
Cloud-TM
Specific Targeted Research Project (STReP)

Contract no. 257784

D4.1: Initial Prototype of Pilot Application 1.

Date of preparation: 31 January 2012
Start date of project: 1 June 2010
Duration: 36 Months

Contributors

Vittorio Amos Ziparo, Algorithmica
Fabio Cottefoglie, Algorithmica
Marco Zaratti, Algorithmica
Francesca Giannone, Algorithmica
Paolo Romano, INESC-ID
Sebastiano Peluso, INESC-ID
Joao Cachopo, INESC-ID
Sérgio Miguel Fernandes, INESC-ID
Sanne Grinovero, RHAT
Manik Surtani, RHAT

——————————————————
(C) 2010 Cloud-TM Consortium. Some rights reserved.

This work is licensed under the Attribution-NonCommercial-NoDerivs 3.0 Creative
Commons License. See http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

for details.

Table of Contents
1 Introduction 4

2 MADMASS 6
2.1 Why Transactions? . 9

3 The GeoGraph Pilot 11
3.1 GeoGraph Domain Agents . 11
3.2 GeoGraph Agent Farm . 12

4 Data Contention 15

5 Conclusions and Future Work 17

A Getting Started 19

References 21

3

1 Introduction
Apps for smart-phones are rapidly gaining attention as they are considered to be the
core of the next generation of applications for the Internet [1]. A key distinguishing
feature of smart-phone apps is that they can be used from almost any location, provid-
ing information on the position of its user through a GPS device or by triangulation on
WI-FI access points and Cellular towers. Thus, it is not surprising that many smart-
phone apps have Location-based Mobile Social Networking (LMSN), aka geo-social
networking, facilities. The basic idea behind LMSN is to provide a second generation
of Social Networks (a killer application for the web) that can take advantage of the
position of the users in order to provide innovative services. Notably, LMSN are sup-
ported by a significant market share, as ABI Research estimates LMSN will generate
global revenues of $3.3 billion by 2013 [2]. The LMSN market is already very rich and
features a wide spectrum of products developed both by well known corporations and
by independent players (see [3] for an exhaustive list of products).

For example, both Google and Microsoft developed their own LMSNs, called Lat-
itude [4] and Vine [5], respectively. Nokia, instead, recently bought a similar product
from an independent player, called Plazes [6]. Pairwise, there are many independent
companies which are developing their own innovative products [7–12].

Pinning down mobile social networks to their core, one can think of such systems
as client-server architectures, where:

• clients are smart-phones that periodically send location data and that can retrieve
data on the state of the social network;

• server side applications are in charge of maintaining a consistent representation
of the data and are required to provide up to date information on the relations
among users based on their location. For example, a location mobile social net-
work may require to maintain a data structure that dynamically keeps track of all
the friends of each user within a given distance.

In this document, we describe the initial prototype of GeoGraph: the first pilot of
the Cloud-TM framework. GeoGraph is an open-source framework (distributed under
the terms of the GNU Lesser General Public License) for tracking location data and
dynamically computing relationships among users. In particular, GeoGraph maintains
a graph (called GeoGraph) where nodes are users and where edges connect users who
are within a given distance from each other.

GeoGraph may experience sudden peaks of the load, due to the exponential growth
phenomenon exhibited by social networks. Moreover, LMSN may experience flash
crowds triggered by social events, like concerts or conferences that cause hot-spots
in specific geographical regions. Indeed, flash crowds often overload web systems
to a point when their services are degraded or disrupted entirely [13]. Being a generic
framework, GeoGraph supports the development of a wide range of LMSN applications
characterized by highly heterogeneous and dynamic workloads exhibiting diverse data
access patterns and conflict rates. This will provide Cloud-TM with realistic use cases
to assess the effectiveness of its self-tuning mechanisms

4

In fact, on one hand, GeoGraph’s clients frequently update the state of the graph
nodes (i.e., position of users). On the other one hand, the server side part of the appli-
cation is responsible for using this information to dynamically compute the topology of
the graph, i.e.: adding edges to nodes (users) that get close to each other, delete edges
among nodes that move away from each other. In order to enhance scalability and en-
sure a timely update of the graph, these updates are performed in parallel, by multiple
threads possibly residing on different nodes. Thus, the data access pattern of Geo-
Graph (or, more precisely, of the LMSN applications developed using the GeoGraph’s
framework) appears prone to generate high contention levels.

