Ensuring Irrevocability in Wait-free Transactional Memory

Jan Kończak
Institute of Computing Science, Poznań University of Technology, Poznań, Poland
jan.konczak@cs.put.edu.pl

Paweł T. Wojciechowski
Institute of Computing Science, Poznań University of Technology, Poznań, Poland
pawel.t.wojciechowski@cs.put.edu.pl

Rachid Guerraoui
EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Abstract
Transactional Memory (TM) aims to be a general purpose concurrency control mechanism. But some operations are forbidden inside transactions, as they cause effects that the TM system cannot manage. Networking, I/O and some system calls cannot be executed in a transaction that may abort and restart. Thus, many TM systems let transactions become irrevocable, that is guaranteed to commit. Although support for irrevocability is a challenge, there exist TM systems that are fast, highly parallel and support irrevocability. However, no such system so far provides guarantees that all transactional operations finish in a finite time. In this paper, we show that support for irrevocability does not entail inherent waiting. We present an algorithm that guarantees wait-freedom for each transactional operation. The TM algorithm is based on the weakest synchronization primitive possible (test-and-set), and guarantees opacity and strong progressiveness. We develop upon it a TM system, and use it to experimentally evaluate our algorithm with the STMBench7 benchmark.

Categories and Subject Descriptors D.1.3 [Programming Techniques]: Concurrent Programming

Keywords Software transactional memory, irrevocable operations support, operation-level wait-freedom

1. Introduction
Transactional memory (TM) [10, 14] is a concurrency control mechanism that has been proposed to simplify concurrent programming by allowing a sequence of read and write instructions, a transaction, to execute atomically. There has been a lot of interest in TM recently, and now TM is slowly entering the industry. For example, modern CPUs are equipped with instructions for executing short transactions (hardware TM). There also exist industry-strength implementations of software TM for popular programming languages, and standardizing committees work on appropriate standards. However, a lot more has to be done before TM becomes a versatile tool for programmers.

The advocated advantages of TM over explicit usage of locks include good support for multicore processors, since transactions can freely execute in parallel, and, in case of any conflicts, the conflicting transaction is simply rolled back and its code is executed again. But this behavior is also one of the weaknesses, since transactions may potentially abort and cannot contain arbitrary code. Thus, the designers of TM systems must take care of irrevocable operations, that is operations which cannot be undone, such as system calls, I/O actions, and networking operations.

Initially, the developers of TM systems simply forbid the use of irrevocable operations in transactional code at all. With rising need for a practical TM the irrevocability support began to emerge. Now, there exists a wide range of mechanisms to support irrevocable operations: from the ability to switch to sequential execution to sophisticated algorithms allowing transactions to run and commit alongside the irrevocable one. However, all of these approaches have a common disadvantage – in some cases one transaction, to complete its operation, must wait for another transaction to finish.

In this paper, we investigate the possibility of supporting irrevocable operations within transactions in operation-level wait-free transactional memory [5, 6] – a system in which no transaction should ever wait for another transaction. Implementation of a TM that supports irrevocability and requires no waiting is considered typically as not very realistic. We disprove the myth and show that a system like this in fact can be built with little cost. And, since no thread blocks other threads, by analogy to locks, an operation-level wait-free TM can be used instead of a traditional TM in similar cases when the trylock primitive is preferred over lock.

We focus on software TM since hardware TM alone typically does not offer any guarantees for programmers. Actually, we propose a wait-free TM algorithm, which is a rework of well-known ideas extended with routines providing seamless support for irrevocability. Then, we analyze the progress of our algorithm – the property that makes TM algorithms useful in practice. In general, a progress property asserts that it is always the case that some transaction eventually commits. In particular, we show that our TM system is strongly progressive [5], which means that two conditions hold: 1) a transaction that encounters no conflict must be able to commit, and 2) if a number of transactions conflict only on a single transactional variable, then at least one of them must be able to commit. Next, we present the results of experimental evaluation of a prototype wait-free TM system that we developed using the algorithm. To our best knowledge this is the first operation-level wait-free TM system that supports irrevocability.

