
AUTOPLACER: Scalable Self-Tuning Data Placement in Distributed
Key-value Stores

João Paiva Pedro Ruivo Paolo Romano Luı́s Rodrigues
INESC-ID Lisboa / Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal

{joao.paiva,pedro.ruivo,paolo.romano,ler}@ist.utl.pt

Abstract
This paper addresses the problem of autonomic data

placement in replicated key-value stores. The goal is to
automatically optimize replica placement in a way that
leverages locality patterns in data accesses, such that
inter-node communication is minimized. To do this ef-
ficiently is extremely challenging, as one needs not only
to find lightweight and scalable ways to identify the right
data placement, but also to preserve fast data lookup.
The paper introduces new techniques that address each
of the challenges above. The first challenge is addressed
by optimizing, in a decentralized way, the placement of
the objects generating most remote operations for each
node. The second challenge is addressed by combining
the usage of consistent hashing with a novel data struc-
ture, which provides efficient probabilistic data place-
ment. These techniques have been integrated in Infinis-
pan, a popular open-source key-value store. The perfor-
mance results show that the throughput of the optimized
system can be 6 times better than a baseline system em-
ploying the widely used static placement based on con-
sistent hashing.

1 Introduction

Distributed NoSQL key-value stores [10, 18] have
emerged as the reference architecture for data manage-
ment in the cloud. A fundamental design choice in these
distributed data platforms is to select the algorithm used
for determining the placement of objects (i.e., key/value
pairs) among the nodes of the system. A data place-
ment algorithm must simultaneously address two main,
typically opposing, concerns: i) maximizing locality, by
storing replicas of the data in the nodes that access them
more frequently, while enforcing constraints on the ob-
ject replication degree and on the capacity of nodes; ii)
maximizing lookup speed, by ensuring that a copy of an
object can be located as quickly as possible.

The data placement problem has been investigated in
several alternative variants, e.g. [12, 16]. Classic ap-
proaches formulate the data placement problem as a con-
straint optimization problem, and use Integer Linear Pro-
gramming techniques to identify the optimal placement
strategy with the granularity of single data items. Unfor-
tunately, these approaches suffer from several practical
limitations. In first place, finding the optimal placement
is a NP-hard problem, hence any approach that attempts
to optimize the placement of each and every item is in-
herently non-scalable. Further, even if the optimal place-
ment could be computed, it is challenging to maintain
efficiently a (potentially very large) directory to store the
mapping between items and storage nodes.

Directories are indeed used by several systems such as
PNUTS [6] or BigTable [4]. To minimize the costs asso-
ciated with the maintenance of the directory, these sys-
tems trade-off placement flexibility and support place-
ment at a very coarse level, i.e. large data partitions rather
than on a per instance basis. However, even if coarse
granularity is used, the use of a directory service intro-
duces additional round-trip delays along the critical exe-
cution path of data access operations, which can hinder
performance considerably.

To avoid the above issues, many popular key-value
stores, such as Cassandra [18], Dynamo [10], Infinis-
pan [22], use random placement based on consistent
hashing. By relying on random hash functions to de-
termine the location of data across nodes, these solutions
allow lookups to be performed locally, in an very effi-
cient manner [10]. However, due to the random nature
of data placement (oblivious to the access frequencies
of nodes to data), solutions based on consistent hashing
may result in highly sub-optimal data placements.

This paper presents AUTOPLACER, a system aimed at
self-tuning the data placement in a distributed key value
store, which introduces a set of novel techniques to ad-
dress the trade-offs described in the previous paragraphs.
Unlike conventional solutions [12, 16], that formulate the

data placement optimization problem as an intractable
ILP problem, AUTOPLACER employs a lightweight self-
stabilizing distributed optimization algorithm. The al-
gorithm operates in rounds, and, in each round, it opti-
mizes, in a decentralized fashion, the placement of the
top-k “hotspots”, i.e. the objects generating most remote
operations, for each node of the system. This design
choice has the advantage of reducing the number of de-
cision variables for the data placement problem (solved
at each round), ensuring its practical viability.

In order to be able to identify the “hotspots” of each
node with low processing cost, AUTOPLACER adopts a
state of the art stream analysis algorithm [23] that per-
mits to track the top-k most frequent items of a stream
in an approximate, but very efficient manner. The infor-
mation provided by the Space-Saving Top-k algorithm
is then used to instantiate the data placement optimiza-
tion problem. We first study the accuracy of the solution
from a theoretical perspective, deriving an upper bound
on the approximation ratio with respect to a solution us-
ing exact frequencies. Next we discuss how to maxi-
mize the efficiency of the solution, showing how it can
be made amenable for being partitioned in independent
sub-problems, solvable in parallel.

Unlike solutions that rely on directory services, AU-
TOPLACER guarantees 1-hop routing latency. To this
end, AUTOPLACER combines the usage of consistent
hashing, which is used as the default placement strategy
for less popular items, with a highly efficient, probabilis-
tic mapping strategy that operates at the granularity of the
single data item, achieving high flexibility in the reloca-
tion of (a possibly very large number of) hotspot items.

The key innovative solution introduced to pursue this
goal is a novel data structure, which we named Proba-
bilistic Associative Array (PAA). The goal of the PAA is
to minimize the cost of maintaining a mapping associ-
ating keys with nodes in the system. PAAs expose the
same interface of conventional associative arrays, but, in
order to achieve space efficiency, they trade-off accuracy
and rely on probabilistic techniques which can lead to
inaccurate results with a user-tunable probability (these
inaccuracies do not affect the correctness of the system,
in worst case they may only degrade its performance).
Internally, PAAs rely on Bloom Filters (BFs) and on De-
cision Tree (DT) classifiers. BFs are used to keep track
of the elements inserted so far in the PAA in a space-
efficient way; DTs are used to infer a compact set of
rules establishing the associations between keys and val-
ues stored in the PAA. In order to maximize the effec-
tiveness of the DT classifier, we expose a programmatic
API that allows programmers to provide semantic infor-
mation on the nature of the keys stored in the PAA (e.g.,
the data type of the value associated with the key). This
information is then exploited, during the learning phase

of the PAA’s DT, to map keys into a multi-dimensional
space that can be more effectively clustered by a DT clas-
sifier.

In summary, AUTOPLACER provides two key fea-
tures:

• It introduces a novel iterative, decentralized, self-
tuning data placement optimization scheme.

• It preserves efficient lookups, while achieving high
flexibility in determining an optimized data place-
ment, through the use of a new probabilistic data
structure designed specifically for this purpose.

AUTOPLACER has been integrated in a popular, open-
source key-value store, namely Infinispan: Infinispan is
the reference NoSQL platform and clustering technol-
ogy for JBoss AS, a mainstream open source J2EE ap-
plication server. The results show that AUTOPLACER
can achieve a throughput 6 times better than a baseline
system using consistent hashing.

The remaining of the paper is structured as follows.
Our target system is characterized in Section 2. Section 3
provides a global overview of AUTOPLACER. Then, its
components are described in more detail in the next two
sections: the PAA internals are described in 4; a theoret-
ical analysis of the optimizer’s accuracy is provided in 5.
Section 6 reports the results of the experimental evalua-
tion of the system. Section 7 compares our system with
related work. Finally, Section 8 concludes the paper.