GeoGraph is a generic framework that will support the development of a wide range
of LMSN applications characterized by highly heterogeneous and dynamic workloads.
This will provide realistic use cases to assess the effectiveness of the Cloud-TM plat-
form. In the following, we describe the workload profiles generated by some of the
existing LMSN applications:

1. - low traffic, low conflicts, read-dominated - Example: Plazes [6], Latitude [4]
and Vine [5] implement variants of micro-blogging (Twitter-style) systems where
posts are geo-localized. Notice that, in this case there is no conflict on data be-
cause there is no need to compute the GeoGraph. The system must only associate
locations to posts. In this type of applications, the frequency of writes (posts) is
generally lower than the frequency of reads (people reading the posts). When
first launched on the market, systems like Plazes or Latitude will probably have
a low traffic because the frequency of posting is low and the user base is small.

2. - hi traffic, low conflict, read dominated - Example: When applications like
Plazes and Latitude increase their popularity, and thus their user base grows,
they may incur in high traffic peaks. Nevertheless, their workload is dominated
by read operations.

3. - hi traffic, low conflict, write dominated - Example: Ipoki [11] and Bilin [12]
allow you to share your location in real time. In this case, clients send to the
server with a relatively high frequency (say one 1Hz) their location. The location
is then made available to other users on a map. In this case, also with a limited
amount of users, clients can generate a high traffic on the server, which is mainly
write dominated. Nevertheless, there are no conflicts because there is no shared
data accessed concurrently. Notice that, in this case there is no need to compute
the GeoGraph because users can see users close to them simply by inspecting
the map.

4. - hi traffic, hi conflict, write dominated - Example: Avego [14] and Cartici-
pate [15] allow for real-time ride-sharing. In this type of applications, such as
for Ipoki and Bilin, clients update their location with a high frequency thus gen-
erating a workload that is write dominated. In this case, the GeoGraph is needed
to cluster users in complex ways. Nevertheless, when updating edges, different
threads may conflict while executing update transactions and, due to the high
frequency of the updates of the location of nodes, other conflicts may arise when
the data is fetched from the threads in charge of updating the GeoGraph topology
(in a similar way to the Bayesian Network Benchmark described in [16]).

5

2 MADMASS
The MAssively Distributed Multi Agent System Simulator (MADMASS) is an open-
source framework (distributed under the terms of the GNU Lesser General Public Li-
cense) for developing rich-client web applications that require scalability and feature
(real-time) interactions among users. Target applications include, but are not limited
to, Multi-Player Online Games, Transaction Processing Systems, Location-based Mo-
bile Social Networks (or geo-social networks) and cooperative systems (e.g., crowd-
sourcing apps). MADMASS has been developed in the context of the Cloud-TM
project and it constitutes the core of the two Cloud-TM pilots. MADMASS is available
at https://github.com/algorithmica/madmass.

MAssively Distributed. MADMASS is at the core of the Cloud-TM pilots, and
as such, it is designed for the Cloud. MADMASS relies on the best practices for
developing apps for the Cloud and integrates seamlessly with the Cloud-TM platform.

Multi Agent System Simulator. MADMASS has its roots in Artificial Intelligence
and Multi-Agent Systems research. These disciplines provide the foundations of the
MADMASS programming paradigm, making it a versatile and intuitive framework for
developing complex applications that feature a high degree of interaction among users.

The MADMASS project stands on the shoulders of a number of existing open-
source projects. MADMASS is a Ruby On Rails1 Engine. Thus whatever you can
do with rails, you can do it with MADMASS too. It supports opensource (Socky,
Stilts) and commercial (Pusher) WebSockets2 implementations for enabling real-time
interactions. Rich browser GUIs are possible thanks to HTML53 and to javascript
frameworks such as MooTools4 and JQuery5.

