
The Mimir Approach to Transactional Output

Tingzhe Zhou and Michael Spear
Lehigh University

{tiz214, spear}@cse.lehigh.edu

Abstract
In order to use transactional memory (TM) in place of locks, it is
necessary to design linguistic mechanisms that enable transactions
to achieve the same outcomes as lock-based code. The mechanisms
need not match their lock-based equivalents exactly, but must pro-
vide the same abilities “in spirit,” so that programmers can (per-
haps with nontrivial code rewriting) achieve the same behaviors
and guarantees from transactions as with locks.

In this paper, we focus on the question of transactional output,
and introduce the Mimir methodology. Mimir employs an obser-
vation about two-phase locking and language-level transactional
semantics to enable deferred output operations that appear to ex-
ecute in isolation with respect to all concurrent transactions, but
without serializing those other transactions. The technique employs
ephemeral privatization and retry-based condition synchronization
in a manner that is invisible to concurrent transactions. Most sig-
nificantly, Mimir avoids buffering of data in order to defer output,
and is compatible with both software and hardware TM.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

Keywords Transactional Memory, I/O, Privatization, Object Ori-
entated Programming, Condition Synchronization

1. Introduction
The effort to standardize Transactional Memory (TM) [12] support
in C++ [2] has, to date, taken a pragmatic approach with respect to
I/O. Clearly, if transactions are to replace lock-based code, then it
must be possible to perform I/O operations on shared data, despite
the possibility of concurrent attempts to access that same shared
data. However, I/O performance has not seen much attention. In
particular, it has been assumed that an I/O transaction can be stati-
cally identified by the programmer, and that it is acceptable to seri-
alize all transactions at the time when I/O is attempted, so as to pre-
vent concurrent accesses to the data during the I/O operation. This
mechanism, broadly, is known as “irrevocability” [14, 18, 19, 23].

Irrevocability is a coarse-grained mechanism, which allows the
execution of arbitrary operations within a transaction, even if those
operations cannot be undone. Examples include accessing device
registers, arbitrary system calls, communication with other threads
via volatile and atomic variables, and I/O. Any student of
Amdahl’s law will immediately recognize global serialization of
transactions as a potentially significant bottleneck. Indeed, Wang et
al. inadvertently discovered as much in their exploration of trans-
actional condition synchronization for the PARSEC benchmark
suite [22]: in the “dedup” application, output by one pipeline stage
eliminates all concurrency and scaling from an application whose
lock-based equivalent scales well.

The one-size-fits-all nature of irrevocability is costly, but its
simplicity is appealing: difficult tasks are no harder with irrevo-
cable transactions than with locks. For example, irrevocability en-

sures low-level atomicity and durability of output: in applications
with durability constraints, it is essential that programmers control
the timing of calls to fsync, and the atomicity of an fsync call
with respect to preceding write operations, and irrevocability af-
fords this level of control.

Apart from irrevocability, the only other promising approaches
to transactional output rely on deferred operations. Conventional
wisdom suggests that many output operations, such as logging and
error messages, can be achieved via deferred operations [6, 14, 15].
More formally, Volos et al. presented a general mechanism for
deferring I/O in software transactions, via buffering and “shadow”
file descriptors [20].

Unlike irrevocability, deferred output operations do not con-
strain concurrency. However, they suffer from two problems of
their own. First, to ensure that deferral is correct, it is necessary
to create an explicit copy of the data to output. This copy is in
addition to any copying that occurs as part of a system call, and
while it can be optimized in certain limited cases, it nonetheless in-
troduces latency concerns. Furthermore, for hardware transactions,
buffering may result in the working set of the transaction exceeding
cache capacity. That, in turn, would lead to transactions serializing.
The second problem with deferred output is that real programs of-
ten care about the return value of a write system call. When the
write is delayed, it seems that the continuation of the transaction
must either (a) ignore the return value, or (b) be scheduled after
the output, as a second transaction that is not atomic with the first.
We have identified situations, both in dedup and in MySQL, where
deferral clouds reasoning about program correctness.

In this paper, we introduce Mimir, a methodology for delaying
output that (a) remains atomic with respect to the calling transac-
tion, (b) does not require copying, and (c) does not ignore return
values. Mimir does not address input operations by transactions, for
the simple reason that we have not been able to find any nontrivial
example of transactional input in real-world code. Such a negative
finding is unsurprising: blocking on input while holding a lock is
a recipe for poor performance, and it is rare that programmers use
a lock to make multiple input operations appear as one atomic op-
eration. As a result, existing techniques (such as a dedicated input
thread) appear to solve the input problem well.

The remainder of this paper is organized as follows. Section 2
briefly reviews key features of modern TM systems. Section 3 then
introduces the key components of the Mimir methodology. The
programming model for Mimir is discussed in Section 4. Section 5
discusses how Mimir can be used to implement the output patterns
we have seen in dedup and MySQL. Section 6 concludes.

2. Background: Advanced TM Features
Before introducing the Mimir mechanism, it is useful to review
some more advanced concepts from TM literature. We first discuss
“privatization” and “publication”, and then the state of the art in
transactional condition synchronization.