2 System Characterization

The development of AUTOPLACER has been motivated
by our experience [26, 25, 27] with the use of an existing,
state-of-the art, key-value store, namely Infinispan [22]
by Red Hat c©. In Infinispan (and other similar products
such as [18, 10]), data is stored in multiple nodes using
consistent hashing. For each key, consistent hashing de-
termines a supervisor node for that item. Items can be
replicated. A node that stores a copy of data item i is
denoted an owner of that item. Assume that d copies are
maintained of each data item, the owners of data item
i are deterministically assigned to be j’s supervisor plus
its d−1 immediate successors (in the one hop distributed
hash table that is used to implement consistent hashing).

Each node serves a dual purpose: it stores a subset
of the data items maintained by the distributed store and
also executes application code. The application code
may be structured as a sequence of transactions (Infinis-
pan supports transactional properties), with different iso-
lation levels.

When the application code reads a data item, its value
must be retrieved from one of its owners (which can be
another node in the cluster). Thus, optimal performance

is achieved if the node that executes a given application
is the owner for the items it accesses more often. When
the application writes a data item, all owners must be
updated. Interestingly, the placement policy can also af-
fect the performance of write operations. When multiple
writes are performed in the context of a transaction, they
can be applied in batch when the transaction commits.
Hence, the larger the number of owners of keys updated
by a transaction, the higher the number of nodes that have
to be contacted during its commit phase.

Infinispan uses consistent hashing to ensure that all
lookups can be executed locally. Unfortunately, in typi-
cal deployments of large-scale key-value stores, random
data placement can be largely suboptimal as applications
are likely to generate skewed access distributions [21],
often dependent on the actual “type” of operations pro-
cessed by each node [30, 9]. Also, workloads are fre-
quently distributed according to load balancing strate-
gies that strive to maximize locality [14]/minimize con-
tention [2] in the data accesses generated by each node.
As we will show in the evaluation section, all these facts
make consistent hashing sub-optimal. Therefore, signif-
icant performance improvements can be achieved by us-
ing appropriate autonomic data placement strategies.

3 AUTOPLACER Overview

AUTOPLACER is designed to optimize data location in a
decentralized manner, i.e., each node in the system con-
tributes to the global optimization process. Since AUTO-
PLACER is aimed at systems that use consistent hashing
as the default data placement policy, we also rely on con-
sistent hashing to decentralize the optimization effort:
each node is responsible for deciding the placement for
the items it supervises. AUTOPLACER executes, cycli-
cally, a sequence of optimization rounds. As a result of
each round, a number of data items may be relocated.
This happens only if the expected gains are above a min-
imum threshold. Each optimization round consists of the
following sequence of six tasks.

Task 1: The first task of the AUTOPLACER approach
consists of collecting statistics about the hotspots data,
i.e., the top-k most accessed data items, at each node.
In fact, instead of trying to optimize the placement of
every data item in a single round, at each optimization
round, AUTOPLACER only optimizes the placement of
items that are identified as hotspots. Since this task is
run cyclically, once some hotspots have been identified
(and relocated) in a given round, new (different) hotspots
are sought in the next round. Therefore, although in each
round only a limited number of hotspots is identified, in
the long run, a large number of data items may be se-
lected over multiple optimization rounds, as long as gains
can still be obtained from their relocation.

Task 2: The second task consists in having the nodes
exchange statistics regarding the data items that were
identified as hotspots during the current round. More
precisely, each node gathers (from the remaining nodes
of the platform) access statistics on any hotspot items it
supervises.

Task 3: The above information is used in the third
task (denoted the optimization task) to find an appropri-
ate placement for those items. The result of this task is a
partial relocation map, i.e., a mapping of where replicas
of each hotspot items that the node supervises (for the
current round) must be placed.

Task 4: Even if the number of hotspots tracked at each
round is a small fraction of the entire set of items main-
tained in the key-value store, over multiple rounds the
relocation map can grow in an undesired way, and may
even be too large to be efficiently distributed to all nodes.
This task is devoted to encoding the relocation map in a
probabilistic data structure that can be efficiently repli-
cated on all nodes in order to ensure fast lookups, i.e. a
Probabilistic Associative Array (PAA). Specifically, each
node computes the PAA for the (relocated) objects it su-
pervises.

Task 5: Once each PAA has been computed, each
node disseminates it among all nodes. By assembling
the PAAs received from all the nodes in the system, each
node can locally build an object lookup table that in-
cludes updated information on the placement of data op-
timized during this round.

Task 6: Finally, at the end of each round, the data items
for which new locations have been derived are trans-
ferred (using conventional state-transfer facilities [15,
28]) in order to match the new data placement.

As can be inferred from the previous description, the
work is divided among all nodes and communication
takes place only during tasks 2, 5, and 6, in order to, re-
spectively, exchange statistical information on hotspots,
distribute the PAA, and finally relocate the objects. Also
the tasks that require communication are performed in
parallel, without the help of any centralized component.

In the next subsections we provide more informa-
tion about the two main components of AUTOPLACER,
namely, the optimizer (executed by Task 3) and the PAA
(built in Task 4 and used subsequently to perform data
lookups locally).

3.1 Optimizer
Most works, e.g., [30, 20, 16, 12], in the area of data
placement (and of its many variants [16, 12]) assume that
the objective and constraint functions of the optimization
problem can be expressed (or approximated) via linear
functions, and accordingly formulate an Integer Linear
Programming (ILP) problem. The ILP model can indeed

N the set of nodes j in the system
O the set of objects i in the system
X a binary matrix in which Xi j = 1 if the object i is

assigned to node j, and Xi j = 0 otherwise
ri j , wi j the number of read, resp. write, accesses performed

on a object i by node j
crr , crw the cost of a remote read, resp. write, access
clr , clw the cost of a local read, resp. write, access

d the replication degree, that is number
of replicas of each object in the system

S j the capacity of node j.

Table 1: Parameters used in the ILP formulation.

be adopted also for the specific data placement problem
tackled in this paper. To this end, one can model the as-
signment of data to nodes by means of a binary matrix X ,
in which Xi j = 1 if the object i is assigned to node j, and
Xi j = 0 otherwise. Further, one can associate (average,
or per object) costs with local/remote read/write opera-
tions. The ILP problem is then formulated as the mini-
mization of the objective function that expresses the total
cost of accessing all data items across all nodes, subject
to two constraints: i) the number of replicas of each ob-
ject must meet a predetermined replication degree, and
ii) each node has a finite capacity (it must not be assigned
more objects than it can store). In Table 1 we list the pa-
rameters used in the problem formulation, which aims at
minimizing the following cost function:

∑
j∈N

∑
i∈O

X i j(crrri j + crwwi j)+Xi j(clrri j + clwwi j) (1)

subject to:

∀i ∈ O : ∑
j∈N

Xi j = d∧∀ j ∈N : ∑
i∈O

Xi j ≤ S j

Despite its convenient mathematical formulation, ILP
problems are NP-hard. Further, solving the above ILP
problem would require to collect and exchange among
nodes access statistics for all objects in the system. We
tackle these drawbacks by introducing a lightweight,
multi-round distributed optimization algorithm, which
we describe in the following.

