The Influence of Malloc Placement on
TSX Hardware Transactional Memory

Dave Dice

Oracle Labs
dave.dice@oracle.com

Yossi Lev

Oracle Labs
yossi.lev@oracle.com

Abstract

In this paper, we demonstrate the impact of the placement policies
of memory allocators on the performance of applications that use
hardware transactional memory. In particular, commonly used allo-
cators such as the default GNU glib malloc allocator may place
objects in such a way that causes hardware transactions to consis-
tently abort, even when running single-threaded. In multithreaded
applications, these consistent aborts can force applications to fall
back to using locks, significantly limiting the parallelism. We also
show that using index-aware allocators can avoid these pathologi-
cal memory placements.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms Performance, experiments, algorithms

Keywords Concurrency, threads, caches, multicore, malloc, dy-
namic memory allocation, hardware transactional memory

1. Introduction

As hardware transactional memory (HTM) becomes available on
commercial processors, it is important to understand how to use it
effectively. One aspect of this is to understand the impact of various
system design choices on the performance of applications that use
HTM. In this paper, we explore the impact of cache geometry and
the placement policies of memory allocators on hardware transac-
tions. Because HTM is implemented by tracking the transactions’
read- and write-sets in the caches, infelicitous placement of objects
during allocation can prevent transactions from committing, which
naturally has a significant negative impact on performance. In par-
ticular, we show that the way commonly used allocators such as
the default GNU glib malloc allocator place objects may cause
hardware transactions on Intel’s i7-4770 “Haswell” processor [12,
13] to abort consistently, even when running single-threaded. In
multithreaded programs, this effect can be much worse: the consis-

Copyright ©2016 Oracle and/or its affiliates.

Tim Harris

Oracle Labs
timothy.l.harris.@oracle.com

Alex Kogan

Oracle Labs
alex.kogan@oracle.com

Victor Luchangco

Oracle Labs
victor.luchangco@oracle.com

tent aborts can force applications to fall back to using locks, signif-
icantly limiting the parallelism that can be achieved by optimistic
execution using HTM. We also show that allocators that take care to
reduce unnecessary conflicts due to cache geometry, such as index-
aware allocators, also reduce the likelihood of these problems.
The 17-4770 provides hardware transactional memory (HTM),
the implementation of which is similar to that in Sun’s ROCK pro-
cessor [[6]. Our particular interest is in the use of Restricted Trans-
actional Memory (RTM) for transactional lock elision (TLE). The
critical section body contains unmodified HTM-oblivious legacy
code that expects to run under the lock in the usual fashion, but via
TLE we can modify the lock implementation to attempt optimistic
execution, reverting to classic physical locking only as necessary.
The i7-4770’s HTM implementation tracks the transactional write-
set in the L1 (level-1) cache and the read-set in the L1, L2, and
L3 caches. At most one cache can have a given line in modified or
exclusive state at any one time—a classic multiple-reader single-
writer model. RTM on the 17-4770 uses a requester-wins conflict
resolution strategy implemented via the coherence protocol. Evic-
tion or invalidation of a tracked cache line results in a transactional
abort. For example if a transaction on CPU C loads address A, and
some other CPU writes A before C commits, the write will inval-
idate the line from C’s cache and cause an abort. Similarly, if C
stores into A and some other CPU loads or stores into A before C
commits, the invalidation of A will cause C’s transaction to abort.
Read-write or write-write sharing on locations accessed within a
transaction results in coherence invalidation and consequent abort.
In addition to coherence traffic, self-displacement via conflict
misses [10] can also result in aborts. Conflict misses — sometimes
called mapping misses — arise because of less than ideal associa-
tivity and represent imbalanced distribution of active memory lines
over the set of available L1 indices[] Unlike data conflict aborts,
aborts due to conflict misses may occur even in a single threaded
execution, and are consistent: that is, retrying the transaction will
consistently fail as long as it accesses the same set of memory loca-
tions. These consistent aborts may cause a significant performance

! We caution the reader about confusing terminology. A data conflict abort
occurs when a transaction running on CPU A reads a location on some cache
line L and another CPU B subsequently — but before A’s transaction can
commit — writes into L or if A writes to L in a transaction and B concurrently
reads or writes to L before A commits. Put another way, if CPU A has L in
its read or write set, and accesses by CPU B invalidate L from A’s cache,
then A’s transaction will consequently abort. Critically, aborts arising from
conflict misses are distinct from conflict aborts.