1 2016/5/2

1 t r a n s a c t i o n {
2 . . .
3 d a t a i s p r i v a t e = t rue
4 }
5

6 use (d a t a)
7

8 t r a n s a c t i o n {
9 d a t a i s p r i v a t e = f a l s e

10 }

Figure 1: Flag-based privatization in a C++ TM program.

2.1 Privatization and Publication
The privatization (and later publication) idioms were originally en-
visioned as a means of allowing safe non-transactional access to
transactional data. The key issues relate to ordering: the program-
mer is responsible for making data “public” or “private” (e.g., by
creating or removing all shared references to that data), and also for
ensuring that threads agree on the state of a datum (transactional or
non-transactional). In the TM implementation, the main challenge
is ensuring that speculation and buffering do not result in races be-
tween transactional and non-transactional code [16, 17].

Early examples of publication and privatization include con-
structing an object and then creating a shared reference to it, and
freeing an object after all shared references to it have been erased.
In the context of software TM, these idioms avoid instrumenta-
tion, and in software and hardware TM systems, they also allow
interaction with non-transactional parts of the system, such as cus-
tom allocators that make system calls. In early papers, it was as-
sumed that an object’s state (public or private; transactional or non-
transactional) could be determined by the presence of references
to the object in shared memory. Subsequent efforts [13] considered
“flag-based” privatization and publication, in which shared refer-
ences to an object are not created/destroyed, but the state of some
auxiliary variable indicates whether transactions are allowed to use
those references.

Consider the example in Figure 1. A transaction performs some
operations on shared data, potentially including operations on
data itself, on line 2. It then sets the data is private flag
and commits. Henceforth, while other transactions can see ref-
erences to data, they must obey the convention established by
data is private, and not use those references. The privatiz-
ing transaction may use the data (line 6), and may even share data
with other non-transactional threads (e.g., by using locks). Finally,
when the non-transactional operations on data are complete, some
thread executes the transaction on lines 8–10 to re-enable transac-
tional access to data.

To support privatization and publication, a TM implementation
must provide subtle ordering guarantees. When line 5 is reached,
the calling thread must be certain that there are no pending cleanup
operations by concurrent committed or aborted software transac-
tions. Before the publishing transaction runs, all modifications to
data must be complete, so that the publication of data does not
precede use [13, 16, 17].

2.2 Transactional Condition Synchronization
Despite efforts to make condition variables safe for use within
transactions [9, 22, 24], the most promising approaches to transac-
tional condition synchronization appears to be based on scheduling.
As Dalessandro et al. established [8], mechanisms like retry [11]
and X10-style CCRs [7] are essentially scheduling mechanisms:
they establish, dynamically, the conditions upon which a transac-

tion that is scheduled to run will, in fact, be able to execute to com-
pletion.

The first and most general version scheduling-based technique
for transactional condition synchronization is the retry mecha-
nism. In this mechanism, a transaction T that determines that it
cannot continue, due to some precondition on shared memory not
holding, uses retry to undo its effects, and request that it not be
scheduled again until some subsequent transaction performs a write
to a location that had been read by T ’s unsuccessful attempt.

The await mechanism [6] simplifies retry by taking the pa-
rameter of a memory location. Like retry, a call to await un-
does the transaction’s effects. Re-execution of the transaction does
not occur until some subsequent transaction performs a write to the
location indicated by the parameter to await. This simplification
avoids some spurious wake-ups. By bounding the number of lo-
cations upon which a transaction can be delayed, it also affords a
more realistic path to implementation in hardware TM.

The reschedule mechanism [21] generalizes await by al-
lowing the programmer to specify a predicate over shared mem-
ory that must be established before the transaction should be re-
attempted. Whereas such a predicate is implicit in retry, it must
be provided by the programmer with reschedule. The program-
ming model for reschedule is more precise than retry with
regard to spurious wake-ups, but more error-prone than retry in
the case where composition of transactions leads to complex pred-
icates. More importantly, reschedule is built upon a mecha-
nism that supports retry, await, and reschedule in hard-
ware, software, and hybrid TM systems.

3. The Mimir Mechanism
The key requirement of Mimir is that programmers must embed
an output operation, and any operations that depend on the return
value of that operation, in a method of the object that encapsulates
the data being output. In Section 5, we will give an example of how
this requirement can be met in practice.

For programs that can be rewritten accordingly, Mimir will
seamlessly privatize the object, execute the method non-transactionally,
and then publish the object again. Since the object is privatized,
and the output is not transactional, there is no need for global se-
rialization/irrevocability. For transactions that require access to the
privatized object, Mimir can employ any of the aforementioned
condition synchronization mechanisms to delay execution until the
object is published. In this section, we explain how the behavior is
achieved, and we argue its correctness.

