
PHyTM: Persistent Hybrid Transactional Memory

Hillel Avni
Huawei Technologies

hillel.avni@huawei.com

Trevor Brown
University of Toronto

tabrown@cs.toronto.edu

ABSTRACT
The availability of hardware transactional memory (HTM)
and the feasibility of persistent hardware transactions make
them a natural choice for in-memory database synchroniza-
tion. However, limitations on the size of hardware transac-
tions and the lack of progress guarantees by modern HTM
implementations prevent some applications from obtaining
the benefit of hardware transactional memory. In this paper,
we study persistent hybrid TM, which allows hardware as-
sisted ACID transactions to execute concurrently with pure
software transactions. This allows applications to gain the
benefit of persistent HTM while accommodating unbounded
transactions with a high degree of concurrency. Our exper-
iments demonstrate that PHyTM is fast and scalable for
realistic workloads.

1. INTRODUCTION
Non-volatile memory (NVM) is an upcoming technology

that promises to revolutionize computer memory. It is not
currently commercially available, but manufacturers have
developed prototypes, and have released performance in-
formation about these prototypes to the public. NVM is
expected to become cheaper, faster and more power efficient
than DRAM, and will likely become ubiquitous.
Researchers have just begun to understand how machines

with NVM should be programmed. The programming model
for NVM is still in flux, and several companies are competing
to bring an implementation to market. Writes to processor
cache are asynchronously flushed to NVM (at any time, and
without the programmer’s knowledge). A programmer can
also cause a cacheline to be flushed to NVM by invoking a
primitive called Flush. Another primitive called a persistence
barrier is provided to allow a process to block until the cache
line has been flushed to NVM.
There is significant controversy over whether processor

cache and registers will be volatile or non-volatile. Some
researchers are investigating ways to provide enough residual
power to flush this data to NVM in the event of a power
failure [18]. This approach could allow applications to avoid

any runtime overhead associated with providing persistence.
However, hardware designers are skeptical about its feasibil-
ity, citing concerns about the amount of energy necessary
to flush processor cache (since the cache is very large, and
processors are complex and power-hungry). They suggest
that future hardware will only use residual energy to flush
data in volatile buffers on NVM-controllers [13]. Operating
under this assumption, Intel is currently designing new and
efficient flush instructions (CLWB and PCOMMIT) with
NVM in mind [1]. These new instructions assume volatile
caches, and allow the flushed data to stay in cache, to avoid
cache misses. They also accelerate flushes to NVM.
We consider a system in which the processor cache and

registers are volatile. In such a system, the key challenge is
to ensure that NVM is always left in a consistent state if a
power failure occurs and the cache and registers are cleared.
Another recent technology called hardware transactional

memory (HTM), which brings database-style transactions to
shared memory, was recently implemented in Intel processors.
(HTM has also been implemented in production systems by
IBM, and in various research systems. We focus on Intel’s
implementation.) Intel’s implementation of HTM is best
effort, which means that no transaction is ever guaranteed
to commit. Thus, a non-transactional fallback path must be
provided by a programmer to be executed if a transaction
aborts sufficiently many times. The simplest fallback path
simply reexecutes the body of a transaction after taking a
global lock (that prevents other processes from performing
transactions). However, this naive approach does not work
with NVM.
The interplay between transactional memory and NVM

proposals is particularly interesting, because transactions
must appear to be atomic, but writes performed by the
fallback path can be flushed to persistent memory at any
time. Therefore, the fallback path must be carefully designed
to avoid exposing partial effects of an in-flight transaction to
other processes in the event of a power failure. An additional
complication arises from the fact that HTM cannot directly
modify main memory: Any modifications to shared memory
that are made by a transaction are performed on a copy of the
data stored in the private cache of the processor running the
transaction. Thus, there is a timing window between when a
transaction commits, and when the changes are flushed from
cache into main memory, when a power failure could cause
the results of a committed transaction to be lost.
Recent work by Avni et al. [2] introduced an algorithm,

PHTM, that allows hardware transactions to be performed
in a system with NVM. At a high level, PHTM uses a redo

1



log to ensure that no committed changes are lost. Its au-
thors propose a modification to Intel’s HTM implementation
that allows a single bit to be flushed to NVM atomically as
part of a transactional commit. This bit allows PHTM to
simultaneously commit a transaction and flag a record of the
redo log in NVM as complete so that, after a power failure,
it will be replayed if and only if its transaction committed.
The fallback path in PHTM is a software transactional mem-
ory (STM) called PSTM that was designed for use with
NVM. Unfortunately, PSTM serializes all transactions, and
the algorithm does not allow concurrency between hardware
and software transactions. This eliminates all concurrency
whenever a process is executing on the fallback path, and
makes the algorithm unlikely to scale as the parallelism in
HTM systems increases.
In the transactional memory (TM) literature, hybrid TM

was introduced to solve similar performance issues. Hybrid
TM algorithms improve performance by using STM algo-
rithms that allow concurrency on the fallback path, and
designing the fast path algorithm so that hardware and
software transactions can run concurrently. However, exist-
ing hybrid TM algorithms do not work with NVM, so new
algorithms are needed.
The main contribution of this work is PHyTM, the first

hybrid TM for systems with NVM. Like PHTM, PHyTM
uses redo logging to facilitate recovery after power failures.
PHyTM provides linearizable transactions with deadlock-
and livelock-freedom. It uses three execution paths: Fast
HTM, which has uninstrumented reads, Slow HTM, which has
instrumented reads and writes, and STM, which locks its read-
and write-sets, and buffers all writes until its write-back
phase, which happens at commit time. To avoid livelock,
transactions on the STM path may occasionally take a global
lock, which excludes other transactions on the STM path,
but allows hardware transactions to continue.
Fast HTM and Slow HTM can run concurrently (because

both use HTM, so conflicts are resolved by the hardware),
and so can Slow HTM and STM (because Slow HTM ac-
quires locks, just like STM). However, since Fast HTM has
uninstrumented reads, it cannot run concurrently with STM
without an additional mechanism to determine whether STM
has left memory in an inconsistent state. Thus, each trans-
action T on Fast HTM subscribes to a counter that contains
the number of transactions on the STM path that are in their
write-back phases. If the counter is ever non-zero during
T, then T may have seen inconsistent state, so it aborts.
If T aborts sufficiently many times on Fast HTM because
the counter is non-zero, then it moves to Slow HTM, where
it can run concurrently with any transaction. If T aborts
sufficiently many times for any other reasons, it moves to
the STM path to guarantee progress.
In-memory databases demand persistence for ACID trans-

actions, and their workloads often feature many large queries
that exceed the capacity limitations of hardware transactions.
These requirements make PHyTM an appealing option, since
it allows transactions to commit in hardware concurrently
with software transactions, and its uninstrumented reads on
Fast HTM facilitate highly efficient queries.
The rest of this paper is structured as follows. Section 2

gives a detailed description of our model. Since PHyTM
builds upon the logging mechanism of PHTM, we use Sec-
tion 3 to motivate and describe its implementation. We
then describe the PHyTM algorithm in Section 4, and its

implementation in Section 5. Correctness and progress are
proved in Section 6. Related work is discussed in Section 7.
Section 8 presents performance experiments which demon-
strate that PHyTM is highly efficient. Finally, we conclude
in Section 9.

