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1 Introduction
This document is a companion of the software release associated with deliverable D3.2
of the Cloud-TM project, namely the prototype implementation of the Workload An-
alyzer (WA). The document presents design/development activities carried out by the
project’s partners in the context of WP3 (Task 3.1).

More in detail, the goal of this document is twofold:

• providing an overview of the WA architecture, including a description of (i) its
core mechanisms/functionalities and (ii) the technologies used for the implemen-
tation of the prototype, and how they were integrated

• describe how to install and configure (README) the release of the WA proto-
type.

The structure of this document is the following. In Section 2 we overview the set
of key functionalities provided by the WA, and how it fits in the architecture of the
Cloud-TM platform.

Section 3 describes the architecture of the main components of the Workload An-
alyzer and how they have been integrated to achieve efficient interoperability with the
ecosystem of components composing the Cloud-TM platform.

Next, we describe in detail the key functionalities provided by the WA, and some
insights on their implementation. Specifically, in Section 4 we discuss the data ag-
gregation and filtering functionalities. The set of statistics gathered by the WA are
reported in Section 5, focusing in particular on the metrics selected/introduced in order
to characterize the transactional workload of Cloud-TM applications. Section 6 dis-
cusses the load forecasting functionalities provided by the WA, which are based on the
ample library of time-series analysis techniques provided by the R-project [1]. Section
7 focuses on the alert definition and QoS monitoring functionalities.

Finally, in Section 8, we provide instructions on how to install and test the WA.

1.1 Relationship with other deliverables
The prototype implementation of the WA has been based on the user requirements
gathered in the deliverable D1.1 “User Requirements Report”, and taking into account
the technologies identified in the deliverable D1.2 “Enabling Technologies Report”.

The present deliverable has also a relation with deliverable D2.1 “ Architecture
Draft ”, where the complete draft of the architecture of the Cloud-TM platform is pre-
sented.
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2 Key functionalities of the Workload Analyzer
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Figure 1: Architectural Overview of the Cloud-TM Platform.

Figure 1 shows where the Workload Analyzer (WA) fits in the global architecture
of the Cloud-TM platform. Sitting between the Workload and Performance Monitor
(WPM) and the Adaptation Manager (AM), the WA bears the following responsibilities
in the Cloud-TM platform (see Figure 3):

• Data aggregation and filtering: the streams of monitoring data produced by the
distributed nodes of the Cloud-TM platform via the WPM are gathered by the
WA, which exposes programmatic APIs and web-based GUIs allowing for ag-
gregating/filtering statistics originated by different software layers and/or groups
of nodes.

• Workload and resource demand characterization: the WA allows for deriv-
ing detailed transactional profiles that include a number of statistical information
characterizing the resource usage demand of applications deployed in the Cloud-
TM platform both at the physical (e.g. CPU, memory, etc.) and data (e.g. prob-
ability of conflicts among transactions, identification of hot spots for lock con-
tention and remote reads) levels.

5



• Workload and resource demand prediction: the WA integrates a set of script-
s/interfaces allowing for using the ample library of statistical functionalities im-
plemented by the R [1] free software project. This opens the possibility to run
a wide range of time-series analysis methods (such as, moving averages, ARI-
MAX models, Kalman filters [2]) aimed to forecast future trends of the workload
fluctuations.

• QoS monitoring and alert notification: the WA allows for graphing raw or
aggregated statistics (e.g. on the performance or availability of some set of ser-
vices), and defining complex alert conditions on the base of the collected data.

Figure 2: Key functionalities offered by the Workload Analyzer.
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3 Architecture of the Workload Analyzer
A key decision taken within the Cloud-TM consortium was to build the WA by capi-
talizing on several existing open-source software packages, which currently represent
leading solutions in their application domain:

• RHQ: The RHQ project is a popular systems management suite that provides
extensible and integrated systems management for multiple products and plat-
forms. Developed as an open source by Red Hat, RHQ [3] is the upstream to
JBoss Operations Network. RHQ is licensed under the GPL, with some pieces
individually licensed under a dual GPL/LGPL license.

The project is designed with layered modules that provide a flexible architec-
ture for deployment. It delivers a core user interface that provides audited and
historical management across an entire enterprise. A Server/Agent architecture
provides remote management and plug-ins implement all specific support for
managed products.

The RHQ project provides industrial-quality implementations of some of the
key functionalities required by the WA (and more in general by Cloud-TM’s
Autonomic Manager, see Figure 1), including:

– monitoring and graphing of values

– alerting on error conditions

– remote configuration of managed resources

– remote operation execution

– provisioning of software onto managed machines

At the light of the above consideration, the Cloud-TM consortium has taken the
key decision of developing the WA around the RHQ framework. This choice, not
only has avoided to “reinvent the wheel”, but also permitted to take advantage
of the know-how of the Red Hat team to assist the researchers from CINI and
INESC-ID in the integratinon of RHQ within the Cloud-TM platform. In addi-
tion, it enabled the academic researchers to re-use a set of robust, highly-tested,
open-source building blocks, and to focus their efforts on developing innovative
methodologies and tackle fundamental research challenges (such as defining au-
tomated policies for the self-optimization process of the Cloud-TM platform).
By electing a popular framework such as RHQ as the starting point/reference for
the development of the Cloud-TM WA (and, more in general, as the skeleton of
the Cloud-TM Adaptation Manager), the Cloud-TM project has also the possi-
bility to maximize the visibility of its research results, by reaching the mass of
users that already use RHQ to manage their distributed applications.