3.1 Privatization Can Be Two-Phase Locking
For all intents and purposes, the data is private flag in Fig-
ure 1 is a lock. When it is true, all threads other than the caller are
forbidden from accessing data. When it is false, accesses to data
are not constrained. Furthermore, if we ignore the discussion about
unrolling effects when an exception escapes the boundaries of a
lexically scoped transaction [1], the history created by successful
transactions in C++ will result in an execution equivalent to one in
which all transactions are protected by a single global lock.

Based on these observations, the code in Figure 1 is almost
two-phase locking. On line 1, the implicit global transactional lock
is acquired. On line 3, the lock protecting data is acquired. On
line 4, the global lock is released. Thus lines 1–4 comprise a correct
sequence where all locks are acquired before any are released. The
complication is that line 8 appears to re-acquire the global lock
before the lock protecting data is released on line 9. Such a re-
acquisition violates the requirement that no locks are acquired after
any locks are released.

There are two conditions that allow us to claim that Figure 1
nonetheless adheres to strict two-phase locking. The first is that

2 2016/5/2

1 c l a s s c l a s s n a m e Mimir
2 / / n e x t f i e l d and method are i n j e c t e d
3 / / by t h e Mimir a n n o t a t i o n
4 m i m i r l o c k Mimir LOCK
5

6 void Mimir CHECK ()
7 t r a n s a c t i o n
8 i f Mimir LOCK != UNHELD
9 && Mimir LOCK . owner != ME

10 / / s e l e c t a c o n d i t i o n sync t e c h n i q u e
11 r e s c h e d u l e (Mimir LOCK == UNHELD)
12 a w a i t (Mimir LOCK)
13 r e t r y ()
14

15 / / o t h e r f i e l d s o f t h e c l a s s are unchanged
16 . . .
17

18 / / Mimir CHECK i s i n j e c t e d i n t o e v e r y
19 / / method , as i n t h i s example :
20 r e t t y p e method name (. . .)
21 Mimir CHECK ()
22 / / o r i g i n a l method body f o l l o w s

Figure 2: Mimir instrumentation of a C++ class. The Mimir an-
notation on the class body leads to the addition of one fields and one
method, and a modification to every method in the original class.
Lines 11–13 illustrate three options for condition synchronization.

the transaction on lines 8–10 does not access any program data.
The second is that data is private serves only to synchro-
nize access to other data. Thus it can be thought of as a synchro-
nization variable [3]. We argue that some transactions can serve
as an implementation technique for implementing synchronization
mechanisms, and that other transactions are, themselves, a synchro-
nization mechanism. We also argue that, under both flat and closed
nesting, the addition of arbitrary transactions covering contiguous
subsets of the operations within a larger transaction has no effect
on the program. Thus lines 1–4 are equivalent to an implementa-
tion in which line 3 is wrapped by a nested transaction. In such a
setting, transactions protecting data is private are an imple-
mentation technique, and need not be thought of as acquiring and
releasing the implicit global lock.

3.2 Mimir Objects
The first aspect of Mimir is the Mimir annotation on classes.
This annotation indicates that every instance of the annotated class
has an implicit reentrant lock. We discuss the implementation and
use of this lock below.

Figure 2 presents the instrumentation to a Mimir object.
There are three modifications. First, a reentrant lock is added to
the object. The lock is implemented using transactions, and it
consists of an owner field and a counter. The Mimir CHECK
method uses a transaction to ensure that the lock is not held by
some other thread, and it is called as the first operation of every
method of the class. Thus whenever a method is called from a non-
transactional context, Mimir CHECK will suspend the caller at
the point of the method call if the lock is held by a thread other than
the caller. When any method is called from within a transaction,
the same check is performed. However, if the lock is held by a
thread other than the caller, Mimir CHECK aborts the calling
transaction and does not attempt it again until the lock is released.
The mechanism for doing so (retry, await, reschedule does
not affect correctness, but may result in spurious wake-ups.

1 r e t t y p e method name (. . .)
2 . . .
3

4 / / d e f e r some o u t p u t and r e c o v e r y
5 Mimir (t h i s , [] () {
6 i n t r e s = w r i t e (t h i s . f i e l d , . . .)
7 i f (r e s == OK)
8 f s y n c ()
9 e l s e

10 t h i s . r e c o v e r (. . .)
11 })
12

13 . . .

Figure 3: Deferring an operation via MIMIR .

In this manner, a Mimir object renders itself unusable by any
thread other than the Mimir LOCK -holder, in a manner that
is compatible with both transactional and non-transactional code.
When the Mimir LOCK is not held, the object may be used
concurrently by multiple transactions, and even by transactional
and non-transactional threads.

3.3 The Mimir Keyword
Thus far, we have not presented a mechanism for acquiring the
Mimir LOCK . As a lock that is not programmer-visible, acqui-

sition and release are performed by the TM runtime system, in re-
sponse to uses of the Mimir keyword. Figure 3 presents an ex-
ample of how a programmer can defer an operation.

The Mimir keyword takes two parameters: an object and a
function. It acquires the object’s Mimir LOCK , and schedules
the function for execution after the outermost transactional scope
commits. When the function completes, the Mimir LOCK is
automatically released.1 Note that when Mimir is encountered
in a non-transactional context, the lock will be acquired and the
function executed immediately. Figure 4 presents the modifications
to the TM library that are required in order to implement the
Mimir keyword.