2. MODEL
We consider an asynchronous shared memory system with

n processes.

2.1 Memory
The memory is organized into a hierarchy, with the lowest

level, main memory, consisting either entirely of NVM, or
of a mixture of NVM and DRAM. Although main memory
is logically organized into pages, and physically organized
in terms of rank, bank, device, row and column, without
loss of generality, we consider the cache line granularity in
main memory as the smallest unit of data. The next levels
of the hierarchy are cache levels, which contain copies of
cache lines that appear in main memory. A cache coherence
protocol ensures that processors see a consistent view of main
memory despite the existence of multiple cached copies of
some memory locations. At the highest level of the memory
hierarchy are registers, special memory locations reserved
in each processor for temporary computations. Generally,
operations on objects lower in the memory hierarchy are
orders of magnitude slower than operations on objects higher
in the hierarchy. NVM is expected to be slower than DRAM
for write operations, but at least as fast for read operations.

2.2 Failures
We assume that the system can experience power failures,

which result in all contents of volatile memory being lost.
We do not consider any other types of failures, such process
crashes, or byzantine failures. DRAM is volatile, and so are
all levels of the cache hierarchy and all registers. After a
power failure, only NVM still contains information.
System recovery after a power failure is performed by

a single recovery process which executes a special recovery
procedure. The recovery procedure repairs the data structure
before other processes resume execution. Since the recovery
process runs alone, it has considerable latitude to perform
actions that would otherwise appear dangerous, such as
forcefully releasing locks that were held by other processes
before the crash.

2.3 Hardware transactional memory
We consider Intel’s implementation of HTM. When a trans-

action loads a memory location, the cache coherence protocol
loads the cache line that contains the memory location into
the processor cache in shared mode. In this mode, other
processors are also allowed to load this cache line into their
caches. When a transaction writes to a memory location, its
cache line is first set to exclusive mode, and any copies of the
cache line in other processor caches are invalidated (deleted).
Then, the write is performed in the cache.
If two concurrent transactions both write to the same

memory location, or one reads and then the other subse-
quently writes, then we say that a data conflict has occurred.
The HTM system will abort at least one of the transactions
involved in each data conflict. Transactions also abort for
many other reasons, e.g., if they invoke a system call, or
experience an interrupt, a page fault, or an internal buffer

2



overflow. In particular, transactions have limitations on the
number of memory addresses they can access, and exceeding
these limitations will cause a capacity abort.

Adding support for NVM. Since hardware transac-
tions do not directly modify main memory, any modified
cachelines must be flushed to NVM at some point after a
transaction has committed. This is accomplished using a
hardware primitive called FLUSH, which takes a memory ad-
dress addr as its argument. FLUSH (addr) causes the cache
coherence protocol to flush the most up-to-date copy of the
cache line that contains addr to main memory (which can
cause any transactions that have addr in their read-sets to
abort). We assume the transparent flush operation TFLUSH
of Avni et al. [2], which has the same effect as FLUSH, except
that it will not cause any transaction to abort.
If a power failure occurs while a transaction is in the

middle of flushing its data to NVM, the system could be
left in an inconsistent state, with only part of a committed
transaction recorded. Therefore, we also assume the same
extension to the HTM commit instruction as Avni et al. An
HTM transaction is committed by invoking txEnd, which
takes the address of a single logged bit as its argument. This
bit is atomically set and flushed to NVM at the same time
as the transaction is committed (in cache).

3. LOGGING IN PHTM
Since we build on the logging mechanism used for PHyTM

from PHTM, we now expand upon the brief description of
PHTM that was given in the introduction.
To eliminate the risk of losing data to a power failure,

PHTM adds transaction logging. Traditional transaction
logs have two major disadvantages: they can contain many
transactions, and they store global information about the
order in which transactions committed, so that a recovery
process can decide what to do if, e.g., two transactions write
x=2 and x=3, respectively. These kinds of logs are very
expensive to maintain, and offer more generality than is
necessary for PHTM.
In order to limit the size of its logs, PHTM requires each

process to flush the results of its last transaction to NVM
before starting another. This way, PHTM only needs to be
able to recover one transaction for each process (namely, the
current one). Consequently, PHTM only needs to store at
most one transaction per process in the log. PHTM is also
able to log transactions without any ordering information,
provided that the log never simultaneously contains two
different writes to the same address. PHTM guarantees this
property by having each transaction lock each addresses it
will write, and hold this lock until its log is no longer necessary
(and will no longer be used by a recovery process). Holding
locks until the log is no longer needed slightly lengthens the
contention window of the transaction, and may cause a small
amount of additional contention.

4. PHYTM ALGORITHM
In PHyTM, transactions can execute on three paths: Fast

HTM, Slow HTM and STM. We begin by describing STM.

4.1 The STM path
Our STM algorithm uses encounter-time locking (ETL). In

ETL, transactions lock each address before accessing it. ETL
makes it fairly straightforward to prove the common correct-
ness condition opacity [9, 10], which intuitively states that

processes cannot observe the partial results of transactions.
Since a process can read an address only after locking it, and
the process will unlock its addresses only after performing all
of its writes, no other transaction can see any of these writes
until they have all been completed. Thus, ETL simplifies
the proof of correctness for the STM. Unfortunately, it com-
plicates progress: if transactions read addresses in different
orders, then deadlock can occur.
We can avoid deadlock by using a TryLock primitive in-

stead of a Lock primitive. Unlike Lock, which blocks until
the lock is free, TryLock immediately returns false if the lock
is held. In the aforementioned scenario, T1 and T2 will each
return immediately from their second invocation of TryLock,
and can then abort their transactions and try them again.
However, the same scenario could arise over and over again,
causing an infinite sequence of aborts. This is called livelock.
As we explain below, we can avoid livelock by having pro-
cesses on the slow path that are suspected of being livelocked
take a global lock.
At a high level, PHyTM’s STM path locks each address

it encounters, performs all of its reads and logs its writes,
then enters its write-back phase. In its write-back phase,
a transaction flushes its log to NVM, performs all of its
writes, and then flushes its writes to NVM. For improved
concurrency between readers, we use reader-writer locks,
which can be acquired by either a single writer or multiple
readers. The implementation must be careful to ensure
that the log is atomically flushed to NVM, so that it will
be replayed by the recovery process, precisely when it is
committed. (Otherwise, committed transactions might be
lost, or transactions that have not yet been committed might
be replayed by the recovery process.)