2016/2/18



degradation due to the wasted futile effort. Furthermore, with a
solution such as TLE where the fallback execution method when
HW transactions consistently fail is execution under the lock, these
aborts lead to serialization of all critical sections that exhibit this
behavior, significantly limiting the potential parallelism that TLE
may have to offer. Thus, while conflict misses exhibit a non neg-
ligible cost even with programs that do not use HW transactions,
once HW transactions are involved the cost becomes significantly
higher. It’s worth pointing out that most application/allocator com-
binations don’t exhibit excessive index conflicts, but for those that
do, the performance impact can be significant.

The closest related work is that of Baldassin et al. [3], which
explores the impact of malloc allocator implementations on the
performance of applications that use software transactional mem-
ory. However, they do not address the interplay between hardware
transactional memory and allocator placement.

2. System Description

We now provide some detailed information on the cache geometry
of the i7-4770 processor, to better understand the cause of these
conflict misses, and explain how index-aware allocators can help
avoiding them.

The Intel i7-4770 processor has a relatively simple L1 cache
geometry. The L1 data cache is 32KB with 64-byte lines, physically
tagged, and 8-way set-associative. There are 64 possible indices
(sets). As such the cache page size is 4KB — addresses that differ
by an integer multiple of 4K will map to the same index (set) in
the L1 and compete for the 8 lines within that set. The L1 contains
512 lines. Each core has private L1 and L2 caches, while the L3 is
shared by all cores on the chip. The L2 and L3 are unified — able
to contain both code and data. The L2 instances are 256KB each
and 8-way set-associative, and the single common per-chip L3 is
8MB and also 8-way set-associativel] The low-order 6 bits of the
address presented to the L1 form the offset into the line, and the
next higher 6 bits serve as the L1 index. The MMU base page size
is 4KB, so there is no overlap between the virtual page number and
the L1 index field in a virtual address. The L1 index field passes
through address translation verbatimf] As such, operating system-
level page coloring [14] is not effective in the L1. (An advantage
of this design is that indexing can commence before the virtual
address is translated to a physical address, although the cache still
ultimately needs the physical address for tag comparison). Some
CPUs hash addresses [11] — usually XORing high-order physical
address bits into the index bits — in order to reduce the odds of
index hotspots and imbalance, but experiments suggest that does
not appear to be the case with the 17-4770’s L1.

Such simple caches — particularly without the index hashing
mentioned above — can be vulnerable to excessive index conflicts,
but malloc allocators can be made index-aware [2] to mitigate and
reduce the frequency of index conflicts. Index imbalance results
in underutilization of the cache. Some indices will be “cold” (less
frequently accessed) while others are “hot” and oversubscribed and
thus incur relatively higher miss rates. An index-aware allocator
can act to “immunize” an application against some common cases
of index-imbalance while typically incurring no additional cost
over index-oblivious allocators.

An example for an index-aware allocator is the CIA-Malloc al-
locator by Afek et al. [2]. In addition to being index-aware, CIA-
Malloc has a number of useful design properties. It is NUMA-
friendly and large-page-friendly. Underlying pages are allocated on
the node where the malloc operation was invoked. More precisely,

2'We were unable to determine inclusivity relationships between the L1, L2
and L3 caches.

3 We assume the x86 segment descriptor base addresses are set to 0.

the pages underlying a block returned by malloc will typically re-
side on the node where the malloc was invoked. The allocator is
also scalable with very little internal lock contention or coherence
traffic. Each per-CPU sub-heap has a private lock — the only source
of contention is via migration or preemption, which are relatively
rare. The critical sections are also constant-time and very short.
The implementation also makes heavy use of the trylock prim-
itive, so if a thread is obstructed it can usually make progress by
reverting to another data structure. Remote free operationd] are
lock-free. In addition to distributing blocks over cache indices —
reducing index imbalance — the allocator also tends to more equi-
tably distribute allocated blocks over coherence planes [9], cache
banks and DRAM channels, resulting in reduced channel conges-
tion. Critically, the allocator acts to reduce the cost of malloc and
free operations as well as the cost to the application when ac-
cessing blocks allocated via malloc. The allocator is also designed
specifically to reduce common cases of false sharing : allocator
metadata-vs-metadata; metadata-vs-block; and inter-block block-
vs-block. Metadata-vs-metadata sharing and false sharing is re-
duced by using per-CPU sub-heaps. False sharing arising between
adjacent data blocks — blocks returned by malloc — is addressed by
placement and alignment. These attributes prove even more use-
ful when we use CIA-Malloc in conjunction with hardware trans-
actions. Specifically, allocator-induced false sharing results in so-
called coherence misses in normal execution mode, but in transac-
tional mode those misses translate into aborts, which are typically
more expensive than cache misses.

