB learning
We applied UCB to TSX by considering that each atomic
block of the application has a slot machine (in the
nomenclature of the previous Section 4.1), i.e., a corre-
sponding UCB instance. With it, we seek to optimize
the consumption of the attempts upon capacity aborts.
In some sense, this models a belief on whether the ca-
pacity aborts witnessed are transient or deterministic,
which cannot be assessed correctly based only on the er-
ror codes returned by aborted transactions. How many
capacity aborts should we have to consider that an atomic
block is failing deterministically? It is not obvious one
can explicitly model such belief in that way; hence why
UCB becomes appealing in this context.

We consider the three options identified in Section 3.1
with respect to capacity aborts. This creates three levers
(0 ≤ i < 3) in each UCB instance. We then use Eq. (1),
for which we recall n is the number of the current trial
(i.e., number of decisions so far for the atomic block),
and ni is the number of times the UCB instance chose
lever i. We now specify the reward function for the levers
(represented by x̄i). For this we used the number of pro-
cessor cycles that it takes to execute the atomic block for
each configuration. Hence we keep a counter ci for each
lever with the cycles that it consumed so far, and com-
pute the reward x̄i for lever i with:

x̄i =
1

ci/ni
(2)

which means that we normalize the cycles of lever i, giv-
ing us a reward in the interval [0,1].

4.3 Using Gradient Descent Exploration
In order to optimize the number of attempts configured
for each atomic block, we use an exploration technique,
similar to hill climbing/gradient descent search [25]. The
alternative of using UCB was dismissed because the pa-
rameter has a large space of search that does not map well
to the lever exploration. This optimization problem is il-
lustrated by the experiments in Fig. 4, where we show the
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Figure 4: Speedup in Kmeans given attempts (8 threads).

performance improvement at 8 threads in Kmeans when
varying the number of attempts for the configuration that
yielded the best results. In the plot we show both low and
high contention workloads of Kmeans, for which there
are significantly different number of attempts yielding
maximum values of improvement (namely, 6 and 11).

For this decision we also use the processor cycles that
it takes to execute the atomic block, and at the end we
execute gradient descent exploration. We augment it
with probabilistic jumps to avoid getting trapped in a lo-
cal maximum during the exploration. Furthermore, we
memorize the best configuration seen so far to recover
from unfortunate jumps.

For this, we store: the best configuration and perfor-
mance seen so far (best); the last configuration and cor-
responding performance (last); and the current configu-
ration (current). Note that here the configuration means
simply the number of attempts. Then we use the follow-
ing rules to guide exploration (strategy called GRAD):

1) with probability 1-p jump play according to classic gra-
dient descent; if performance improved along the current
direction of exploration, keep exploring along that direc-
tion; otherwise reverse the direction of exploration.
2) With p jump probability, select randomly the attempts
with uniform probability for the next configuration. If
after the jump performance decreased by more than
maxLoss, then revert to the best known configuration.

Further, in order to enhance stability and avoid useless
oscillations once identified the optimal solution, if, after
a configuration change, performance did not change by
more than min∆, we block the gradient descent explo-
ration and allow only probabilistic jumps (to minimize
the risk of getting stuck in sub-optimal configurations).

Concerning the settings of the p jump, maxLoss, and
min∆, we set them respectively to 1%, 40% and 5%,
which are typical values for this type of algorithms [28]
and whose appropriateness in the considered context will
be assessed in Section 7.

5 Merging the Learning Techniques

So far we have presented: 1) UCB to optimize the con-
sumption of attempts upon capacity aborts (Section 4.2);
and 2) GRAD to optimize the allocation of the budget of

attempts (Section 4.3). We now present their integration
in our algorithm called TUNER.

The concern with the integration in TUNER is that the
two optimization strategies overlap slightly in their re-
sponsibilities. The advantage is that this allows to si-
multaneously optimize the configuration accurately for
atomic blocks that sometimes exceed capacity in a de-
terministic way, whereas, in other scenarios, can execute
efficiently using TSX. This may be, for instance, depend-
ing on the current state of shared memory, or some in-
put parameter used in the atomic block. It is possible to
achieve this because UCB shall decide to short-cut the at-
tempts when capacity aborts happen, whereas GRAD can
keep the attempts’ budget high to allow successful TSX
execution when capacity aborts are rare.

