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Abstract—Replication plays an essential role for in-memory
distributed transactional platforms, such as NoSQL data grids,
given that it represents the primary mean to ensure data
durability. Unfortunately, no single replication technique can
ensure optimal performance across a wide range of workloads
and system configurations. This paper tackles this problem by
presenting MORPHR, a framework that allows to automatically
adapt the replication protocol of in-memory transactional plat-
forms according to the current operational conditions. MORPHR
presents two key innovative aspects. On one hand, it allows to
plug in, in a modular fashion, specialized algorithms to regulate
the switching between arbitrary replication protocols. On the
other hand, MORPHR relies on state of the art machine learning
techniques to autonomously determine the optimal replication in
face of varying workloads. We integrated MORPHR in a popular
open-source in-memory NoSQL data grid, and evaluated it by
means of an extensive experimental study. The results highlight
that MORPHR is accurate in identifying the optimal replication
strategy in presence of complex, realistic workloads, and does so
with minimal overhead.

I. INTRODUCTION

With the advent of grid and cloud computing, in-memory
distributed transactional platforms, such as NoSQL data
grids [1], [2] and Distributed Transactional Memory sys-
tems [3], [4], have gained an increased relevance. These
platforms combine ease of programming and efficiency by
providing transactional access to distributed shared state, and
mechanisms aimed to elastically adjusting the resource con-
sumption (nodes, memory, processing) in face of changes in
the demand.

In these platforms, replication plays an essential role, given
that it represents the primary mean to ensure data durabil-
ity. The issue of transactional replication has been widely
investigated in literature, targeting both classic databases [5]
and transactional memory systems [4]. As a result, a large
number of replication protocols have been proposed, based
on significantly different design principles, such as, single-
master vs multi-master management of update transactions [6],
[7], lock-based vs atomic broadcast-based serialization of
transactions [3], [5], optimistic vs pessimistic conflict detection
schemes [4].

Unfortunately, as we clearly show in this paper, there is
not a single replication strategy that outperforms all other
strategies for a wide range of workloads and scales of the
system. I.e., the best performance of the system can only
be achieved by carefully selecting the appropriate replication

protocol in function of the characteristics of the infrastruc-
ture (available resources, such as number of servers, cpu
and memory capacity, network bandwidth, etc) and workload
characteristics (read/write ratios, probability of conflicts, etc).

These facts raise two significant challenges. First, given
that both resources and the workload are dynamic, the data
grid platform must support the run-time change of replication
protocols in order to achieve optimal efficiency. Second, the
amount of parameters affecting the performance of replication
protocols is so large, that the manual specification of adaptation
policies is cumbersome (or even infeasible), motivating the
need for fully autonomic, self-tuning solutions.

This paper addresses these issues by introducing MORPHR,
a framework supporting automatic adaptation of the replication
protocol employed by in-memory transactional platforms. The
contributions of this paper are the following:

• We present the results of an extensive performance
evaluation study using a popular open source transactional data
grid (Infinispan by JBoss/Red Hat’s), which we extended to
support three different replication protocols, namely primary-
backup [6], distributed locking based on two-phase commit [7],
and total order broadcast based certification [5]. We consider
workloads originated by both synthetic and complex standard
benchmarks, and deployments over platforms of different
scales. The results of our study highlight that none of these
protocols can ensure optimal performance for all possible
configurations, providing a strong argument to pursue the
design of abstractions and mechanisms supporting the online
reconfiguration of replication protocols.

• We introduce a framework, which we named MORPHR,
formalizing a set of interfaces with precisely defined semantics,
which need to be exposed (i.e. implemented) by an arbitrary
replication protocol in order to support its online reconfig-
uration, i.e. switching to a different protocol. The proposed
framework is designed to ensure both generality, by means
of a protocol-agnostic generic reconfiguration protocol, and
efficiency, whenever the cost of the transition between two
specific replication protocols can be minimized by taking
into account their intrinsic characteristics. We demonstrate
the flexibility of the proposed reconfiguration framework by
showing that it can seamlessly encapsulate the three replication
protocols mentioned above, via both protocol-agnostic and
specialized protocol switching techniques.

• We validate the MORPHR framework, by integrating
it in Infinispan, which allows to assess its practicality and
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efficiency in realistic transactional data grids. A noteworthy
result highlighted by our experiments is that the MORPHR-
based version of Infinispan does not incur in perceivable per-
formance overheads in absence of reconfigurations (which is
expected to be the most frequent case), with respect to the non-
reconfigurable version. We use this prototype to evaluate the
latencies of generic and specialized reconfiguration techniques,
demonstrating that the switching can be completed with a
latency in the order of a few tens of milliseconds in a cluster
of 10 nodes employing commodity-hardware.

• We show how to model the problem of determining
the optimal replication protocol given the current operational
conditions as a classification problem. By means of an experi-
mental study based on heterogeneous workloads and platform
scales, we demonstrate that this learning problem can be solved
with high accuracy.

The remainder of the paper is structured as follows. Sec-
tion II reports the results of a performance evaluation study
highlighting the relevance of the addressed problem. The
system architecture is presented in Section III and its main
components are presented in Sections IV and V. The results of
the experimental evaluation study are reported in Section VI.
Related work is analysed in Section VII. Section VIII con-
cludes the paper.

II. MOTIVATIONS

In the introduction above, we have stated that there is not
a single replication strategy that outperforms all others. In
this section, we provide the results of an experimental study
backing this claim. Before presenting the experimental data,
we provide detailed information on the experimental platform
and on the benchmarks used in our study.

A. Experimental Platform

We used a popular open-source in-memory transactional
data grid, namely Infinispan [8] by Red Hat/JBoss, as reference
platform for this study. At the time of writing, Infinispan is
the reference NoSQL platform and clustering technology for
JBoss AS, a mainstream open source J2EE application server.
From a programming API perspective, Infinispan exposes a
key-value store interface enriched with transactional support.
Infinispan maintains data entirely in memory, using a weakly
consistent variant of multi-version concurrency algorithm to
regulate local concurrency. More in detail, the Infinispan
prototype used in this work (namely, version 5.2.0), ensures
two non-serializable consistency levels: repeatable read [9],
and a variant that performs an additional test, called write-skew
check, which aborts a transaction T whenever any of the keys
T read and wrote is altered by any concurrent transaction [8].
In all the experiments reported in this paper, we select, as
consistency criterion, the latter, stronger, consistency criterion.

