
Lock Holder Preemption Avoidance
via Transactional Lock Elision

Dave Dice

Oracle Labs

dave.dice@oracle.com

Tim Harris

Oracle Labs

timothy.l.harris@oracle.com

Abstract

In this short paper we show that hardware-based transactional lock
elision can provide benefit by reducing the incidence of lock holder
preemption, decreasing lock hold times and promoting improved
scalability.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
Mutual Exclusion

General Terms Performance, experiments, algorithms

Keywords Concurrency, synchronization, threads, multicore, locks,
mutexes, contention, involuntary preemption, hardware transac-
tional memory, transactional lock elision

1. Introduction

Transactional Lock Elision (TLE) [10, 11] permits multiple threads
to concurrently enter and execute critical sections guarded by a
given lock L. The critical section is executed in optimistic trans-
actional mode. If the hardware transaction aborts because of con-
flicting accesses or other reasons, the lock system can retry with
another transaction. If there are excessive aborts in a given lock
acquisition episode, then, to ensure progress, the system reverts as
necessary to classic pessimistic physical locking.

The benefits of TLE are commonly taken to be the ability to
leverage disjoint access parallelism 1 and, for promiscuous locks 2,
avoidance of so-called cache line sloshing – cache-to-cache coher-
ence traffic related to lock metadata. We identify and demonstrate
yet another mode of benefit for TLE: lock-hold preemption avoid-
ance (LHPA). By running a critical section as a TLE transaction, if
the operating system preempts the thread, then the transaction im-
mediately aborts and rolls back execution, leaving the lock avail-
able. The preempted and aborted thread does not hold the lock.
Absent such TLE-based LHPA, convoys can form and the critical
section durations can be artificially increased.

Overlooked mode-of-benefit; unsurprising; forgotten;

2. Evaluation

To illustrate the benefits of LHPA we use a simple microbench-
mark where T concurrent threads loop as follows: acquire a central
lock L; increment a shared variable; advance a shared random num-
ber generator 3 200 steps; release L; advance a thread-local random

1 A classic application of TLE might be a hash table protected by a single
coarse-grained lock where accesses to different buckets would be expected
to be disjoint. Concurrent transactional threads operating on different buck-
ets would be expected to run and commit without conflict aborts.
2 A promiscuous lock is typically uncontended, but is accessed in turn by
multiple threads
3 We used the the PCG random number generator from http://www.
pcg-random.org/

Copyright c©2016 Oracle and/or its affiliates.

number generator 100000 steps. At the end of a 10 second measure-
ment interval we report the aggregate number of iterations com-
pleted. We increment the shared variable to intentionally preclude
any benefit from TLE that might otherwise allow critical sections
to run concurrently in transactional mode.

We used an Oracle x5-2 [19] for our benchmarks. The system
has 2 sockets, each populated with an Intel Xeon x5-2699v3 pro-
cessor running at 2.3 GHz. Each processor has 18 cores, and each
core is 2-way hyperthreaded. The system exposes a total of 72 log-
ical CPUs. The system ran Ubuntu 15.04 with a 3.19 Linux ker-
nel. The default energy management polices were used, with turbo
mode enabled. Hardware transactional memory was explicitly en-
abled. The processors provide best-effort hardware transactional
memory with a requester-wins conflict management policy.

We used two locks in our experiments: tts and ttstle. Tts is
a simple polite test-and-test-and-set lock [1]. Upon arrival, threads
use an atomic XCHG operation to try to acquire the lock 4. Failing
that, they enter a busy-wait loop populated with a single PAUSE
instruction. There is no back-off in the busy-wait loop. When the
lock is then observed free, control exits the busy-wait loop and
again retries the XCHG instruction.
Ttstle is just tts augmented with TLE in a simplistic fashion.