• Stream-lib: developed by Clearspring Technologies c©, and distributed under
the Apache license, stream-lib is an open-source JAVA library that integrates a
number of recent algorithms for summarizing data in streams on-the-fly, namely
avoiding to store all events in the stream [4].
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Figure 3: Architectural Scheme of the Workload Analyzer.

As we will detail in Section 5, we rely on Stream-lib to identify, using lightweight
probabilistic top-k algorithms, hot spots of different nature in the data access pat-
terns generated by transactions running in the Cloud-TM platform.

• R-project: R is a language and environment for statistical computing and graph-
ics. It is a GNU project similar to the S language and environment that was
developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by
John Chambers and colleagues. R provides a wide variety of statistical, includ-
ing linear and nonlinear modelling, classical statistical tests, time-series analysis,
classification and clustering.

As we will detail in Section 6, the WA exploits the ample library of statistical
functions provided by R in order to derive workload forecasts using a range of
time series analysis methodologies (ranging from simple moving averages, to
more complex ARMA models and Kalman filter-based predictors), allowing for
identifying trends and seasonal components in the incoming streams of statistics.

The diagram in Figure 3 depicts the architecture of the WA. Let us analyze it more
in detail, discussing how the above mentioned open-source projects have been extended
and integrated in the Cloud-TM platform architecture.

A first important step was to extend the set of statistics exported by the components
of the Cloud-TM Data Platform (and in particular of Infinispan [5]) in order to generate
a detailed profile of the transactional workload in input to the system. More details on
this can be found in Section 5.

The next step was to integrate the WPM framework (described in Deliverable D3.1)
with the RHQ infrastructure. This was achieved by developing an ad-hoc RHQ plug-in,
designed to be fully compatible with the WPM’s Log Service component (LS) output.
The plug-in externalizes to RHQ the statistics collected by the Cloud-TM nodes that
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are being monitored by the WPM. In order to decouple the LS from its RHQ plug-in
(to allow them to be deployed on different machine, for instance), the plug-in registers
a set of listeners on an Infinispan cache, which is populated by the LS whenever a
new sample (or batch of samples) is gathered from the monitored nodes. This way, we
take advantage from the fault-tolerance features of Infinispan in order to ensure high
availability of the communication bus between LS and its RHQ plug-in.

Note that, with this architectural organization, we are are replacing the native RHQ
monitoring infrastructure with the one provided by the Cloud-TM’s WPM (that had
been already developed in Deliverable D3.1). Experiments are currently on-going to
evaluate the efficiency and robustness of the two solutions and take an informed de-
cision on which of the two monitoring platforms to adopt in the final release of the
Cloud-TM platform.

Finally, once the monitoring data is convoyed by RHQ, we use its rich set of APIs
and interfaces as building blocks to support a breadth of functionalities for workload
analysis and forecasting. These include statistics visualization, aggregation and filter-
ing, alert definition and monitoring of QoS levels, as well as exporting data (via REST
interfaces) for analysis with the R statistical framework.
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4 Data aggregation and filtering
In order to support aggregation and filtering of incoming monitoring data streams,
the WA exploits the advanced grouping functionalities provided by RHQ. A detailed
description of this RHQ functionality can be found in [6], but, for the sake of self-
containment, we provide a short overview also in the following.
In RHQ, groups serve a twofold purposes:

• defining which access permissions are applied to the resources monitored by
RHQ;

• providing a way to view aggregate data and perform actions across all group
members en mass.

RHQ enables flexible group membership policies with which:

• users can manually add resources to a group “one-by-one” for fine-grained mem-
bership control via a web console

• users can create expressions / rules that dynamically maintain groups member-
ship (DynaGroups). DynaGroups allow for defining expressions based grouping
conditions on the various attributes made available by the resources registered in
RHQ. A screenshot displaying how DynaGroups can be defined in RHQ is shown
in Figure 4. Note that membership in DynaGroups is dynamic in the sense that
it is periodically tested for the presence/absence of members belonging to the
group.

Once groups are defined, it is possible to specify control access polices directly to
groups of resources, instead of individual resources. By using DynaGroups, one can
effectively create dynamic ACLs (access control lists) to lessen the burden of security
maintenance, especially against large inventories.

Compatible groups (those composed entirely of the same type of resource [e.g. all
Linux platforms, all JBossAS servers]) have additional features available to them:

• group-wise availability;

• min, max, and average metrics across the group;

• aggregate events viewer;

• operations against all group members, either serialized or concurrent execution
policies;

• fine-grained changes to connection properties and resource configuration across
one or more members of the group.
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Figure 4: Example of DynaGroups’ definition in RHQ.
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5 Workload and resource demand characterization
A significant effort has been put in implementing probes collecting a number of statis-
tics aimed at characterizing the transactional profile of the applications deployed over
the Cloud-TM platform.

The probes were inserted in the key component that is responsible for the transac-
tional management of data, Infinispan. We recall (see Deliverable D2.1: “Architecture
Draft”) that Infinispan is a transactional data grid platform developed as an open-source
project that was selected by the Cloud-TM consortium as the starting point to develop
the Cloud-TM’s Reconfigurable Distributed Software Transactional Memory platform.
In the context of WP2, in fact, Infinispan is being extended with a library of replica-
tion schemes and with mechanisms for allowing the dynamic reconfiguration of the
protocols used to ensure data consistency across the nodes of the data grid.