4.2 The Slow HTM and Fast HTM paths
Like the STM path, Slow HTM acquires locks on all of

the addresses it will write to, and then logs its writes. As
we described above, this prevents the log from containing
two writes to the same address. However, Slow HTM differs
from the STM path in two ways. First, Slow HTM actually
performs its writes immediately after logging them (without
waiting for the log to be replayed). This only works on the
HTM paths because these writes remain in the process’s
private cache until the transaction commits. Second, Slow
HTM does not acquire any locks when it reads addresses.
Instead, it reads the state of the lock for these addresses.
If the lock is currently locked by a writer (write-locked),
then the transaction aborts. Reading the lock state causes
the HTM transaction to subscribe to the lock, so that if is
unlocked when the transaction first checks its state, but is
locked by another process at some later point before the
transaction commits, then the transaction will abort.
At a high level, Slow HTM subscribes to locks for the

addresses it reads, and locks the addresses it writes, logging
and performing its writes as it locks each address to be
written. When all of its writes are finished, it flushes its log
to NVM and uses txEnd to atomically commit the transaction
and mark its log as completed, so that a recovery process will
replay it, should a power failure occur. Finally, Slow HTM
replays its log entry, flushing all of its writes to NVM, and
then clears its log entry. If a transaction fails sufficiently
many times on Slow HTM, it moves to the STM path.
Fast HTM is the same as Slow HTM, except that it does

not need to subscribe to locks for the addresses it reads to

3



guarantee that it sees a consistent view of memory (i.e., that
it does not see a state that would be impossible in a sequential
execution). To see why, we make two observations. First,
whenever a transaction on Slow HTM or Fast HTM would
cause another transaction T on Fast HTM to see inconsistent
state, the HTM system will cause T to abort (since both
transactions are running in HTM). Second, any transaction
T on Fast HTM will abort if it runs concurrently with an
STM transaction in its write-back phase. This is because T
begins by checking if the counter that contains the number
of STM transactions currently in their write-back phases is
zero (and aborts, otherwise). If this counter changes from
zero to a non-zero value during T, then the HTM system
will abort T because of a data conflict. Thus, reads on Fast
HTM are uninstrumented.

4.3 Executing on different paths
In this section, we describe how transactions move between

paths, and when transactions on different paths can run
concurrently (see Figure 1).
Each transaction begins on Fast HTM. A transactions T on

Fast HTM cannot run while there is an STM transaction in
its write-back phase (or else T may see only some of the writes
performed by the STM transaction). When a transaction
on Fast HTM aborts, we record whether it aborted because
there was an STM transaction in its write-back phase, or for
some other reason. If a transaction T on Fast HTM aborts
sufficiently many times because an STM transaction was in its
write-back phase, then T moves to the Slow HTM path, where
it can run concurrently with any transaction. Otherwise, if
T aborts sufficiently many times for other reasons, it moves
to the STM path. Similarly, if a transaction on Slow HTM
aborts sufficiently many times, it moves to the STM path.
The STM path uses a global reader/writer-lock to guar-

antee progress. Each transaction on the STM path starts
with a budget for the number of times it can abort before
it must take a global lock to ensure progress. Whenever a
transaction is retried on the STM path, if it has not yet
exhausted its budget, it acquires the global lock as a reader
(which allows concurrency with other transactions on the
STM path). Otherwise, the transaction acquires the global
lock as a writer, which blocks all other transactions on the
STM path. This makes it impossible for livelock to occur
between transactions on the STM path, because, eventually,
each transaction will exhaust its budget and resort to tak-
ing the global lock as a writer, which prevents other STM
transactions from interfering with it. Although a transac-
tion that has acquired the global lock as a writer does not
run concurrently with any other transaction on the STM
path, it still acquires all of its per-address locks. This allows
transactions on Slow HTM to continue running concurrently
with an STM transaction that holds the global lock as a
writer. However, since transactions on Slow HTM acquire
per-address locks, they may hold locks that are needed by
this STM transaction. This makes the progress argument
somewhat subtle.

5. PHYTM IMPLEMENTATION
In this section, we give the full details of the PHyTM imple-

mentation. Fast HTM, Slow HTM and the STM path each
provide a set of operations for starting and committing trans-
actions, and reading and writing memory locations. These
functions are not directly called from user code. Instead,

Path Fast HTM Slow HTM STM-R STM-W
Fast HTM Yes Yes Yes* Yes*
Slow HTM Yes Yes Yes Yes
STM-R Yes* Yes Yes No
STM-W Yes* Yes No No

Figure 1: Table showing which paths can run concurrently.
STM-R (STM-W) represents a transaction on the STM path
holding the global lock as a reader (writer). *Fast HTM
can run concurrently with STM as long as no STM is in its
write-back phase.

1 type log_entry
2 int wsize // size of the write-set
3 word* wset[] // addresses in the write-set
4 word wdata[] // data to be written by the txn
5 bool logged // true if the log entry is complete
6
7 // process-local read-set data
8 process_local int rsize // size of the read-set
9 process_local word* rset[] // addresses in the read-set

10
11 // shared data
12 shared log_entry entries[]
13 shared rwlock_t locks[]
14 shared rwlock_t globallock
15 shared int numSTMWriteback = 0

Figure 2: Data structures for PHyTM

a user simply invokes primitives provided by the compiler
for starting and committing transactions, and the compiler
automatically instruments the user’s code so that it executes
transactions (on the appropriate path) using the functions
we provide. We begin by describing the underlying data
structures.

5.1 Data structures
The data structures for the PHyTM implementation ap-

pear in Figure 2. Broadly, they consist of per-process log
entries, process-local read sets, locks to protect memory ad-
dresses, the global reader/writer-lock introduced in Section 4,
and a counter. The per-process log entries are stored in an
array, entries, which has one entry per process. Each pro-
cess has a local read set rset of size rsize. The locks used
transactions to protect memory addresses are stored in an
array called locks. (Note: on a real system, the locks and
entries arrays must be padded to avoid false sharing.) The
counter, numSTMWriteback contains the number of STM
transactions currently in their write-back phases.

5.1.1 Reducing the number of locks
To avoid the enormous space overhead of dedicating a

unique lock to each memory address, we use a fixed number
of locks, which are stored in an array called locks. These
locks are accessed via a function, GetLockAddr, which hashes
a memory address into the array of locks. Although mapping
multiple addresses to the same lock dramatically reduces the
space complexity of PHyTM (from half of all memory to an
additive constant), it can cause false conflicts if processes
simultaneously try acquire locks on two different addresses
that map to the same lock. The same approach was taken by
Dice et al. in possibly the most well known STM, TL2 [7].