One problematic scenario arises when an atomic block
is not suitable for execution in hardware: either GRAD
can reduce the attempts to 0, or UCB can choose the
giveup mode. However, we may be unlucky and get an
inter-play of the two optimizers such that they affect each
other and prevent convergence of the decisions.

To solve this problem with their integration, we cre-
ate a hierarchy among the two optimizers, in which UCB
can force GRAD to explore in some direction and avoid
ping-pong optimizations between the two. For this, we
create a rule that is activated when the attempts’ budget
is exhausted: in such event we trigger a random jump to
force GRAD to explore in the direction that is most suit-
able according to UCB, that is, explore more attempts if
the UCB belief is stubborn and less attempts otherwise.

We compute the extension of the random jump for
GRAD (based on the direction decided by UCB), by tak-
ing into account information about the types of aborts
incurred so far. Namely, we collect the number of aborts
due to capacity (ab-cap) and due to other reasons (ab-
other). Then, if UCB suggests exploring more attempts
(i.e., UCB belief is stubborn), we choose the length
of the jump, noted J, proportionally to the relative fre-
quency of ab-other:

J =
ab-other

ab-cap+ab-other
· (maxTries− cur)

where cur is the current configuration of the budget of
attempts and maxtries = 16. If UCB is different from
stubborn, the jump has negative direction, and length:

J =
ab-cap

ab-cap+ab-other
· cur

We now assess the efficiency of each of the optimiza-
tion techniques alone, and their joint approach described
above as TUNER. In this joint strategy we seek to un-
derstand if the two optimization techniques work well
together: Fig. 5 shows the speedup of TUNER relatively
to UCB and GRAD individually — we average the results
across benchmarks since they yielded consistent results.
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and GRAD across benchmarks and threads.

We can see from our experiments that the joint strat-
egy provided average results that are always better than
at least one of the approaches alone. More than that, for
most cases TUNER improved over both individual strate-
gies, which shows that employing them in synergy pro-
vides better results than the best approach alone. This
is an encouraging result because tuning the attempts and
dealing with capacity aborts is not entirely a disjoint con-
cern. Overall, the results show that the joint approach
yielded up to 20% improvement. Notice that each tech-
nique individually already improves over the baselines
presented earlier, so any improvement when merged fur-
ther reduces the gap with respect to the optimal result.

6 Integration in GCC

In this section we detail our implementation of TUNER,
which we have integrated in the latest stable version of
the Gnu C Compiler (GCC version 4.8.2), inside its li-
bitm component. This component is responsible for im-
plementing the C++ TM Specification [1] in GCC, which
allows programmers to write atomic constructs in their
programs that are compiled to calls to the TM runtime.

One important aspect of libitm is that it defines an
interface that can be implemented by external libraries
to plug in different TM runtimes and replace the im-
plementations available inside GCC. Our initial expec-
tation was that we could craft a TSX based runtime re-
lying on TUNER as an external library. However, libitm
does not completely delegate its work to such external
library; it still keeps control on matters such as irrevoca-
bility (atomic blocks that cannot execute optimistically;
e.g. those with I/O operations). This may cause per-
formance loss because a single-lock TSX benefits from
merging the irrevocability lock with the fallback lock.
Furthermore, the choice of integrating TUNER into GCC
allows achieving total transparency and maximum ease
of use for the programmer.

We begin by laying out a high-level description of
TUNER in Fig. 6. The flow starts every time a thread
enters an atomic block. Since TUNER uses per atomic
block statistics and configurations, we use the program
counter as an identifier of the atomic block and retrieve
the corresponding metadata kept by our algorithm. Ev-
ery per block metadata is maintained in thread-local vari-

atomic_begin
fetch atomic
block's stats yes

no

fetch last
configuration

Profile cycles

Begin Tx
procedure

atomic_end

execute
atomic block

End Tx
Procedure

Re-optimize?

application
logic

Profile cycles
Run grad()
Run ucb()

changes next
configurationyes

no

continue
program

govern retry
management

abort

retry

Re-optimize?

gcc libitm

gcc libitm

Figure 6: Workload-Oblivious tuning of TSX.

ables: hence threads perform self-tuning in an indepen-
dent fashion. This has the advantage of avoiding syn-
chronization and allowing threads to reach different con-
figurations, which can be useful in case the various ap-
plication threads are specialized to process different tasks
(and generate different workloads).