The additional statistics introduced within the Cloud-TM project have been inte-
grated in Infinispan’s pre-existing statistic collection mechanism. In fact, Infinispan
already collects a significant number of statistics on the performance and status of sev-
eral of its subcomponents (e.g. Lock Manager, Distribution Manager, RpcManager, see
[7] for a complete reference), and externalizes them using JMX interfaces allowing for
their monitoring via standard JMX-based consoles (and by the WPM).

The new statistics have been collected using probes scattered across the LockMan-
ager, the LockingInterceptor, the DistributionInterceptor, the ReplicationInterceptor,
the TxInterceptor, the CacheMgmtInterceptor and the RPCManager. Furthermore, we
introduced a new Interceptor, the StreamLibInterceptor, which runs efficient stream
analysis algorithms (to be described shortly). The new statistcs are then published via
JMX interfaces together with the original Infinispan statistics.

The full set of additional statistics collected from Infinispan is reported in Table
1 and Table 2, classifying them into high-level and low-level statistics, which are de-
scribed in the following.

5.1 High Level Statistics
High-level statistics can be, in turn, distinguished in two classes:

1. statistics tracking keys that represent hot spots for two essential subsystems of
a data grid: the data placement and concurrency management schemes. More
in detail we trace the top-k keys (where k is a parameter that is dynamically
configurable via JMX) that have been:

i) updated (using the put command);

ii) either remotely or locally read - thus requiring or not a remote interaction
with another node during transaction execution;

iii) locked, causing either i) no contention, ii) contention, or iii) abort, of a
transaction.

Note that this information is extremely valuable for the automatic and human-
driven tuning of these performance-critical modules of the system, and we plan to

12



High Level Statistics
Statistic name Short description
Application Contention Factor The Application Contention Factor is a measure of the max degree of concurrency

achievable by a transactional application given its data access pattern.
Top-K put Map containing the k keys for which it has been more frequently requested a put

operation (together with the estimated number of times the key has been put).
Top-K local-get Map containing the k local keys for which it has been more frequently requested

a get operation (together with the estimated number of times the key has been read
locally).

Top-K remote-get Map containing the k remote keys for which it has been more frequently requested
a get operation (together with the estimated number of times the key has been read
remotely).

Top-K locked Map containing the k keys for which it has been more frequently requested a lock
operation (together with the estimated number of times the key has been locked).

Top-K contended Map containing the k keys for which it has been more frequently encountered
lock contention (together with the estimated number of times there has been lock
contention on the key).

Top-K abort Map containing the k keys that have have more frequently caused the failure of a
transaction due to contention (together with the estimated number of times there
has been lock contention on the key).

Table 1: High level statistics

make use of this info into the Autonomic Manager component to drive different
of self-optimizing strategies.

In order to minimize overheads, we identify these keys using recent results from
literature on data stream analysis. In particular we used the top-k algorithm pre-
sented in [4] (implemented by the stream-lib opensource project [8]): unlike
classic solutions that provide exact guarantees at the cost of storing a possibly
unbounded amount of information, this algorithm analyzes streams using a lim-
ited (constant) memory space, thus optimizing performance and lending itself to
the analysis of massive streams of data.

2. Application Contention Factor: Another key high level statistic computed by the
Workload Analyzer is an innovative metric, which we named Application Con-
tention Factor (see the technical report [9] for more details on it), that allows
for characterizing the maximum degree of data parallelism exhibited by transac-
tional applications.

In order to explain more rigorously its definition, it is required to introduce some
background concepts at the basis of the analytical performance modelling ap-
proaches of transactional systems presented so far in literature. Existing works
in this area [10, 11] share a common reliance on queuing theoretical arguments
to derive the transaction contention probability. Denoting with λ the average ar-
rival rate of locks to a data item, and assuming that locks are held for an average
time TH , one can model a data item as a queue and approximate the probability
of encountering lock contention on a data item with the utilization of the cor-
responding queue (namely, the fraction of time during which the data item is
locked), which is computable as [12]:

U = λlockTH

assuming λlockTH < 1. Then, assuming that accesses are uniformly distributed
on one [11] (or more [13]) set of data items of cardinality D, a-priori known, it
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is possible to compute the probability of lock contention on any of the data items
simply as:

Plock =
1

D
λlockTH (1)

Unfortunately, the availability of information on D, and the assumption on the
uniformity of the data access patterns strongly limits the employment of these
models with complex applications, especially if these exhibit dynamic shifts in
the data access distributions.

The idea underlying the definition of the Application Contention Factor (ACF) is
to extract the equivalent value of D for an application in execution on the Cloud-
TM platform by exploiting the availability of information on Plock, λlock and TH
in the current configuration. Given Plock, λlock and TH , in fact, we can invert
Eq. 1 and obtain the Application Contention Factor (ACF) as:

ACF =
Plock

λlockTH
(2)

By equation 1, it follows that 1
ACF can be interpreted as the size D of an “equiv-

alent” set DB of data items, such that, if the application issues lock requests on
disjoint data items selected uniformly from set DB, it would incur in the same
contention probability that it experienced in the current configuration.

From an other perspective, the ACF (or better, its inverse) represents the max-
imum number of transactions that can be concurrently executed in the system
assuming that each transaction holds its locks for a single time unit. The ACF
allows for characterizing the application data access pattern distribution in a very
concise, lightweight and pragmatical manner, abstracting over arbitrarily com-
plex data access patterns (e.g. with strong skew or complex analytical represen-
tation) and over the effects of contention on physical resources (abstracted away
by normalizing the ACF with respect to TH ) via an easily tractable analytical
model.