Arriving threads use the Intel TSX RTM [15] XBEGIN instruction to
start a hardware transaction. The thread then checks the lock state,
and if the lock is held, the thread immediately commits via XEND
and reverts to the classic tts path 5. Otherwise control passes into
the critical section, and, absent aborts, the thread will successfully
commit in the unlock operator. If the transaction aborts for any rea-
son, control diverts into the tts slow path. No retries are used, and
there is no lemming avoidance [11]. If two or more more threads try
to simultaneously execute the critical section in transactional mode,
then at least one will abort because of data conflicts on the variable
that is incremented. We intentionally structured the critical section
and TLE policies so that the sole benefit of using TLE would be
lock holder preemption avoidance – that is, the data conflicts en-
sure that there is no opportunity for speculation to allow multiple
critical section executions to run concurrently.

If a thread in the critical section in transactional mode is aborted
by a preemption interrupt, that transaction aborts and, when the
thread is again dispatched, control reverts to the classic tts slow
path. Critically, this happens at the start of a new time slice where
preemption is far less likely. This acts to reduce lock holder pre-
emption. In our case, the critical section duration is far less than
any reasonable time slice length 6, so when the thread is dispatched
and subsequently enters the critical section via the tts path, it is
less vulnerable to being preempted. In a sense, the ttstle path
shifted or “realigned” the critical section to a time interval that is
less likely to be exposed to preemption. A freshly dispatched thread

4 Transitioning the lock word from 0 to 1 via XCHG confers ownership.
5 ttstle uses a conservative early subscription policy
6 quanta on Linux and Solaris are usually greater than 1 millisecond

1 2016/2/17

http://www.pcg-random.org/
http://www.pcg-random.org/


1 5 10 50 100 500 5000

0e
+

00
2e

+
06

4e
+

06

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 : 
ite

ra
tio

ns

tts
ttstle

Figure 1: Aggregate throughput

is unlikely to suffer immediate re-preemption at the start of a new
time slice.

In Figure 1 we show the performance of the microbenchmark
for tts and ttstle on the Y-axis, varying the thread count on the
X-axis (log scale). In our experiments the critical section length
(CSL) is far shorter than non-critical section length (NCSL) even
when 72 threads run concurrently. While the lock is promiscuous,
contention and waiting are rare. Up to 72 ready threads, tts ex-
hibits the same performance as ttstle – ttstle provides no ben-
efit in this region. Conflict aborts are rare, and most critical sec-
tions manage to execute transactionally. Beyond 72 ready threads
we encounter the onset of preemption, and ttstle shows better
performance by virtue of lock holder preemption avoidance. Under
tts the lock holder is more likely to suffer preemption. Queueing
and contention ensue until the lock holder is again dispatched onto
a CPU, after which contention will abate. Preemption of the lock
holder transiently increased the critical section length.

LHPAis Forgotten benefit Claim of profitability : aborted CS lessexpensive than a preempted CS – better progress properties The slight lossof performance arising from wasted effort in preempted and aborted critical sectionsis offset by improved scalability. Futile wasted effort Beware entrainment; should randomize NCS period Induced contention Decreaselock hold times Show existenceof benefit; mode of benefit; profitability; utility Inopportune preemption; infelicitous Tobe preempted; to suffer preemption; Ensure; emerge; arise; manifest; reify; Best effort HTM Requester-winsconflict resolution policy Strategy vs policy Support our claims; proof by lack of

imagination; exclude other factors Short slice length : more frequent LHP; lessdelay impact Long slice length : less frequent LHP ; more delay impact LHP reflects dead time and results in either higher voluntary context switching for STP locks, or involuntary switching for pure spin locks. Both artificially lengthen CS and impede scalability. Increasesqueueing and waiting.

3. Related Work

Blasgen et al. [5] identified the undesirable convoying phenomena
for contended locks. Edler et al. [12] suggested the idea of tem-
porary non-preemption to allow lock holders to defer preemption
until they exit their critical section and release the lock. Kosche at
al. [17] implemented a related facility in the Solaris operating sys-
tem as the schedctl interface, where threads can request advisory