After fetching the metadata, we check whether it is
time to re-optimize the configuration for that atomic
block. This condition is a result of the sampling that we
use to profile the application. For this, we keep a counter
of executions in the metadata of the atomic block (recall
that it is thread local) so that we only re-optimize peri-
odically. This classic technique allows to keep the over-
heads low without missing noticeable accuracy in the de-
cisions taken [19, 29, 30]. Hence we place the check for
re-optimization in the begin and end of the atomic block.
In the negative case, we simply execute the atomic block
with the last configuration set up for it and proceed with-
out any extra logic or profiling.

In the case that we re-optimize, this enables profiling
of the cycles that it takes to execute the atomic block. For
this, we use the RDTSC instruction in x86, which we use
as a lightweight profiling tool to measure the relative cost
of executing the block in different configurations. After
this we attempt to start the transaction itself, which is
better described in Alg. 3. Lines 8-16 describe the retry
management policy. During a re-optimization period, if
the attempts’ budget is exhausted, this triggers the forced
random jump over GRAD according to the description of
TUNER in Section 5 (line 9), before proceeding to the
fallback path. Note also that upon a capacity abort we
adequately reduce the available budget according to the
belief of UCB set in the current configuration (line 13).

After the application executed the atomic block, it
calls back to libitm, and TUNER executes the usual pro-
cedure to finish the transaction. After this, it checks
whether it is re-optimizing the atomic block, and in the
positive case it runs GRAD and UCB to adapt the con-
figuration for the next executions. To do so, it uses
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Algorithm 3 TUNER adaptive configuration.
1: int ucbBelief← . last configuration used
2: int attempts← . last configuration used
3: if reoptimize() then
4: long initCycles← obtainRDTSC()
5: while is locked(global-lock) do pause
6: int status← XBEGIN
7: if status 6= ok then
8: if attempts = 0 then
9: if reoptimize() then tuneAttempts(ucbBelief)

10: acquire(global-lock)
11: else
12: if status = capacity then
13: . set attempts according to ucbBelief
14: else if status = explicit ∨ status = other then
15: attempts← attempts - 1
16: goto line 5
17: . ...code to run in transaction
18: if attempts = 0 then
19: release(global-lock)
20: else
21: if is locked(global-lock) then XABORT
22: XEND
23: if reoptimize() then
24: long totalCycles← obtainRDTSC() - initCycles
25: ucbBelief← UCB(totalCycles) . rules of Section 4.2
26: attempts← GRAD(totalCycles) . rules of Section 4.3

the processor cycles consumed, and applies the rules de-
scribed throughout Section 4 to configure the budget and
consumption of attempts in the metadata of the atomic
block. Similarly to other metrics, assessing performance
via processor cycles is also subject to thread preemp-
tion, which may inflate the actual cost of executing the
atomic block. We mitigate this by binding threads to log-
ical cores, and evaluating scenarios with up to as many
threads as logical cores, as more than those typically de-
teriorates performance anyway.

7 Evaluation

We now present our final set of experiments, in which we
compare TUNER with the following baselines:

• GCC - corresponding to Alg. 1, which is the imple-
mentation available in libitm in GCC 4.8.2.
• HEURISTIC - corresponding to Alg. 2 for which we
tried to use static heuristics to better tune TSX.
• ADAPTIVELOCKS - proposed to decide between locks
and TM for atomic blocks [29]; an analytical model is
used and fed with statistics sampled at run-time (simi-
larly to TUNER). We adapted their code (using CIL) to
our environment integrated in GCC.
• TUNER - our contribution described in Alg. 3.
• Best Variant - an upper bound on the best result pos-
sible, obtained by picking the best settings of the con-
sidered parameters among all possible configurations for

each benchmark and degree of parallelism. As such,
this alternative does not correspond to a real tuning al-
gorithm, but rather to an optimal, static configuration.