This result represents the foundation on top of which we are building analytical
models of the lock contention dynamics. These models aim to determine the
contention probability that would be experienced by that same application in
presence of different scenarios of workloads (captured by shifts of λlock), as well
as of levels of contention on physical resources (that would lead to changes of
the execution time of the various phases of the transaction life-cycle, capturable
by shifts of the TH ).

In Figure 5 and Figure 6 we report the ACFs and, respectively, transaction com-
mit probability obtained when running two well-known benchmarks, TPC-C [14]
and Radargun [15], configured to generate very heterogeneous workloads for
what concerns both the data access skew and contention probability.

TPC-C is a standard benchmark for OLTP systems (of which we ported an im-
plementation to execute on top of Infinispan), which portrays the activities of
a wholesale supplier and generates mixes of read-only and update transactions
with strongly skewed access patterns and heterogeneous duration. Radargun,

14
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Figure 5: ACF of heterogeneous workloads.
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Figure 6: Transaction commit probability of heterogeneous workloads.

instead, is a benchmarking framework specifically designed to test the perfor-
mance of distributed, transactional key-value stores. The workloads generated
by Radargun are much simpler and less diverse than TPC-C’s ones, but have the
advantage of being very easily tunable.

For TPC-C we consider a workload (TPC-2) that include around 50% of up-
date transactions and generate high contention. For Radargun we consider two
workloads: Sk, which generates transactions that issue 10 writes distributed on
a set of 100K keys and selected according to a highly skewed distribution (as
defined by the NuRand(100000,8191), used by several TPC benchmarks); Sm,
which uses a uniform data access pattern updating in each transaction 10 data
items selected over a set of cardinality 1K. All the results reported in this sec-
tion were collected using a private cloud of 10 servers equipped with two 2.13
GHz Quad-Core Intel(R) Xeon(R) E5506 processors and 8 GB of RAM, running
Linux 2.6.32-33-server and interconnected via a private Gigabit Ethernet.

The plots shows that, once fixed an application workload, and even when consid-
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Figure 7: Distribution of lock inter-arrival time using three different Radargun work-
loads.

ering very skewed workloads, the ACF (see Figure 5), unlike the commit prob-
ability (see Figure 6), is invariant as the size of the underlying data grid varies.
This confirms the appropriateness of the ACF to characterize application’s data
access patterns in a way that is independent from the current degree of paral-
lelism in the system (unlike for instance the transaction commit probability) and
of the actual data access pattern distribution.

5.2 Low Level Statistics
The set of additional low level statics gathered from each individual Infinispan node,
reported in Table 2, is oriented to provide a detailed characterization of the performance
and costs of the main subsystems involved in the processing of transactions along its
life-cycle. These include both statistics (mean, and percentiles) on metrics typically
used in SLAs (for instance, transaction execution time) and statistics useful for mod-
elling purposes, such as the latency experienced by transactions along their various
execution stages, the frequency of different types (write vs read) of transactions and of
various contention-related events (e.g. successful vs failed lock acquisition).
Among these, two types of statistics are particularly noteworthy:

• the probability distribution of lock inter-arrival time: this information, encoded
as an histogram, allows verifying whether one critical assumption holds for the
applicability of Equation 1, namely, whether the lock arrival rate can be approx-
imated by an exponential distribution. Equation 1, in fact, is guaranteed to hold
only in case the lock requests arrival rate is poissonian, a condition sufficient to
ensure the PASTA (Poissonian Arrival See Time Averages) property [16].
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Figure 8: Reservoir sampling algorithm [19] (Figure from [20]).

The data reported in Figure 7 shows an example of three lock inter-arrival time
distributions that were obtained by configuring Radargun to generate transac-
tions accessing data using different data access patterns (uniform vs skewed) on
keysets of different sizes (1K vs 100K). By observing the graph, it is clear that
the above parameters have a significant impact on the shape of the empirical lock
inter-arrival time distributions, which present, at high skew or contention levels,
spikes that are symptomatic of non-poissonian behaviors that can have an impact
on the accuracy of the modelling methodology at the basis of the computation of
the ACF.

By comparing, via Good of Fitness tests [17], the empirical lock arrival rate with
(best-fitting) exponential distributions (or with other distributions for which the
PASTA property holds, such as uniform distributions), one can therefore obtain a
measure of the expected accuracy of the ACF in predicting the maximum degree
of concurrency for a transactional application.

• percentiles on transaction execution times: percentiles are often preferred to sim-
ple averages in SLA negotiations as they provide more meaningful guarantees
on the actual QoS delivered to the population of end users of a system. On the
other hand, computing exact percentiles requires storing all the samples across
the considered time window, or solving the problem of determining (statically or
dynamically) an appropriate binning size [18].

In order to avoid the above complexity, we compute percentiles using Vitters
reservoir sampling algorithm [21], which over time gives us an appropriate model
for the distribution of the transaction execution lengths. Vitters algorithm (shown
in Figure 8) fills an initially empty reservoir (array) of size nwith the first n sam-
ples. Then, each k-th element is inserted in a random spot of the reservoir with
a probability of n/k. This ensures an uniform sampling over the stream of data.
The requested percentile is obtained by sorting the reservoir and picking the per-
centile of interest. For instance, to obtain the 95% of the transaction execution
time we can simply read the value stored at index j = n ∗ 0.95 of the sorted
array.
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Low Level Statistics
Statistic name Short description
Probability distribution of lock
inter-arrival time

Histogram containing the distribution of lock requests’ inter-arrival
time.