5.1.2 Per-process read-sets and write-log entries
Each process has a write-log entry (in the entries array)

containing four variables: wsize, wset, wdata and logged.
wsize contains the number of addresses in the write-set. wset

4



16 void STMBegin(log_entry* rec)
17 if budget of transaction attempts is exhausted
18 WriteLock(globallock)
19 else
20 ReadLock(globallock)
21
22 word STMRead(word* addr, log_entry* rec)
23 rwlock_t* lock = GetLockAddr(addr)
24 if !TryReadLock(lock) then
25 ResetLogEntry(rec)
26 Unlock all locks (including globallock)
27 retry the transaction
28 val = *addr
29
30 // remember addr so we can unlock it later
31 rset[rsize++] = addr
32 return val
33
34 // precondition: STMRead(addr, rec) has previously been

invoked in this transaction
35 void STMWrite(word* addr, word val, log_entry* rec)
36 rwlock_t* lock = GetLockAddr(addr)
37 if !TryWriteLock(lock) then
38 ResetLogEntry(rec)
39 Unlock all locks (including globallock)
40 retry the transaction
41
42 // add <addr, val> to the write-log
43 rec->addr[rec->wsize] = addr
44 rec->wdata[rec->wsize] = val
45 rec->wsize++
46
47 bool STMFinalize(log_entry* rec)
48 // flush the log entry
49 FlushLogEntry(rec)
50
51 // log entry is ready to be replayed
52 FetchAndIncrement(&numSTMWriteback)
53 rec->logged = 1
54 TFLUSH(rec->logged)
55
56 // replay the log entry to perform & flush all writes
57 ReplayLogEntry(rec, true /* perform writes */)
58 FetchAndDecrement(&numSTMWriteback)
59 Unlock all locks (including globallock)
60
61 ResetLogEntry(rec)
62 rec->attempts = 0
63 return true

Figure 3: Operations for the STM path

is an array that contains all of the addresses in the write-set.
wdata in an array that contains the values written by the
transaction to the addresses in the write-set. logged is a bit
that is true if the log entry is complete, meaning that all
of its data has been written and flushed to NVM by the
process performing the transaction. This bit indicates to
the recovery process that this log entry should be replayed,
should a power failure occur.
Each process also has a local read-set represented by two

variables: rsize and rset, which are analogous to wsize and
wset. Unlike the write-set, the read-set is not (explicitly)
flushed to NVM, and is never used by the recovery process.
The read-set is only used by transactions on the STM path,
which use it simply to keep track of which addresses they
have locked as readers (so they can be unlocked after the
transaction is committed).

5.2 The STM path
The STM path provides four operations: STMBegin, which

starts a transaction, STMRead, which replaces a standard
read from memory, STMWrite, which replaces a standard
write, and STMFinalize, which commits a transaction. The

pseudocode for the STM path operations appears in Figure 3.
An STMBegin operation simply acquires the global lock

as a reader (if the transaction’s budget for attempts has not
yet been exhausted) or a writer (if it has).
An STMRead operation invokes TryReadLock to acquire

a read-lock, reads the address, and saves it in its read-set.
An STMWrite operation invokes TryWriteLock to acquire
a write-lock, which serves two purposes. This lock grants
exclusive access to the address being written, and exclusive
permission to store that address in its write-log entry. (If the
process executing TryWriteLock currently holds the lock as
a reader, and there are no other readers, then TryWriteLock
upgrades the read-lock to a write-lock.) The STMWrite
then adds the address and the value to be written to its
write-log entry (but does not yet make any effort to flush
it to NVM1). If STMRead or STMWrite fails to acquire a
lock, the transaction is aborted, all locks are released, and
the transaction is retried from scratch.
To commit an STM transaction, a process invokes STMFi-

nalize. STMFinalize flushes the write-log entry to NVM, and
then indicates that the transaction has entered its write-back
phase by invoking FetchAndIncrement on numSTMWrite-
back. It then sets and flushes a logged bit in the log entry,
which indicates that it is ready to be replayed by the re-
covery process if a power failure occurs. The transaction
is committed precisely when the logged bit reaches NVM.
Next, STMFinalize invokes a function called ReplayLogEn-
try (which appears in Figure 6) to replay the transaction’s
log entry, performing all of its writes and flushing them to
NVM. ReplayLogEntry also clears and flushes the logged
bit to indicate that the log entry no longer needs to be re-
played. After all of the transaction’s writes are performed
and flushed, STMFinalize performs fetch and decrement on
numSTMWriteback (which indicates that the transaction is
no longer in its write-back phase). Finally, STMFinalize
unlocks all of its locks and prepares its log entry for reuse
by the process’s next transaction.

5.3 The Slow HTM path
Slow HTM provides the same operations as the STM path,

but their names have a “SlowHTM” prefix instead of “STM.”
Pseudocode for these operations appears in Figure 4.
A SlowHTMBegin operation starts by determining whether

the transaction should move to the STM path (because it
has exhausted its budget of attempts). If so, the transaction
moves to the STM path. Otherwise, SlowHTMBegin simply
starts a hardware transaction.
A SlowHTMRead operation reads the lock state for the

address being read, and aborts if the lock is held by another
process. If the lock is not held, then SlowHTMRead reads
and returns the address. A SlowHTMWrite operation tries
to lock the address being written as a writer, and aborts
if it fails to do so. This lock grants exclusive access to the
address being written, and exclusive permission to store that
address in its write-log entry. If SlowHTMWrite successfully
acquires the lock, then it adds the address and the value to
be written to the transaction’s write-log entry. Finally, it
performs its actual write.

1In our model, the contents of the write-log entry may be
flushed to NVM automatically at any time by the hardware.
Here, we are simply remarking that the process does not
explicitly flush its modifications to its log entry, yet.

5



64 void SlowHTMBegin(log_entry* rec)
65 if budget of transaction attempts is exhausted
66 move to STM path
67 else
68 invoke txBegin
69
70 word SlowHTMRead(word* addr, log_entry* rec)
71 // check if addr is write-locked
72 rwlock_t* lock = GetLockAddr(addr)
73 if IsWriteLocked(lock) then abort and retry
74 return *addr
75

76 void SlowHTMWrite(word* addr, word val, log_entry* rec)
77 // try to write-lock addr
78 rwlock_t* lock = GetLockAddr(addr)
79 if !TryWriteLock(lock) then abort and retry
80
81 // add <addr, val> to the write-log
82 int wsize = rec->wsize
83 rec->wset[wsize] = addr
84 rec->wdata[wsize] = val
85 rec->wsize++
86 // perform the write
87 *addr = val
88

89 void SlowHTMFinalize(log_entry* rec)
90 // flush the log entry
91 FlushLogEntry(rec)
92 // atomically commit (to cache) and
93 // simultaneously set rec->logged in NVM
94 // to indicate the log entry is ready to be replayed
95 txEnd(rec->logged)
96
97 // replay the log entry to flush all writes
98 ReplayLogEntry(rec, false)
99 Unlock all locks

100
101 ResetLogEntry(rec)
102 rec->attempts = 0

Figure 4: Operations for Slow HTM

To commit a transaction on Slow HTM, a process invokes
SlowHTMFinalize. SlowHTMFinalize flushes the write-log
entry to NVM, and then invokes txEnd. This simultaneously
commits the transaction, and sets and flushes the logged bit
in the log entry (indicating that the log entry is ready to be
replayed by the recovery process if a power failure occurs).
After this, SlowHTMFinalize invokes ReplayLogEntry (see
Figure 6) to replay its own log entry, flushing its writes to
NVM. ReplayLogEntry also clears and flushes the logged bit
to indicate that the log entry no longer needs to be replayed.
(Unlike the invocation of ReplayLogEntry in STMFinalize,
this invocation of ReplayLogEntry does not need to perform
the transaction’s writes, since they are already performed as
part of the hardware transaction.) Finally, SlowHTMFinalize
unlocks all of its locks and prepares its log entry for reuse
by the process’s next transaction.