We used the standard parameters for the STAMP
benchmarks and show workloads for low and high con-
tention when available. For the red-black tree we used
two workloads: low contention with 1 million items
and 10% transactions inserting/removing items whereas
the rest only performs fetch operations; and high con-
tention with 1 thousand items and 90% transactions mu-
tating the tree. For these benchmarks we present the
speedup of each variant relatively to a sequential, non-
synchronized execution. Finally we use a balanced work-
load for Memcached, configured with 50% gets and sets,
and always set an equal number of worker and client
threads. For this, we used the memslap tool in a simi-
lar fashion to [27]. In Memcached there is no sequential
execution since there is always concurrency due to main-
tenance threads. As such, we use speedups relative to
GCC at 1 thread, by having each execution last 60 sec-
onds and measuring its throughput.

In general this set of experiments (Fig. 7) shows a typi-
cal gap in performance between the static configurations
and the best possible variant. This gap is usually more
noticeable as the concurrency degree increases — as we
can see for instance in Kmeans-l — which is expected,
since that is when the configuration parameters matter
most to decide when it is profitable to insist on the hard-
ware transactions of TSX. In short, these gaps in perfor-
mance between the static alternatives and the best variant
possible is exactly the room of improvement that we try
to explore with TUNER in this paper.

In fact, TUNER is able to achieve performance im-
provements in all benchmarks with the exception of
Labyrinth and SSCA2, in which it yields the same per-
formance as the static approaches. In Labyrinth trans-
actions are always too large to execute in hardware, and
the benchmark executes about five hundred such large
operations, which means the length of the transaction
dominates the benchmark and no noticeable performance
changes exist with regard to different configurations that
do not insist too much on the hardware. In SSCA2 there
is little time spent in atomic blocks, and some barriers
synchronizing the phases of the workload, resulting in
bottlenecks that are independent of the atomic blocks and
that make all configurations perform similarly.

Table 2: Geometric mean speedup (across benchmarks)
of each algorithm relatively to sequential executions.

Algorithms threads
2 4 6 8

GCC 1.25 1.74 1.51 1.29
HEURISTIC 1.46 2.01 1.37 1.28
ADAPTIVELOCKS 1.26 1.19 1.10 1.11
TUNER 1.46 2.25 2.34 2.54
Best Variant 1.51 2.35 2.41 2.66
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Figure 7: Speedup of different approaches to tune TSX relative to sequential executions in all benchmarks.
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Figure 8: Exploration and adaptation of TUNER on two different atomic blocks (left) and global throughput (right).

For all other benchmarks and workloads we find
TUNER typically close to the best variant. Table 2 sum-
marizes our findings across this extensive set of bench-
marks: at 8 threads, the maximum hardware parallelism
available for TSX, TUNER obtains an approximate im-
provement of 2× over GCC, HEURISTIC and ADAP-
TIVELOCKS, while remaining roughly 5% off the opti-
mal solution identified by means of the exhaustive, off-
line exploration of the parameters’ space.

We also note that the current hardware is limited in
terms of hardware parallelism: in fact, some times go-
ing over 4 threads is not profitable as hyper-threading is
not beneficial due to the extra pressure on L1 caches [13].

This, however, is an issue that has been tackled by related
work (e.g. [9]) and whose importance shall be relatively
diminished by the availability of new hardware to be re-
leased with more cores and without hyper-threading.

Finally, manual profiling and inspection revealed that
TUNER consistently converged to configurations simi-
lar to the ones that performed best in our extensive of-
fline testing. We present an example of the adaptation
performed by TUNER in Fig. 8 in the Yada benchmark
(we show the adaptation of one thread among 8 run-
ning concurrently). There, we can see the configuration
of two atomic blocks being re-optimized, and converg-
ing to two drastically different configurations: the left
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block executes efficiently with TSX whereas the right
one does not. This illustrates two advantages of our solu-
tion: 1) the adaptation allows heterogeneous threads and
atomic blocks to converge to different configurations; 2)
an atomic block, such as that in Fig. 8b, can still insist
moderately on using TSX as long as capacity aborts do
not occur, but react quickly in case they appear. As a re-
sult, we can see the significant performance increase of
our solution, depicted in Fig. 8c with the throughput of
each solution as the benchmark executes. We highlight
the steadiness of TUNER against the irregular and spiky
performance of the static solutions that can, at best, only
fit the workload for limited time periods.