In this paper we demonstrate the additional cost that conflict
misses impose on applications that use HTM. To do that, we
adapted the CIA-malloc implementation to the cache geometry
of the Intel i7-4770 processor (as originally the CIA-malloc was
designed for the SPARC T2+ processor), and compare the benefit
of using this allocator with and without HW transactions. We use
two micro-benchmarks: one that run single threaded, and the other
that run multiple threads using TLE.

3. Evaluation

We now show some examples of the influence of virtual address
placement on HTM aborts. All tests were run on an Intel i7-4770
processor with turbo mode disabled and sufficient cooling capac-
ity to avoid any thermal throttling. The i7-4770 has 4 cores with
2 virtual “hyperthreads” per core and runs at 3.4GHz. The system
was running Ubuntu 14.10 with a Linux 3.16 kernel. All applica-
tions and libraries were written in C or C++ and compiled with gcc
4.9.1 in 64-bit mode.

We first consider a single-threaded microbenchmark which, at
startup, allocates a set of 128 nodes. Each node has a Next field
at offset 0 followed by a 32-bit integer field Value. The bench-
mark allocates each node individually via malloc and then orga-
nizes the nodes into an intrusively circularly linked list via the
Next field. Since there is a correlation between allocation order
and virtual address, we randomize the order of the nodes with a
Fisher-Yates shuffle in order to minimize the impact of automatic
hardware stride-based prefetchers] The benchmark then times
10 million traversals of the ring, where each traversal first calls
pthread mutex_lock to acquire a lock, traverses the list, and then
releases that lock with pthread mutex_unlock. Each step of the
enclosed loop body executes the following :

4 A free operation is considered remote if the block was originally allo-
cated on a different processor.

5Such a randomized order can put additional stress on the translation
lookaside buffers (TLBs) by increasing the number of page crossing in a
given traversal of the ring. However unless otherwise stated, TLB misses
are not a dominant influence in our results.

2016/2/18



3500000

2500000
\

. iterations/sec

o o
o & o)
0O TTS-GLIBC
o TTSTLE-GLIBC

rate
1500000
\

-1 & TTS-CIA

+ TTSTLE-CIA
TTS-RAND

& TTSTLE-RAND

D 9,
z;@@ R
+ @
+++ %@@ D &)

SonER
‘_‘®@@6§ A y_xg

\Jz_\

HPegogaY Dgo
O

R s

500000
\

0 1000 2000 3000 4000

element size in bytes

Figure 1: Single-threaded ring traversal rates

w = w->Next; w->Value = 0;

At the end of the run the microbenchmark reports the iteration rate.
(In this context, an “iteration” refers to the act of acquiring the
lock, traversing the full circumference of ring, and finally releasing
the lock). Crucially, there there are no allocations or deallocations
during the measurement interval. Instead, the benchmark times
accesses to a set of objects that were previously allocated via
malloc. Note that only the Next and Value fields are accessed. The
remainder of the element is not accessed during the measurement
interval. Such access patterns are not uncommon and can be found
in various lookup structures where headers are iterated over but the
larger body of an object is less likely to be accessed.