K-th percentile of update
transactions duration

K-th percentile of update transactions duration

K-th percentile of read-only
transactions duration

K-th percentile of read-only transactions duration

Number of nodes involved in a
prepare

Average number of nodes involved in a prepare phase

Deadlocks during prepare
phases

Number of transactions aborted during prepare phase due to a deadlock

Timeouts during prepare
phases

Number of transactions aborted during prepare phase due to a timeout
on lock acquisition

Remote get operation execu-
tion time

Time needed to perform a get on a remote node (without considering
the round trip time)

Size of a PrepareCommand Average size of a PrepareCommand in bytes
Size of a ClusteredGetCom-
mand

Average size of a ClusteredGetCommand in bytes

Size of a CommitCommand Average size of a CommitCommand in bytes
Read-only transaction execu-
tion time

Average execution time for a read-only transaction that commits

Update transaction execution
time

Average execution time for an update transaction that commits

Update transaction local exe-
cution time

Average execution time of the local part of an update transaction, i.e.
up to the prepare phase

Replication time for an update
transaction

Average time needed by the cohorts to replicate modifications contained
in a PrepareCommand

Round Trip Time Time needed to send a PrepareCommand and get the responses, without
considering the replication time on the cohorts’ side

Local contention probability Probability that a lock requested by a local transaction is already taken
by another one, whether local or remote

Lock waiting time Average time spent by a transaction before acquiring a lock it is waiting
for

Update transaction local exe-
cution time in isolation

Average execution time of the local part of an update transaction with-
out considering the time spent to acquire the locks

Lock hold time Average time that lasts between the acquisition of a lock and its release
RollbackCommand cost Time spent to process a RollbackCommand
CommitCommand cost Time spent by a local transaction to process a CommitCommand
Acquired locks Average number of locks acquired by local transactions that manage to

get to the prepare phase
Transactions arrival rate Average number of transactions that arrive to the system per second
Trhoughput Number of completed transactions per second
Transactions write percentage Percentage of transactions that perform at least one put operation,

whether they commit or not
Successful transactions write
percentage

Percentage of transactions that perform at least one put operation among
the committed ones

Table 2: Low level statistics
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5.3 Thread Level Statistics
The native statistics collection mechanism of Infinispan relies on a set of counters main-
tained by each node of the data grid. These counters are implemented by means of
shared atomic variables that are updated (possibly concurrently) by threads upon the
occurrence of relevant events. E.g., the total number of committed transactions by data
grid node is stored by means of an AtomicLong type variable (provided by the package
java.util.concurrent.atomic). This variable is shared by all threads of the node and is
(atomically) incremented by a thread whenever a transaction is committed.
This approach to gather statistics has two main drawbacks:

• In many transactional applications, different threads have distinct transaction
profiles (e.g. read vs write dominated workloads). By aggregated statistics at
the data grid node level, it is impossible to capture statistical information that
would allow for performing a detailed workload profiling on basis of activity of
the different threads.

• On multi-core machines, the presence of these atomic variables tends to increase
the cache coherency traffic and imposes the use of low-level atomic constructs
(e.g. Compare and Swap), which, typically, rely on costly hardware operations,
requiring, e.g., the generation of cache invalidation traffic or locking of system
buses. The impact on system performance due to these factors may became
relevant with some workload profiles and/or with high concurrency level, and
may limit the system scalability. Further, with the introduction of additional
statistics in the version of Infinispan tailored for the Cloud-TM Data Platform,
the update frequency of the counters is notably increased with respect to the
original version.

On basis of the above motivations, the statistical data collection mechanism used in
Infinispan has been extended, introducing, as a configurable alternative to the native
centralized scheme, also a per-thread data gathering scheme. In the novel mechanism,
each thread maintains a set of private copies of counters, one copy for each monitored
metric. Upon the occurrence of an event which requires the update of a counter, the
thread updates its own copy of the counter avoiding any kind of synchronization. This
allows, on one hand, to gather differentiated statistics for each thread. Of course, when
statistics at node level are needed, they can be still computed, by collecting the values
of the counters of the locally executing threads for the desired metric and by calcu-
lating the aggregated value (e.g. the average, the maximum, the minimum). In this
implementation, the calculus of an aggregated metric is performed when the metric
is queried via its JMX interface. Figure 9 and Figure 10 provide a comparison be-
tween the architectures of the collection mechanism used in Infinispan and the novel
mechanism.

Implementation considerations. Figure 11 depicts the class diagram of the novel
data collection mechanism. The new mechanism is based on a per-thread private set of
counting variables, named parameters. This set is defined by the class ThreadStatistics,
which implements the interface ISPNStats. The getter and the setter methods read the
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Figure 9: Schema of the centralized statistics collection mechanism natively imple-
mented in Infinispan.

value and assign a value for a specific parameter, respectively. The input variable index
identifies the accessed parameter. The method addParameter(int index, double delta) is
used by a thread whenever a parameter has to be updated. This method adds the value
delta to the current value of the parameter identified by index. Finally, the method
reset() sets to zero all parameters. The privates sets of parameters for each thread
are implemented by means of the ThreadLocal class, ensuring that, upon initialization
(i.e. upon thread creation), a new ThreadStatistics object is associated with the new
thread and a reference to this object is added, atomically, to the StatisticsListManager
object. The latter contains a list of ThreadStatistics objects.