1.1 Blocking transactions in TM
For a TM system to run fast, transactions should execute in parallel. But for correctness and simplicity, many TM algorithms involve periods when a transaction has exclusive access to particular data (e.g., during transaction commit) and other transactions are forced to wait until it completes. As this limits parallelism, some researchers investigated obstruction-free TM [11] – a class of TM that
guarantees completion of a transaction in a finite number of steps whenever no other transaction makes progress concurrently. While the idea is promising, when facing real-world problems a practical TM ensuring obstruction freedom is impossible. Programmers require the possibility to put arbitrary code within transactions, that is to support irrevocable transactions. However, irrevervability is incompatible with obstruction-freedom. A transaction running in isolation must commit, regardless if it conflicts with another transaction that temporarily stalled. If the latter is irrevocable, then neither of the conflicting transactions can abort.

Thus we focus on another property, which also introduces time constraints—wait-freedom [9]. It is stronger in terms of liveness than obstruction-freedom, since the latter leaves aside any guarantees for transactions that do not execute in isolation. According to the original definition, a method is wait-free if it guarantees that every call finishes in a finite number of steps. In the area of TM, wait-freedom is understood twofold: by some, as an impossible property that guarantees committing transactions in a finite time [13], by others as a property which guarantees finishing transactions in a finite time [5, 6]. We accept the latter, and to prevent confusion, we call it operation-level wait-freedom [5]. The idea of operation-level wait-freedom is to limit the number of steps in which any transactional operation finishes. Thus a finite transaction finishes, either by aborting or by committing, in a finite number of its steps. Note that ensuring this alone is trivial—a TM system that aborts all transactions is operation-level wait-free. Therefore, for a practical TM, appropriate progress property must also hold.

1.2 Contribution

In the paper, we show that operation-level wait-freedom is achievable in a strongly progressive TM system with support for irrevocable transactions. To show this, we propose an operation-level wait-free TM algorithm that requires no extra assumptions and adds little overhead to support irrevocable transactions. Our algorithm uses only registers and trylocks (a test-and-set equivalent), which are known to be the weakest primitives that suffice for building opaque and strongly progressive TMs [5].

Next, we point out that common progress properties are infeasible in any system that both supports irrevervability and is operation-level wait-free. This is because the progress properties do not take into account irrevervability, which may introduce a conflict between transactions that share no data. Therefore, we propose a method of adapting progress properties to TM systems that support irrevervability and are operation-level wait-free. Once adapted, strong progressiveness is ensured by our algorithm.

To examine the usefulness of our approach, we developed an implementation of proposed algorithm, which we used to evaluate the behavior and performance of our algorithm. For this, we used the STMBench7 benchmark [7].

1.3 Paper structure

We discuss related work in Section 2. Then, we explain how to extend TM model to support irrevocable operations in Section 3. Next, we describe the design of our algorithm in Section 4. Then, we discuss the correctness and progress properties of the algorithm. Finally, we describe the implementation of our wait-free TM system and present the results of experimental evaluation in Section 6, followed by conclusions.

2. Related work

Baugh and Zilles [1] analyzed the use of irrevocable operations in critical sections of real-world applications (Firefox and MySQL). In particular, they took into account a subset of possibly irrevocable actions—l/O and system calls. They classified some of these operations as revocable, since they produce compensable side effects, and investigated the possibility of moving others outside transactions. For file system operations, the authors proposed extending operating systems by transactional I/O semantics. Nevertheless, they stated that these workarounds do not cover all irrevocable operations, and there still remains a significant number of truly irrevocable actions within the critical regions. This result is of a major importance for TM system designers. Since programmers do use irrevocable operations within critical regions, a versatile TM system must support them as well.

Zyulkyarov et al. [18] reimplemented Quake game server using TM as the main synchronization primitive. They stated that supporting irrevocable operations was necessary. Their TM of choice was Intel C++ STM Compiler [12], which allows for irrevervability by entering a serial mode—safe but inefficient idea.

Of course, there are more efficient solutions for supporting irrevervability. For example, all state-of-the-art TM systems that support irrevervably allow read-only transactions to run in parallel with an irrevocable transaction, as it is easy to ensure that they cause no harm. As for update transactions, less permissive approaches let the update transactions perform reads and writes, but disallow commit as long as any irrevocable transaction is running. Most advanced solutions allow all parallel transactions to progress and commit, thereby guaranteeing no aborts of the transaction running in the irrevocable mode. Below we discuss example approaches and TM systems of this sort. However, all of them have one disadvantage: in certain conditions, some transaction must wait for other transactions to progress. So, a slow transaction can postpone completion of other ones.