In Figure [Il we plot 6 sets of points corresponding to vari-
ous combinations of 3 malloc allocators and 2 lock implemen-
tations. TTS is an LD_PRELOAD library that interposes on the
pthread mutex family of operators and implements a simple test-
and-test-and-set spin lock. TTSTLE is just TTS augmented with
simplistic TLE. All coherence conflict aborts are retried indefi-
nitely. Unresolvable aborts — such as those arising from conflict
misses underlying the L1 write set — revert to the slow path and
traditional TTS locking. To avoid the lemming effect [7] we use
unbounded spinning to wait for the lock before trying or retrying
the fast path. GLIBC is the default GNU libc malloc allocator.
CIA is an implementation of the index-aware allocator described
in [2] but has been modified to use the L1 geometry of the i7-

4770 and to use size classes that are prime multiples of the cache
line size (64 bytes). This helps avoid both intra- and inter-size class
index conflicts . CIA is implemented as an LD_PRELOAD inter-
position library. Finally, RAND is an interposition library that in-
tercepts malloc calls and probabilistically adds a small number to
the requested size, and then passes control to the underlying malloc
in GLIBC. Such randomization can intentionally introduce irregu-
larity into the spacing of blocks and act to reduce index conflicts.
We include RAND because it provides some degree of relief with
rather trivial overheads and an extremely simple implementation.

Each point in the figure reports the median of 5 separate
runs. The x-axis is the node size, which can be controlled via a
command-line argument. The y-axis reflects the traversal rate ex-
pressed as iterations per second of the ring. (The microbenchmark
also reports additional details such as distribution of node base ad-
dresses over the L1 indices). Since there is just one thread, the lock
is never contended and the thread never waits.

We can see in Figure [Tl that although most points for all allo-
cator and lock combinations cluster at the top of this graph, there
are several points where TTS-GLIBC significantly underperforms
TTS-CIA and the main sequence. Degraded performance occurs

6 The original CIA allocator used so-called punctuated arrays but for these
experiments our implementation avoided that technique and instead de-
pends on the prime-based size class policy noted above.

2016/2/18



$r 49+
8+ Qﬁt +
| 0800 0800 ++<>+ +* + + i
Q 000@0 © toton s 1okt ?
g [5 "8 S @8@088800050@ o®0§2 +§o++++++++++++$@+ +
3 T 0 8 © T 0g80808886088663° 6°39
-
2 o
= )
g ,
@ (@]
s o :
o) ©
o O
= E o TTS-GLIBC
S' o o TTSTLE-GLIBC
x © A TTS-CIA
- + TTSTLE-CIA
Q TTs RAND o
© © aw%m,mﬂ B8ABL eﬂm Qémmﬁmxﬁ ;ﬁamg& “ﬁzﬁ@m@éAmgﬁngm@gg;mnﬁA
C_E u] u] m] u]
o 0 o 0
O
o 8
N T T T |
0 1000 2000 3000 4000

element size in bytes

Figure 2: AVL tree throughput with 4 threads

near element sizes of 512, 1K, 1.5K, 2K, 2.5K, 3K and 4K bytes,
for instance. Using hardware performance counters, we find that the
degraded performance correlates with increased L1 miss rates, sup-
porting our claim that those sizes are index-unfriendly and result in
index imbalance and underutilization of L1. When the stride be-
tween nodes is 1K, for instance, node base addresses map to just 4
of the possible 64 L1 indices, resulting in potential imbalance and
under-utilization of the L1. In more detail, say we have a collec-
tion of N elements, each of which was allocated via malloc(S).
The allocator may place those N objects in a contiguous fashion
such that the values returned by malloc(S) differ by S. § may
be greater than S because of quantization and potential per-block
malloc metadata headers and footers. If S — the effective stride —
happens to be 1K, for instance, then the N blocks may fall on just
4 of the possible 64 L1 indices, resulting in conflict misses as we
traverse the collection.

We also observe that TTSTLE-GLIBC underperforms TTS-
GLIBC at those same points. Under TTSTLE, conflict misses
cause the fast path transaction to abort with an “internal buffer over-
flow” error code [l This abort is not generally retryable, so TTS-
TLE reverts to the non-transactional normal mode slow path. The
transactional attempt was futile and constituted wasted effort. In
particular, unresolvable aborts are more costly than cache misses.

7To the best of our knowledge, this abort code indicates self-displacement
of read-set or write-set elements

Generally, the CIA forms outperform RAND which in turns out-
performs GLIBC.