The StatisticsListManager allows to access to the statistical data of each thread and
provides the methods that calculate the aggregated metrics. When a thread is termi-
nated, the ThreadStatistics object of the thread remains in the list, thus allowing to
access statistics also after the thread termination. Statistics belonging to the terminated
thread are removed by the list by calling the method clearList().

Note that the set of entries of the list of ThreadStatistics objects managed by Statis-
ticsListManager changes whenever a new thread is created (because a new reference
to the ThreadStatistics object of the new thread is added to the list). Concurrently, the
list may be traversed by other threads executing a method which calculate an aggre-
gated metric. Such a method uses the method getParameters(int[] indexes). This latter
method receives a list of parameters and, for each parameter, returns the sum of values
of the private copies of the parameter of all threads. This is done by means of a list
iterator and by traversing the whole list.

Due to the concurrent accesses, the aforesaid list has been implemented as an in-
stance of the class CopyOnWriteArrayList. This is a thread-safe implementation of the
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Figure 10: Schema of the new per-thread statistics collection mechanism implemented
in Infinispan.

List interface, which, in particular, does not block operations that perform list traver-
sals. This improves the responsiveness of the operations calculating aggregated met-
rics. On the other hand, list insertions pay an extra cost. Anyway, this implementation
is optimized for scenarios with a low rate of list updates with respect to the rate of list
traversal operations. As the rate of list updates depends on the creation rate of new
threads, profitable scenarios are likely to happen in multi-tier architectures tailored for
web-based applications, where threads are not created and destroyed for each opera-
tion invoked by the users. Instead each operation is executed by a thread belonging to
a pre-existing thread-pool.

5.4 Evaluating the Overhead of Statistics Collection
We conclude this section by presenting in Figure 12 the results of an experimental study
aimed to assess the impact on Infinispan’s performance with the introduction of the
new set of statistics described in Table 1 and Table 2. We used a Radargun workload
generating transactions with a very reduced conflict probability (performing 1 write
access out of 10 operations distributed uniformly across 100K keys), and measured the
throughput (committed transactions per second) achieved when running Infinispan in a
single node and on 8 nodes (replication mode). The plots the show that the throughput
achieved by Infinispan when gathering the whole new set of statistics (implemented
using the per thread collection scheme) is around 2% lower than when totally disabling
the statistics collection system.

This confirms the efficiency and feasibility of the proposed workload monitoring
and analysis methodology.
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Figure 11: Class diagram of the per-thread data collection mechanism.
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Figure 12: Evaluating the overhead of the statistics collection mechanisms
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6 Workload and resource demand prediction
As already mentioned, the WA relies on the powerful R statistical engine in order to
perform various time series analysis. This is made possible by exploiting the recently
introduced REST APIs of RHQ, which allows exporting the statistical data gathered
from the monitored platform as time-series encoded in JSON [22] format.

An example of the potentialities of this approach and the simplicity to access from
R to the time series is provided by the Listing 1 in which the RCurl and rjson pack-
ages (provided by R) are used to acquire (via REST) and to import into R the vectors
of the time series of the last eight hours of a metric. In the reported example, the re-
quested values, uniquely identified by scheduleId = 10013, are acquired from the
RHQ server listening on port 7080 and running on the same machine on which the R
engine is deployed.

The data is then plotted along with its 5% and 95% quantils as well as 20-items
simple moving average. Figure 13 shows a plot obtained running this script on example
data spanning a 3 days time frame. The metrics are plotted in black, the average in blue,
the 5% and 95% quantils in orange and green and with the help of the TTR library, the
50 samples moving average is plotted in red.

Listing 1: Example R listing to produce the graph shown in Figure 13

l i b r a r y ( ” RCurl ” )
l i b r a r y ( ” r j s o n ” )

## g e t raw da ta f o r u s e r rhqadmin and s c h e d u l e 10013 f o r t h e l a s t 86400
s e c (=24 h )

j s o n f i l e <− getURL ( ” h t t p : / / l o c a l h o s t :7080 / r e s t / 1 / m e t r i c / d a t a / 10013 / raw
? d u r a t i o n =86400 ” , h t t p h e a d e r =c ( Accept = ” a p p l i c a t i o n / j s o n ” ) , userpwd
=” rhqadmin : rhqadmin ” )

## c o n v e r t j s o n t o l i s t o f v e c t o r s
j s o n data <− fromJSON ( p a s t e ( j s o n f i l e , c o l l a p s e =” ” ) )

o p t i o n s ( d i g i t s =16)

## c o n v e r t i n t o a da ta frame
df <− data . frame ( do . c a l l ( rbind , j s o n data ) )

## c o n v e r t t i m e s t a m p s t o d a t e e x p r e s s i o n s i n t h e whole l i s t f o r t h e y
a x i s

t i m e s <− l a p p l y ( df $ t imeStamp , f u n c t i o n ( x ) { format ( as . POSIXlt ( round ( x /
1000) , o r i g i n =”1970−01−01” ) , ”%H:%M” ) } )

## p l o t t h e da ta
p l o t ( df $ t imeStamp , df $ va lue , x l a b =” t ime ” , y l a b =” Free memory ( b y t e s ) ” , x a x t =

’ n ’ , t y p e = ’ b ’ )
## and t h e l a b e l s on t h e x−a x i s
a x i s ( 1 , df $ t imeStamp , t i m e s )

## t r a n s l a t e v a l u e s i n t o a numer ic v e c t o r t o run some a n a l y s i s on
g<−as . v e c t o r ( mode=” numer ic ” , df $ v a l u e )

## remove NaN v a l u e s
h<−g [ ! i s . na ( g ) ]
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Figure 13: Example plot of time series analysis obtained on data extracted via REST
interfaces from RHQ.