We leverage on the JBoss technology to deliver MADMASS apps as enterprise
apps. We rely on TorqueBox6 for extending the footprint of Rails application and
enabling functionalities such as clustering, load-balancing and high-availability out-
of-the-box. TorqueBox provides an all-in-one environment, built upon the latest, most
powerful JBoss AS Java application server [17].

A MADMASS app is composed of many (intelligent) agents that offer one or more
services. When a user contacts a MADMASS app, an agent is assigned to him. The
role of this agent is to give the user access to a virtual environment (e.g., a virtual world,
a data repository, a social network, ...). Some examples of such apps include, but are
not limited to:

• Massively multi-player online games, where agents provide access to the virtual
world and ensure that the game is played according to the rules.

• Geo-social apps, where agents can promote social behavior, while ensuring safety
and privacy.

1http://rubyonrails.org/
2http://en.wikipedia.org/wiki/WebSocket
3http://en.wikipedia.org/wiki/HTML5
4http://mootools.net/
5http://jquery.com/
6http://torquebox.org/

6

• Personal assistant services, where agents can help to optimize schedules, manage
shared agendas and calendars, or coordinate industrial processes.

• Mechanisms design, where agents implement distributed protocols for reputa-
tion, auctions, trading, crowd-sourcing and, in general, for both cooperative and
competitive systems.

• Data management and mining, where agents can help to access and manage
knowledge, as, for example, virtual guides in online museums or libraries.

MADMASS makes your life easier when writing MAS apps, as it automatically man-
ages the whole Multi-Agent System execution (technically called, simulation). To this
end, developing a MAS app, amounts to developing GUIs, agents and environments.
Environments are the data tier of a MAS app and can be coded with any suitable tech-
nology (e.g., ActiveRecord [18] or the Cloud-TM data platform [19]). Agents encode
the business logic of your application, and must be defined by using a specific Action
Pattern that greatly simplifies the development of complex applications. The devel-
opment of GUIs is supported by a powerful javascript framework that allows for rich
interfaces in the browser.

A MADMASS application is composed of three distinct communities of Agents
(see Figure 1):

• Domain Agents, that are short-lived agents that execute actions on behalf of
other agents while enforcing the business logics of the application.

• Human Agents, that are the end-users of the system typically accessing the
system through browsers or mobile clients.

• Autonomous Agents, that are long living agents serving as system daemons,
personal assistants, game bots or user simulators. Within each community, agents
can have different roles and functions depending on the application domain.

Domain agents expose their services through a JMS interface. Specifically, there is
a queue for incoming commands (i.e., the actions queue) and a topic to which clients
can subscribe for updates on the domain model (i.e., percepts topic). One of the ad-
vantages of using JMS is that agents can be implemented as message processors that
are automatically load balanced and clustered by the JMS server (i.e., HornetQ in this
case). Moreover, JMS selectors allow us to enforce visibility (and thus privacy) rules
on the domain. In order to provide access to the JMS queue and topic over the Internet
(e.g., to browsers) we use Stomplets 7 that provide a bridge to WebSockets.

For example, in GeoGraph, the domain model is a graph where nodes are geo-
localized entities and edges represent proximity relationships. The graph is persisted
on the DSTM and the Domain agents have the responsibility of maintaining this data
structure on behalf of the users. A GeoGraph client may, for example, want to post a
new geo-localized comment at some location. In order to do so, it will send a “micro-
blog post” request to the action queue. When the request is received an agent will be
put in charge of handling such request. In particular, he will

7http://stilts.projectodd.org/stilts-stomplet/

7

Figure 1: MADMASS Architecture

8

1. authenticate the user;

2. verify the applicability of the action (e.g., is the user close to where he wants to
post?);

3. make the requested post;

4. notify the post to all interested users (i.e., using the percepts topic).

MADMASS also provides a Javascript library for developing user interfaces for
Human Agents that simplify both the communication process and the development
of rich interfaces that support real-time updates, complex event oriented interfaces,
animations and sound.