5.4 The Fast HTM path
Fast HTM provides the same operations as the Slow HTM

path, but their names have a “FastHTM” prefix instead of
“SlowHTM.” Pseudocode appears in Figure 5.

FastHTMWrite and FastHTMFinalize are identical to their
Slow HTM counterparts. FastHTMBegin first checks if the
budget for transaction attempts is exhausted, and, if so, the
transaction moves to Slow HTM or the STM path, as appro-
priate. Otherwise, FastHTMBegin invokes txBegin to start a
hardware transaction, and then checks if numSTMWriteback
is greater than zero. If so, the transaction aborts. FastHTM-
Read is uninstrumented: it simply reads the address and
returns.

103 void FastHTMBegin(log_entry* rec)
104 if budget of transaction attempts is exhausted
105 move to STM path or Slow HTM path as appropriate
106 else
107 invoke txBegin
108 if numSTMWriteback > 0 then abort
109
110 word FastHTMRead(word* addr, log_entry* rec)
111 return *addr
112

113 void FastHTMWrite(word* addr, word val, log_entry* rec)
114 // identical to SlowHTMWrite
115

116 void FastHTMFinalize(log_entry* rec)
117 // identical to SlowHTMFinalize

Figure 5: Operations for Fast HTM

118 void FlushLogEntry(log_entry* rec)
119 TFLUSH(rec->wsize)
120 int wsize = rec->wsize
121 for i = 1..wsize
122 TFLUSH(rec->wset[i])
123 TFLUSH(rec->wdata[i])
124

125 void ResetLogEntry(log_entry* rec)
126 // prepare log entry for the next txn attempt
127 rec->lockfail = 0
128 rec->wsize = 0
129 rec->rsize = 0
130

131 void Recovery(int nprocesses)
132 Unlock all locks for all processes
133 for i = 1..n
134 ReplayLogEntry(entries[i], true)
135

136 void ReplayLogEntry(log_entry* rec, bool doWrites)
137 if rec->logged then
138 int wsize = rec->wsize
139 if doWrites then
140 // perform all writes
141 for i = 1..wsize
142 *rec->wset[i] = rec->wdata[i]
143
144 // transparently flush all writes
145 for i = 1..wsize
146 TFLUSH(*rec->wset[i])
147 // the log entry no longer needs replaying
148 rec->logged = 0
149 TFLUSH(rec->logged)

Figure 6: Functions common to all paths

5.5 Recovery
After a power failure, the recovery process runs a simple

procedure called Recovery (see Figure 6). Locks are not
flushed explicitly to NVM, but some of them may have
been flushed to NVM automatically by the hardware, and
they have to be released before processes can resume normal
operation. So, Recovery begins by unlocking all processes’
locks. (The recovery process has the freedom to do this,
because it is running alone in the system.) Next, it invokes
ReplayLogEntry for each log entry in the log. This is the same
procedure that is used by STMFinalize, SlowHTMFinalize
and FastHTMFinalize to complete a transaction once a log
entry is flushed.
ReplayLogEntry first checks if the log entry has its logged

bit set. If so, the transaction has been committed, and its
log must have been flushed to NVM. Next, the transaction’s
writes are performed at line 142 (because doWrites = true
when ReplayLogEntry is invoked by Recovery). (Note that
the recovery process performs these (apparently redundant)
writes even for hardware transactions, despite the fact that
SlowHTMFinalize and FastHTMFinalize invoke ReplayLo-

6



gEntry with doWrites = false, and do not perform these
writes. Here, these writes are necessary, because after a hard-
ware transaction commits, but before its writes are flushed to
NVM, they may be lost to a power failure.) We briefly argue
that, when the power failure occurred, the process perform-
ing the transaction held write-locks on all of the addresses in
the transaction’s write-set (so it is correct to perform these
writes). Observe that the log entry’s logged bit is reset to
zero at the end of ReplayLogEntry. It follows that a power
failure occurred before the process that was running this
transaction could finish its invocation of ReplayLogEntry in
STMFinalize (at line 57), SlowHTMFinalize (at line 98), or
FastHTMFinalize. In each case, the process still held write-
locks on all of the addresses in the transaction’s write-set.
ReplayLogEntry concludes by flushing all of the writes to
NVM, and setting the logged bit to zero and flushing it to
NVM.

5.6 Optimizing with non-transactional reads
In this section, we describe an optimization to PHyTM

that can be applied in HTM system that allows processes
to perform non-transactional reads and writes while inside
a transaction. Note that the SlowHTMRead function reads
both the value stored at an address and the state of its lock.
A paper by Riegel et al. [19] observed that it is sufficient to
subscribe only to the lock (which is acquired by both HTM
and STM), and use a non-transactional read for the data
protected by the lock. In PHyTM, this optimization is quite
natural, since locks are already taken by the HTM paths for
logging, and not simply because of their interactions with the
STM path. PHyTM can also use non-transactional reads and
writes to maintain the per-process write-log entries (since
each write-log entry is accessed only by the single process
that writes to it, and by the recovery process, which runs
alone in the system). These optimizations would reduce the
number of locations to which transactions subscribe, which
reduces the likelihood of capacity aborts.

6. CORRECTNESS
In this section, we prove that the PHyTM algorithm pro-

vides linearizable transactions, and that the algorithm is
deadlock- and livelock-free.

6.1 Progress
It is fairly straightforward to make an informal argument

that the algorithm is deadlock- and livelock-free. The algo-
rithm is deadlock-free because it uses a non-blocking TryLock
primitive for all locks except the global reader/writer-lock
(which cannot cause deadlock), and releases all locks and
restarts the transaction whenever an invocation of TryLock
sees that a lock is already held. To show livelock-freedom, we
suppose that transactions stop committing after some point
in time, and obtain a contradiction. Intuitively, transactions
will eventually exhaust their budgets for transactional at-
tempts on all paths, and will each attempt to take the global
lock as writers, at which point one of the transactions T will
acquire the global lock as a writer and commit a transaction
(yielding a contradiction). However, the full progress proof
is deceptively subtle.