Single-Owner Read Locks (SRL) [17] is a highly-efficient optimized locking approach, in which each data item is guarded by a lock. While ordinary locks are designed to represent two states (locked and unlocked), SRLs let the transaction lock the data in one of three modes: normal, irrevocable read, and irrevocable write. This allows for both high level of parallelism and the support for irrevervability, but as in the traditional locking approach, to access any data item a transaction must wait for the item to become unlocked.

Inevitable Read Locks (IRL) [15, 16] exploit the same idea as SRL. In this approach, when irrevocable transaction T_i detects that its next operation would conflict with T_k, then T_i can cause T_k to eventually abort (while in SRL T_i waits until T_k finishes). Spear et al. did not specify whether such operation is blocking. Since making it non-blocking is a challenging problem not referenced in the papers, we assume that waiting is a must in IRL. Spear et al. proposed also Inevitable Read Filter [15, 16], which aims for increasing parallelism. In this approach, a single global bloom filter is used to store read locks. This improves over IRL by alleviating any read-read concurrency problems, which may arise in the latter. However, accesses to the filter itself must be sequential, so when a single transaction updates or lookups the filter, other transactions must wait.

The work on hardware transactional memory is also relevant, as dealing with I/O operations is obviously an issue for hardware as well. As in software TM, hardware TM systems must abort transactions if a conflict is detected. Most of these systems simply disallow irrevocable operations. In state-of-the-art hardware TMs each invocation of an irrevocable operation within a transaction ends up with a forceful abort, just to prevent any upcoming problems. Blundell et al. [2] made an attempt to alleviate any limits on the operations used within a hardware transaction. To this end, they introduced a new mode for running transactions in hardware (called the unrestricted mode) that guarantees no aborts. This allows using unsafe operations within transactions, making the unrestricted mode analogue to irrevocable transactions in software TM. As for wait-freedom, there is no way to observe any hardware waiting from a program-
read(x) → 1 becomeIrrevoc write(y, 2) commit
read(y) → 1 becomeIrrevoc write(x, 2) ???

Figure 1. Two irrevocable trans. result in an unsolvable conflict

ers point of view. However, the implementation of a hardware TM, as described in [2], forces threads to stall upon concurrent access to common locations.

3. Irrevocability in TM

A typical transactional memory system defines the following operations: begin transaction, read, write, abort and commit. All these operations can succeed or fail by aborting the transaction. To support irrevocability, this set of operations must be extended. One of the ideas introducing support for irrevocable operations is to tag transactions using them (irrevocable transactions) upon start, thus extending the begin transaction operation by a parameter. We find this approach not flexible enough. While it allows for creating similar TM algorithms, it requires from programmers to explicitly start an irrevocable transaction. Also, prior to the first irrevocable operation, the transaction is idly considered as irrevocable. Thus, we adapt a more popular idea on how to introduce support for irrevocability in TM, and let the transaction decide at any point of its execution that it wants to transit to an irrevocable state. For this purpose a new operation is defined: becomeIrrevocable. The transition from revocable to irrevocable state can fail, that is a transaction can be forcibly aborted while executing the becomeIrrevocable operation. However, if the operation succeeds, then no subsequent operation can end up with an abort.

In general, there can be at most one irrevocable transaction at a time. Otherwise, conflicts are unavoidable. As depicted in Figure 1, if any algorithm would let two arbitrary transactions transit to the irrevocable mode, and would let each of them read a (separate) variable, each transaction could request an update to the variable read by the other one, resulting in an unsolvable conflict. It is theoretically possible to let a transaction become irrevocable and stall it before its first read, but this effectively still lets only one irrevocable transactions progress.

Supporting irrevocability to some extent restricts the design of a TM system. Without irrevocability, read operations can be either visible or invisible. With irrevocability, no transaction must update a variable read by the irrevocable transaction until the latter finishes. Thus, either irrevocable transactions use visible reads, or extra synchronization is required.

4. Algorithm

To show that a TM supporting irrevocable operations can be operation-level wait-free, we propose an algorithm satisfying the following properties:

- operation-level wait-freedom
- support for irrevocability
- opacity (a safety property)
- strong progressiveness (a progress property)

The algorithm uses only registers and trylocks. A trylock is an object having two methods: unlock and trylock, with the usual locking semantics. The trylock can be trivially implemented using a test-and-set instruction, and there exists no weaker synchronization primitive that can be used to develop an opaque and strongly pro-

gressive TM system [5, 9]. We chose object-based approach (used e.g., in [8]).