and bounded preemption deferral. 7 The facility has also been em-
ployed in surprising ways in lock implementations [8]. Anderson
et al. [2] suggested, in the context of their “scheduler activations”
facility, that preempted lock holders be allowed to roll forward
through their critical section before being descheduled. Black [4]
suggested “hints” that can be conveyed to the scheduler from user-
mode threads, and direct handoff of a CPU from waiting threads to
lock holders. Kontothanassis et al. [16] described features that al-
low user-mode threads to inform the kernel scheduler that they are
executing in critical sections. They also augmented locking prim-
itives to reduce the odds that ownership will be passed directly
to a preempted thread. Marsh et al. [18] suggested a “two-minute
warning” before preemption. 8 Some relief may be afforded if spin-
ning threads are able to donate their time slice to the preempted
lock holder via a “directed yield” primitive [7]. In some environ-
ments, lock holder preemption can be avoided for short periods by
masking the timer interrupt through which preemption is driven.
Uhlig et al. [21] investigated lock-hold preemption avoidance for
virtual machine monitors. In real-time systems the priority ceil-
ing protocol or priority inheritance protocol [20] may be able to
forestall lock holder preemption. Similarly, using elevated thread

7 Schedctl can also be used to detect if the lock-holder itself has been
descheduling or preempted, allowing lock implementations to avoid cases
of transitive waiting, in which case the waiting threads would be better
served promptly surrendering its CPU to the operating system scheduler.
Schedctl can also be used to detect pending preemption.
8 A related feature is the ability of a thread to determine how much time
remains its quantum.

2 2016/2/17



priorites for the lock holder may avoid LHPA, although this does
not suffice for the default schedulers on commodity operating sys-
tems such as Linux or Solaris. Bershad et al. [3] emulated atomic
instructions on uniprocessors with restartable atomic sequences.
Dice et al. [9, 13] used restartable critical sections to roll back
preempted critical sections that access CPU-specific data. Similar
ideas [6] have been recently rediscovered by the Linux kernel de-
veloper community. Harris et al. [14] introduced the concept of re-
vocable locks implemented as a specialized software transactional
memory (STM). STM implementations that take locks only during
the commit phase may also reduce the window of vulnerability to
preemption. The desire to avoid locks entirely led to lock-free and
wait-free techniques.

Obviously, lock-free and wait-free algorithms are alsoimmune to preemption concerns.

4. Conclusion

We show the existence of a non-traditional mode of benefit for TLE
– lock holder preemption avoidance.

References
[1] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory

Multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1(1), Jan. 1990. URL
http://dx.doi.org/10.1109/71.80120.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler Acti-
vations: Effective Kernel Support for the User-level Management of Parallelism.
SOSP. ACM, 1991. URL http://doi.acm.org/10.1145/121132.121151.

[3] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast Mutual Exclusion for Unipro-
cessors. In Proceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS V. ACM,
1992. URL http://doi.acm.org/10.1145/143365.143523.

[4] D. L. Black. Scheduling Support for Concurrency and Parallelism in the Mach
Operating System. Computer, 23(5), May 1990. URL http://dx.doi.org/
10.1109/2.53353.

[5] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The Convoy Phenomenon.
SIGOPS Oper. Syst. Rev., 1979. URL http://doi.acm.org/10.1145/
850657.850659.

[6] J. Corbet. Restartable sequences, 2015. URL https://lwn.net/Articles/
650333/.

[7] D. Dice. Adaptive Spin-Then-Block Mutual Exclusion in Multi-threaded Pro-
cessing, 2004. URL http://www.google.com/patents/US8046758. US
Patent US8046758 B2.

[8] D. Dice. Inverted schedctl usage in the JVM, 2011. URL https://blogs.
oracle.com/dave/entry/inverted_schedctl_usage_in_the.

[9] D. Dice and A. Garthwaite. Mostly Lock-free Malloc. ISMM ’02. ACM, 2002.
URL http://doi.acm.org/10.1145/512429.512451.

[10] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with a Commer-
cial Hardware Transactional Memory Implementation. In ASPLOS XIV. ACM,
2009. URL http://doi.acm.org/10.1145/1508244.1508263.

[11] D. Dice, Y. Lev, M. Moir, D. Nussbaum, and M. Olszewski. Early Experience
with a Commercial Hardware Transactional Memory Implementation, 2009.
URL https://blogs.oracle.com/dave/resource/smli_tr-2009-180.
pdf. Sun Labs Technical Report SMLI TR–2009–180.