3.1.1 Space-Saving Top-k algorithm

An important building block of AUTOPLACER is the
Space-Saving Top-k algorithm by Metwally et al. [23].
This algorithm is designed to estimate the access fre-
quencies of the top-k most popular objects in an approxi-
mate, but very efficient way, i.e. by avoiding maintaining
information on the access frequencies (namely counters)
for each object in the stream. Conversely, the Space-
Saving Top-k algorithm algorithm maintains a tunable,
constant, number m, where m� |O|, of counters, which

makes it extremely lightweight. On the downside, the in-
formation returned in the top-k list may be inaccurate in
terms of both the elements that compose it and their es-
timated frequency. However, this algorithm has a num-
ber of interesting properties concerning the inaccuracies
it introduces. First, it ensures that the access frequen-
cies of the objects it tracks are always consistently over-
estimated. Also, its maximum overestimation error is
known, and is equal to the frequency of the least fre-
quently accessed item present in top-k, denoted as Fk.
Finally, its space-requirements can be tuned to bound the
maximum error introduced in the frequency tracking, as
we will further discuss in Section 5.

3.1.2 Using Approximate Information

In AUTOPLACER each node j runs 2 distinct instances,
noted as top-krd

j , resp. top-kwr
j , of the Space-Saving Top-

k algorithm, used to track the k most frequently read,
resp. updated, data items during the current optimization
round. We denote with top-k j(O) the subset of cardi-
nality k (of the entire data set O) contained in both the
read and write top-k instances at node j, and with top-
K(O) = ∪ j∈N (top-k j(O)) the union of the top-k data
items across all nodes.

By restricting the optimization problem to the top-k
accessed data items we reduce the number of decision
variables of the ILP problem significantly, namely from
|O||N | to O(k|N |) (where k � |O|). This choice is
crucial to guarantee the scalability of the proposed ap-
proach. However, it requires to deal with the incom-
plete and approximate nature of the data (read/write) ac-
cess statistics provided by the top-k algorithm, which we
denote with r̂ik,ŵik to distinguish them from their exact
counterparts (rik,wik). Also, we use the notation X̂ to
refer to the solution of the optimization problem using
as input the access statistics provided by the top-k algo-
rithm, and distinguish it from the one obtained using the
exact access statistics in input, which we denote Xopt .

A first problem to address is related to the possibility
of lacking information concerning the access frequency
by some node j for some data item i ∈ top-K(O): this
can happen in case i has not been tracked in top-k j(O),
but is present in the top-k j′(O) of some other node j′ 6= j.
To address this issue, we simply set to 0 the frequencies
r̂i j,ŵi j

Finally, the approximate nature of the information pro-
vided by the Space-Saving Top-k algorithm may impact
the quality of the identified solution. A theoretical anal-
ysis aimed at evaluating this aspect will be provided in
Section 5.

3.1.3 Accelerating the solution of the optimization
problem

To accelerate the solution of the optimization problem
we take two complementary approaches: relaxing the
ILP problem, and parallelizing its solution.

The ILP problem requires decision variables to be in-
tegers and is computationally onerous [30]. Therefore,
we transform it into an efficiently solvable linear pro-
gramming (LP) problem. To this end, we let the matrix
X̂ assume real values between 0 and 1 (adding an ex-
tra constraint ∀i ∈ O,∀ j ∈ N 0 ≤ X̂i j ≤ 1). Note that
the solutions of the LP problem can have real values,
hence each object is assigned to the d nodes which have
highest X̂i j values. As in [30], we use a greedy strategy
according to which, if the assignment to a node causes
a violation of its capacity constraint, the assignment is
iteratively attempted to the node that has the d + k-th
(k ∈ [1, |N |−d]) highest scores.

Second, we introduce a controlled relaxation of the ca-
pacity constraint, which allows us to partition the ILP
problem into |N | independent optimizations problems
that we solve in parallel across the nodes of the plat-
form. Let top-k j(O|n) be the set of keys in top-k j(O)
of node j that node n supervises. Each node j sends
its top-k j(O|n) to each other node n in the system. As
a result each node j also gathers the access statistics
top-K(O| j)=∪n∈N top-kn(O| j) concerning the current
hotspots that j supervises. At this point each node j com-
putes the new placement for the data in top-K(O| j).

Note that since we are instantiating the (I)LP optimiza-
tion problems in parallel, and in an independent fashion,
we need to take an additional measure to guarantee that
the capacity constraints are not violated. To this end we
instantiate the (I)LP problems at each node j with a ca-
pacity S′j = S j−|N |k. In practice, this relaxation is ex-
pected to have minimum impact on the solution quality
as k� S j.

Overall, at the end of an optimization round each node
j produces two outputs: the partial relocation map X̂ ,
and the cost reduction achievable by relocating the data
in top-K(O| j) according to X̂ , which we denote as ∆C j .
∆C j , which is computed on the basis of Equation 1, al-
lows estimating the gain achievable by performing this
optimization round, and, as we will discuss shortly, is
used in AUTOPLACER to determine the completion of
the round-based optimization algorithm.

3.2 Probabilistic Associative Array: Ab-
stract Data Type Specification

Even though in each round AUTOPLACER optimizes the
placement of a relatively small number of data items,
over multiple optimization rounds the number of relo-

Method Input Parameters Output
CREATE Set〈Key,Value[d]〉, α , β PAA

GET Key Value[d]
ADD Set〈Key,Value[d]〉 PAA

GETDELTA PAA ∆PAA
APPLYDELTA ∆PAA PAA

Table 2: PAA Interface.

cated objects can grow very large. Hence, a relevant is-
sue is related to the overhead for maintaining, and repli-
cating, a possibly very large relocation map. Indeed the
relocation map can be seen as an associative array in
which each entry is a pair mapping a data item to the
set of nodes that own it.

The Probabilistic Associative Array (PAA) is a novel
data structure that allows maintaining an associative ar-
ray in a space efficient, but approximate way. We present
the PAA as an abstract data type, with an interface anal-
ogous to conventional associative arrays. Later in Sec-
tion 4, we will discuss how it has been implemented in
AUTOPLACER.

The PAA is characterized by the API reported in Ta-
ble 2, which is similar to that of a conventional associa-
tive array, including methods to create and query a map
between keys and (constant d-sized) arrays of values. To
this end, the PAA API includes three main methods: the
CREATE method, which returns a new PAA instance and
takes as input a set of pairs in the domain (key× array[d]
of values) to be stored in the PAA (called, succinctly,
seed map) and two tunable error parameters α and β

(discussed below); the GET method, which allows query-
ing the PAA obtaining the array of values associated with
the key provided as input parameter, or⊥ if the key is not
contained in the PAA; the ADD method, which takes an
input a seed map and adds it to an existing PAA.

The PAA trades accuracy for space efficiency, and may
return inaccurate results when queried. In the following
we specify the properties ensured by the GET method of
a PAA:
• it may provide false positives, i.e., to provide a return

value different from ⊥ for a key that was not inserted in
the PAA. The probability of false positives occurring is
controlled by parameter α .
• it has no false negatives, i.e., it will never return ⊥

for a key contained in the seed map.
• it may return an inaccurate array of values for a key

contained in the seed map. The probability of returning
inaccurate arrays is controlled by parameter β . In other
words, with some small and controlled probability, the
data items may be located in different nodes than those
specified by the seed map (thus, the efficiency of lookup
may cause some degree of sub-optimal placement).

• its response is deterministic, i.e., for a given instance
of a PAA, the return value for any given key is always the
same.