The algorithm is presented in Algorithm 1, 2, 3 and 4. Since it relies upon indirection level, we use the following notation to express clearly the intended operations: CLONE(ptr) makes a copy of an object pointed by ptr

ptrA ← ptrB sets the value of pointer ptrA

*objptr accesses the pointed object

Without irrevocable transactions, our algorithm is a simple lock-based algorithm. It locks a variable upon write (line 22) and releases it at commit or abort (line 94 or 69). If, during write, trylocking the variable fails, the transaction aborts (line 22). Transactions work on local copies of the shared variables (line 10 and 34), and overwrite the global copy on commit (line 90). We assume that one thread can execute one transaction at a time, and there is a well-known upper bound on the number of threads. Under these assumptions visible reads are implemented in a lightweight fashion, by keeping a list of readers in a constant-sized array. Whenever a transaction is going to update the global copy on commit, it marks the variable as dirty (line 73). Then it prevents all transactions in the readers list from completing any subsequent read or commit (line 74-77). To enable the latter, on commit each transaction must lock one additional lock, which guarantees a consistent read set (line 79). Such algorithm is operation-level wait free, opaque and strongly progressive. It is not especially permissive (i.e., it aborts some transactions with read-write conflicts that potentially could commit), albeit is easily extensible for irrevocability support.

To support irrevocability, it must be ensured that a) no transaction can abort the irrevocable transaction, b) the irrevocable transaction must always successfully execute any TM operation.
To guarantee no aborts, the irrevocable transaction must never abort itself, as well as must never be aborted by others. For the latter, notice that revocable transactions can abort others only on commit (line 76). So, while transiting to the irrevocable state, a transaction must acquire the lock used to abort other transactions (line 51). However, extra care is required here: since the lock guaranteed consistent reads, just acquiring it would break consistency. Thus, on becoming irrevocable, the transaction locks variables it read before (line 59). Later on, upon any read, the variables are also locked to prevent concurrent writes (line 37). Once the variables accessed by the irrevocable transaction are locked, no concurrent writes may happen. Of course, locking the variable can fail. If the transaction is already irrevocable, we need to take over the variable. By taking over we understand either aborting the lock’s owner or – if the lock’s owner is commit-pending – using the value it produced.

Taking over a variable by the irrevocable transaction regardless of the current system state is a challenge in an operation-level wait-free TM. If the variable is not currently locked, the irrevocable transaction simply locks it, regardless of the intended operation (read or write). It is worth pointing out that in our system reading a variable by a revocable transaction does not require it to be unlocked. Since the global copy is updated at commit, one transaction can perform a read between (write or read) and commit operation of an other transaction. Thus, locking the variable upon read by the irrevocable transaction introduces no read-read conflicts.

Regardless if the variable x is locked, as the first step of accessing it the irrevocable transaction T_k marks x as in use by the irrevocable transaction (line 36). This causes any new transaction to abort upon a write to x (lines 21, 24). This limits the number of transaction competing on x to at most two – T_i and T_k. It is easy to guarantee that either T_i correctly identifies T_k as the lock’s owner (line 39), or T_k aborts (lines 23, 24). Then, T_i tries to force the supposed lock’s owner to abort on any subsequent transactional operation. If either T_i successfully forces the abort or notices that T_k already aborted (line 40, 41), then T_i knows that it has exclusive access to x and that the global copy has the correct value.

There is, however, one case when T_i and T_k compete on the variable x and T_i is unable to abort T_k and T_k did not abort. This can happen if T_k already started its commit and acquired all needed locks (that is, passed line 79). In such case T_k is committing, and T_i can use values produced by it. For read operations, it is sufficient to return the value from buffer of T_k. As for writes, the solution is not so simple: T_k can at any time write to the global copy of x, as part of the commit procedure (line 83). Due to indirection level used by us, T_i can precisely tell what address T_i will write to the global copy – the address of its buffer (line 83). This makes it possible for T_i to use the buffer of T_k as its own (hijack it, lines 42, 43). Now, T_i at the end of its commit updates

\[1\] A transaction T_k is called commit-pending if T_k invoked commit and in all possible continuations of the current history T_k eventually commits.