Definition 1. We refer to operations starting with “FastHTM”
as Fast HTM operations, operations starting with “SlowHTM”
as Slow HTM operations, and operations starting with

“STM” as STM operations. Collectively, these are referred
to as PHyTM operations.

Lemma 1. Every PHyTM operation is wait-free (termi-
nates after a finite number of steps), except for STMBegin.

Proof. Recall that we assumed TryReadLock and Try-
WriteLock return immediately if the lock is held. Because
of this assumption, STMRead, STMWrite, SlowHTMRead,
SlowHTMWrite, SlowHTMBegin, FastHTMRead, FastHTMWrite
and FastHTMBegin are straightline code. STMFinalize,
SlowHTMFinalize and FastHTMFinalize are straightline
code, apart from their invocations of FlushLogEntry and
ReplayLogEntry. FlushLogEntry and ReplayLogEntry are
straightline code except for their loops, which perform k
iterations, where k is the value of wsize in the transaction’s
log entry. It is easy to verify that wsize is always posi-
tive and finite, since the only places it is modified are at
line 128 in ResetLogEntry, where it is set to zero, and in
FastHTMWrite, SlowHTMWrite and STMWrite, where it is
incremented exactly once per write in the transaction.

Theorem 2. PHyTM is deadlock- and livelock-free. (For-
mally, if all transactions have finite read- and write-sets,
and all processes take steps infinitely often, then transactions
commit infinitely often.)

Proof. Suppose not, to obtain a contradiction. Then, in
some execution, after time t, all processes take steps infinitely
often, but no transaction commits.
Claim 1. Eventually, every process invokes only STM oper-
ations.
Suppose not, to obtain a contradiction. Then, some process

p executes Fast HTM or Slow HTM operations infinitely
often. Since no transactions can commit after time t, p must
perform infinitely many Fast HTM or Slow HTM operations
without committing. Since transactions have finite read- and
write-sets, p’s must abort infinitely often, which means it
must eventually exhaust its budget for attempts on the HTM
paths, and move to the STM path, which is a contradiction.
Claim 2. Eventually, every process either invokes STMBegin
infinitely often, or spins forever at line 18 or line 20 in
STMBegin.

Suppose not, to obtain a contradiction. Then, some pro-
cess p invokes STMBegin finitely many times, and does not
spin forever in STMBegin (the only place where unbounded
spinning could occur). Since all other PHyTM operations are
wait-free, and transactions have finite read- and write-sets,
p must successfully commit a transaction after t, which is a
contradiction.
We can now prove the theorem. Let σ be the set of pro-

cesses that invoke STMBegin infinitely often. Since the
global lock used by PHyTM is deadlock-free, it is impossi-
ble for every process to spin forever in STMBegin. Thus,
Claim 2 implies that σ is non-empty. By a similar argu-
ment to the proof of Claim 1, every process in σ eventually
exhausts its budget of transactional attempts on the STM
path. Therefore, eventually, every invocation of STMBegin
by a process in σ attempts to acquire the global lock as
a writer at line 18. Since the global lock is deadlock-free,
eventually some process in σ will successfully acquire the
lock as a writer, at which point it will run alone on the STM
path, so its transaction will be guaranteed to commit (which
is a contradiction).

7



6.2 Linearizability
We now show that PHyTM transactions are linearizable.

In this section, we assume no power failures occur. (We
consider power failures in the next section.)

Definition 2. A transaction attempt by a process p is
any interval starting with an FastHTMBegin (resp. SlowHTM-
Begin or STMBegin) by p and ending with the next FastHTM-
Finalize (resp. SlowHTMFinalize or STMFinalize) by p.

In the course of trying to perform a transaction, a process
may make several transaction attempts. One can think of a
transaction as a collection attempts by one process.

Definition 3. A transaction attempt on Fast HTM com-
mits at its execution of txEnd. A transaction attempt on
Slow HTM commits at its execution of txEnd (at line 95).
A transaction attempt on the STM path commits at its
execution of TFLUSH (at line 54).

We now give the linearization points for committed and
aborted transactions on the fast- and slow-path.

Linearization points
• Each committed transaction is linearized precisely at
the moment it commits (see Definition 3).

• Each aborted transaction attempt on Fast HTM is lin-
earized at the last time it accesses a lock in FastHTMWrite.

• Each aborted transaction attempt on Slow HTM is lin-
earized at the last time it accesses a lock in SlowHTM-
Read (line 73) or SlowHTMWrite (line 79).

• Each aborted transaction attempt on the STM path is
linearized at the last time it accesses a lock in STMRead
(line 24) or STMWrite (line 37).

Lemma 3. Suppose a transaction attempt T changes an
address addr in main memory that is not a lock or part of a
log entry. Then, the following statements hold.

1. T must commit.
2. T adds addr to its write-log entry in STMWrite (lines 43-

45), SlowHTMWrite (lines 83-85) or FastHTMWrite.
3. T locks addr as a writer (in STMWrite at line 37,

in SlowHTMWrite at line 79, or in FastHTMWrite),
before adding addr to its write-log entry, before writing
to addr, before committing and before flushing addr
to NVM. T continuously holds this lock until after it
writes to addr, after it commits and after it flushes
addr to NVM.

Proof. Suppose T executes on the STM path. Then T
must write to addr at line 142 of ReplayLogEntry. Prior to
invoking ReplayLogEntry at line 57, it commits at line 54
(Claim 1). Claims 2 and 3 are immediate from the code.

Now, suppose T executes on Slow HTM. Since addr is not
a lock or a part of a log entry, T writes to it in SlowHTM
Write at line 87 (inside a hardware transaction). Therefore,
T must commit in order to change addr in main memory
(Claim 1). Claim 2 is immediate from the code. We now
prove Claim 3. Before T commits, it writes to addr. Just
before T writes to addr, it tries to lock addr as a writer
in SlowHTMWrite at line 79. Since T commits, it must
successfully lock addr. From the code, T continuously holds
this lock until it releases all locks in SlowHTMFinalize at
line 99, which is after T flushes addr to NVM in its invocation
of ReplayLogEntry (at line 98 of SlowHTMFinalize), which
is after T commits in SlowHTMFinalize at line 95.

Lemma 4. Let T be a transaction attempt with addr in its
write-set, tc be when T commits, and tu be when T releases
its write-lock on addr. If T commits, then addr continuously
contains the last value v written by T starting from some
time tv (tc ≤ tv ≤ tu) until a write-lock is next acquired on
addr after tu by a committed transaction attempt.

Proof. Let tw be when T writes to addr and tf be when
T flushes addr to NVM. By Lemma 3, T continuously holds
a write-lock on addr from before min{tw, tf , tc} until af-
ter max{tw, tf , tc}. Furthermore, no other transaction can
change addr while T holds a write-lock. It follows that addr
contains v immediately after tf , which is before tu. This
value is not changed again by T , and cannot be changed by
another committed transaction attempt until a write-lock is
next acquired on addr after tu (by Lemma 3).