Finally, the PAA API contains two additional methods
that allow to update the content of a PAA in an incremen-
tal fashion: GETDELTA, and APPLYDELTA. GETDELTA
takes as input a PAA and returns an encoding, denoted
as ∆PAA, of the differences between the base PAA over
which the method is invoked (say PAA1) with respect to
the input PAA, say PAA2. The ∆PAA returned by GET-
DELTA can then be used to obtain PAA2 by invoking the
method APPLYDELTA over PAA1 and passing as input
parameter ∆PAA.

3.3 The AUTOPLACER iterative algorithm

We now provide, in Algorithm 1, the pseudo-code for-
malizing the behavior of the AUTOPLACER algorithm
executed by a node j. Each node maintains a local
lookup table, denoted as LookupT, that consists of an ar-
ray of PAAs, one per each node j in the system. Specif-
ically, j’s entry of LookupT is used to keep track of the
objects supervised by node j that have already been relo-
cated by AUTOPLACER. For any given round, LookupT
is the same on all nodes.

At the beginning of each round, j collects statis-
tics concerning its top-k most frequently read/writ-
ten data items. This activity is encapsulated by the
collectStats procedure, which is designed to track
only accesses to objects whose placement had not been
previously optimized in previous rounds. This measure
is necessary, as, otherwise, in presence of stable distribu-
tions of the data access among nodes (i.e., stable work-
loads), the top-k lists at each node may quickly stagnate.
Especially in case of skewed distributions the top-k lists
would tend to track the very same objects (i.e., the most
popular ones) along every round.

By tracking only the keys whose placement has not
been optimized in previous rounds, it is guaranteed that,
in two different rounds, two disjoint set of objects are
considered by the optimization algorithm, leading to the
analysis of progressively less “hot” data items. Further,
it prevents the possibility of ping-pong phenomena [13],
i.e. the continuous re-location of a key between nodes, as
it guarantees that the position of each object is optimized
at most once.

To determine whether an access to a data item should
be traced or not, the collectStats procedure is pro-
vided with LookupT as input (we recall that LookupT
keeps track of all items whose placement has been pre-
viously optimized). Upon a read/write access on a data
item, the collectStats procedure, whose code is not
reported for space constraints, checks if the item is con-
tained in LookupT and, in the positive case, it avoids

1 Array[1. . . |N |] of PAA : LookupT={⊥, . . . ,⊥};
2 PAA: tmpPAA=⊥;
3 do
4 Array[1. . . |N |] of Set〈i,r,w〉 : req=⊥;
5 〈toprd

k , topwr
k 〉 ← collectStats(LookupT);

6 foreach n ∈Π do
7 send({〈i,r,w〉 ∈ {toprd

k ∪ topwr
k } such that

supervisor(i) = n}) to n;
8 foreach n ∈Π do
9 req[j]← receive() from n;

10 〈X̂ ,∆C j 〉 ← Optimize(req);

11 tmpPAA← LookupT[j];
12 tmpPAA.ADD(X̂);
13 ∆PAA: delta← tmpPAA.GETDELTA(LookupT[j]);
14 broadcast(delta,∆C j);

15 ∆C∗ ← 0;
16 foreach n ∈Π do
17 [delta,∆Cn]← receive() from n;
18 LookupT[n]←LookupT[n].APPLYDELTA(delta);
19 ∆C∗ ← ∆C∗ +∆Cn ;

20 moveData();

21 while ∆C∗ > γ;

Algorithm 1: AUTOPLACER’s behavior at node j

tracing this access. Notice that we are assuming that the
data access frequencies do not change significantly dur-
ing the entire optimization process. Extending AUTO-
PLACER to cope with scenarios in which applications’
data access patterns change at a frequency higher than
AUTOPLACER’s complete optimization cycle is outside
of the scope of this paper and will be subject of future
work (see Section 8).

Next the nodes exchange the information collected by
collectStats. Since we also parallelize the optimiza-
tion procedure, we send to each node only the statistical
information that will be relevant to the computation that
will be performed at that node, i.e., the statistical infor-
mation regarding the data items it supervises.

At this point, each node optimizes the placement for
the objects it supervises (primitive Optimize), determin-
ing their new owners (encoded in the partial relocation
map, denoted X̂). The node also computes the reduction
of the local cost function (denoted as ∆C j) that the new
assignment brings.

Then, node j computes a temporary PAA, based on
the previous value of its PAA (stored in LookupT[j]) and
on the new additional relocation information X̂ (lines 12-
13). The API of the PAA is then used to extract the rele-
vant deltas from the existing PAA that need to be dissem-
inated, in order to avoid sending the entire PAA again
(line 14). These deltas are exchanged among nodes, and
applied locally, such that every node can update all en-

tries of LookupT (lines 17-20).

Each optimization round ends by triggering the re-
location of the data via the moveData() primitive. This
primitive will use the updated PAAs to determine the set
of items that have been re-located, and gives the neces-
sary commands to perform the corresponding state trans-
fers. Several state transfer techniques could be used for
this purpose [15, 28], whose complexity is dependant
on the consistency guarantees that the key-value store
implements (e.g. transactional vs eventual consistency).
These mechanisms are indeed orthogonal to the AUTO-
PLACER system.

Finally, AUTOPLACER relies on a simple self-
stabilizing mechanism that halts the distributed optimiza-
tion algorithm if the “gain” achieved during the last opti-
mization round does not exceed a user-tunable minimum
threshold, denoted γ (line 22). This allows avoiding to
analyze the “tail” of the data access distribution, whose
optimization would lead to negligible gains. We chose
as metric to evaluate the optimization gain the reduction
of the cost function achieved during the last optimization
round, ∆C∗. To compute this value, each node j dissemi-
nates the value for the reduction of its local cost function
∆C j along with delta, in line 15. At the end of this dis-
semination phase each node of the system can determin-
istically compute ∆C∗ and evaluate the predicate on the
termination of the optimization algorithm.

3.4 The lookup function

Algorithm 2 shows the pseudocode for the lookup func-
tion for a key k. First, consistent hashing is used to iden-
tify the supervisor of k, say s. We then check whether the
PAA associated with s contains k. In the positive case, we
use the mapping information provided by LookupT[s] to
identify the set of nodes that are currently maintaining
key k. Otherwise, we simply return the set of owners for
k as determined by consistent hashing (d is the replica-
tion degree).

1 Array[1 . . .d] of Nodes LOOKUP(Key k)
2 if LookupT[supervisor(k)].GET(k) 6=⊥ then
3 return LookupT[supervisor(k)].GET(k);
4 else
5 s← supervisor(k);
6 return {s, s+1, . . ., s+d-1};

Algorithm 2: PAA-based lookup function

4 Probabilistic Associative Array Internals

4.1 Building Blocks

Scalable Bloom filters (SBF) [1] are a variant of Bloom
filters (BF) [3], a well know data structure that supports
probabilistic test for membership of elements in sets. A
BF never yields false negatives (if the query returns that
an element was not inserted in a BF, this is guaranteed
to be true). However, a BF may yield false positives (a
query may return true for an element that was never in-
serted) with some tunable probability α , which is a func-
tion of the number of bits used to encode the BF and of
the number of elements that one stores in it (that must be
known a-priori). SBFs extend BFs in that they can adapt
their size dynamically to the number of elements effec-
tively stored, while still ensuring a bounded false positive
probability. This is achieved by creating, on demand, a
sequence of BFs with increasing capacity.