\[2\] Or T_k stalls until T_i finishes, what is indistinguishable from a case when T_k issues the write after commit of T_i.
the buffer of \(T_k \) to the value produced by \(T_i \), and writes the buffer address to the global copy. \(T_i \), on the other hand, writes the same buffer address to the global copy. Since both \(T_i \) and \(T_k \) want to perform the same write, no conflict can occur. If \(T_k \) finishes before \(T_i \) starts its commit, read operations on \(x \) can succeed, yielding the value produced by \(T_k \). Once \(T_i \) finishes, it overwrites the buffer of \(T_k \) with the new value (line 88) and points the global copy to it (line 89). From that moment on, all reads will return the value of \(x \) as produced by \(T_i \).

Since at most one transaction at a time can be irrevocable, we use a lock – \(\text{irrTransactionLock} \) – to limit the number of irrevocable transactions (lines 47, 95).

5. Properties

5.1 Correctness

The algorithm we present is opaque [4]. In brief, the opacity is achieved by careful maintenance of the reader list and proper commit procedure. At commit of a transaction \(T_k \), the TM system aborts all revocable transactions that read variables updated by \(T_k \). No revocable transaction is allowed to read a variable \(x \) while another transaction that wrote to \(x \) is in progress of commit. These rules guarantee that all reads of revocable transactions are consistent. As all reads are performed on the global copy and all updates are written to the global copy, real-time order is preserved. The irrevocable transactions protect themselves from inconsistent reads by locking all read variables, just as described in the previous section.

5.2 Progress

5.2.1 Existing properties versus irrevocability

It is easy to show that in an operation-level wait-free TM system with support for irrevocability some properties are impossible to achieve. Interestingly, in such a TM system no reasonable progress properties can hold. The definitions of the properties are not taking into account irrevocability, what renders applying them impossible. For example, it is not possible to guarantee that a transaction with no conflicts will always commit. Consider two concurrent transactions that do not share any variables, and they both try to become irrevocable (see Figure 2). While one of them can safely become irrevocable, the other one cannot finish the transition to irrevocable state in a wait-free manner, as at most one transaction can be irrevocable at the same time (see Section 3).

Intuitively, in the scenario above aborting one of the transactions should be allowed by progress properties. Thus, to be able to discuss the progress properties in presence of irrevocable transactions, we propose to alter some definitions. In particular, the definition of conflict must be extended. Traditionally, conflicts are defined only with regard to operations on shared variables. However, when supporting irrevocability in a TM system, the transitions to the irrevocable state can also be a legitimate reason of conflict. To minimize changes to the traditional definitions, we propose to model the conflicts on irrevocability by introducing a virtual transactional variable \(x_{irr} \) shared by all transactions. A transaction that intends to become irrevocable should execute a read operation immediately followed by a write operation on \(x_{irr} \). This introduces a conflict between transactions that try to become irrevocable.

With the conflicts introduced by variable \(x_{irr} \), the properties like strong progressiveness are achievable. However, this also makes properties like disjoint-access parallelism achievable – a property that intuitively should not apply to TM systems with irrevocability support. Thus, we should question ourselves whether the progress properties retain their intended meaning. In our opinion, after adding virtual variable \(x_{irr} \), strong progressiveness remains the same for both TM users and developers. Moreover it is applicable to a wait-free TM with irrevocable transactions.

5.2.2 Progress of the algorithm

The property guaranteed by our algorithm is strong progressiveness (as defined in [5]) modified to take into account conflicts among the transactions that attempt to become irrevocable (as proposed in previous Section). Strong progressiveness is, despite its name, not very strong, but still practical property. It guarantees that a transaction without conflicts succeeds, and that whenever a group of transactions conflict on at most one variable, then at least one of them will succeed. It leaves out conflicts on multiple variables.