Detection of remote conflicts, as well as data durability,
are achieved by means of a Two Phase Commit [7] based
replication protocol (2PC). In order to assess the performance
of alternative transaction replication protocols we have devel-
oped two custom prototypes of Infinispan (ensuring the same
consistency levels originally provided by Infinispan), in which
we replaced the native replication protocol with two alternative
protocols, i.e. Primary-Backup (PB) and a replication protocol

based on Total Order Broadcast (TOB), which we refer to as
TO. Note that due to the vastness of literature on transactional
replication protocols, an exhaustive evaluation of all existing
solutions is clearly infeasible. However, the three protocols
that we consider, 2PC, PB, and TO, represent different well-
known archetypal approaches, which have inspired the design
of a plethora of different variants in literature. Hence, we argue
that they capture the key tradeoffs in most existing solutions.
However, the protocol-agnostic approach adopted by MorphR
is flexible enough to cope with arbitrary replication protocols,
including, e.g., partial replication and quorum protocols. In the
following we briefly overview the three considered protocols:

2PC: Infinispan integrates a variant of the classic two phase
commit based distributed locking protocol. In this scheme,
transactions are executed locally in an optimistic fashion
in every replica, avoiding any distributed coordination until
commit phase. At commit time, a variant of two phase commit
is executed. During the first phase, updates are propagated to
all replicas, but, unlike typical distributed locking schemes,
locks are acquired only by a single node (called “primary”
node), whereas the remaining nodes simply acknowledge the
reception of the transaction updates (without applying them).
By acquiring locks on a single node, this protocol avoids
distributed deadlocks, a main source of inefficiency of classic
two phase commit based schemes. However, unlike the classic
two phase commit protocol, the locks on the primary need
to be maintained until all other nodes have acknowledged
the processing of the commit. This protocol produces a large
amount of network traffic, which typically leads to an increase
of the commit latency (of update transactions), and suffers of
a high lock duration, which can generate lock convoying at
high contention levels.

PB: This is a single-master protocol that allows processing of
update transactions only on a single node, called the primary,
whereas the remaining ones are used exclusively for process-
ing read-only transactions. The primary regulates concurrency
among local update transactions, using a deadlock-free commit
time locking strategy, and propagates synchronously its up-
dates to the backup nodes. Read-only transactions can be pro-
cessed in a non-blocking fashion on the backups, regulated by
Infinispan’s native multiversion concurrency control algorithm.
In this protocol, the primary is prone to become a bottleneck
in write dominated workloads. On the other hand, its commit
phase is simpler than in the other considered protocols (which
follow a multi-master approach). This alleviates the load on the
network and reduces the commit latency of update transaction.
Further, by limiting intrinsically the number of concurrently
active update transactions, it is less subject to trashing due to
lock contention in high conflict scenarios.

TO: Similarly to 2PC, this protocol is a multi-master scheme
that processes transactions without any synchronization during
their execution phase. Unlike 2PC, however, the transaction
serialization order is not determined by means of lock acquisi-
tion, but by relying on an Total Order Broadcast service (TOB)
to establish a total order among committing transactions[10].
Upon their delivery by TOB, transactions are locally certified
and either committed or aborted depending on the result of
the certification. Being a lock-free algorithm, TO does not
suffer of the lock convoying phenomena in high contention
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# Warehouses % Order
Status % Payment % New

Order
#

Threads
TW1 10 20 70 10 1
TW2 1 20 30 50 8
TW3 1 30 70 0 1

TABLE I. PARAMETERS SETTINGS FOR THE TPC-C WORKLOADS

%Write
Tx

# Reads
RO Tx

# Reads
Wrt Tx

# Writes
(Wrt Tx)

#
Keys

#
Threads

RW1 50 2 1 1 5000 8
RW2 95 200 100 100 1000 8
RW3 40 50 25 25 1000 8

TABLE II. PARAMETERS SETTINGS FOR THE RADARGUN
WORKLOADS

scenarios. However, its TOB-based commit phase imposes a
larger communication overhead with respect to 2PC (and PB).
This protocol has higher scalability potential than PB in write
dominated workloads, but is also more prone to incur in high
abort rates in conflict intensive scenarios.

B. Benchmarks

We consider two popular benchmarks for transactional
platforms, namely TPC-C and Radargun. The former is a
standard benchmark for OLTP systems, which portrays the
activities of a wholesale supplier and generates mixes of read-
only and update transactions with strongly skewed access
patterns and heterogeneous durations. We have developed
an implementation of TPC-C that was adapted to execute
on a NoSQL key/value store, which include three different
transaction profiles: Order Status, a read-only long running
transaction; New Order, a computation intensive update trans-
action that generates moderate contention; and Payment, a
short, conflict prone update transaction. Radargun, instead,
is a benchmarking framework designed by JBoss to test the
performance of distributed, transactional key-value stores. The
workloads generated by Radargun are simpler and less diverse
than those of TPC-C, but they have the advantage of being very
easily tunable, thus allowing to easily explore a wide range of
possible workload settings.

For TPC-C we consider three different workload scenarios,
which are generated configuring the following benchmark
parameters: the number of warehouses, i.e. the size of the
keyset that is concurrently accessed by transactions, which has
a direct impact on the generated contention; the percentage of
the mix of transaction profiles generated by the benchmark;
and the number of active threads at each node, which allows
to capture scenarios with machines of different cpu power
(by changing the number of concurrent threads the nodes are
able to execute). This last parameter allows to simulate, for
instance, changes of the computational capacity allocated to
the virtual machines hosting the data platform in a Cloud
computing environment. The detailed configuration of the
parameters used to generate the three TPC-C workloads, which
are referred to as TW1, TW2, and TW3 are reported in Table I.