The inflection point in the main sequence at about 2000 bytes
arises from level-1 data TLB misses. For the default 4KB page size,
the 17-4770 has a 64-entry 4-way set associative level-1 data TLB
(L1-DTLB) and a 1024-entry 8-way set associative level-2 uni-
fied TLB (L2-TLB). The L1-DTLB thus has a maximum “span”
of 256KB (64 TLB entries * 4KB pages). With 128 elements of
2000 bytes each, the best-case minimum TLB footprint of the ring
is 256KB, matching the capacity of the L1-DTLB. All the alloca-
tors provide reasonably dense and compact placement of the ring
elements. The cache footprint of the ring — the number of lines
underlying the Next and Value fields — depends in part on the align-
ment of blocks returned by malloc. CIA always returns addresses
aligned on 64-byte boundaries while the default GLIBC allocator
— and consequently the RAND allocator — return addresses only
guaranteed 8-byte alignment. Under CIA both the Next and Value
fields reside on the same cache line, and the cache footprint is sim-
ply the number of elements in the ring multiplied by the cache line
size of 64-bytes. That is, the cache footprint of the ring is indepen-
dent of the element size. With 128 elements, the cache footprint
is just 8KB, or 1/4 of the L1’s capacity. With worst-case pessimal
alignment, under RAND and GLIBC the Next and Value fields will
be split and reside on two adjacent lines. In that case the cache foot-
print would be 16KB or 1/2 the L1’s capacity. If the L1 were fully

2016/2/18



associative, the ring would fit comfortably in the L1, and subse-
quent traversal could be completed with any misses. But because
of index conflicts, traversals may be subject to conflict misses.

Broadly, the GLIBC allocator exhibits reduced performance at
certain pathological sizes. At such problematic sizes, TTSTLE un-
derperforms TTS by a significant margin because of cycles wasted
on futile transactions. RAND provides some benefit relative to
GLIBC but in some cases yields poor performance. CIA avoids the
pathological sizes completely. We note in passing that two horizon-
tal “bands” appear in the figure on the upper left-hand side of the
graph. Transactional executing appears to be slightly slower than
normal execution. We believe this is an artifact of higher latencies
associated with TSX than occur with the normal atomic operations
used to acquire and release a mutex.

In Figure 2| we show how the problem of aborts arising from
conflict misses is amplified when using TLE with multiple concur-
rent threads. In particular, conflict misses cause aborts, which force
the lock to use the classic slow path, greatly reducing the opportu-
nities for concurrency.

For the benchmark presented in Figure Pl we use a single shared
AVL tree [4, [17] where insert, delete and update operations are
protected by a single pthread mutex instance. The AVL tree is
based on the implementation used in OpenSolaris [1/]. The only
changes to the AVL tree code itself were to (a) insert padding
(alignment constraints) between the frequently updated element
count field and other fields in the tree descriptor structure; and
(b) to move the update of that element count to the end of the
critical section. These were the only concessions to make the AVL
tree code more transaction-friendly. Sequestering the count field
as the sole occupant of its own cache sector acts to reduce false
sharing and consequent transactional aborts [. In addition, new
structural and content integrity check routines were added. These
are used after a run to check the validity of the tree. The tree
is intrusively linked and each node is individually allocated and
freed viamalloc and free calls. These allocation and deallocation
operations are executed within the critical section. The AVL tree
implements a key-value store, with the key and value both being
32-bit integers. Each AVL tree node contains AVL tree linkage,
a key field, a value field, and a variable size area. (That area is
never accessed). The size of the AVL tree node is controlled by
a command-inline argument and is reflected in the x-axis. The
benchmark spawns 4 concurrent threads, each of which loops by
generating random numbers — via a thread-local uniform pseudo-
random number generator — to control the operation type and key [
: 30% of the time the loop will insert a new key (if the key already
exists in the tree, its value is updated); 30% of the time a key
is deleted and 40% of the time a lookup is performed. The key
range is [0 — 65536). The tree is initially populated to half capacity
(32767 elements) with a random set of keys. At the end of a 10
second measurement interval the benchmark reports the aggregate
operation rate. (An operation is an iteration of the loop that inserts,
deletes or looks up keys in the tree). This rate is shown on the y-
axis and expressed in operations per second. We report the median
of 5 independent runs.

Not surprisingly, the TTSTLE forms outperform the TTS
forms, as more concurrency is available. But again, for TTSTLE-
GLIBC we see the same set of pathological sizes as was found

8 Because of the adjacent sector prefetch facility, we align to 128 bytes in-
stead of 64 bytes, even though 64 bytes is the line size throughout the cache
hierarchy and the unit of coherence. The Intel manuals also recommend 128
bytes for the purposes of avoiding false sharing

9We opted to use 4 threads to avoid hyperthreaded execution — with 4
threads we have just 1 thread per core

in Figure [Tl At about 2000 bytes, for instance, TTSTLE-GLIBC
with 4 threads actually performs worse than the best of the serial-
ized TTS forms. This reflects the compounding effect of restricted
concurrency and wasted cycles in futile transactions that end in
abort.