VFDT [11] is a classifier algorithm that induces deci-
sion trees over a stream of data, i.e. without assuming
the a-priori availability of the entire training data set un-
like most existing decision trees [24]. VFDT is an incre-
mental online algorithm, given that it has a model avail-
able at any time during its run and refines the model over
time (by performing new splits, or pruning unpromising
leaves) as it is presented with additional training data. As
classical off-line decision trees, the output of VFDT is a
set of rules that allows to map a point in the feature space
to a target discrete class.

The PAA uses SBFs and VFDT in the following man-
ner. SBFs are used to assert if a key was stored in the
PAA. VFDT is used to obtain the set of values associ-
ated with a key stored in tha PAA. The next paragraphs
explain how this technique works in detail.

4.2 FeatureExtractor Key Interface

In order to maximize the effectiveness of the machine-
learning statistical inference, programmers can option-
ally provide semantic information on the type of key
inserted in a PAA, by having their keys implementing
the FEATUREEXTRACTOR interface. This interface ex-
poses a single method, GETFEATURES(), which returns
a set of pairs 〈featureName, featureValue〉, where fea-
tureName is a unique string identifying each feature and
featureValue is a (continuous or discrete) value defining
the value of that feature for the key.

The purpose of this interface is to allow a key to
be mapped, in a semantically meaningful (and hence
inherently application dependant) way, into a multi-
dimensional feature-space that can be more efficiently
analyzed and partitioned by a statistical inference tool.
Features can be “naturally” derived from the data model

used in the application. For instance, if an object-
oriented (or relational model) is used, a typical encod-
ing for the key corresponding to an object of class “Per-
son” with ID=3 may be “Person-3”. The FEATURE-
EXTRACTOR interface can then simply parse the key
and return the pair 〈“Person”, id〉. This can be further
illustrated considering the real example of the TPC-C
benchmark, which we used in our evaluation. In this
case, a “Customer” object with id c1 would be associated
with a feature, 〈“Customer”, c1〉. Further, since in TPC-
C a customer is statically registered in a “Warehouse”
object, c1 would have a second feature 〈“Warehouse”,
w1〉, being w1 the identifier of the warehouse where
c1 is registered. Hence, a different customer c2 reg-
istered with a warehouse w2 would be associated with
the features 〈“Customer”, c2〉 and 〈“Warehouse”, w2〉,
while the object representing warehouse w2 itself would
be associated with the features 〈“Customer”, N/A〉 and
〈“Warehouse”, w2〉.

Note that this sort of feature extraction can be easily
automated, provided the availability of information on
the mapping between the application’s domain model, in
terms, e.g., of entities and relationships, and the underly-
ing key/value representation.

4.3 PAA Operations

• CREATE: a SBF is created, sizing it to ensure the tar-
get error rate α and populating it with the keys passed
as input parameter. Further we train d new instances
of VFDT. The i-th instance of VFDT (i ∈ [1, . . . ,d]) is
trained by using a dataset containing, for each key k in
the seed map, an entry composed by the mapping of k
in the feature space (obtained using k’s FeatureExtrac-
tor interface), and as target class value, the i-th value
associated with k in the seed map. As we are creating
a decision-tree from scratch over a fully-known training
set, we use in this phase VFDT as an offline-learner. This
allows us to tightly control the cardinality of the rule set
it generates to achieve arbitrary accuracy in encoding the
mapping, and hence fine tune the pruning of the rule set
to achieve the user specified parameter β .
• GET: queries for a key k are performed by first

querying the SBF. If the response is negative, ⊥ is re-
turned. Otherwise (and this may be a false positive with
probability α), the VFDT is queried by transforming k
in its representation in the feature space by means of
the FeatureExtractor interface. If k had actually been in-
serted in the PAA, the query to the SBF is guaranteed to
return a correct result. However, it may still be wrongly
classified by the VFDT, which may return any of the tar-
get classes that it observed during the training phase.
• ADD: to implement this method, we leverage on the

incremental features of the SBF and VFDT. To this end,

we first insert each of the entries k passed as input param-
eter into the SBF. This may lead to the generation of an
additional, internal bloom filter, to ensure that the bound
on α is ensured. Next we incrementally train the VFDT
instances currently maintained in the PAA, by providing
them, in a single batch, the entire set of key/value pairs
that is being added to the PAA. In this phase we con-
trol the learning of the new mapping in a single batch,
by allowing the VFDT algorithm to scan the new train-
ing set multiple times until we reach the target bound on
misclassification β is satisfied.
• GETDELTA: the output consists of the binary diff of

the SBFs, plus the rule set of the VFDT maintained by
the PAA over which this method is invoked.
• APPLYDELTA: symmetrically to what is done in

GETDELTA, this method generates a new PAA, whose
SBF is obtained by applying the binary SBF diff con-
tained in the input ∆PAA to the SBF of the PAA over
which this method is invoked. The rule set of the output
PAA is set equal to the one contained in the input ∆PAA.

5 Optimizer Analysis

As already noted, the approximate nature of the infor-
mation provided by top-k may affect the quality of the
identified solution. An interesting question is therefore
how degraded is the quality of the data placement so-
lution when using top-k. In the following theorem we
provide an answer to this question by deriving an upper
bound on the approximation ratio of the proposed algo-
rithm in an optimization round. Our proof shows that the
approximation ratio is a function of the maximum ap-
proximation error provided by any top-k j(O), which we
denote e∗, and of the average frequency of access to re-
mote data items when using the optimal solution.

Theorem 1 The approximation ratio of the solution X̂
found using the approximate frequencies r̂ik,ŵik is:

1+
d

|N |−d
φ , with φ =

e∗(crr + crw)

crrrR+ crwrW

where e∗ is the maximum overestimation error of top-k,
and rR, resp. rW , is the average, across all nodes, of the
number of read, resp. write, remote data items using the
optimal data placement XOpt .

Proof Let us now denote with C(X ,ri j,wi j) the cost
function used in Eq. 1 of the ILP formulation restricted
to the data items contained in top-K(O):

∑
j∈N

∑
i∈top-K(O)

X i j(crrri j + crwwi j)+Xi j(clrri j + clwwi j)

and with Opt =C(Xopt ,ri j,wi j) the value returned by the
cost function using the binary matrix Xopt obtained solv-
ing the ILP problem with exact access statistics ri j,wi j.