For Radargun we also consider three workloads, which we
denote as RG1, RG2 and RG3. These three workloads are gen-
erated synthetically, and their characteristics can be controlled
by tuning three parameters; the ratio of read-only vs update

transactions; the number of read/write operations executed by
(read-only/update) transactions; and the cardinality of the set
of keys used to select the key accessed by each read/write
operation, using a uniform distribution. A detailed description
of the parameter settings used for these workloads is reported
in Table II.

C. Analysis of the results

We now report and discuss experimental data that illustrates
the performance of 2PC, PB, and TO protocols under different
workloads. All the experiments reported in this paper have
been obtained using a commodity cluster of 10 nodes. The
machines are connected via a Gigabit switch and each one
has Ubuntu 10.04 installed, 8 cores (2 Intel(R) Xeon(R)
CPU E5506 @ 2.13GHz) and 32GB of RAM memory. We
performed experiments with different cluster sizes. However,
as the corresponding data sets show similar trends, for space
constraints, for most workloads we only depict results in a 10
node cluster; the exception is the workload TW2, for which we
also depict results in a 3 node cluster (denoted as TW2(3N)).
The top plot in Figure 1 reports the throughput achieved
by a each protocol normalized to the throughput of the best
performing protocol (in the same scenario). The second and
third plot from the top, on the other hand, report values on the
transaction abort rate and commit latency.

The results clearly show that none of the protocols can
achieve optimal performance in all the considered workload
configurations. Furthermore, the relative differences among
the performance of the protocols can be remarkably high:
the average normalized throughput of the worst performing
protocol across all workloads is around 20% (i.e. one fifth)
of the optimal protocol; also, the average throughputs across
all workloads of the PB, TO, and 2PC are approximately,
respectively, 30%, 40% and 50% lower than that of the optimal
protocol. Furthermore, by contrasting the results obtained with
TW2 using different scales of the platform, it can be observed
that, even for a given fixed workload, the best performing
replication protocol can be a function of the number of nodes
currently in the system. These figures provide a direct measure
of the potentially inefficiency of a statically configured system.

The reasons underlying the shifts in the relative perfor-
mance of the protocols can be quite intricate, as the perfor-
mance of the considered replication protocols is affected by
a number of inter-dependent factors affecting the degree of
contention on both logical (i.e. data) and physical (mostly
network and CPU) resources. As a result, to manually derive
policies that control the adaptation may be extremely hard.

III. ARCHITECTURAL OVERVIEW

The architecture of MORPHR is depicted in Figure 2. The
system is composed by two macro components, a Recon-
figurable Replicated In-Memory Data Store (RRITS), and a
Replication Protocol Selector Oracle (RPSO).

The RRITS externalizes user-level APIs for transactional
data manipulation (such as those provided by a key/value store,
as in our current prototype, or an STM platform), as well as
APIs, used in MORPHR by the RPSO, that allow its remote
monitoring and control (to trigger adaptation). Internally, the
RRITS supports multi-layer reconfiguration techniques, which
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Fig. 1. Comparing the performance of 2PC, PB and TO protocols.

are encapsulated by abstract interfaces allowing to plug in, in a
modular fashion, arbitrary protocols for replica coherency and
concurrency control. A detailed description of this building
block is provided in Section IV.

The RPSO is an abstraction that allows encapsulating
different performance forecasting methodologies. The oracle
implementation may be centralized or distributed. In a central-
ized implementation, the RPSO is a single process that runs in
one of the replicas or in a separate machine. In the distributed
implementation each replica has its own local instance of the
oracle that coordinates with other instances to reach a common
decision. In this work we chose to implement the centralized
version, which will be discussed in more detail in Section V.
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Fig. 2. Architectural overview.

IV. RECONFIGURABLE REPLICATED IN-MEMORY
TRANSACTIONAL STORE

The RRITS is composed by two main sub-components, the
Reconfigurable Replication Manager and the Reconfigurable
Transactional Store, which are described next.

A. Reconfigurable Replication Manager

The Reconfigurable Replication Manager (RRM) is the
component in charge of orchestrating the reconfiguration of the
replication protocol, namely the transition from a state of the
system in which transactions are processed using a replication
protocol A, to a state in which they are processed using a
protocol B. The design of RRM was guided by the goal of
achieving both generality and efficiency.

An important observation is that in order to maximize
efficiency, it is often necessary to take a white box approach:
by exploiting knowledge on the internals of the involved
protocols, it is often possible to define specialized (i.e. highly
efficient) reconfiguration schemes. On the other hand, design-
ing specialized reconfiguration algorithms for all possible pairs
of protocols leads to an undesirable growth of complexity,
which can hamper the platform’s extensibility.

MORPHR addresses this tradeoff by introducing a generic,
protocol-agnostic reconfiguration protocol that guarantees the
correct switching between two arbitrary replication protocols,
as long as these adhere to a very simple interface (denoted as
ReconfigurableReplicationProtocol in Figure 2). This interface
allows MORPHR to properly control their execution (stop and
boot). In order to achieve full generality, i.e. to be able to
ensure consistency in presence of transitions between any
two replication protocols, MORPHR’s generic reconfiguration
protocol is based on a conservative “stop and go” approach,
which enforces the termination of all transactions in the old
protocol, putting the system in a quiescent state, before it starts
executing the new protocol.

MORPHR requires that all its pluggable protocols im-
plement the methods needed by this stop and go strategy
(described below), benefiting extensibility and guaranteeing
the generality of the approach. On the other hand, in order
to maximize efficiency, for each pair of replication proto-
cols (A,B), MORPHR allows an additional protocol switcher
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A.stop()

B.boot()

RRM.switchComplete()

A-B.switchTo() TRANSITION

STEADY

QUIESCENT

A-B.eventFromPrevEpoch()

A-B.eventFromNewEpoch()

Fig. 3. Finite state machine of the MORPHR reconfiguration schemes.

algorithm to be registered, which interacts with the RRM
via a well defined interface. The RRM uses such specialized
reconfiguration protocols, whenever available, and otherwise
resort to using the protocol-agnostic reconfiguration scheme.