The third community of agents, Autonomous Agents, can be used to perform sev-
eral tasks. For the purpose of GeoGraph, Autonomous Agents are used to simulate
users. For example, simulators can be used to benchmark the application or, in our
case, the underlying Cloud Platform. The Autonomous Agents interact with the do-
main in the same way human agents do: they send commands to the actions queue
and get updates on the environment state through the percepts topic. Moreover, Au-
tonomous Agents offer an interface to Human Agents for managing the Autonomous
Agent Community. In particular, authorized users can create groups of agents, possibly
of different types. They can also set a simulation speed, pause, start, stop and destroy
each group. A more concrete example will be provided when describing the GeoGraph
workload generator in Section 3.2.

2.1 Why Transactions?
The MADMASS architecture allows for naturally scaling and well serves for delivering
Software as a Service (SaaS) in a Cloud. Nevertheless, the presence of many concurrent
agents may lead to conflicts that can put at risk the correctness of the process. To avoid
this problem, all actions are performed within a transactional context.

The basic idea is that any operation of the data model must be defined in terms
of actions. Actions have a simple, yet powerful, interface that is composed of the
following three methods:

1. boolean applicable?() This method is in charge of defining when an action can
be executed. For example, a buy item action is applicable if the user has enough
credit for buying that particular item. This type of method requires only to read
data in the domain model.

2. void execute() This method describes how the domain state changes upon the
execution of an action. For example, in a buy item action, the execution subtracts
the cost from the buyer’s account, adds the cost to the seller’s account and moves
the item from the buyer to the seller. This type of method usually requires both
reads and writes on the domain model.

3. percepts build_perception() is in charge of returning the changes in the envi-
ronment produced by the execution of the action. In order to be transmitted over
the web, such changes are represented as a Hash of strings.

9

The following pseudo code shows the execution of an action act:

Listing 1: Pseudo-code for Action Execution

t r a n s a c t i o n do{
i f a c t . a p p l i c a b l e ?

a c t . e x e c u t e
p e r c e p t s = a c t . b u i l d _ p e r c e p t s

}
send (p e r c e p t s)

Thus, depending on the type of action and the state of the environment we can have
very different type of transactions:

• read/write transactions. This is the case of a successfully executed action. The
action reads the domain model to verify if it is applicable, and then, it writes the
domain model to enforce its effects, and finally, reads the domain model again
to build the percepts to be sent through the network.

• read-only transactions. This case can happen in two different scenarios. The
first, and most common, is the case of sensing actions. These actions have no
effects and their only purpose is to perceive the current state of the system. In
GeoGraph, this can happen when a user scrolls a map or clicks on a geo-localized
post to read it. The second case, is when an action fails. Indeed, such an action
verifies that the action is not applicable and builds an error percept. Both opera-
tions are clearly read-only.

• write-only transactions. This is the case of blind actions, i.e., actions with no
preconditions. An example of blind actions, is the move action where agents
update the user’s position without needing to verify any precondition.

10

3 The GeoGraph Pilot
GeoGraph is a geo-social MADMASS app. Being developed on top of MADMASS,
GeoGraph is extremely flexible and can be used as a basis for the development of any
geo-social app as it implements a set of services, in terms of actions, that are commonly
used in many geo-social apps (e.g., position tracking and micro-blogging). To this
end, implementing a new geo-social just amounts to developing a new client with the
MADMASS GUI. Also extending the services provided by the Domain Agents is fairly
simple, as it is enough to define new actions. As a key feature, GeoGraph comes with
a load generator that simulates users and that can be used to benchmark applications.

GeoGraph is composed of two components:

1. The Geograph Domain, that implements the Domain Agents8 and the Domain
Model9 by using the Object Grid Mapper of the Cloud-TM Data Platform Pro-
gramming API.

2. Geograph Agent Farm, a workload generator that implements a community of
autonomous agents simulating GeoGraph users10 and the Agent Farm Domain
Model11.

3.1 GeoGraph Domain Agents
The GeoGraph domain is a graph where nodes are GeoObjects and where edges rep-
resent proximity relations. GeoObjects can be of several types. For the time being,
we have two main types of GeoObjects: moving objects (such as pedestrians, bikers
and drivers) and still objects (such as micro-blog posts). GeoObjects are associated to
Users, and as such a User can have many GeoObjects.