In the implementation, we must ensure that Mimir operations
occur after the transaction’s writes have been finalized (lines 26-
28). This is necessary, as (a) in hardware TM, the Mimir operations
may perform I/O, and must occur outside of a hardware TM con-
text, and (b) in software TM, we must be sure that any writes to the
Mimir object have been finalized before the un-instrumented func-
tion is executed. This includes those that could lead to privatization
errors, necessitating that quiescence [23] precedes Mimir opera-
tions. Note that all Mimir locks are acquired before the transaction
commits, and released after the transaction commits, ensuring that
two-phase locking is obeyed. Since the locks are acquired via a
transaction, they can be acquired in any order, without introducing
the possibility of deadlock. Note that the release of the Mimir lock
(line 28) must use the TM subsystem, so that the lock release is
both (a) free of races with concurrent transactions reading the state
of the Mimir lock, and (b) visible to the TM system, so that waiting
transactions can be rescheduled.

3.4 Compatibility with TM Implementations
There are two requirements for using Mimir in a TM implementa-
tion, both of which are easy to satisfy. The first is that the TM must

1 Note that in the case of reentrant locks, multiple uses of Mimir may
mean that the lock is not released immediately after a specific function
completes.

3 2016/5/2

1 / / new per−t h r e a d metada ta
2 s e t<o b j e c t , f u n c t i o n > m i m i r t a s k s
3

4 / / i m p l e m e n t a t i o n o f t h e Mimir keyword
5 void Mimir (o b j e c t , f u n c t i o n)
6 / / a c q u i r e t h e Mimir LOCK
7 t r a n s a c t i o n
8 Mimir CHECK ()
9 o b j e c t . Mimir LOCK . a c q u i r e ()

10 / / i n s o f t w a r e TM, n e x t l i n e i s
11 / / ∗NOT∗ i n s t r u m e n t e d
12 m i m i r t a s k s . i n s e r t (o b j e c t , f u n c t i o n)
13

14 / / m o d i f i c a t i o n s t o commit
15 void TM COMMIT()
16 . . .
17 / / t r a n s a c t i o n i s v a l i d a t e d
18 / / and a l l w r i t e s are f i n a l i z e d
19 / / TM−r e l a t e d l o c k s are r e l e a s e d
20

21

22 / / e n s u r e p r i v a t i z a t i o n −s a f e t y
23 q u i e s c e ()
24

25 / / e x e c u t e Mimir t a s k s
26 f o r o , f i n m i m i r t a s k s
27 f ()
28 o . r e l e a s e ()
29

30 / / d e f e r r e d a l l o c a t o r o p e r a t i o n s
31 f o r f i n d e l a y e d f r e e s
32 f r e e (f)

Figure 4: Deferring an operation via MIMIR .

support deferred operations. In the case of software TM, rudimen-
tary support for deferred operations is available in all known im-
plementations, in order to handle memory management. The GCC
TM implementation [10] provides more robust support for deferred
operations in software TM, and extending this support to hardware
TM is straightforward (see, for example, [22]).

The second requirement is that the TM must be able to abort and
delay re-execution of transactions. The three mechanisms we have
highlighted in this paper (retry, await, and reschedule)
are all compatible with both hardware and software TM, via
lightweight runtime support [21]. One could imagine a stream-
lined hardware TM implementation that did not support any of
these mechanisms; in such a case, it would suffice to abort the
transaction, wait briefly, and try again.

4. Programming with Mimir
Mimir simplifies the task of delaying output operations, by ensur-
ing that a deferred operation is atomic, via two-phase locking. Since
the deferred operation is not executed within a transactional con-
text, it is guaranteed not to unwind and retry, and thus can safely
perform output. The operation holds a lock over the object, and
thus can access any and all fields of the object, without risk of racy
accesses by other threads. Most importantly, the deferred opera-
tion can entail arbitrary system calls that happen immediately. This
simplifies error handling.

On the other hand, when an operation is deferred via Mimir,
it is not statically checked, and thus it is possible to violate two-
phase locking, e.g., by executing a transaction (on program data,

not on synchronization objects) within the deferred operation. In
this section, we describe the constraints on deferred operations, and
the consequences of violating those constraints.

4.1 Memory Accesses
Clearly, it is safe for a deferred operation to access thread-private
values, as well as the fields of the object whose Mimir lock is
held. However, the programmer must keep in mind that the state
of the object and thread-private data at the time when the Mimir
keyword appears is not immutable, and may change in the suffix of
the transaction that executes before the deferred operation.

The deferred operation does not execute transactionally (though
it is part of the transaction), and thus accesses to shared data are
not protected by any synchronization mechanism. The programmer
must take care! To acquire locks or use transactions in order to
access shared data will violate the two-phase locking guarantees
of the deferred operation. While it is possible to maintain isolation
and atomicity while adding additional synchronization, doing so
will require whole-program analysis and should be avoided.