Figure 3 depicts the state machine of the reconfiguration
strategies supported by MORPHR. Initially the system is in the
STEADY state, running a single protocol A. When a transition
to another protocol B is requested, two paths are possible.
The default path (associated with the generic “stop and go”
approach) first puts the system in the QUIESCENT state and
then starts protocol B which will put the system back to the
STEADY state. The fast path consists of invoking the switching
protocol. This protocol will place the system in a temporary
TRANSITION state, where both protocol A and protocol B will
coexist. When the switch terminates, only protocol B will be
executed and the system will be again in the STEADY state.

We will now discuss, in turn, each of the two protocol
reconfiguration strategies supported by MORPHR.

“Stop and Go” reconfiguration: The methods defined in the
ReconfigurableReplicationProtocol interface can be grouped in
two categories: i) a set of methods that allow the RRM to catch
and propagate the transactional data manipulation calls issued
by the application (e.g. begin, commit, abort, read and write
operations), and ii) two methods, namely boot() and stop(),
that every pluggable protocol must implement:

• boot() : This method is invoked to start the execution of
a protocol from a QUIESCENT state, i.e., no transactions from
the other protocol are active in the system, and implements
any special initialization conditions required by the protocol.

• stop(boolean eager): This method is used to stop the
execution of a protocol and putting the system in a QUIESCENT
state. The protocol dependant implementation of this method
must guarantee that, when it returns, there are no transactions
active in the system executing with that protocol. The eager
parameter is a boolean that allows to select if on-going
transactions must be aborted immediately, or if the system
should allow for on-going transactions to terminate in order
to reach the QUIESCENT state.

The pseudo-code in Algorithm 1 provides an example
implementation of this interface, for the case of the 2PC
replication protocol described in Section II. First, all new local
transactions are blocked. Then, the boolean received as input
allows the programmer to decide whether to abort all locally

stop(boolean eager) {1
block generation of new local transactions;2
if eager then3

abort any local executing transaction;4
else5

wait for completion of all local executing transactions;6
end7
broadcast (DONE);8
wait received DONE from all processes;9
wait for completion of all remote transactions;10

}11
Algorithm 1: stop() method of the 2PC protocol.

executing transactions or allow them to complete their local
and remote execution. When these finish executing, a DONE
message is broadcast announcing that no more transactions
will be issued by this replica in the current protocol. Before
returning, the stop method waits for this message from all the
other replicas in the system and for the completion of any
remote transactions executing in the that replica.

Fast switching reconfiguration: The default “stop and go”
strategy ensures that, at any moment in time, no two trans-
actions originated by different protocols can be concurrently
active in the system. Non-blocking reconfiguration schemes
avoid this limitation, by allowing overlapping the execution
of different protocols during the reconfiguration. In order to
establish an order on the reconfigurations, the RRM (i.e. each
of the RRM instances maintained by the nodes in the system)
relies on the notion of epochs. Each fast switching reconfigu-
ration triggers a new epoch and all transaction events (namely,
prepare, commit, and abort events) are tagged with the number
of the epoch in which they were generated.

To support fast switching between a given pair of protocols
(oldProtocol, newProtocol) , the MORPHR framework requires
that the programmer implements the following set of methods:

• switchTo() : This method is invoked to initiate fast switch-
ing. This triggers the increase of the local epoch counter on
the replica, and alters the state of the replica to TRANSITION
(see Figure 3).

• eventFromPrevEpoch (event): This method processes an
event of a transaction that was initiated in an epoch previous
to the one currently active in this replica.

• eventFromNewEpoch (event): This method processes an
event from a transaction that was initiated by a replica that is
either in the TRANSITION state of the new epoch, or that has
already completed the switch to new epoch and has entered
the STEADY state.

As also depicted by the state machine in Figure 3, the
methods eventFromPrevEpoch and eventFromNewEpoch are
only executed by a replica that has entered the TRANSITION
state. Hence, whenever a replica receives either one of these
two events while it is still in the STEADY state of protocol
A, it simply buffers them, delaying their processing till the
switchTo() method is invoked and the TRANSITION state is
entered1.

1As an optimization, in this case our prototype actually avoids buffering
eventFromPrevEpoch events: this is safe because it means that the transac-
tion’s event has been generated in the same epoch as the one in which the
local node is currently executing.
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2PC-PB.switchTo() {1
broadcast (LOCALDONE);2

}3

2PC-PB.eventFromPrevEpoch(event) {4
processEvent(event, tx);5

}6

2PC-PB.eventFromNewEpoch(event) {7
processEvent(event, tx);8

}9

upon received LOCALDONE from all nodes {10
wait for completion of prepared remote 2PC txs;11
// guarantee reconfiguration completion globally12
broadcast (REMOTEDONE);13
wait received REMOTEDONE from all nodes;14
switchComplete();15

}16
Algorithm 2: Fast Switching from 2PC to PB.

Further, the RRM exposes a callback interface, via the
switchComplete() method, which allows the protocol switcher
to notify the ending of the transition phase of to the RRM,
and which causes it to transit to the STEADY state. Like for
the stop() method, a protocol switcher implementation must
guarantee that when the switchComplete() method is invoked,
every transaction active in the system is executing according
to the final protocol.

In the following paragraphs we illustrate two examples
of fast switching algorithms, for scenarios involving pairs of
protocols whose concurrent coexistence raises different types
of issues.

Fast switch from 2PC to PB: Both PB and 2PC are lock based
protocols. Further, in both protocols, locks are acquired only
on a designated node, which is called primary in the PB, and
coordinator in the 2PC (see Section II). Hence, provided that
these two nodes coincide (which is the case, for instance, in our
Infinispan prototype), these two specific protocols can simply
coexist, and keep processing their incoming events normally.
Algorithm 2 shows the pseudo-code of the fast switching
for this case. As the two protocols can seamlessly execute
in parallel, in order to comply with the specification of the
fast switching interface, it is only necessary to guarantee that
when the switchComplete callback is invoked, no transaction
in the system is still executing using 2PC. To this end, when
switching is started, a LOCALDONE message is broadcast
and the protocol moves to a TRANSITION state, causing the
activation of a new epoch. In the TRANSITION state, locally
generated transactions will be already processed using PB.
When the LOCALDONE message is received from node s by
some node n, it derives from the FIFO property of channels
that n will not receive additional prepare messages from s. By
collecting LOCALDONE message from each and every node in
the system, each node n can attest the local termination of the
previous epoch, at which point it broadcast a REMOTEDONE
message (line 13). The absence of transactions currently exe-
cuting with 2PC across the entire system can then be ensured
by collecting the latter messages from all nodes (see lines 14-
15).