## P l o t l i n e f o r t h e avg v a l u e
a b l i n e ( h=mean ( h ) , c o l =” gray ” )

## P l o t markers f o r 20% and 80% q u a n t i l e s
a b l i n e ( h= q u a n t i l e ( h , . 2 0 ) , c o l =” l i g h t b l u e ” )
a b l i n e ( h= q u a n t i l e ( h , . 8 0 ) , c o l =” l i g h t g r e e n ” )

## compute and p l o t 20 i t e m s moving average r e q u i r e s l i b r a r y ’TTR ’
l i b F o u n d <− l i b r a r y ( ”TTR” , l o g i c a l . re turn =TRUE)
i f ( l i b F o u n d ) {

p o i n t s ( df $ t imeStamp ,EMA( h , n =20) , c o l =” r e d ” , pch=”−” )
}

As a final remark, note that by exposing data via REST interfaces, the data gathered
by RHQ can be straightforwardly provided as input to a plethora of machine learning
tools, and not only to R. In fact, work is currently ongoing, in the context of Task T3.2
“Performance Forecasting Models”, in order to automatize data extraction from several
popular machine learning tools, such as:
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• Rulequest’s Cubist c© [23]: Cubist c© is a decision tree based regression com-
mercial tool developed by Quinlan, the author of C4.5 [24] and ID3, two pop-
ular decision tree based classifiers. Analogously to these algorithms, Cubist c©

builds decision trees choosing the branching attribute such that the resulting split
maximizes the normalized information gain (namely the difference in entropy).
Unlike C4.5 and ID3, which contain an element in a finite discrete domain (i.e.
the predicted class) as leafs of the decision tree, Cubist c© places a multivariate
linear model at each leaf.

• Weka [25]: Weka is an open-source framework providing a common interface to
a large number of machine learning algorithms, including Neural Networks [26],
Support Vector Machines [27], decision trees [24] and various data clustering
algorithms [28].
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7 QoS monitoring and alert notification
As already mentioned, the WA leverages on RHQ’s advanced QoS monitoring and
alert notification engine. This choice has allowed the researchers of the Cloud-TM
consortium to focus on the automatic determination of the policies to be defined to
trigger alerts (e.g. associated to elastic-scaling or to the self-tuning of the Cloud-TM
platform), rather than on the implementation of yet another alert notification engine.

RHQ’s QoS monitoring and alert notification engine is designed to provide proac-
tive notifications about events happening throughout the monitored platform. These
events can be resources failing or being disconnected, specific values for metrics being
collected, resource configuration being changed, operations being executed, or even
specific conditions found by parsing log events.

As information flows into the RHQ system, it passes through the alerts processing
engine. Here, the data can be transformed, filtered, or even correlated with data from
other parts of the system. Users have full control over what they want to be notified
about, and RHQ keeps a full audit trail of any conditions that have triggered alerts to
fire.

The alerts subsystem provides a wealth of different options for being notified proac-
tively about potential issues in the system. As a result, it supports a breadth of different
configuration options that allow for deriving very specific and customized semantics.

A detailed description of these functionalities is reported in [29], but we present in
the following a brief summary of the key features that are more relevant to the usage
within the context of the Cloud-TM project:

7.1 Alert Definitions & Alert Conditions
Each resource monitored by a RHQ server may have zero or more alert definitions. At
the heart of the alert definition is the condition set.

There’s no limit to the number of conditions that can be created for a single alert
definition, and either all or just one of them needs to be met simultaneous in order for
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this definition to trigger an alert.

When an alert definition’s condition set is met, an alert is created which serves
as the primary piece of audit data in the system. However, several types of external
notifications can also be sent, such as:

• an email to a list of explicit email addresses

• an email to a list of RHQ users

• an email to all of the users in a list of RHQ roles

• an SNMP trap

• server-side scripting

• JAVA-based alert plugins

Note that the last option lends itself naturally to trigger, in an efficient way, the
logics of Cloud-TM’s Adaptation Manager.

7.2 Action Filters & Recovery
These are hooks that allow the RHQ system to have enhanced control over alerting.
In tandem, they help to semi-automate the process of responding to alerts by giving
pseudo-intelligence to RHQ itself.

When an alert is triggered, action filters can be used to prevent duplicate alerts
while the problem that caused it to fire is being fixed (either by developers or system
admins). Recovery can be used to automatically re-enable an alert definition once the
problem condition in the system is resolved.

7.3 Dampening
RHQ supports the possibility of “dampening” rules. By default, each time the condition
set is met an alert will fire. Dampening rules is a flexible way of changing this semantic

27



to suppress some of these firings, specifying, for instance, to fire an alert only if its
condition is set at least x times within a given time frame.

This provides a nice way to ignore false positives caused by, say, momentary spikes
in metrics. In this case, the problem metric would have to remain problematic for an
extended period of time before the administrators are notified of the issue.
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8 Setting up the WA prototype
In this section we describe the content of the package and the necessary steps to com-
pile and run all the modules belonging to the WA prototype.