8 Related Work

Transactional Memory was initially proposed as an ex-
tension to multi-cores’ cache coherence protocols [15].
Due to the inaccessibility of rapidly prototyping in such
environment, researchers resorted to software implemen-
tations (STM) to advance the state of the art [14]. These
STMs require instrumenting the code (either manually
or compiler-assisted) to invoke the TM software runtime
in every read and write to shared memory. As a result,
STMs impose some overhead in sequential executions,
but they are efficient enough to pay off with some mean-
ingful degree of parallelism [11, 12].

Recently, implementations in hardware (HTM) be-
came available in commercial processors delivered by
major industry players. Beyond Intel, IBM also provided
support for HTM [16], in processors mostly used on high
performance computing. We only had access to an Intel
machine, but we believe the techniques described here
should also be applicable to IBM’s HTMs due to their
similar nature. Furthermore, the mainstream nature of
Intel processors increases significantly the relevance of
works, like this, aimed to optimize its performance.

We are not aware of any work that self-tunes TSX
(or any similar HTM). Works that studied TSX’s perfor-
mance [17, 31] obtained promising results, but relied on
manual tuning and provided only brief textual insights as
to how the decisions to configure it were taken.

Given the best-effort nature of this first generation of
HTM in commodity processors, it is desirable to con-
sider an efficient solution for the fallback path in soft-
ware. One interesting idea is to use STMs combined
with HTM (HybridTMs), so that transactions that are not
successful in hardware can execute in software without
preventing all concurrency, as is the case of pessimistic
coarse locking-based schemes. In this scope, some work
has obtained promising results with a simulator for HTM
support from AMD [6,23]. However, there are no official
plans to integrate AMD’s proposal [5] in a commercial
processor. More recently, the Reduced TM technique has
been proposed for Intel TSX [20], but it was only evalu-
ated in an emulated environment. In this paper we take

a step back, and try to optimize as much as possible the
HTM usage, before trying to integrate it with more com-
plex fallback paths than that of a global lock. We believe
that for most common situations this should be enough,
as evidenced by the recent application of Intel TSX in
SAP Hana database [17].

Additionally, there have been other proposals for
adaptation in TMs in software. Adaptive Locks [29],
VOTM [19], and Dynamic Pessimism [26] adapt be-
tween optimistic (with STM) and pessimistic (via lock-
ing) execution of atomic blocks. Unfortunately, these
works do not map directly to best-effort HTMs, as
we showed in our evaluation (by considering Adaptive
Locks, as the authors kindly provided us with their code).
More complex adaptation schemes have been proposed
to self-tune the choice between different STM algorithms
in AutoTM [30]. The main drawback of these kind of
works, with regard to the HTM setting studied in this
paper, is that these self-tuning proposals require knowl-
edge that is not available from the HTM support that we
have, such as the footprint of transactions (their read-
and write-sets). That is, unless we instrument reads and
writes to obtain it, which would defeat the purpose of
HTM to lower the overhead of TM over STMs.

9 Conclusions

In this paper we studied the performance of the hardware
support available via Intel TSX in the latest generation
of x86 Core processors. This interface allows some flex-
ibility in the definition of the software fallback mecha-
nism triggered upon transactional aborts, with regard to
when and how to give up executing hardware transac-
tions. We showed that no single configuration of the soft-
ware fallback can perform efficiently in every workload
and application. Motivated by these findings, we pre-
sented TUNER, a novel self-tuning approach that com-
bines reinforcement learning techniques and gradient-
descent exploration-based algorithms to self-tune TSX in
a workload-oblivious manner. This means that TUNER
does not require a priori knowledge of the application,
and executes fully online, based on the feedback on
system’s performance gathered by means of lightweight
profiling techniques. We integrated TUNER in the well
known GCC compiler, achieving total transparency for
the programmer. We evaluated our solution against avail-
able alternatives using a comprehensive set of applica-
tions showing consistent gains.
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