One exception is when a deferred operation on object O1 ac-
cesses the state of O2, where there is also a deferred operation on
O2 by the same transaction, which has not been executed yet. In
that case, it is safe to access O2, because the transaction still holds
the Mimir lock on O2. Programmers may assume that deferred op-
erations are performed in the order they are registered through the
Mimir keyword. Note that the use of a recursive lock ensures

that multiple deferred operations on the same object will appear as
a single indivisible operation.

4.2 System Calls
Deferred operations do not execute within a transactional context,
and are thus able to perform system calls. However, it is the respon-
sibility of the programmer to ensure that the system call does not
cause a race. Consider a deferred operation that performs a write
of byte stream B to file descriptor F . If F is shared, then it should
be a field of the Mimir object. If B is shared, then it, too, should
be a field of the Mimir object. Otherwise, accesses to B by the
call to write could race with concurrent modifications to B. If
the Mimir object cannot encapsulate both B and F , and both
are shared, then buffering of B may be necessary.

System calls made within a deferred operation happen imme-
diately. This enables the programmer to perform a write, verify its
correctness (via the return value), and perform an fsync to ensure
the write reaches its destination. Ensuring durability in this manner
is essential in real-world programs, such as databases, and we see it
as a critical feature of Mimir. The main constraint on system calls
is that the utility of asynchronous output is not clear: since a lock is
held, it does not make sense to perform an asynchronous output and
then wait on the result; however, if an asynchronous output is re-
quested and the result (which may arrive via signal) is not checked
until the operation returns, then any recovery will not be atomic
with the transaction.

5. Examples
In this section, we present examples to show how Mimir can be
used to perform output from within transactions. The examples
cover a set of common and interesting use cases, and show the de-
ferral of increasingly complex operations without sacrificing atom-
icity or resorting to serialization.

5.1 Basic Logging
In programs such as memcached [15] and MySQL, we observed
that critical sections occasionally perform logging operations, such
as error messages and diagnostic writes to per-thread logs. The

4 2016/5/2

1 / / x i s a mutab le s t r i n g
2 / / i i s a mu tab le i n t e g e r
3 c o n s t char ∗ f = ” . . . % s . . . [% d] . . . ”
4 f p r i n t f (s t d e r r , f , x , i)
5 f r e e (x) / / o p t i o n a l
6

7 / / Mimir v a r i a n t
8 c l a s s d e f e r f p r i n t f Mimir
9 void d e f e r o u t (. . .)

10 char ∗ o u t = s p r i n t f (f , x , i)
11 Mimir ([] () {
12 f p r i n t f (s t d e r r , o u t)
13 f r e e (o u t)
14 f r e e (t h i s)
15 })

Figure 5: Example of simple logging from within a critical section.

program does not expect any ordering among logging operations:
they are diagnostic, and any ordering can be determined post-
mortem. The return values of the output operations are typically
not used. An example appears in Figure 5

In lock-based programs, we can assume that the critical section
surrounding the program guarantees the immutability of both x
and i. If fprintf were safe to call from within transactions, we
would not have a concern, either: its implementation typically calls
sprintf to construct a private string containing the final output
stream, and then passes a pointer to that string to the write system
call. However, if we wished to use simple deferral, we would have
to (a) manually create the buffered string, (b) defer the output of
that string, and (c) reclaim the memory for the string after the
transaction commits. With Mimir, we can encapsulate all of this
behavior in an object that constructs the string before invoking a
Mimir operation, and then frees the string (and destroys itself) at
the end of the deferred function. Note, too, that in the case of fixed
output messages (such as those in assertions), the Mimir object
can be stateless.

5.2 Ordered Output to a File
While the example above could easily be encapsulated in a one-
off transactional fprintf function, it provides the basis for our
argument that Mimir generalizes. To demonstrate the claim, we first
provide a simple extension to the above example, and then describe
how that extension manifests in the dedup kernel from the PARSEC
benchmark suite [5].

Consider the case where critical sections perform writes to the
same file, and the order in which the writes occur must be the
same as the order in which the critical sections execute. Performing
synchronous writes within the critical sections suffices to achieve
the needed guarantee, but results in serialization if we replace the
lock with transactions. This approach is particularly valuable when
durability requirements necessitate the use of fsync within the
critical section. Regardless of the presence of fsync, our simple
logging example from above will fail: since each deferred output
can use a distinct Mimir object, writes to the file can reorder
after transaction commit.