If in a group of conflicting transactions there is an irrevocable transaction, then strong progressiveness holds trivially – the irrevocable transaction is guaranteed to commit. So, we need to take into consideration only revocable transactions and transactions that fail to become irrevocable. In our algorithm, due to lack of global metadata, transactions learn about variables and peer transactions only upon read and write operations. Thus, without competing on a common variable transactions cannot impact each other. Moreover, despite we use visible reads, no read-read conflicts occur. So, a transaction with no read-write or write-write conflict (including

![Figure 2](https://via.placeholder.com/150.png)

Figure 2. Disallowed execution of disjoint transactions
conflicts on \(x_{irr} \) trivially commits. Whenever there is a single conflict, on variable \(x \), there must exist a transaction \(T_k \) that successfully locked \(x \) as part of its write operation. Now, for \(T_k \) to abort, either one of its reads has to be invalidated, or \(T_k \) must encounter another locked variable, or \(T_k \) must try to become irrevocable and fail. For any of these cases to occur, conflict on a second variable is required (in the latter case, conflict occurs on \(x_{irr} \)). Since we care for groups of transactions that conflict on a single variable only, none of these can happen. So, strong progressiveness holds.

5.2.3 Guarantees of becoming irrevocable

Progress properties hold regardless whether the transactions are revocable or not. Therefore, well-known progress properties provide also some guarantees on successful transiting to the irrevocable state. Strong progressiveness, the property which holds for our algorithm, guarantees that a transaction without conflicts must not be forcibly aborted. Thus, if no irrevocable transaction is live, and a single transaction \(T_k \) tries to become irrevocable, then \(T_k \) must become irrevocable if \(T_k \) has no conflicts. Moreover, in a system with no running irrevocable transaction, if multiple transactions with no conflicts so far try to become irrevocable, then one of them must succeed.

6. Experimental evaluation

6.1 Implementation

To evaluate our algorithm, we implemented it as a C++ library suitable for use both in real applications and object-based TM benchmarks. We are restricted to object-based TM benchmarks, since the algorithm relies on indirection level and operates on local buffers, thus there is no constant address of the transactional variables required by word-based TM benchmarks. We use plain C++11, which has the classes necessary to implement registers (\texttt{atomic\langle bool\rangle} and \texttt{atomic\langle void*\rangle} classes, featuring \texttt{store} and \texttt{load} methods) and trylocks (\texttt{atomic_flag class with test_and_set and clear methods}).

6.2 Injecting irreversibility into benchmarks

Currently none of the existing benchmarks uses irrevocable transactions. Thus, to evaluate the behavior of our algorithm, we needed to inject artificially transitions to the irrevocable state. While the irrevocable transactions are more expensive, they can reduce the number of restarts. Welc \textit{et al.} suggest that the irrevocable transactions should be considered not only for supporting the irrevocable operations, but also for helping transactions that are likely to be aborted and repeated multiple times [17]. In order to test how the irrevocable transactions perform in ordinary benchmarks, we introduced them as a fallback. We decided that any transaction forcefully aborted, except from waiting for a short time period (back-off), will try with some probability to become irrevocable on restart. This way we both introduce the irrevocable transactions and apply them to potentially problematic transactions in a generic way.

6.3 Invisible reads

The algorithm described in this paper uses visible reads. However, in the initial phase of the development we planned to use invisible reads instead. While invisible reads for ordinary transactions are allowed, the irrevocable ones must use visible reads (or a blocking synchronisation) as long as revocable update transactions are allowed to commit in parallel with a live irrevocable transaction. Otherwise, a revocable transaction cannot tell whether it may commit without overwriting the read set of an irrevocable transaction.

The preliminary results of the version using invisible reads are presented in Figure 3. While the shape of the curves may seem correct at first glance, it displays a severe anomaly: our system scales super-linearly. That is, a run with three threads has been over three times faster than a run with one thread. After investigating the issue it turned out that the design decision of using invisible reads was to blame. As mentioned before, aborted transactions were restarted in the irrevocable mode. Transactions in this mode never need to check their read sets, while revocable transactions (using invisible reads) must do so. With opacity as the correctness property, on every read of a previously unseen variable the read set has to be checked. So, the revocable transactions spent a lot of time validating reads, while the irrevocable transactions simply skipped that step. As a result, the irrevocable transactions performed better than normal. Because of that, with more threads (thus more conflicts) more “fast” irrevocable transactions appeared and boosted the per-
formance beyond scale. This result clearly shows that extending any existing TM which uses invisible reads by support for the irre-
revocable operations can introduce a similar anomaly.

6.4 Irrevocable transaction overhead

With visible reads, regular and irrevocable transactions are on par in regard to speed. To calculate what is the exact impact of irrevo-
cability on performance, we measured the time it takes to execute a certain sequence of transactions in a single thread, first as regular transactions, next, forcing each transaction to become irrevocable.