Lemma 5. Let R be an invocation by a transaction at-
tempt T of STMRead on an address addr. If T commits,
then R returns the value v written by the last transaction T ′

with addr in its read-set that commits before T commits.

Proof. Let tr be when R executes line 28. Our goal is
to prove that addr contains v at tr.

Claim: addr contains v at some time after T ′ commits
and before tr. By Lemma 4, addr contains v at some time
tv after T ′ commits, and before it releases its locks. Just
before tr, T must execute line 24 in STMRead, where it sees
that addr is not locked by a writer. Thus, T ′ must release
its write-lock on addr before tr, and, hence, tv is before tr.

Claim: addr does not change between tv and tr.
Suppose, to obtain a contradiction, that addr changes

between tv and tr. By Lemma 4, addr does not change until a
committed transaction attempt acquires a write-lock on addr
after tv. Thus, a committed transaction T ′′ must acquire
a write-lock on addr between tv and tr. By Lemma 3, T ′′

must commit before T acquires its write-lock on addr, which
implies that T ′′ is committed between T ′ and T . However,
we assumed that T ′ is the last transaction with addr in its
write-set that commits before T commits.

Lemma 6. Let R be an invocation by a transaction at-
tempt T of SlowHTMRead on an address addr. If T commits,
then R returns the value v written by the last transaction T ′

with addr in its read-set that commits before T commits.

Proof. Although SlowHTMRead does not explicitly ac-
quire read-locks, it subscribes to the state of the lock for
each address it reads, and sees that the lock is not held by
a writer. (Moreover, since reading the lock state causes the
HTM system to subscribes to it, T will abort if any concur-
rent transaction attempt acquires the lock.) Thus, the value
it reads at line 74 is identical to value it would read if it had
explicitly acquired a read-lock on the address. Consequently,
the proof is the same as the proof of Lemma 5.

Lemma 7. Let R be an invocation by a transaction at-
tempt T of FastHTMRead on an address addr. If T commits,
then R returns the value v written by the last transaction T ′

with addr in its read-set that commits before T commits.

Proof. Let tr be when R executes line 28. Our goal is
to prove that addr contains v at tr.

Claim: addr contains v at some time after T ′ commits
and before tr. By Lemma 4, addr contains v at some time tv
after T ′ commits, and before it releases its locks. It follows

8



that tv is before T commits. Suppose tv is after tr to obtain
a contradiction. Then addr is changed after tr and before T
commits. Therefore, the HTM system will abort T due to a
data conflict. However, we assumed that T commits.

Claim: addr does not change between tv and tr. Suppose,
to obtain a contradiction, that addr changes between tv and
tr. By Lemma 4, addr does not change until a committed
transaction attempt acquires a write-lock on addr after tv.
Thus, a committed transaction T ′′ must acquire a write-lock
on addr between tv and tr. By Lemma 3, T ′′ must commit
before T acquires its write-lock on addr, which implies that
T ′′ is committed between T ′ and T . However, this is a
contradiction, since we assumed that T ′ is the last transaction
with addr in its write-set that commits before T commits.

6.3 Recovery
In this section, we prove the correctness of the Recovery

procedure that is invoked by the recovery process after a
power failure. Intuitively, this entails showing that the log is
always well formed, and that no committed transactions are
lost to a power failure.

Definition 4. A transaction attempt is logged whenever
the logged bit in its log entry is set.

Observe that a committed transaction attempt is linearized,
and becomes committed and logged at precisely the moment
that its logged bit is flushed to NVM (so that it will be
replayed by the recovery process if a power failure occurs).

Lemma 8. At all times, the set of log entries that have
their logged bits set contains at most one instance of each
memory address.

Proof. By inspection of the code, a transaction attempt
can be logged only while it holds write-locks on all addresses
in its write-set.

Lemma 9. Every transaction attempt that commits before
a power failure either terminates (meaning its invocation of
FastHTMFinalize, SlowHTMFinalize or STMFinalize termi-
nates) prior to the power failure, or it is logged.

Proof. Let T be a transaction that commits (and, con-
sequently, is linearized) before a power failure. Suppose T
does not terminates prior to the power failure. Then, since T
commits before the power failure (and transactions commit
and are logged at precisely the same time), T is logged before
the power failure.

Theorem 10. Immediately after the recovery process fin-
ishes executing the Recovery procedure, the contents of shared
memory are exactly what they would be if all transaction
attempts that had committed but not yet terminated when the
power failure occurred had actually run to completion.

Proof. Let T be a transaction attempt that committed
but had not yet terminated when the power failure occurred.
Since T committed before the power failure, it is logged, and
it held write-locks on all addresses in its write-set when the
power failure occurred. So, if T ran to completion, then it
would have performed all of its writes and flushed them to
NVM. Since T is logged, the Recovery procedure will perform
all of its writes.
It remains to prove that the transactions whose log entries

are replayed by the Recovery procedure will not interfere

with one another. Since all of the transactions whose log
entries will be replayed by the Recovery procedure are logged,
Lemma 8 implies that all logged transactions operate on
disjoint write-sets.

7. RELATED WORK
Non-volatile RAM is expected to replace DRAM, either

partially or entirely, as main memory [15]. There are already
working prototypes of NVM such as phase-change memory
(PCM) [15], spin-torque-transfer RAM (STT-RAM) [12], and
memristors [20], and the new Intel architecture added special
instructions (CLFLUSHOPT, PCOMMIT) [1] to access data
in NVM. As memory becomes persistent, it is natural to
make persistent transactional memory, i.e. to support full
ACID TM transactions.

NV-Heaps [3] and Mnemosyne [21] are full system solutions.
They include allocating persistent memory to applications,
defining non-volatile variables in the compiler, and prevent-
ing illegal states such as a persistent object pointing to a
volatile one. As part of their NVM support, they also provide
persistent STM.
NV-Heaps includes an object-based persistent STM. It

provides transactional objects, which can be opened for
writing. Once an STM transaction T opens an object for
writing, T copies the object to an undo log, and locks it.
NV-Heaps maintain a volatile read log and a non-volatile
undo log for each transaction. If a power failure occurs, any
transactions in progress are aborted, and the undo log, which
is persistent, is used to reverse any changes they made.
Mnemosyne persistent STM [21], which was published at

the same time as NV-Heaps, is word-based, and is derived
from TinySTM [8]. Mnemosyne buffers writes to avoid the
maintenance of an undo log, and to work around the fact
that writes can be flushed to NVM at any time. Buffering
writes results in slower commits. Mnemosyne logs writes in
per-process redo logs, and logged writes are totally ordered
by a global clock, which is taken from TinySTM.
Unfortunately, these software-based algorithms exhibit