The domain model has been described by using the Cloud-TM DML [19] that al-
lows us to model the domain model once, and generate two different implementations
(i.e., Hibernate OGM and Fénix) that can then be benchmarked one against the other.

GeoGraph Domain Agents offer the following set of geo-social services:

1. Create a Movable GeoObject. Users can be associated to movable geo-objects
that represent their position. This action is usually performed when a user en-
ables a position tracking feature.

2. Destroy a Movable GeoObject. Users can destroy their associated geo-object.
This action is usually performed when a user disables the position tracking fea-
ture.

3. Move a Movable GeoObject. Users can change the position of their associated
geo-object. This action is performed when a user that enabled position tracking
moves. Notice that this action, depending on the speed of the users, can be
performed very frequently generating a high write-intensive workload.

8https://github.com/algorithmica/geograph
9https://github.com/algorithmica/geograph-domain

10https://github.com/algorithmica/geograph-agent-farm
11https://github.com/algorithmica/geograph-agent-farm-domain

11

4. Create Micro-blog post. Users can post a comment in a specific geographical
location. Such comments can be, for example, reviews of some event, location,
restaurant or a sight , or simply notes from a vacation log. These operations are
mainly writes, but are not as frequent (on a per user basis) as move actions.

5. Destroy/Edit Micro-blog post. Users can remove or revise existing posts. This
type of operation can be also performed by administrators that may want to re-
move or edit offending posts.

6. Read Micro-blog post. Users can read existing posts close to their location or
by inspecting a map. Clearly, this type of operation is read-only.

7. Update GeoGraph. Domain Agents are in charge of maintaining the geo-social
graph by updating nodes and edges. This is the core operation of GeoGraph as
this graph structure is fundamental for data mining activities (such as clustering
of users) that are fundamental to any social network. In the current prototype we
have implemented two separate versions of the graph maintenance service:

(a) A first version is implemented as a periodic task that at given intervals
iterates over the entire graph and updates its topology.

(b) A second version is implemented as a side-effect of performing actions.
Every time a GeoObject is created or moved, the action iterates over the
nodes to update its connections.

The GeoGraph Domain Agents app offers an interface (see Figure 2) to monitor the
evolution of the system. By using the Google Maps API, we show the current set of
GeoObjects as Markers on a map. By using the MADMASS architecture, updates on
the map are directly pushed on the client. As a result, the Map elements are animated
and move on the map. The monitoring interface also shows the graph structure by
depicting the edges that connect the GeoObjects. Finally, it is possible to inspect the
GeoObjects by clicking on the markers. This operation opens the info window with all
the relevant information (e.g., text of a post -if a post-, coordinates, type of object).

3.2 GeoGraph Agent Farm
The GeoGraph Agent Farm is a set of MADMASS Autonomous Agents used to sim-
ulate users in order to benchmark GeoGraph and the underlying Cloud-TM platform.
Figure 3 shows an overview of the web interface to the GeoGraph Agent Farm. Fig-
ure 4 a) depicts the interface for selecting the strategy to update the edges within the
GeoGraph. Figure 4 b), instead, shows the interface for creating new groups of simu-
lated users (new group button). Upon the creation of a new group, one can specify the
following parameters:

• name of the group;

• type of simulated user (i.e., agents’ type);

• number of agents within the group;

12

Figure 2: GeoGraph Domain Interface

Figure 3: Agent Farm Interface

13

(a) (b)

Figure 4: a) GeoGraph Update strategy selection b) Creation of a new Agent Group

• delay between two subsequent actions.

The properties of an agent group can also be edited at run-time (i.e., after the cre-
ation). The web interface (see Figure 3) shows the list of all agent groups created and
allows to control each group independently. In particular, a user can start one or more
agent groups (play button) to test the desired configuration of the user community and
therefore the resulting workload profile. All agent groups can also be destroyed (eject
button), paused (pause button) and stopped (stop button). Notice that the stop behav-
ior resets the behavior of the agent from the beginning, while the pause just stores the
current state of execution. Thus when playing a stopped agent, the agent will start over
(e.g., from his initial position), while when playing a paused agent, the agent will start
from where he was paused (e.g., his last position).