4. Conclusion

We have shown that the use of index-aware allocators can avoid cer-
tain pathological cases where index conflicts cause misses, aborts,
and potentially restrict concurrency under TLE.

Put simply, allocator placement can influence conflict miss
rates, which in turn influence abort rates, which in turn can force
threads to abandon fast-path TLE execution and revert to serialized
execution under a lock, restricting parallelism. An index-aware al-
locator can provide some relief against this phenomenon. Absent
such an allocator, randomization of sizes at either the allocation
size or in the allocator (RAND) may provide benefit by disrupting
regularity in placement.

Programming with hardware transactional memory is in its in-
fancy, so the degree to which programs might be afflicted by aborts
arising from index conflicts is unknown. Generally, we expect the
problem to be infrequent, but when it does manifest, the impact can
be surprising and significant. We suggest index-aware allocators as
a way to reduce the odds of encountering the problem.

Hardware-based remedies to reduce the rate of conflict misses
were suggested Seznec [16] (skew-associative caches) and later
by by Gonzales [§] and Wang [18] and Sanchez [[15]. All require
changes to the hash function that maps addresses to cache indices.
By acting to reduce conflict misses, they would also reduce aborts
arising from such misses.

We note in passing that under a requester-wins conflict resolu-
tion strategy—as found in the current members of the “Haswell”
family—it is useful to shift stores, to the extent possible and rea-
sonable, of frequently accessed shared variables toward the end
of a transaction [3]. This might be accomplished by hand, or
a transaction-aware compiler or just-in-time compiler (JIT) can
perform some of the transformations. Shifting reduces the win-
dow of vulnerability during which the store resides in the trans-
action’s write-set. (Active transactions are vulnerable in both time
and space). But the asymmetry in the 17-4770, where the write-set
is tracked in the L1 and the read-set in the L1, L2 and L3, gives us
yet another reason to shift stores toward the end of a transaction.
Consider a transaction that executes a store followed by large num-
ber of loads. Those loads may displace the store from the L1 and
cause an abort. If we shift the store to the end of the transaction,
the same set of accesses (just reordered) can succeed without abort.
The store may displace a loaded line from the L1, but the L2 and
L3 can still track the line.

References

[1] Solaris AVL Tree Implementation, 2015. URL https://github.
com/illumos/illumos-gate/blob/master/usr/src/uts/
common/sys/avl_impl.h.

[2] Y. Afek, D. Dice, and A. Morrison. Cache Index-aware Memory Al-
location. In Proceedings of the International Symposium on Memory
Management, ISMM 11, 2011. URL http://doi.acm.org/10.
1145/1993478.1993486.

A. Baldassin, E. Borin, and G. Araujo. Performance Implications of
Dynamic Memory Allocators on Transactional Memory Systems. In
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, 2015. URL http://
doi.acm.org/10.1145/2688500.2688504.

[4] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction

to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.
ISBN 0070131511.

[3

—

2016/2/18


https://github.com/illumos/illumos-gate/blob/master/usr/src/uts/common/sys/avl_impl.h
https://github.com/illumos/illumos-gate/blob/master/usr/src/uts/common/sys/avl_impl.h
https://github.com/illumos/illumos-gate/blob/master/usr/src/uts/common/sys/avl_impl.h
http://doi.acm.org/10.1145/1993478.1993486
http://doi.acm.org/10.1145/1993478.1993486
http://doi.acm.org/10.1145/2688500.2688504
http://doi.acm.org/10.1145/2688500.2688504

[5]

[6

=

[7

—

[8

[t}

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

D. Dice. Reducing Transactional Abort Rates Using Com-
piler Optimization Techniques, 2008. URL http://www.
google.com/patents/US20100169870. US Patent Application —
US20100169870.

D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with
a Commercial Hardware Transactional Memory Implementation. In
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASP-
LOS XIV, 2009. URL http://doi.acm.org/10.1145/1508244.
1508263.