Fast switch from 2PC to TO: 2PC and TO protocols are
radically different protocols, as they use different concurrency

2PC-TO.switchTo() {1
wait for local transactions in prepared state;2
broadcast (LOCALDONE);3

}4

2PC-TO.eventFromPrevEpoch(event) {5
if event is of type Prepare then6

rollback(tx);7
end8
processEvent(event, tx);9

}10

2PC-TO.eventFromNewEpoch(event) {11
if tx conflicts with some tx’ using 2PC then12

wait for tx’ to commit or abort;13
end14
processEvent(event, tx);15

}16

upon received LOCALDONE from all nodes {17
// guarantee reconfiguration completion globally18
broadcast (REMOTEDONE);19
wait received REMOTEDONE from all nodes;20

}21
Algorithm 3: Fast switching from 2PC to TO.

control schemes (lock-based vs lock-free) and communication
primitives (plain vs totally ordered broadcast) that require
the usage of incompatible data-structures/algorithms at the
transactional data store level. Because of this, it is impossible
for a node to start processing transaction with TO if any
locally generated 2PC transaction is still active. To this end, the
fast switch implementation from 2PC to TO, in Algorithm 3,
returns from the switchTo method (entering the new, TO-
regulated epoch) only after it has committed (or aborted)
all its local transactions from the current epoch. During the
TRANSITION state, a node replies negatively to any incoming
prepare message for a remote 2PC transaction thus avoiding in-
compatibility issues with the currently executing TO protocol.
Transactions from the new TO epoch, on the other hand, can be
validated (and accordingly committed or aborted). However, if
they conflict with any previously prepared but not committed
2PC transaction, the commit of the TO transaction must be
postponed until the outcome of previous 2PC transactions is
known. Otherwise, it can be processed immediately according
to the conventional TO protocol. Analogously to the previous
fast switching algorithm, also in this case a second global syn-
chronization phase is required in order to ensure the semantics
of the switchComplete method.

B. Reconfigurable Transactional Store

MORPHR assumes that, when a new replication protocol
is activated, the boot method performs all the setup required
for the correct execution of that protocol. In some cases, this
may involve performing some amount of reconfiguration of the
underlying data store, given that the replication protocol and
the concurrency control algorithms are often tightly coupled.
Naturally, this setup is highly dependent of the concrete data
store implementation in use.

When implementing MORPHR on Infinispan, our approach
to the protocol setup problem has been to extend the original
Infinispan architecture in a principled way and aiming to
minimize intrusiveness. To this end, we systematically encap-
sulated the modules of Infinispan that required reconfiguration
using software wrappers. The wrappers intercept calls to the
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encapsulated module, and re-route them to the implementation
associated with the current replication protocol configuration.

The architectural diagram in Figure 2 illustrates how this
principle was applied to one of the key elements of Infinispan,
namely the interceptor chain that is responsible for i) capturing
commands issued by the user and by the replication protocols
and ii) redirecting them towards the modules managing specific
subsystems of the data store (such as the locking system,
the data container, or the group communication system). The
interceptors whose behaviours had to be replaced due to an
adaptation of the replication protocol, shown in gray in Fig-
ure 2, were replaced with generic reconfigurable interceptors,
for which each replication protocol can provide its own spe-
cialized implementation. This allows to flexibly customize the
behaviour of the data container depending on the replication
protocol currently in use.

V. REPLICATION PROTOCOL SELECTOR ORACLE

As already mentioned, the Replication Protocol Selector
Oracle component is a convenient form of encapsulating
different performance forecasting techniques. In fact, different
approaches, including analytical models [11] and machine-
learning (ML) techniques [12], might be adopted to identify
the replication protocol on the basis of the current operating
conditions. In MORPHR we have opted for using ML-based
forecasting techniques, as they can cope with arbitrary repli-
cation protocols, maximizing the generality and extensibility
of the proposed approach, thanks to their black-box nature.

The selection of the optimal replication protocol lends
itself naturally to be cast as a classification problem [12],
in which one is provided with a set of input variables (also
called features) describing the current state of the system and
is required to determine, as output, a value from a discrete
domain (i.e., the best performing protocol among a finite set
in our case). After preliminary experimentations with various
ML tools (including SVM and Neural networks [12]), we
have opted to integrate in MORPHR C5.0 [13], a state of
the art decision-tree classifier. C5.0 builds a decision-tree
classification model in an initial, off-line training phase during
which a greedy heuristic is used to partition, at each level of
the tree, the training dataset according to the input feature
that maximizes information gain [13]. The output model is a
decision-tree that closely classifies the training cases according
to a compact (human-readable) rule-set, which can then be
used to classify (i.e., decide the best performing replication
strategy for) future scenarios.

We shall discuss the methodology adopted in MORPHR to
build ML-based performance models shortly, and focus for the
moment on discussing how these models are used at runtime.

In our current reference architecture, the RPSO is a central-
ized logical component, which is physically deployed on one
of the replicas in the system. Although the system is designed
to transparently support the placement of the RPSO on a dedi-
cated machine, the overhead imposed to query the decision-tree
model is so limited (on the order of the microseconds), and
the query frequency is so low (on the order of the minutes
or of the tens of seconds), that the RPSO can be collocated
on any node of the data platform without causing perceivable
performance interferences.

The RPSO periodically queries each node in the system,
gathering information on several metrics describing differ-
ent characteristics of the current workload in terms of both
contention on logical (data) and physical resources. This
information is transformed into a set of input features that is
used to query the machine learner about the most appropriate
configuration. If the current protocol configuration matches the
predicted one, no action is taken; otherwise a new configura-
tion is triggered.