To use Mimir in this case, we require only a small change
to Figure 5, wherein we cease to create a new Mimir object
each time we wish to perform output, and instead we wrap each
file descriptor in a Mimir object. To make the example more
concrete, Figure 6 presents code patterned after PARSEC dedup,
which handles “short counts” due to transient errors (i.e., EINTR

1 / / f o r each fd , c r e a t e one o f t h e s e
2 / / o b j e c t s and make i t g l o b a l
3 c l a s s g l o b a l d e f e r f d Mimir
4 / / t h e f i l e d e s c r i p t o r i s
5 / / e n c a p s u l a t e d as a f i e l d
6 / / o f t h i s o b j e c t
7 i n t fd
8

9 / / c o n s t r u c t o r
10 g l o b a l d e f e r f d (. . .)
11 fd = open (. . .)
12

13 / / o u t p u t t o a f i l e t h a t may
14 / / n o t be r e l i a b l e
15 void d e f e r o u t (buf , l e n)
16 Mimir ([] () {
17 char ∗p = buf
18 s i z e t n s e n t = 0
19 s s i z e t rv
20 whi le (n s e n t < l e n)
21 rv = w r i t e (sd , p ,
22 l e n − n s e n t) ;
23 i f (0 > rv &&
24 (e r r n o == TRANSIENT ERR)
25 c o n t i nu e
26 i f (0 > rv)
27 e r r o r ()
28 n s e n t += rv
29 p += rv
30 f s y n c (fd)
31 f r e e (buf)
32 })

Figure 6: Example of ordered, reliable output to a file.

and EAGAIN) during the output. We assume that the original code
freed the buffer after output, and thus have included line 31.

Since all invocations of the Mimir keyword that use the same
object serialize on the object’s Mimir LOCK , concurrent writes
to the file will be ordered identically to the order of their respective
transactions. Thus we achieve the desired ordering. Introducing an
fsync call is trivial (line 30), and is left up to the programmer.
More significantly, the example moves beyond deferring a simple
library call. The uses of write in real programs are varied, and
any program wishing to perform low-level output (especially out-
put over a network socket) must have some mechanism for dealing
with transient write errors. Rather than create new high-level ab-
stractions for reliable writes over unreliable streams, Mimir allows
fine-grained use of return values after each system call. Doing so is
straightforward, because the entire encapsulated object is private to
the thread executing the defer out.

In the case where the buffer is (a) not freed after the output,
and (b) mutable during the I/O, it is desirable to avoid copying the
buffer prior to line 16. One mechanism for doing so is to make
the buffer object a Mimir object, and defer an empty operation
on the buffer immediately after the transaction calls defer out.
Doing so would lock the buffer, so that it is immutable during
the output operation. This optimization follows naturally from the
requirement to perform Mimir operations in program order.

5.3 Pipelines with Output Stages
The example in Figure 6 is, surprisingly, more complex than re-
quired by PARSEC dedup. The dedup benchmark implements a

5 2016/5/2

1 . . .
2 i f (chunk−>h e a d e r . s t a t e == COMPRESSED)
3 / / w r i t e t h e da ta
4 w r i t e f i l e (fd , TYPE COMPRESS , chunk−>s i z e ,
5 chunk−>d a t a p t r)
6 m b u f f e r f r e e (&chunk−>c o m p r e s s e d d a t a)
7 chunk−>h e a d e r . s t a t e = CHUNK STATE FLUSHED
8 e l s e
9 / / j u s t w r i t e SHA1

10 w r i t e f i l e (fd , TYPE FINGERPRINT , SHA1 LEN ,
11 chunk−>sha1)
12 . . .

Figure 7: The output pipeline stage in Dedup.

pipeline, in which output is performed in a serial stage. Trans-
actional versions of dedup serialize all transactions whenever the
thread executing the output stage attempts to write to the output
file [22]. The output operation itself is similar to lines 17–29 of Fig-
ure 6, and in Figure 7, we refer to that sequence as write file.

In this code sequence, program logic naturally encapsulates the
file descriptor, since only the thread assigned to the output stage
is allowed to perform I/O. However, there is program logic that
must execute after the I/O, but isolated with respect to subsequent
pipeline stages (lines 6–7). By encapsulating chunk in a Mimir
object, we can move lines 4–7 into a deferred operation, thereby
avoiding copying and allowing the buffer to be freed before any
other thread can observe that the object’s output has completed.

5.4 Opening Files as Output
Our final example of how Mimir can simplify transactional output
comes from the MySQL InnoDB storage engine, and appears in
Figure 8. All file output in InnoDB is achieved via asynchronous
I/O, and is constructed carefully, so that the offset and length of
each output operation is known in advance. Consequently, writes
to files are not performed while any locks are held.

To compute offsets and lengths, InnoDB maintains a pool of
open file descriptors, and tracks metadata on a per-descriptor basis.
All accesses and modifications to the pool are performed while a
lock is held. Most significantly, while the lock is held, files can be
opened and closed.

Opening and closing file descriptors is a form of output: upon
close, data may be flushed to disk; when opening, a file may
be created or truncated. In InnoDB, multiple open and close
operations can be composed into a single atomic operation. How
many operations are attempted can depend on the result of each
attempt (e.g., if a file cannot be closed due to pending writes, then
another file may be closed instead).

Clearly it is not acceptable to delay opening a file, if some other
thread may attempt to write to that file. We must ensure that while
calls to open are completing, no concurrent threads can access the
corresponding portions of the descriptor pool. At the same time,
when there are no pending open or close operations, we would
like to enable concurrent accesses to different descriptors within
the pool.