8.1 Structure and Content of the Package
The content of the package is structured as follows

Listing 2: Example R listing to produce the graph shown in Figure 13
i n f i n i s p a n t e s t
| t e s t i n f i n i s p a n . j a r

wpm
| c o n f i g
| l i b
| l o g
| s r c
| eu . r e s e r v o i r . m o n i t o r i n g
| eu . c loud tm
| r e s o u r c e s
| rmi . s t a t i s t i c s
| wpm
| consumer
| hw probe
| l o g S e r v i c e
| main
| p a r s e r
| p r o d u c e r
| sw probe

wpm−rhq−p l u g i n
| s r c
| main
| j a v a
| eu . c loud tm .wpm. rhq . p l a t f o r m
| eu . c loud tm .wpm. rhq . cpu
| eu . c loud tm .wpm. rhq . f s
| eu . c loud tm .wpm. rhq . n e t
| eu . c loud tm .wpm. rhq . i n f i n i s p a n
| eu . c loud tm .wpm. rhq . manager
| eu . c loud tm .wpm. rhq . r e g i s t r y

| r e s o u r c e s
doc
| D3.2−CompanionDocument . pdf

• The infinispan test folder contains a simple test application that uses an Infinis-
pan cache. The used version on Infinispan exposes some relevant Key Perfor-
mance Indicators (see Tables 1, 2) via the MBean sever, which are acquired by
WA via WPM.

• The wpm folder contains the WPM system’s source code, scripts and configura-
tion files; the WPM system is composed by three modules

– Log Service: this module logs the collected statistics within an Infinispan
cache that is used for distributing data to RHQ server via an RHQ agent
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plugin. The Log Service configuration file is config/log service.config, and
it also contains the name of the Infinispan configuration file.

– Consumer: its configuration file is config/resource consumer.config.

– Producer: its configuration file is config/resource controller.config.

• The wpm-rhq-plugin folder contains the source code of the RHQ plugin and
includes the software components and the file descriptor used to integrate the
WPM into the RHQ platfom. In particular, the plugin components, contained
in the java subfolder, are connectors to the resources monitored by WPM and
there is a component for each specific monitored resource type, i.e. platform,
cpu, filesystem, network interface, infinispan cache. On the other hand the file
descriptor, contained in the resources subfolder, specifies the type of resources
supported by the plugin, the relationship between resource types and a definition
of what metrics can be collected for each resource type. In addition, the plugin
defines:

– a manager that provides and manages the connection to the WPM for the
other plugin components;

– a registry module that provides an interface to the Cloud-TM global registry
in order to discover all the monitored resources.

• The doc folder contains a textual document concerning the content of the pack-
age.

8.2 Compile the WPM prototype
1. The compile process requires the ANT program installed on the system. De-

compress the zip file and, using the command line, locate the control within the
folder wpm

2. In this folder run the command to clean the (possibly) previous project builds:
ant clean

3. In order to compile the application, run the command: ant compile. The results
of the execution should be the creation of the build folder that contains all the
.class of the application.

4. The run scripts require the generation of an executable jar file. To do that run the
command ant jar. If success, in the wpm folder a new jar file, called wpm.jar,
should be appeared.

5. Now the application is compiled and ready to execute.

8.3 Setting up the WPM prototype
1. Since all the modules communicate via sockets, network firewall rules MUST

BE configured in order not to drop the requests/packets through the ports speci-
fied by the configuration files.
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2. For a correct startup, the modules should be activated in the following order:
Infinispan Test, Log Service,Consumer, Producer.

3. The command to run the application is:

java -cp . -Dcom.sun.management.jmxremote.port=9999 -Dcom.sun.management.
jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false
-jar test infinispan.jar

This is contained within the script file run test infinispan.sh

4. The command to run the Log Service module is:

java -cp . -Djavax.net.ssl.keyStore=config/serverkeys -Djavax.net.ssl.keyStorePassword=
cloudtm -Djavax.net.ssl.trustStore=config/serverkeys -Djavax.net.ssl.trustStorePassword=
cloudtm -jar wpm.jar logService

This is contained within the script file run log service.sh

5. The command to run the Consumer module is:

java -cp . -Djavax.net.ssl.trustStore=config/serverkeys -Djavax.net.ssl.trustStorePassword=
cloudtm -Djavax.net.ssl.keyStore=config/serverkeys -Djavax.net.ssl.keyStorePassword=
cloudtm -jar wpm.jar consumer

This is contained within the script file run consumer.sh

6. The command to run the Producer module is:

java -cp . -Djava.library.path=lib/ -jar wpm.jar producer

This is contained within the script file run producer.sh

8.4 Compile the WPM-RHQ Plugin
1. The compile process requires the Apache Maven software. Download and install

Maven as described in the Maven official web site [30].

2. Since the plugin depends on a set of JBoss software modules configure Maven
in order to download JBoss artifacts in your builds as described in the ”Maven
Getting Started - Users” page [31].

3. Using the command line, locate the control within the wpm-rhq-plugin folder and
type the command mvn install in order to compile the plugin. If the compile pro-
cess succeeds, it generates a file named wpm-rhq-plugin-4.3.0-SNAPSHOT.jar
in the target folder.
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8.5 Setting up the WPM-RHQ Plugin
1. WPM-RHQ Plugin is a component that runs as part of the RHQ platform. At

this stage the first step includes the download and the installation of the RHQ
platform as follows:

• Download and install the PostgreSQL DBMS [32].

• Setup a rhq database as described at this RHQ documentation page [33].

• Download, install and run the RHQ Server as described at this RHQ docu-
mentation page [34].

• Download, install and run a RHQ Agent as described at this RHQ docu-
mentation page [35].

2. Deploy the plugin as described at this RHQ documentation page [36]. The .jar
file referenced in the docuemntation is the result of the compile process defined
in Section 8.4.
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