This approach results in an obvious tradeoff: the more often
the RPSO queries the ML, the faster it reacts to changes in the
workloads, but it may happen that some are only momentary
spikes and do not reflect a real change in the workload,
thus triggering unnecessary changes in the configuration and
preventing the system from achieving an optimal throughput.
In our current prototype we use a simple approach based on
a moving average over a window time of 30 seconds, which
has proven successful with all the workloads we experimented
with. As with any other autonomic system, in MORPHR there
is also a tradeoff between how fast one reacts to changes and
the stability of the resulting system. In the current prototype,
we simple use a fixed “quarantine” period after each recon-
figuration, to ensure that the results of the previous adaptation
stabilise before new adaptations are evaluated. Of course, the
system may be made more robust by introducing techniques
to filter out outliers [14], detect statistically relevant shifts of
system’s metrics [15], or predict future workload trends [16].
These are directions we plan to investigate in our future work,
but that are out of the scope of this paper.

Construction of the ML model The accuracy achievable by
any ML technique is well known [12] to be strictly dependant
on the selection of appropriate input features. These should
be, on one hand, sufficiently rich to allow the ML algorithm
to infer rules capable of closely relating fluctuations of the
input variables with shifts of the target variable. On the other
hand, considering an excessively high number of features leads
to an exponential growth of the training phase duration and
to an increase of the risk of inferring erroneous/non-general
relationships (a phenomenon called over-fitting [12]).

After conducting an extensive set of preliminary experi-
ments, we decided to let MORPHR gather a base set of 14
metrics aimed to provide a detailed characterization of:

• the transactional workload: percentage of write trans-
actions, number of read and write operations per read-
only and write transactions and their local and total
execution time, abort rate, throughput, lock waiting
time and hold time.

• the average utilization of the computational resources
of each node and of the network: CPU, memory
utilization and commit duration.

As we will show in Section VI, this set of input features
proved sufficient to achieve high prediction accuracy, at least
for the set of replication protocols considered in this paper.
Nevertheless, to ensure the generality of the proposed ap-
proach, we allow protocol developers to enrich the set of input
features for the ML by specifying, using an XML descriptor,
whether the RPSO should track any additional metric that the
protocol exposes via a standard JMX interface.
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A key challenge to address in order to build accurate ML-
based predictors of the performance of multiple replication
protocols is that several of the metrics measurable at run-time
can be strongly affected by the replication protocol currently in
use. Let us consider the example of the transaction abort rate:
in workloads characterized by high data contention, the 2PC
abort rate is typically significantly higher than when using the
PB protocol for the same workload, due to the presence of a
higher number of concurrent (and distributed) writers. In other
words, the input features associated with the same workload
can be significantly different when observed from different
replication protocols. Hence, unless additional information is
provided that allows the ML to contextualize the information
encoded in the input features, one runs in the risk of feeding
the ML with contradictory inputs that can end up confusing
the ML inference algorithm and ultimately hinder its accuracy.

In order to address this issue we consider three alternative
strategies for building ML models: i) a simple baseline scheme,
which does not provide any information to the ML concerning
the currently used replication protocol; ii) an approach in
which we extend the set of input features with the identifier of
the protocol used while gathering the features; iii) a solution
based on the idea of using (training and querying) a distinct
model for each different replication protocol. The second
approach is based on the intuition that, by providing infor-
mation concerning the “context” (i.e., the replication protocol)
in which the input features are gathered, the ML algorithm
may use this information to disambiguate otherwise misleading
cases. The third approach aims at preventing the problem a
priori, by avoiding the usage of information gathered using
different protocols in the same model. An evaluation of these
alternative strategies can be found in Section VI.

Finally, the last step of the model building phase consists
in the execution of an automated feature selection algorithm,
which is aimed at minimizing the risk of overfitting and maxi-
mizing the generality of the model by discarding features that
are either too closely correlated among each other (and hence
redundant), or too loosely correlated with the output variable
(and hence useless). Specifically, we rely on the Forward
Selection [17] technique, a greedy heuristic that progressively
extends the set of selected features till the accuracy it achieves
when using 10-fold cross-validation on the training set is
maximized.

VI. EVALUATION

This section presents the results of an experimental study
aimed at assessing three main aspects: i) the accuracy of the
ML-based selection of the best-fitting replication protocol (see
Section VI-A); ii) the efficiency of the alternative protocol
switching strategies discussed in Section IV (see Section
VI-B); iii) the overheads introduced by the online monitor-
ing and re-configuration supports employed by MORPHR to
achieve self-tuning (see Section VI-B).

A. Accuracy of the RPSO

In order to assess the accuracy of the RPSO we generated
approx. 75 workloads for both the TPC-C and RadarGun,
varying uniformly the parameters that control the composition
of transaction mixes and their duration. More in particular, for
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Fig. 4. Cumulative distribution of the normalized throughput vs the optimal
protocol

each of the 3 TPC-C workloads described in Section II, we
explored 25 different configuration of the percentages of Order
Status, Payment and New Order Transactions. Analogously,
starting from each of the 3 Radargun workloads reported in
Table I, we explored 27 different variations of the parameters
that control the percentage of write transactions, and the
number of read/write operations both in read-only and update
transaction. This workload generation strategy allowed us to
obtain a balanced data containing approximately the same
number of workloads for which each of the three considered
protocols results to be the optimal choice.

We run each of the above workloads with the 3 considered
protocols, yielding a data set of approximately 1350 cases
that serves as the basis for this study. The continuous lines
in Figure 4 provide an interesting perspective on our data
set, reporting the normalized performance (i.e., committed
transactions per second) of the 2nd and 3rd best choice with
respect to the optimal protocol for each of the considered
workload.