D. Dice, Y. Lev, M. Moir, D. Nussbaum, and M. Olszewski. Early
Experience with a Commercial Hardware Transactional Memory Im-
plementation, 2009. URL https://blogs.oracle.com/dave/
resource/smli_tr-2009-180.pdf. Sun Labs Technical Report
SMLI TR-2009-180.

A. Gonzilez, M. Valero, N. Topham, and J. M. Parcerisa. Eliminating
Cache Conflict Misses Through XOR-based Placement Functions. In
ICS ’97: Proceedings of the 11th international conference on Super-
computing, 1997. URL http://doi.acm.org/10.1145/263580.
263599.

R. Hetherington and S. Phillips. ~ Multiple Independent Coher-
ence Planes for Maintaining Coherency, 2008. URL http://www.
google.com/patents/US7353340. US Patent 7,353,340.

M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches.
IEEE Trans. Comput., 38(12), Dec. 1989. URL http://dx.doi.
org/10.1109/12.40842.

R. Hund, C. Willems, and T. Holz. Practical Timing Side Channel
Attacks against Kernel Space ASLR. In Security and Privacy (SP),
2013 IEEE Symposium on, May 2013. URL http://dx.doi.org/
10.1109/SP.2013.23.

Intel Corporation. Transactional Synchronization in Haswell,
2012. URL https://software.intel.com/en-us/blogs/2012/
02/07/transactional-synchronization-in-haswell/. [on-
line; retrieved 2015].

C. G. Ritson and F. R. Barnes. An Evaluation of Intel’s Restricted
Transactional Memory for CPAs, 2013. URL http://www.wotug.
org/papers/CPA-2013/RitsonBarnes13/RitsonBarnesl3.
pdf.

T. Romer, D. Lee, B. N. Bershad, and J. B. Chen. Dynamic Page Map-
ping Policies for Cache Conflict Resolution on Standard Hardware. In
In 1st USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 255-266, 1994.

D. Sanchez and K. Christos. The ZCache: Decoupling Ways and As-
sociativity. In MICRO 43: Proceedings of the 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Soci-
ety, 2010.

A. Seznec. A Case for Two-way Skewed-associative Caches. In
ISCA °93: Proceedings of the 20th annual international symposium
on Computer architecture, 1993. URL http://doi.acm.org/10.
1145/165123.165152.

Wikipedia. AVL Tree, 2015. URL http://en.wikipedia.org/
wiki/AVL_tree.

W. Zhenghong and R. B. Lee. A Novel Cache Architecture with
Enhanced Performance and Security. In MICRO 41: Proceedings of
the 41st annual IEEE/ACM International Symposium on Microarchi-
tecture, 2008. URL http://dx.doi.org/10.1109/MICRO.2008.
4771781.

2016/2/18


http://www.google.com/patents/US20100169870
http://www.google.com/patents/US20100169870
http://doi.acm.org/10.1145/1508244.1508263
http://doi.acm.org/10.1145/1508244.1508263
https://blogs.oracle.com/dave/resource/smli_tr-2009-180.pdf
https://blogs.oracle.com/dave/resource/smli_tr-2009-180.pdf
http://doi.acm.org/10.1145/263580.263599
http://doi.acm.org/10.1145/263580.263599
http://www.google.com/patents/US7353340
http://www.google.com/patents/US7353340
http://dx.doi.org/10.1109/12.40842
http://dx.doi.org/10.1109/12.40842
http://dx.doi.org/10.1109/SP.2013.23
http://dx.doi.org/10.1109/SP.2013.23
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://www.wotug.org/papers/CPA-2013/RitsonBarnes13/RitsonBarnes13.pdf
http://www.wotug.org/papers/CPA-2013/RitsonBarnes13/RitsonBarnes13.pdf
http://www.wotug.org/papers/CPA-2013/RitsonBarnes13/RitsonBarnes13.pdf
http://doi.acm.org/10.1145/165123.165152
http://doi.acm.org/10.1145/165123.165152
http://en.wikipedia.org/wiki/AVL_tree
http://en.wikipedia.org/wiki/AVL_tree
http://dx.doi.org/10.1109/MICRO.2008.4771781
http://dx.doi.org/10.1109/MICRO.2008.4771781

	Introduction
	System Description
	Evaluation
	Conclusion