We have currently implemented three types of simulated users:

• Bloggers: These type of simulated users randomly post comments. They simu-
late users posting comments on a map, such as travel log books.

• Readers: These type of simulated users randomly read blog posts. They simu-
late users browsing a map and reading related posts.

• Movers: These type of users move on the map while having enabled the tracing
option. The agents select paths randomly among a path database. The path
database consists of real paths available from the Internet and encoded in GPX,
i.e., GPS eXchange Format12. GPX is an XML schema designed as a common
GPS data format for software applications. It can be used to describe waypoints,
tracks, and routes.

12http://en.wikipedia.org/wiki/GPS_eXchange_Format

14

4 Data Contention
In GeoGraph, the data structure maintaining locations and relations among users (i.e.,
a graph) is stored server-side, in the Distributed Software Transactional Memory plat-
form at the core of Cloud-TM. This data structure will then be concurrently updated by
a variable number of processing threads (physically distributed across a dynamically
variable number of machines) to reflect the alteration of the geographical position of
the users, and accordingly update the graph data structure.

As already mentioned previously, there are currently two methods for updating the
edge data structure. In the following, we describe one of these approaches to highlight
data contention issues. Nevertheless, similar considerations apply also to the other
method.

Using simplified pseudo-code, an example of transaction used in GeoGraph to alter
the graph topology could be the following:

Listing 2: Example pseudo code for Graph Update

1 . # upon r e c e p t i o n o f a new p o s i t i o n o f some u s e r " u "
on_upda t e {

a to mi c t r a n s a c t i o n s
2 . t r a n s a c t i o n do {

r e t r i e v e graph node a s s o c i a t e d w i t h u s e r u
3 . myNode=Graph . g e t _ n o d e _ o f _ u s e r (u) ;

u pd a t e (i . e . w r i t e) p o s i t i o n o f myNode
4 . myNode . u p d a t e _ p o s i t i o n () ;

remove edges w i t h c u r r e n t n e i g h b o u r nodes
t h a t are now f a r t h e r away than some t h r e s h o l d K

5 . f o r _ e a c h n in n e i g h b o r s (myNode) {
read p o s i t i o n o f node " n "
read l i s t o f n e i g h b o r nodes o f " myNode "

6 . i f (d i s t a n c e (n , myNode) >= someThresholdK)
u pd a t e (i . e . w r i t e) l i s t o f n e i g h b o r nodes o f
" myNode " and " n "

7 . remove_edge (n , myNode)
8 . }

#add edges w i t h graph nodes t h a t are
w i t h i n some t h r e s h o l d K

9 . f o r _ e a c h _ o t h e r _ n o d e n in Graph {
read p o s i t i o n o f node " n "

1 0 . i f (d i s t a n c e (n , myNode) < someThresholdK)
u pd a t e (i . e . w r i t e) l i s t o f
n e i g h b o r nodes o f " n " and " myNode "

1 1 . add_edge (n , myNode)
1 2 . }
1 3 . }
1 4 . }

This code block will be executed whenever a client updates his position, with a
frequency that depends on the actual mobility patterns of users, ranging from very
slow (e.g with users strolling around the city) to very fast (e.g. users traveling by car
or train). As a consequence of the parallel manipulation of the graph, conflicts will
arise on the data structures (e.g. lists) maintaining the set of edges between each pair
of nodes.

15

For instance, assume that a transaction T executes line 5 and determines that node
n is currently a neighbor of myNode. Now, if, before T is committed, n moves away
and a transaction T ? removes n from the list of neighbors of myNode, the transaction
T will have to be aborted since it has executed on a stale snapshot.

Other read/write conflicts may arise between lines 3, 6 and 10 of two concurrent
transactions, where the former one updates the position of a node and the latter ones
read this position to determine whether the graph topology should be altered.

As a final remark, note that line 9 of the pseudo-code adopts a naif approach that
will be analyzed and improved during the following months. For example, in Geo-
Graph only a subset of the graph’s nodes will be considered into this "for" cycle. To
this end, GeoGraph could adopt heuristics that will restrict the analysis only to the
nodes that are in the same "geographic area" to myNode and/or exploit the indexing
provided by the Cloud-TM search API. This will contribute to enhance the scalability
of the algorithm.