The plots highlight that, when considering the Radargun
workloads, the selection of the correct protocol configuration
has a striking effect on system’s throughput: in 50% of the
workload, the selection of the 2nd best performing protocol
is at least twice slower than the optimal protocol; further, the
performance decreases by a factor up to 10x in 50% of the
workloads in case the worst performing protocol were to be
erroneously selected by the RPSO. On the other hand, the TPC-
C workload shows less dramatic, albeit still significant, differ-
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Benchmark W/O Prot. With Prot. Three Models
Radargun 1.68% 1.68% 1.25%
TPC-C 8.17% 5.44% 4.58%

TABLE III. PERCENTAGE OF MISCLASSIFICATION.

ences in the relative performances of the protocols. Being the
performance of the three protocols relatively closer with TPC-
C than with Radargun, the classification problem at hand is
indeed harder in the TPC-C scenario, at least provided that one
evaluates the accuracy of the ML-based classifier exclusively in
terms of misclassification rate. On the other hand, in practical
settings, the actual relevance of a misclassification is clearly
dependant on the actual throughput loss to the sub-optimal
protocol selection. In this sense, the Radargun’s workloads
are significantly more challenging than TPC-C’s ones. Hence,
whenever possible, we will evaluate the quality of our ML-
based classifiers using both metrics, i.e. misclassification rate
and throughput loss vs optimal protocol.

The first goal of our evaluation is to assess the accuracy
achievable by using the three alternative model building strate-
gies described in Section V, namely i) a baseline that adopts
a single model built using no information on the protocol in
execution when collecting the input features, ii) an approach
in which we include the protocol currently in use among the
input features, and iii) a solution using a distinct model per
each protocol.

Table III shows the percentage of misclassification for each
case. These results were obtained by averaging the results of
ten models, each one built using ten-fold cross validation. The
results show that, especially for the TPC-C benchmark (which,
as discussed above, entails scenarios that are more challenging
to classify than when using Radargun), the misclassification
rate can be significantly lowered by incorporating in the
model information on the protocol in use when characterizing
the current workload and system’s state. In particular, using
distinct models for each protocol, as expected, we minimize
the chances that the ML is misled by the simultaneous pres-
ence of training cases exhibiting similar values for the same
feature but associated with different optimal protocols (because
measured when running different protocols), or, vice versa, of
training cases associated with the same optimal protocol but
exhibiting different values for the same feature (again, because
observed using different protocols). At the light of this result,
in MORPHR, as well as in the remainder of this section, we
opted for using a distinct model for each protocol.

The dashed lines reported in Figure 4 allow us to evaluate
the accuracy of the RPSO from a different perspective, report-
ing the cumulative distribution of the throughput achievable
by following the RPSO’s predictions for each workload, nor-
malized to the throughput achieved by the optimal protocol
for that workload. In order to assess the extrapolation power
of the classifiers built using the proposed methodology we
progressively reduce the training set from 90% to 40% of the
entire data set, and use, the remaining cases as test sets.

Both benchmarks show the same trend. As the training
set becomes larger, the percentage of cases with sub-optimal
throughput decreases. Furthermore, in these cases, the loss of
throughput in absolute value, when compared to the optimal
choice, also decreases. In fact, it can be observed that even

Benchmark 90% 70% 40% 2nd 3rd Random
train train train prot. prot. choice

Radargun 1% 2% 4% 14% 51% 45%
TPC-C 1% 4% 9% 23% 75% 35%

TABLE IV. AVERAGE PERCENTAGE OF THROUGHPUT LOSS USING
TRAINING DATA SETS OF DIFFERENT SIZES (COL. II-IV), SELECTING

DETERMINISTICALLY THE 2ND (COL. V) AND 3RD (COL. VI) BEST
PERFORMING PROTOCOL FOR EACH SCENARIO, AND PICKING THE

PROTOCOL TO BE USED RANDOMICALLY (COL. VII).

for models built using the smallest training set, and consid-
ering the most challenging benchmark (namely TPC-C), the
performance penalty with respect to the optimal configuration
is lower than 10% in around 85% of the workloads. On
the other hand, for models built using the largest training
set, the throughput penalty is lower than 10% in about 90%
of the cases. Table IV presents information concerning the
throughput loss averaged across all workload when using ML-
based models, again built using training sets of different sizes.
The table also reports the average throughput loss of the 2nd
and 3rd best performing protocol for each scenario, as well as
the average performance penalty that one would achieve using
a trivial random selection strategy.

Overall, the data highlights the remarkable accuracy
achievable by the proposed ML-based forecasting method-
ology, providing an experimental evidence of its practical
viability even with complex benchmarks such as TPC-C.

B. Fast switch vs Default Switch

We now analyse the performance of the specialized fast
switching algorithms, contrasting it with that achievable by the
generic, but less efficient, stop and go switching approach. For
this purpose we built a simple synthetic benchmark designed
to generate transactions having a tunable duration, which we
let vary from 15 milliseconds to 20 seconds. Furthermore, we
have experimented with different fast switching algorithms and
both with the eager and the lazy versions of the stop and go
algorithm (recall that with the eager version ongoing transac-
tions are simply aborted, whereas with the lazy version we
wait for pending transactions to terminate before switching).

We start by considering the fastest switching specialized
algorithm we designed, namely the one that commutes from
2PC to PB (Alg. 2). Figure 5 shows the average blocking
time, i.e., the period during which new transactions are not
accepted in the system due to the switch (naturally, the shorter
this period the better). Figure 6 presents the abort during
the switching process. The figures show values for the fast
switching algorithm, and for both the lazy and eager version
of stop and go.

As previously discussed, the fast switching algorithm has
no blocking phase and for the scenarios where the duration
of transactions is larger, this can be a huge advantage when
compared with the lazy stop and go approach. As expected,
the fast switching algorithm is independent of the transaction
duration, as it is not required to abort or to wait for the
termination of transactions started with 2PC before accepting
transaction with PB. On the other hand, the lazy stop and go
approach, while avoid aborting transactions, can introduce a
long blocking time (which, naturally, gets worse for scenarios
where transactions have longer duration). In conclusion, the
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Fig. 6. Aborted transactions during the switch between 2PC and PB

eager stop and go trades a lower stopping time for a high
abort rate.