Let lR, resp. rR, be the average, across all nodes, of
the number of read accesses to local, resp. remote, data
items using the optimal data placement X . lW and rW
are analogously defined for write accesses. These can be
directly computed, once known XOpt and ri j,wi j as:

rR =
∑ j∈N ∑i∈top-K(O) XOpt

i j ri j

|top-K(O)|(|N |−d)

rW =
∑ j∈N ∑i∈top-K(O) XOpt

i j wi j

|top-K(O)|(|N |−d)

lR =
∑ j∈N ∑i∈top-K(O) XOpt

i j ri j

|top-K(O)|d

lW =
∑ j∈N ∑i∈top-K(O) XOpt

i j wi j

|top-K(O)|d

We can then rewrite Opt and derive its lower bound:

Opt =|top-K(O)|((|N |−d)(crrrR+ crwrW)+ (2)
+d(clrlR+ crwlW))≥
≥ |top-K(O)|(|N |−d)(crrrR+ crwrW)

Next, let us derive an upper bound on the “error” us-
ing the solution X̂ obtained instantiating the ILP prob-
lem using the top-k-based frequencies r̂i j, ŵi j. The worst
scenario is that an object o ∈ O is not assigned to the
d nodes that access it most frequently because they do
not include o in their top-k. In this case we can estimate
the maximum frequency with which o can have been ac-
cessed by any of these nodes as e∗. Hence if we evaluate
the cost function C(X̂ ,ri j,wi j) using the exact data ac-
cess frequencies, and the solution X̂ of the ILP problem
computed using approximate access frequencies, we can
derive the following upper bound:

C(X̂ ,ri j,wi j)≤ Opt + |top-K(O)|de∗(crr + crw) (3)

The approximation ratio is therefore:

C(X̂ ,ri j,wi j)

C(XOpt ,ri j,wi j)
≤ 1+

d
(|N |−d)

e∗(crr + crw)

crrrR+ crwrW
(4)

In the following corollary we exploit the bounds on the
space complexity of the Space-Saving Top-k algorithm
[23] to estimate the number of distinct counters to use to
achieve a target approximation factor 1+ d

|N |−d φ .

Corollary 2 The number m of individual counters main-
tained by the Space-Saving Top-k algorithm, to achieve
an approximation factor equal to 1+ d

|N |−d φ is:

m =
SL
φ

crrrR+ crwrW
crr + crw

where SL is the total number of accesses in the stream.

Proof Derives from Theorem 6 of the work that intro-
duced the Space-Saving Top-k algorithm [23], which
proves that to guarantee that the maximum overestima-
tion error e∗ ≤ εFk, where Fk is the frequency of the k-th
element in top-k, it is sufficient to use m = SL

εFk
counters.

Finally, since in each round AUTOPLACER optimizes
the placement of a disjoint set of items, it follows that, if
we assume stable data access distributions, the approxi-
mation ratio achieved by the optimization algorithm dur-
ing round i will necessarily be lower (hence better) than
for round i−1. In fact, at each round, the frequencies of
the items tracked by the top-k will be lower than in the
previous rounds, and, consequently, e∗ will not increase
over time.

6 Evaluation

In order to evaluate experimentally AUTOPLACER, we
integrated it in the Infinispan key-value store. As bench-
marking platform, we have used a cluster of 40 virtual
machines (deployed on 10 physical machines) running
Xen, equipped with two 2.13 GHz Quad-Core Intel(R)
Xeon(R) E5506 processors and 40 GB of RAM, running
Linux 2.6.32-33-server and interconnected via a private
Gigabit Ethernet. Since Infinispan provides support for
transactions, we developed for our experimental study
a porting of a well-known benchmark for transactional
systems, namely the TPC-C benchmark [21], which we
adapted to execute on a key-value store1. This choice is
motivated by the fact that TPC-C is a complex bench-
mark, which generates workloads representative of re-
alistic OLTP environments, with complex and heteroge-
neous transactions having very skewed access patterns
and high conflict probability. This is in contrast with
common key-value store benchmarks [7], which are typ-
ically composed of simple synthetic workloads.

Since our evaluation focuses on assessing the effec-
tiveness of AUTOPLACER in different scenarios of local-
ity, we have modified the benchmark such that we can
induce controlled locality patterns in the data accesses
of each node. This modification consists in configuring
the benchmark such that the transactions originated on a
given node access with probability p data associated with
a given warehouse, and with probability 1− p data asso-
ciated a warehouse chosen randomly. So, for example,
by setting p = 90%, nodes will have disjoint data access
patterns (each accessing a different warehouse) for 90%
of the transactions, while the remaining 10% access data
uniformly.

1The code of AUTOPLACER and of the porting of TPC-C employed
in this evaluation study are freely available in the Cloud-TM project
public repository: http://github.com/cloudtm

http://github.com/cloudtm

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30 35 40

N
e

tw
o

rk
 S

iz
e

 (
B

y
te

s
)

Number of Rounds

Bloomier
PAA-Bloom

PAA-Scalable

Figure 1: Traffic generated by a node using different as-
sociative arrays.

Mechanism Re-located Local
objects space (KB)

PAA-scalable 26600 150.8
PAA-Bloom 26600 31.84

Bloomier 26600 575.3

Table 3: Re-located objects and size of different PAA
implementations

6.1 Probabilistic Associative Array

In this section we study tradeoffs in the space efficiency
and accuracy involved in the configuration and imple-
mentation of the PAA. For these results, we have config-
ured the benchmark with 100% locality. In order to use
the PAA with TPC-C, we modified the TPC-C keys in or-
der to implement the Feature Extractor Interface accord-
ing to the static attributes of the objects they represent.

Bloom Filter Figure 1 presents the network band-
width of different implementations of the PAA, com-
pared with another form of probabilistic associative ar-
rays, the Bloomier Filters (BLOOMIER) [5] as the rounds
advance in the system. One implementation of the PAA
uses regular Bloom filters (PAA-BLOOM) [3], while the
other uses a scalable Bloom filter (PAA-SCALABLE) [1].
Both PAAs were configured with α = β = 0.01, and the
Bloomier filter’s false positive probability was also set to
0.01. We note that the best solution is the one that allows
to propagate in the network only differential updates with
regard to the previous state, i.e, the PAA-scalable.

Table 3 shows the correspondent local storage require-
ments at the end of the experiment. As it can be seen,
PAA-SCALABLE has higher storage requirements than
PAA-BLOOM. This is unsurprising, as scalable bloom
filters are known to achieve lower compression than tra-
ditional bloom filters when fed with the same data set
and configured to yield the same false positive rates [1].

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30
 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

Er
ro

rs
 (%

)

R
ul

e
Se

t S
iz

e
(B

yt
es

)

Number of relocated data items (Thousands)

% Error
Size

Figure 2: Error probability and rule set size for VFDT

However, the storage requirements of both solutions are
still considerably smaller than those of Bloomier filters.

Machine Learner Figure 2 presents the error probabil-
ity and space required by the DT to encode the objects
moved in every round of the experiment. As more objects
are moved in the system, the number of rules increases,
leading to an increase in the size taken by this portion
of the PAA. However, the machine learner can represent
the mapping of 26600 keys in 1000 Bytes, which corre-
spond to 213 rules. Furthermore, it can also be observed
that while a significant number of keys is added to the
machine learner (around 1000 per round), the error re-
mains relatively stable.

6.2 Leveraging from Locality
This section shows how AUTOPLACER is able to lever-
age form locality patterns in the workload. The results
were obtained with TPC-C, adapted as explained before
and with a replication of degree d = 2.