[12] J. Edler, J. Lipkis, and E. Schonberg. Process Management for Highly Parallel
UNIX Systems. In Proc. 1988 USENIX Workshop on UNIX and Supercomputers,
1988.

[13] A. Garthwaite, D. Dice, and D. White. Supporting Per-processor Local-allocation
Buffers Using Lightweight User-level Preemption Notification. In Proceedings
of the 1st ACM/USENIX International Conference on Virtual Execution Environ-
ments, VEE. ACM, 2005. URL http://doi.acm.org/10.1145/1064979.
1064985.

[14] T. Harris and K. Fraser. Revocable Locks for Non-blocking Program-
ming. PPoPP. ACM, 2005. URL http://doi.acm.org/10.1145/1065944.
1065954.

[15] Intel Corporation. Transactional Synchronization in Haswell, 2012.
URL https://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/. [online; retrieved
2015].

[16] L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott. Scheduler-conscious
Synchronization. ACM Trans. Comput. Syst., 1997. URL http://doi.acm.
org/10.1145/244764.244765.

[17] N. Kosche, D. Singleton, B. Smaalders, and A. Tucker. Method and Appara-
tus for Execution and Preemption Control of Computer Process Entities: US
Patent number 5937187, 1999. URL http://www.google.com/patents/
US5937187.

[18] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-class User-level
Threads. SOSP. ACM, 1991. URL http://doi.acm.org/10.1145/121132.
344329.

[19] Oracle Corporation. Oracle X5-2 Server Architecture, 2015. URL http://www.
oracle.com/technetwork/server-storage/sun-x86/documentation/
x5-2-system-architecture-2328157.pdf.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An
Approach to Real-Time Synchronization. IEEE Trans. Comput., 1990. URL
http://dx.doi.org/10.1109/12.57058.

[21] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. Towards Scalable
Multiprocessor Virtual Machines. In Proceedings of the 3rd Conference on
Virtual Machine Research And Technology Symposium - Volume 3, VM. USENIX
Association, 2004. URL http://dl.acm.org/citation.cfm?id=1267242.
1267246.

3 2016/2/17

http://dx.doi.org/10.1109/71.80120
http://doi.acm.org/10.1145/121132.121151
http://doi.acm.org/10.1145/143365.143523
http://dx.doi.org/10.1109/2.53353
http://dx.doi.org/10.1109/2.53353
http://doi.acm.org/10.1145/850657.850659
http://doi.acm.org/10.1145/850657.850659
https://lwn.net/Articles/650333/
https://lwn.net/Articles/650333/
http://www.google.com/patents/US8046758
https://blogs.oracle.com/dave/entry/inverted_schedctl_usage_in_the
https://blogs.oracle.com/dave/entry/inverted_schedctl_usage_in_the
http://doi.acm.org/10.1145/512429.512451
http://doi.acm.org/10.1145/1508244.1508263
https://blogs.oracle.com/dave/resource/smli_tr-2009-180.pdf
https://blogs.oracle.com/dave/resource/smli_tr-2009-180.pdf
http://doi.acm.org/10.1145/1064979.1064985
http://doi.acm.org/10.1145/1064979.1064985
http://doi.acm.org/10.1145/1065944.1065954
http://doi.acm.org/10.1145/1065944.1065954
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://doi.acm.org/10.1145/244764.244765
http://doi.acm.org/10.1145/244764.244765
http://www.google.com/patents/US5937187
http://www.google.com/patents/US5937187
http://doi.acm.org/10.1145/121132.344329
http://doi.acm.org/10.1145/121132.344329
http://www.oracle.com/technetwork/server-storage/sun-x86/documentation/x5-2-system-architecture-2328157.pdf
http://www.oracle.com/technetwork/server-storage/sun-x86/documentation/x5-2-system-architecture-2328157.pdf
http://www.oracle.com/technetwork/server-storage/sun-x86/documentation/x5-2-system-architecture-2328157.pdf
http://dx.doi.org/10.1109/12.57058
http://dl.acm.org/citation.cfm?id=1267242.1267246
http://dl.acm.org/citation.cfm?id=1267242.1267246

	Introduction
	Evaluation
	Related Work
	Conclusion