16

5 Conclusions and Future Work
The current prototype of GeoGraph already includes all the core functionalities of many
geo-social applications (i.e., position tracking, micro-blogging, social tracking). The
prototype has been integrated with the Object Grid Mapper of the Cloud-TM Data Plat-
form Programming API and can be used for preliminary benchmarking of the Cloud-
TM Platform.

The GeoGraph Agent farm allows for simulating several synthetic workloads that
span over the spectrum of profiles of typical geo-social apps. At this stage, we have
already implemented a set of Autonomous Agents in the GeoGraph Agent Farm that
can exhibit either a read-dominated or write-dominated workload profile, depending
on their type.

The agent farm allows for dynamically varying the profile of the workload along
two distinct dimensions: 1) read/write ratio and 2) intensity. Indeed, by deploying
multiple groups with different numbers and types of agents, we can vary the read/write
ration. Moreover, by changing the number of agents and the speeds at which they per-
form actions, we can change the intensity of the workload. Notice that, as agent groups
can be edited at run-time, we can evolve the workload profile dynamically during the
execution of experiments.

Let us consider the scenarios and workload profiles described in Section 1, at page
5, and how they can be replicated by using the current implementation of the Geo-
Graph Agent Farm. Consistently, with the description provided above, in the first three
scenarios the Graph Update services will be switched off and thus there will be low
contention on data:

1. - low traffic, low conflicts, read-dominated - We launch a small number of
Bloggers that start posting at a very low frequency and larger, yet small, number
of Readers that read at a medium frequency.

2. - hi traffic, low conflict, read dominated - The previous scenario, can be mod-
ified to generate higher traffic, for example by increasing the number of agents
or the frequency at which they produce.

3. - hi traffic, low conflict, write dominated - In this scenario we will deploy
many Movers that will require position tracking. Several types of users can be
simulated by adjusting the speed at which agents move (i.e., the frequency at
which they send updates). For example, pedestrians could update their position
every 10 seconds, bikers every 5 and drivers every 2.

4. - hi traffic, hi conflict, write dominated - If we enable the Graph Update in the
previous scenario, a big number of conflicts will arise as described in Section 4,
but the workload profile will not vary its characteristics.

In the near future, we will investigate if there is the need to provide other workload
profiles as a result of the preliminary benchmarks. Besides this, we are already plan-
ning to improve the current version in several ways. The current handling of the Graph
Update is rather naif, and we predict that there may be scalability issues. One way of
addressing the problem is to integrate with the Cloud-TM Search API that will deliver

17

an efficient implementation of geographical queries. In case this is not enough, we will
design more scalable algorithms for Graph Update, some of which are already under
discussion within the consortium.

There can be potentially a huge number of computational tasks that run in parallel
both in the GeoGraph Agent Farm and in GeoGraph itself. To date, these tasks are
clustered and load balanced by using HornetQ. However, this approach does not take
into account locality of data (that is of crucial importance in geographical applications)
and it can introduce performance overheads as the number of nodes grows. To address
this issue, we plan to integrate with the Cloud-TM Distributed Execution Framework
(DEF) as it allows for placing computational tasks close to the data that will be accessed
by this task. Finally, DEF will allow us to synchronize the execution of the tasks
(through Joins and Forks), features that would be greatly beneficial for a more accurate
control of the GeoGraph Agent Farm.

18

A Getting Started
In the following we provide a brief quick start guide for running GeoGraph and Geo-
Graph Agent Farm. It is highly recommended to follow the latest instructions available
online at the bottom of the following pages:

• https://github.com/algorithmica/geograph

• https://github.com/algorithmica/geograph-agent-farm

At first run GeoGraph, by performing the following steps:

1. Install TorqueBox v2.0.0.beta313.

2. Clone the project from the git repository:

git clone git://github.com/algorithmica/geograph.git

3. Install the needed gem libraries: open a shell, cd to the project folder and run

jruby -S bundle install

Note: if you are on a Linux machine you must add two gems to the Gemfile be-
fore executing the bundle install open the Gemfile (in the root of the application)
and add

gem ’execjs’
gem ’therubyracer’

4. Setup the database (make sure sqlite3 is installed):

jruby -S rake db:setup

Note: The Sqlite3 database is used exclusively for the authentication of the ad-
min user.