Let us now consider the fast switching algorithm for
commuting from 2PC to TO (Alg. 3), whose performance is
evaluated in the Figures 7 and 8. In this fast switch algorithm
nodes must first wait for all local pending transactions initiated
with 2PC to terminate before accepting transactions to be
processed by TO. Therefore, this algorithm also introduces
some amount of blocking time that, although smaller than in
the case of the stop and go switching algorithm, is no longer
negligible. Nevertheless, the advantages of fast switching are
still very significant when transactions are very long.

These results show that, whenever available, the use of
specialized fast switching algorithms is preferable. On the
other hand, the stop and go algorithm can be implemented
without any knowledge about the semantics of the replication
protocols. Also, the eager version, can provide reasonable
small blocking times (in the order of 10ms) at the cost of
aborting some transactions during the reconfiguration.
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C. Performance of MORPHR

Figure 9 compares the throughput of MORPHR with that
of a statically configured, non-adaptive version of Infinispan.
The model was trained with the previously presented TPC-
C dataset, from which we removed the workloads TW1-3
reported in Table I. In this experiment, we inject load in
the system for a duration of 6 minutes and configured the
RPSO to query the system state every 30 seconds to predict
the protocol to be used. The plots show that, whenever the
workload changes, the RPSO detects it and promptly switches
to the most appropriate protocol. As expected, the performance
of MORPHR keeps up with that of the best static configuration.
We can also observe that the overheads introduced by the
supports for adaptivity are very reduced given that, when
MORPHR stabilizes, its throughput is very close to the static
configuration.

For these experiments we placed the RPSO in one of
the nodes running MORPHR as this is a very lightweight
component. More specifically, each query made to model takes
on average approx. 50 µseconds.
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VII. RELATED WORK

We classify related work into the following categories:
i) work on protocol reconfiguration in general; ii) work on
automated resource provisioning; iii) work on self-tuning in
databases systems, both distributed and centralized; iv) and
work on adaptive STMs. We will address each of these
categories in turn.

An extensive set of works has been produced on dynamic
protocol reconfiguration [18], [19], [20]. A large part of this
work has focused on the reconfiguration of communication
protocols. For instance, the work in [20] proposes an Atomic
Broadcast (AB) generic meta-protocol that allows to stop an
executing instance of an AB protocol, and to activate a new
one. This problem is inherently related to the problem of
adapting at run-time the replication scheme of a transactional
system. In the latter case, which represents the focus of
our work, adaptation encompasses a larger stack of software
layers, and it is necessary to take into account the additional
complexities due to the inter-dependencies between the replica
control (keeping the copies consistent) and concurrency control
(ensuring isolation in presence of concurrent data accesses)
schemes. Also, in MORPHR we address also the issue of how
to automatically determine when to trigger adaptation, and not
only how.

The area of automated resource provisioning is related to
this work as it aims at reacting to changes in the workload and
access patterns to autonomically adapt the system’s resources.
Examples include works in both transactional [11], [21], [22],
[23] and non-transactional application domains, such as Map-
Reduce [24] and VM sizing [25]. Analogously to MORPHR,
several of these systems also use machine-learning techniques
to drive the adaptation. However, the problem of reconfiguring
the replication protocol raises additional challenges, e.g. by
demanding dedicated schemes to enforce consistency during
the transitioning between two replication strategies.

To the best of our knowledge, the work in [26] pioneers
the issues associated with adaptation in transactional systems
(specifically, DBMSs). In particular, this paper identifies a set
of sufficient conditions for supporting non-blocking switches
between concurrency control protocols. While the identifica-
tion of these conditions has interesting theoretical implications,

unfortunately, in order to satisfy them it is necessary to enforce
very stringent assumptions (such as knowing a-priori whether
the transactions regulated by two simultaneously executing
protocols will exhibit any data dependency), which restricts
significantly the practical viability of this approach. Our solu-
tion, on the other hand, relies on a framework that supports
switching between generic replication protocols without requir-
ing any assumption on the workload generated by applications.
Several other approaches have also been proposed based on the
idea to automatically analyse the incoming workload, e.g. [27],
to automatically identify the optimal database physical design
or self-tune some of the inner management schemes, e.g. [28].
However, none of these approaches investigated the issues
related to adapt the replication scheme. Even though the
work in [29] presents a meta-protocol for switching between
replication schemes, it does not provide a mechanism to
autonomically determine the most appropriate scheme for the
current conditions.

Finally, a number of works have been aimed at auto-
matically tuning the performance of Software Transactional
Memory (STM) systems, even if most of these works do not
consider replicated systems. In [30], the authors present a
framework for automatically tuning the performance of the
system by switching between different STM algorithms. This
work was based in RSTM [31], which allows changing both
STM algorithms and configuration parameters within the same
algorithm. The main difference between RSTM and our work
is that the latter system must stop processing transactions
whenever changing the (local) concurrency control algorithm,
whereas MORPHR provides mechanisms allowing the coexis-
tence of protocols while the switch is in process. The works
in [32] and [33] also allow changing configuration parameters,
but in our framework we only consider changing the protocol
as a whole.

Our previous work, PolyCert [34], uses ML techniques
[35] to determine which is the most appropriate replication
protocol according to each transaction’s characteristics for in-
memory transactional data grids. However, in Polycert it is
only possible to use protocols from the same family, namely
certification based replication protocols, which only differ in
the way transactions are validated. In this work, we address the
more complex and generic problem of adaptive reconfiguration
among arbitrary replication schemes.

VIII. CONCLUSIONS

This paper has presented MORPHR, a framework aimed
to automatically adapt the replication protocol of in-memory
transactional platforms according to the current operational
conditions.

We proposed a modular approach supporting both general-
purpose switching strategies, as well as optimized fast switch
algorithms that can support non-blocking reconfiguration.

We modelled the problem of identifying the optimal repli-
cation protocol given the current workload as a classification
problem, and exploited decision tree-based ML techniques to
drive adaptation.

MORPHR has been implemented in a well-known open
source transactional data grid and extensively evaluated,
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demonstrating its high accuracy in the identification of the
optimal replication strategy and the minimal overheads intro-
duced to support adaptability.
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