Figure 3(a) shows the throughput of AUTOPLACER,
compared with the non-optimized system using consis-
tent hashing for different degrees of locality in the work-
load. In the baseline system, no matter how much lo-
cality exists in the workload, since consistent hashing is
used to place the items, on average the number of re-
mote accesses does not change. Thus, for all workloads
the baseline system exhibits a similar (sub-optimal) be-
haviour. In the system running AUTOPLACER, locality
is leveraged by relocating data items. As times passes,
and more rounds of optimization take place, the system
throughput increases up to a point where no further op-
timization is performed. It is interesting to note that, in
case there is no locality, the throughput is not affected by
the background optimization process. On the other hand,
when locality exists, the throughput of the system opti-
mized with AUTOPLACER is much higher than that of
the baseline: it can be up to 6 times better for a workload

 10

 100

 1000

 0 5 10 15 20 25 30

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

(T
X/

s)

Time (minutes)

100% locality
90% locality
50% locality

0% locality
baseline

(a) Throughput with varying degrees of locality.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Pe
rc

en
ta

ge
 o

f r
em

ot
e

op
er

at
io

ns
 (%

)

Time (minutes)

100% locality
90% locality
50% locality

0% locality
baseline

(b) % of remote operations.

Figure 3: AUTOPLACER performance

with 90% locality, and up to 30 times better in the ideal
case of 100% locality.

Figure 3(b) helps to understand the improvement in
performance by looking at the number of remote invoca-
tions that are performed in the system as time evolves.
Since the initial setup relies on consistent hashing, both
in the baseline and in the optimized system, the average
probability of an operation being local is 1

40 = 2.5% for
all workloads. Thus, when the system starts most oper-
ations are remote. However, the plots clearly show that
the number of remote operations decreases in time when
using AUTOPLACER. The plots also show another inter-
esting aspect: although the number of remote operations
decreases sharply after a few rounds of optimization, the
overall throughput takes longer to improve. This is due
to the fact that read transactions access a large number
of objects, thus multiple rounds of optimization are re-
quired to alleviate the network, which is the bottleneck
in these settings. This clearly highlights the relevance
of the continuous optimization process implemented by
AUTOPLACER. At the end of the experiment, the per-
centage of operations performed locally is already close
to the percentage of locality in the workload; this shows
that when the system stabilizes, AUTOPLACER was able
to move practically all keys subject to locality.

Finally, Figure 4 compares the performance of AUTO-

 10

 100

 1000

100% Locality 90% Locality 0% Locality

T
ra

n
s
a
c
ti
o
n
 p

e
r

s
e
c
o
n
d
 (

tx
/s

)

AutoPlacer

Directory
Baseline

Figure 4: Throughput of AUTOPLACER, a directory-
based and a consistent hashing-based solution, after a
complete optimization process.

PLACER and of a directory service-based system. These
results were obtained by storing the data relocation map
obtained at the end of the entire optimization process into
a dedicated directory service. In this case, whenever a
node requests a data item that is not stored locally, it con-
tacts the directory service to determine its location, in-
stead of querying the local PAA. The results clearly show
that the additional latency for contacting the directory
service can hinder perform significantly, independently
of the locality of the workload. The plots highlight that,
unlike for AUTOPLACER, the performance of directory-
based systems can be worse than that achievable by using
random placement. This is explainable considering that,
with low locality, a large fraction of data accesses is re-
mote, and that directory-based services impose a 2-hop
latency, unlike consistent hashing and AUTOPLACER.

The speed-ups of AUTOPLACER vs the directory-
based solution are significant, i.e. around 2x, even for
the high locality scenarios. In these scenarios, the re-
duction of the number of remote operations leads to less
lookups on the directory. However, the cost of access-
ing a remote data item is, in our testbed, about 2 orders
of magnitude larger than that of accessing a local item.
As a consequence, also in these scenarios, the cost of re-
mote data accesses dominate the execution time of the re-
quests. Hence, such requests, which suffer from one ad-
ditional communication hop latency in a directory-based
solution, effectively limit the throughput of such a solu-
tion leading to considerably worse results than AUTO-
PLACER.

7 Related Work

A common approach to implementing data placement
mechanisms in large scale systems is to manage the
data through coarse grain by partitioning it into buck-
ets (also named directories [8] or tablets [6]). Through
such partitioning, systems can deploy a centralized com-

ponent which manages the location of all buckets in the
system, moving them as required to balance the load
on hotspot nodes. While coarse partitioning allows for
somewhat manageable directories (maintaining the map-
ping between objects and nodes), on the other hand, it
can reduce the effectiveness of the load balancing mech-
anisms. Furthermore, to improve data locality, these sys-
tems make use of sorted keys: the programmer is respon-
sible for assigning similar keys to related data in order for
it to be placed in the same server (or in the same group
of servers) [8, 6, 18]. AUTOPLACER does not require the
programmer to manually bucketize items. While we ben-
efit from information enabled in the key structure, this in-
formation is not used for object placement, it is only used
for optimizing the PAA. Also our system can establish a
fine grain placement for the most accessed items.

As hinted several times in the paper, there is exten-
sive work on defining optimal data placement strategies
in multiple contexts. Many of these systems, such as
Ursa [30] or Schism [9], attempt to perform optimization
at a finer grain than buckets, but require the use of cen-
tralized components to compute the placement and to
keep the resulting directories with the relocation map.
As a result, they suffer from scalability limitations as the
number of data items grows.

Several works have also attempted to derive dis-
tributed versions of the placement algorithm, to avoid the
bottleneck of a single centralized component. The work
by Leff et al proposes several distributed algorithms to
approach the replica placement problem [20], and im-
provements to this work have been recently proposed
in [19] and [31]. These results are not applicable to our
system, as they only consider the placement of read-only
replicas and not of the object ownership. Furthermore,
this solution attempts to relocate all the data in the sys-
tem, which may lead to scalability limitations similar to
those of Ursa or Schism.

The work by Vilaça et al. [29] presents a Space-Filling
Curves-based approach to placing co-related data in the
same nodes by relying on user-defined per-object tags.
The resulting system can provide good locality if the ap-
plication is designed to perform actions using the tags,
since nodes can locally determine who are the owners
of the objects with specific tags. However, unlike our
system, this placement is static and encoded by the pro-
grammer, and has no relation with the actual data access
patterns that may emerge at runtime.

8 Conclusions and Future Work

This paper presented AUTOPLACER, a system aimed
at self-tuning data placement in a distributed key value
store. AUTOPLACER operates in rounds, and, in each
round, it optimizes the placement of the top-k “hotspots”,

i.e. the objects generating most remote operations, for
each node of the system. Despite supporting fine-grain
placement of data items, AUTOPLACER guarantees one
hop routing latency using a novel probabilistic data struc-
ture, the PAA, which minimizes the cost of maintain-
ing and disseminating the data relocation map. AUTO-
PLACER has been integrated in a popular open source
(transactional) key-value store, Infinispan, and experi-
mentally evaluated using a porting of the TPC-C bench-
mark. The results shown that AUTOPLACER can achieve
a throughput up to 6 times better than the original Infin-
ispan implementation based on consistent hashing.

In this paper we have described how AUTOPLACER
can be employed to optimize data placement in presence
of static workloads. A detailed discussion and evaluation
on how to extend AUTOPLACER to cope with variable
workloads will be the subject of a future paper, but, be-
low, we briefly describe a possible approach to achieve
this result. AUTOPLACER can be made to operate in
epochs. In each epoch, the system operates exactly as
described in this paper. A new epoch is started when
the need for recomputing data placement is identified,
for instance, whenever an abrupt change of the remote
access probability is detected [17] in the current epoch.
As described in this paper, a new epoch e starts with an
empty local lookup table LookupTe and, therefore, in the
first iteration, all objects are considered when identify-
ing hotspots. If objects need to be relocated (with regard
to the previous epoch), their new position is stored in
LookupTe. In fact, the system described before can be
seen as a particular case of the general algorithm, where
only two epochs are considered: epoch o (defined by
consistent hashing) and epoch 1 (the first workload).