Wrapping the entire pool as a Mimir object achieves our re-
quirements, in a manner that is completely invisible to the program-
mer. The methods in Figure 8 each defer their entire body via the
Mimir keyword. All other methods (not shown) do not use the

keyword, and they run immediately when called from a transaction
(this is safe, since they only modify the memory state associated
with file descriptors). When any open is in flight, all concurrent
accesses to the pool will be de-scheduled (via a retry-like mech-

1 m y S Q L i n i t i a l i z e (. . .)
2 / / open l o g s & t a b l e s p a c e da ta f i l e s
3 . . .
4 f o r (s p a c e i n s p a c e l i s t)
5 f o r (node i n space−>c h a i n)
6 node−>h a n d l e = open (. . .) ;
7 . . .
8

9 mySQL destroy (. . .)
10 / / c l o s e l o g s & t a b l e s p a c e da ta f i l e s
11 . . .
12 f o r (s p a c e i n s p a c e l i s t)
13 f o r (node i n space−>c h a i n)
14 c l o s e (node−>h a n d l e) ;
15 . . .
16

17 mySQL io prepare (. . .)
18 / / check s y s t e m s t a t e s
19 . . .
20

21 / / many open f i l e s . . . c l o s e some?
22 c l o s e m o r e :
23

24 / / s e l e c t q u a l i f i e d f i l e
25 . . .
26 i f (c l o s e (f i l e) == −1)
27 e x i t t r a n s a c t i o n ;
28 n open−−;
29 i f (n open >= max n open)
30 goto c l o s e m o r e ;
31

32 / / check t h e node t o do i / o
33 . . .
34 i f (node−>open == FALSE)
35 / / t o g e t f i l e s i z e , do an
36 / / open and c l o s e
37 / / save me tada ta f o r f u t u r e i / o
38 i f (node−>s i z e == 0)
39 node−>h a n d l e = open () ;
40 o f f s e t = l s e e k (f i l e , 0 , SEEK END) ;
41 s u c c e s s = p r e a d (two pages) ;
42 c l o s e (node−>h a n d l e) ;
43 / / a l r e a d y know t h e me tada ta
44 node−>h a n d l e = open () ;
45 / / change s y s t e m s t a t e s
46 . . .

Figure 8: MySQL critical sections related to managing a pool of
open file descriptors that are used in asynchronous I/O.

anism). During that period, the pool itself will be privatized, such
that non-transactional code may modify the pool (e.g., by opening
and closing files, and updating their state) while remaining atomic
and isolated with respect to all concurrent threads. Upon comple-
tion, concurrent operations on the pool will automatically wake and
retry.

6. Conclusions and Future Work
In this paper, we introduced the Mimir methodology for enabling
programmers to perform output operations in a manner that remains
atomic with respect to memory transactions. Mimir makes heavy
use of implicit deferred privatization and retry-based condition

6 2016/5/2

synchronization, and may be the first concrete and comprehensive
motivation for adding retry to the C++ TM specification.

Mimir requires the programmer to employ object-oriented de-
sign in order to encapsulate the file descriptors and data required
for the I/O at a granularity that allows for Mimir to then seamlessly
implement a two-phase locking protocol to privatize the object. The
output is then performed after the transaction completes, but with-
out risking interleavings by concurrent transactions accessing the
object. In our example usage scenarios, we show how Mimir can be
used for increasingly complex tasks, such as logging, ordered out-
put, pipelined output, and management of pools of file descriptors.
These examples were taken from memcached, PARSEC dedup, and
MySQL’s InnoDB engine, and support our assertion that Mimir is
a practical approach for output in real-world programs.

As immediate future work, we plan to implement Mimir in the
GCC-TM system. We are particularly interested in performance
differences between eager software TM, lazy software TM, and
hardware TM, especially as they relate to transactional acquisition
of multiple Mimir locks: While any TM system should ensure this
acquisition is deadlock free, regardless of order, we worry that
livelock may occur in practice, for hardware and eager software
TM. We are also interested in the impact on program complexity
that arises when refactoring code to encapsulate related fields in a
single Mimir object.

Longer-term, we plan to explore the performance of Mimir, and
the degree to which it can be generalized beyond output. In the
former category, we will require a broad application study, partic-
ularly since some of the examples that motivated this work (e.g.,
memcached) do not perform output on any critical path. On the
other hand, any serialization-free mechanism to perform output in
dedup will dramatically improve performance, and we must be cau-
tious not to equate the removal of a pathology with a generalizable
success. In the latter category, our analysis of MySQL shows an
exciting road forward: write system calls are not the only un-
safe operations that can be cast as output, and delayed via Mimir.
Other possibilities include arbitrary system calls, and we plan to
use the taxonomies proposed by Volos et al. [20] and Baugh and
Zilles [4] to identify the types of operating system interactions most
amenable to deferral via Mimir.

Acknowledgments
We thank Victor Luchangco and Jason Flinn for their advice and
guidance during the conduct of this research. This material is based
upon work supported by the National Science Foundation under
Grants CAREER-1253362 and CCF-1218530. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

References
[1] A.-R. Adl-Tabatabai, V. Luchangco, V. J. Marathe, M. Moir,

R. Narayanaswamy, Y. Ni, D. Nussbaum, X. Tian, A. Welc, and P. Wu.
Exceptions and Transactions in C++. In Proceedings of the First
USENIX Workshop on Hot Topics in Parallelism, Berkeley, CA, Mar.
2009.