As the transactions executed sequentially, we could calculate the average execution time of a revocable transaction and the average execution time of an irrevocable transaction. It turns out that typically irrevocable transactions take 16.23% more time than revoca-
able when tested on machines with Intel® Xeon® Processor L3360 pro-
cessor (4 cores, 12 MB L2, 2.83 GHz), with sufficient physical memory, and compiled the programs using gcc 4.8.4, all under openSUSE 13.1.

6.5.1 Scaling trends

In Figure 4 we present the scaling and performance results of our al-
gorithm. The scaling factor from one to four threads varies depend-
ing on the workload from 2.8 in read-dominated scenario without traversals to 1.4 in write-intensive scenario with traversals. While low-contention workloads scale up to the number of cores, some high-contention workloads get better performance with the number of threads higher than the number of cores. This is a result of using a backoff contention manager, which, upon a forceful abort, waits a short time before restarting the transaction. On one hand, the back-
off time reduces the likelihood that a transaction will run into the same conflict again. On the other, it also introduces pauses in CPU usage. Thus, extra threads can improve the overall performance, as long as they introduce more commits than conflicts. Results of the benchmark follow the common pattern for all transactional memory systems: read-dominated workloads scale fast and smoothly, introducing more writes reduces scalability. Also, enabling long traversals introduces large number of conflicts and thus hinders scaling.

Figure 5. STM Bench7 – impact of enabling irrevocability
6.5.2 Impact of Irrevocability

An important question regarding irrevocability support is its impact on overall performance. Adding support for irrevocability requires revocable transactions to do some extra work – like, in our algorithm, checking for dirtyIrr and irrUsing as well as locking commitL (see Section 4 for details). Removing these operations is possible, but the resulting code would still bear all design requirements needed for irrevocability. We could use another TM system to compare performance, but we fear that influence of the coding style and optimizations level would have higher impact on the performance than sole support for irrevocability. Thus, the overhead is hard to measure. To give an insight into the irrevocability overhead, we turned off the use of irrevocable transactions. To achieve this, we slightly altered the contention manager: while still using the same backoff time, we no longer switch the transactions to the irrevocable state. The results of this test are presented in Figure 5, where we compare runs with and without irrevocable transactions.

The results show that our algorithm generally performs slightly faster without the irrevocable transactions. The slowdown introduced by adding irrevocable transactions in most sample points did not exceed 2%. To remind, the irrevocable transactions are by one fifth slower than the revocable. Impact on the overall performance is lower, since the irrevocable transactions always succeed. It is worth noticing that in the read-dominated workload with traversal transactions present, irrevocability noticeably improved the scaling trend. When using revocable transactions only, the performance dropped as the number of threads rose, since traversal transactions introduced lots of conflicts. With irrevocable transactions enabled, traversal transactions became irrevocable after few restarts and thus finished sooner. This confirms the observation that irrevocability can help in executing problematic transactions.

6.5.3 Comparison with SwissTM

We also compared the results with SwissTM [3] – see Figure 6. SwissTM, being fully optimized, is clearly better in speed and permissiveness. Our main aim was to compare the scaling trends to see if supporting irrevocability causes any anomalies, rather than comparing raw throughput. For runs with no traversals, up to four threads the trends are identical. For runs with traversals, our TM scales worse. Beyond four threads, that is when the number of threads is higher than the number of cores, SwissTM performance drops more rapidly. These results display no anomalies, thus we draw a conclusion that combining operation-level wait-freedom and support for irrevocability brought no unexpected behavior.

7. Conclusions

We showed that a TM system can support irrevocability and be strongly progressive, while at the same time guarantee that each transactional operation finishes in a finite number of steps. To show this, we proposed an algorithm built upon the weakest synchronization primitives that suffice to build a reasonable TM. To discuss properties such as strong progressiveness in presence of irrevocable transactions, we proposed a simple method for representing conflicts among transactions that try to become irrevocable. While irrevocable transactions are considered a necessity by TM users, their support is often associated with a performance penalty. Our results show that the performance overhead is low, and confirm that with increasing contention, the use of irrevocability can help with executing transactions that frequently conflict.

Acknowledgments

The project was funded from National Science Centre funds granted by decision No. DEC-2012/06/M/ST6/00463.
References