5. Deploy the application into TorqueBox by executing this command in the project
folder:

jruby -S rake torquebox:deploy

6. Run TorqueBox:

jruby -S rake torquebox:run

7. Run the Socky Websockets server by executing this command in the project
folder:

jruby -S socky -c socky_server.yml

13download it (http://torquebox.org/release/org/torquebox/torquebox-dist/2.
0.0.beta3/torquebox-dist-2.0.0.beta3-bin.zip) and follow the installation instructions
(http://torquebox.org/documentation/current/installation.html)

19

8. Open the browser at localhost:8080, signup and you will see the GeoGraph
map.

Then, to run the GepGraph Agent Farm do as follows:

1. Clone the project from the git repository:

git clone
git://github.com/algorithmica/geograph-agent-farm.git

2. Install the needed gem libraries: open a shell, cd to the project folder and run

jruby -S bundle install

Note: if you are on a linux machine you must add two gems to the Gemfile before
executing the bundle install open the Gemfile (in the root of the application) and
add

gem ’execjs’
gem ’therubyracer’

3. Setup the database (make sure sqlite3 is installed):

jruby -S rake db:setup

Note: The Sqlite3 database is used exclusively for the authentication of the ad-
min user.

4. Deploy the application into TorqueBox by executing this command in the project
folder:

jruby -S rake torquebox:deploy[’/agent-farm’]

5. Run TorqueBox:

jruby -S rake torquebox:run

6. Open the browser at localhost:8080/agent-farm, signup and you will
see the GeoGraph Agent Farm console.

20

References
[1] WIRED Magazine, “The web is dead. long live the internet.” http://www.

wired.com/magazine/2010/08/ff_webrip/all/1, 2010.

[2] Abi Research, “Location-based mobile social networking.” http://www.
abiresearch.com/press/1204-Locationbased+Mobile+
Social+Networking+Will+Generate+Global+Revenues+of+
$3.3+Billion+by+2013, 2008.

[3] Claudio Schapsis, “Location based social networks links.” bdnooz.com/
lbsn-location-based-socialnetworking-links.

[4] Google Inc., “Latitude.” http://www.google.com/intl/en_us/
latitude/intro.html.

[5] Microsoft Corporation, “Vine.” http://www.vine.net/default.aspx.

[6] Plazes AG, “Plazes.” http://plazes.com.

[7] Pelago Inc, “Whrrl.” http://whrrl.com.

[8] BrightKite Inc, “Brightkite.” http://brightkite.com.

[9] Loopt Inc, “Loopt.” www.loopt.com.

[10] GeoSolutions, B.V., “Gypsii.” http://www.gypsii.com/.

[11] Ipoki Technologies S.L, “Ipoki.” www.ipoki.com.

[12] Bliin B.V., “Bilin.” bliin.com.

[13] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash Crowds and Denial of
Service Attacks: Characterization and Implications for CDNs and Web Sites,” in
11th International WWW Conference, (Honolulu, HI), May 2002.

[14] “Avego.” www.avego.com.

[15] “Carticipate.” www.carticipate.com.

[16] Chi Cao Minh, Jae Woong Chung, Christos Kozyrakis, Kunle Olukotun,
“STAMP: Stanford transactional applications for multi-processing,” in Proc. of
The IEEE International Symposium on Workload Characterization, 2008.

[17] Red Hat Inc, “Jboss application server 7.” www.jboss.org/as7.

[18] “Active record - object-relation mapping put on rails.” http://ar.
rubyonrails.org/.

[19] Emmanuel Bernard, Joao Cachopo, Bruno Ciciani, Diego Didona, Francesca
Giannone, Mark Little, Sebastiano Peluso, Francesco Quaglia, Luis Ro-
drigues, Paolo Romano, Vittorio A. Ziparo, “Cloud-tm deliverable, d2.1: Ar-
chitecture draft.” http://www.gsd.inesc-id.pt/~romanop/files/
deliverables/D2_1.pdf, 2011.

21