[2] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich. Draft Specifi-
cation of Transactional Language Constructs for C++, Feb. 2012. Ver-
sion 1.1, http://justingottschlich.com/tm-specification-for-c-v-1-1/.

[3] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. Computer, 29(12):66–76, 1996.

[4] L. Baugh and C. Zilles. An Analysis of I/O and Syscalls in Critical
Sections and Their Implications for Transactional Memory. In Pro-
ceedings of the 2nd ACM SIGPLAN Workshop on Transactional Com-
puting, Portland, OR, Aug. 2007.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, Toronto, ON, Canada, Oct. 2008.

[6] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh,
C. Kozyrakis, and K. Olukotun. The Atomos Transactional Program-
ming Language. In Proceedings of the 27th ACM Conference on Pro-
gramming Language Design and Implementation, June 2006.

[7] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von
Praun, V. Saraswat, and V. Sarkar. X10: An Object-Oriented Approach
to Non-Uniform Cluster Computing. In Proceedings of the 20th ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, San Diego, CA, Oct. 2005.

[8] L. Dalessandro, M. Scott, and M. Spear. Transactions as the Foun-
dation of a Memory Consistency Model. In Proceedings of the 24th
International Symposium on Distributed Computing, Cambridge, MA,
Sept. 2010.

[9] P. Dudnik and M. M. Swift. Condition Variables and Transactional
Memory: Problem or Opportunity? In Proceedings of the 4th ACM
SIGPLAN Workshop on Transactional Computing, Raleigh, NC, Feb.
2009.

[10] Free Software Foundation. Transactional Memory in GCC, 2012.
http://gcc.gnu.org/wiki/TransactionalMemory.

[11] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
Memory Transactions. In Proceedings of the 10th ACM Symposium on
Principles and Practice of Parallel Programming, Chicago, IL, June
2005.

[12] M. P. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proceedings of the 20th
International Symposium on Computer Architecture, San Diego, CA,
May 1993.

[13] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. Hud-
son, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics for
Java STM. In Proceedings of the 20th ACM Symposium on Parallelism
in Algorithms and Architectures, Munich, Germany, June 2008.

[14] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier,
S. Preis, B. Saha, A. Tal, and X. Tian. Design and Implementation of
Transactional Constructs for C/C++. In Proceedings of the 23rd ACM
Conference on Object Oriented Programming, Systems, Languages,
and Applications, Nashville, TN, USA, Oct. 2008.

[15] W. Ruan, T. Vyas, Y. Liu, and M. Spear. Transactionalizing Legacy
Code: An Experience Report Using GCC and Memcached. In Pro-
ceedings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Salt Lake
City, UT, Mar. 2014.

[16] M. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. Ordering-
Based Semantics for Software Transactional Memory. In Proceedings
of the 12th International Conference On Principles Of DIstributed
Systems, Luxor, Egypt, Dec. 2008.

[17] M. Spear, V. Marathe, L. Dalessandro, and M. Scott. Privatization
Techniques for Software Transactional Memory (POSTER). In Pro-
ceedings of the 26th ACM Symposium on Principles of Distributed
Computing, Portland, OR, Aug. 2007.

[18] M. Spear, M. M. Michael, and M. L. Scott. Inevitability Mechanisms
for Software Transactional Memory. In Proceedings of the 3rd ACM
SIGPLAN Workshop on Transactional Computing, Salt Lake City, UT,
Feb. 2008.

[19] M. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and M. L.
Scott. Implementing and Exploiting Inevitability in Software Transac-
tional Memory. In Proceedings of the 37th International Conference
on Parallel Processing, Portland, OR, Sept. 2008.

[20] H. Volos, A. J. Tack, N. Goyal, M. Swift, and A. Welc. xCalls: Safe
I/O in Memory Transactions. In Proceedings of the EuroSys2009
Conference, Nuremberg, Germany, Mar. 2009.

7 2016/5/2

[21] C. Wang, Y. Liu, and M. Spear. A New API for Transactional Con-
dition Synchronization. In Proceedings of the 6th Workshop on the
Theory of Transactional Memory, Paris, France, July 2014.

[22] C. Wang, Y. Liu, and M. Spear. Transaction-Friendly Condition
Variables. In Proceedings of the 26th ACM Symposium on Parallelism
in Algorithms and Architectures, Prague, Czech Republic, June 2014.

[23] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable Transactions
and their Applications. In Proceedings of the 20th ACM Symposium on
Parallelism in Algorithms and Architectures, Munich, Germany, June
2008.

[24] R. Yoo, C. Hughes, K. Lai, and R. Rajwar. Performance Evaluation of
Intel Transactional Synchronization Extensions for High Performance
Computing. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Denver,
CO, Nov. 2013.

8 2016/5/2