Also the lookup function would have to be changed.
Instead of consulting just the last lookup table, the
lookup function would need to consult all the lookup ta-
bles in reverse chronological order. Naturally, this would
slow down the lookup function after a long series of
epochs. However, this could be easily mitigated by a
background procedure that would merge the last lookup
tables in a new consolidated table (in a process analogous
to the one used in several log based file systems).

Acknowledgements

The authors wish to thank Zhongmiao Li for his valuable help
with validating the initial prototypes of this work. This work
was partially supported by Fundação para a Ciência e Tec-
nologia (FCT) via the INESC-ID multi-annual funding through
the PIDDAC Program fund grant, under projects PEst-OE/
EEI/ LA0021/ 2011, and CMU-PT/ELE/0030/2009 and by the
Cloud-TM project (co-financed by the European Commission
through the contract no. 257784).

References
[1] ALMEIDA, P., BAQUERO, C., PREGUIÇA, N., AND HUTCHI-

SON, D. Scalable bloom filters. Inf. Process. Lett. (Mar. 2007).

[2] AMZA, C., COX, A., AND ZWAENEPOEL, W. Conflict-aware
scheduling for dynamic content applications. In Proc. of the 4th
USITS (Seattle (WA), USA, 2003).

[3] BLOOM, B. Space/ time trade-offs in hash coding with allowable
errors. Comm. of the ACM (1970).

[4] CHANG, F., ET AL. Bigtable: a distributed storage system for
structured data. In Proc. of the 7th OSDI (Seattle, USA, 2006).

[5] CHAZELLE, B., KILIAN, J., RUBINFELD, R., AND TAL, A.
The bloomier filter: an efficient data structure for static support
lookup tables. In Proc. of the 15th SODA (New Orleans (LA),
USA, 2004).

[6] COOPER, B., RAMAKRISHNAN, R., SRIVASTAVA, U., SIL-
BERSTEIN, A., BOHANNON, P., JACOBSEN, H.-A., PUZ, N.,
WEAVER, D., AND YERNENI, R. Pnuts: Yahoo!’s hosted data
serving platform. In Proc. of the 34th VLDB (Auckland, New
Zealand, Aug. 2008).

[7] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. In Proc. of the 1st SoCC (New York, NY, USA, 2010).

[8] CORBETT, J., ET AL. Spanner: Google’s globally-distributed
database. In Proc. of the 10th OSDI (Hollywood, CA, USA,
2012).

[9] CURINO, C., JONES, E., ZHANG, Y., AND MADDEN, S.
Schism: a workload-driven approach to database replication and
partitioning. In Proc. of the 36th VLDB (Singapore, Sept. 2010).

[10] DECANDIA, G., ET AL. Dynamo: amazon’s highly available
key-value store. In Proc. of the 21st SOSP (Stevenson, USA,
2007).

[11] DOMINGOS, P., AND HULTEN, G. Mining high-speed data
streams. In Proc. of the 6th KDD (Boston, MA, USA, 2000).

[12] DOWDY, L., AND FOSTER, D. Comparative models of the file
assignment problem. ACM Computing Surveys (1982).

[13] FLEISCH, B., AND POPEK, G. Mirage: a coherent distributed
shared memory design. SIGOPS Oper. Syst. Rev. (Nov. 1989).

[14] GARBATOV, S., AND CACHOPO, J. Data access pattern analy-
sis and prediction for object-oriented applications. INFOCOMP
Journal of Computer Science (December 2011).

[15] JIMÉNEZ-PERIS, R., PATIÑO MARTÍNEZ, M., AND ALONSO,
G. Non-intrusive, parallel recovery of replicated data. In Proc.
of the 21st IEEE SRDS (Washington, DC, USA, 2002).

[16] KRISHNAN, P., RAZ, D., AND SHAVITT, Y. The cache location
problem. IEEE/ACM Transactions on Networking (Oct. 2000).

[17] L., S., AND L., T. Cusum test for parameter change based on
the maximum likelihood estimator. Sequential Analysis: Design
Methods and Applications (2004).

[18] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev. (Apr. 2010).

[19] LAOUTARIS, N., TELELIS, O., ZISSIMOPOULOS, V., AND
STAVRAKAKIS, I. Distributed selfish replication. IEEE TPDS
(Dec. 2006).

[20] LEFF, A., WOLF, J., AND YU, P. Replication algorithms in a
remote caching architecture. IEEE TPDS (Nov. 1993).

[21] LEUTENEGGER, S., AND DIAS, D. A modeling study of the tpc-
c benchmark. In Proc. of the SIGMOD Conf. (Washington, D.C.,
United States, 1993).

[22] MARCHIONI, F., AND SURTANI, M. Infinispan Data Grid Plat-
form. PACKT Publishing, 2012.

[23] METWALLY, A., AGRAWAL, D., AND EL ABBADI, A. Efficient
computation of frequent and top-k elements in data streams. In
Proc. of the 10th ICDT (Edinburgh,Scotland, 2005).

[24] MITCHELL, T. Machine Learning. McGraw-Hill, New York,
1997.

[25] PELUSO, S., ROMANO, P., AND QUAGLIA, F. Score: A scalable
one-copy serializable partial replication protocol. In Proc. of the
13th Middleware (2012), pp. 456–475.

[26] PELUSO, S., RUIVO, P., ROMANO, P., QUAGLIA, F., AND RO-
DRIGUES, L. When scalability meets consistency: Genuine mul-
tiversion update-serializable partial data replication. In Proc. of
the 32nd ICDCS (2012), pp. 455–465.

[27] RUIVO, P., COUCEIRO, M., ROMANO, P., AND RODRIGUES, L.
Exploiting total order multicast in weakly consistent transactional
caches. In Proc. of the the 17th PRDC (Pasadena, California,
USA, Dec. 2011).

[28] STANOI, I., AGRAWAL, D., AND ABBADI, A. E. Using broad-
cast primitives in replicated databases. In Proc. of the The 18th
ICDCS (Washington, DC, USA, 1998).

[29] VILAÇA, R., OLIVEIRA, R., AND PEREIRA, J. A correlation-
aware data placement strategy for key-value stores. In Proc. of
the 11th DAIS (Reykjavik, 2011).

[30] YOU, G.-W., HWANG, S.-W., AND JAIN, N. Scalable load bal-
ancing in cluster storage systems. In Proc. of the 12th Middleware
(Lisbon, Portugal, 2011).

[31] ZAMAN, S., AND GROSU, D. A distributed algorithm for the
replica placement problem. IEEE TPDS (Sept. 2011).

	Introduction
	System Characterization
	AutoPlacer Overview
	Optimizer
	Space-Saving Top-k algorithm
	Using Approximate Information
	Accelerating the solution of the optimization problem

	Probabilistic Associative Array: Abstract Data Type Specification
	The AutoPlacer iterative algorithm
	The lookup function

	Probabilistic Associative Array Internals
	Building Blocks
	FeatureExtractor Key Interface
	PAA Operations

	Optimizer Analysis
	Evaluation
	Probabilistic Associative Array
	Leveraging from Locality

	Related Work
	Conclusions and Future Work