poor performance due to bookkeeping overhead and/or poor
scalability due to locking serialization. Thus database trans-
actions use fine-grained locking and no commercial database
uses STM. Some database implementations [22, 16] use HTM
for synchronization. However, these databases still use flush
data to disk to achieve persistence.
In [23] they design new hardware to track dependencies

among transactions, and use it to decide when to flush trans-
actional data to NVRAM to create a persistent HTM. Their
design has a centralized scoreboard, which is not scalable.
While [23] involves nontrivial hardware additions (with po-
tential scalability issues), PHTM [2] is a persistent version of
HTM, for machines that provide NVM, which implies only
changes in HTM microcode. It writes a persistent bit to
NVM as part of HTM commit execution, and uses software
to log the write-set in a private NVM buffer for safety. This
way if a power or hardware failure ever occurs, the contents
of shared memory can be recovered. Additionally, PHTM has
uninstrumented reads, which can be executed at hardware
speed.
PHTM provides both synchronization and durability for

an in-memory database, but it carries the limitations of best
effort HTM, and cannot commit large transactions (except se-
quentially, on a fallback path). PHyTM improves on PHTM
by offering both persistent HTM and highly concurrent STM,

9



to gain the performance benefit of HTM while maintaining
parallelism when a transaction must execute in software.
The limitations of HTM were mentioned already in the

seminal paper of Herlihy and Moss [11], but the first algo-
rithms that allow a fast path concurrency with the slow path
were introduced in 2006 [6, 14]. Since then, research on
hybrid TM algorithms has been focused on optimizations to
improve performance.

Optimizations for hybrid TMs have progressed in two direc-
tions:

• Reducing overhead by letting the slow path take a
global sequential lock, which is sampled by the fast
path on each access, in the HyNORec algorithms [5].
(In this direction, HTM is also used in the commit
phase of an STM transaction, which eliminates the
need for HTM to subscribe to locks [17].)

• Attaching a versioned lock or a traditional lock to each
address, which is read by each HTM read operation, and
is acquired by both paths for each write, in the HyLSA
algorithm [19]. This algorithm greatly increases the size
of HTM transactions, because locks must be read by
each HTM read operation. However, this problem can
be mitigated with the use of non-transactional reads
and writes.

The NORec family of algorithms has lower overhead, but
is less scalable, so we chose to pursue the same direction
as HyLSA for PHyTM. Reads of data in PHyTM can be
non-transactional. Since both persistent HTM and STM
transactions acquire locks on each address in their write-
sets (to ensure that no other transaction can write to these
addresses until the current transaction’s changes are flushed),
it is sufficient for each transaction to subscribe to the state of
the lock for each address (instead of subscribing both to the
lock state and to the address it protects). Since each STM
read also acquires a lock, separating the STM read-lock from
the write-lock may also reduce unnecessary aborts caused by
conflicts between STM reads and HTM reads.

8. EXPERIMENTAL ANALYSIS
In this section we study the performance of PHyTM using

various workloads. We use an Intel Core i7-4770 3.4 GHz
Haswell processor with 4 cores, each with 2 hyperthreads.
Each core has private L1 and L2 caches, whose sizes are 32
KB and 256 KB respectively. There is also an 8 MB L3
cache shared by all cores. We use the HTM provided by the
hardware and emulate NVM.

Emulation. Our PHyTM implementation is based on
the NVM emulation scheme used by PHTM [2]. In our
experiments, the atomic assignment and flush of the logged
bit by the commit instruction is emulated by avoiding any
simulated power failures between the HTM commit and when
the bit is set. Since writes in NVM are expected to be slower
than writes to DRAM, we inserted delays to simulate writes
to NVM.

Workloads. Following [24], we implemented the Yahoo!
Cloud Serving Benchmark (YCSB). This is a collection of
workloads that are representative of large-scale services cre-
ated by Internet-based companies [4]. For all of the YCSB
experiments in this paper, we used a single table with 20
million records. Each YCSB tuple has a single primary key
column. The DBMS creates a single hash index for the pri-
mary key. Each transaction in the YCSB workload accesses

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8

M
 o

ps
 / 

se
c

Threads

One Core Out of 8 with Long RRQ

PHTM
PHyTM

2PL

Figure 8: YCSB workload where one process performing
large reading range queries

a predefined number of records, where 16 is the default.
In some of our workloads, we also perform large transac-
tions that access 256 records. Since these large transactions
access so many records, they are likely to cause capacity
aborts. If the accesses in a transaction are writes, we call the
transaction a writing range query (WRQ). If they are reads,
then we call the transaction a reading range query (RRQ).
These transactions simply read and write the contents of
records, and do not perform any additional computation.
All transactions are independent. That is, the behaviour of
a transaction does not depend on the result of a previous
transaction.

Algorithms. We implemented the YCSB benchmark us-
ing PHyTM, PHTM, and two-phase locking (2PL), which
uses fine-grained locking on the rows a table. 2PL was re-
cently experimentally studied on simulated systems with
more than one thousand processors by Yu et al. [24], and
was shown to be quite scalable. 2PL typically incurs some
overhead to perform deadlock detection. However, our work-
loads contain no deadlocks, and our implementation of 2PL
takes advantage of this by eliminating deadlock detection.

Results. The results of our experiments appear in Fig-
ure 7 and Figure 8. Broadly speaking, when there are few
aborts, PHyTM behaves similarly to PHTM. This is because,
as long as there is no transaction on the STM path, both
hybrid TMs have no instrumentation overhead for reads, and
the overhead of writing to NVM dominates any performance
differences in write-heavy workloads. The performance of
2PL in write-heavy workloads is also dominated by the over-
head of writing to NVM. The NVM overhead for writes is
the same for all algorithms in our benchmark, so they all
exhibit approximately the same performance in write-only
scenarios, as Figure 7c demonstrates. However, Figure 7b
shows that PHTM and PHyTM read operations are an order
of magnitude faster than 2PL.
Figure 7d shows a YCSB workload that performs half

RRQs and half WRQs. In this workload, the overhead of
writing to NVM is more significant than any algorithm-
dependent performance difference, so the performance of
2PL is fairly close to that of PHTM and PHyTM.
The most significant shortcoming of HTM is that the

size of a transaction is limited by the capacity of the cache.
Hardware transactions that access sufficiently many locations
are doomed to abort, and the probability of aborting increases

10



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8

M
 o

ps
 / 

se
c

Threads

100% Long WRQ

PHTM
PHyTM

2PL

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8

M
 o

ps
 / 

se
c

Threads

100% RRQ

PHTM
PHyTM

2PL

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5 6 7 8

M
 o

ps
 / 

se
c

Threads

100% WRQ

PHTM
PHyTM

2PL

(c)

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8

M
 o

ps
 / 

se
c

Threads

50% WRQ, 50% RRQ

PHTM
PHyTM

2PL

(d)
Figure 7: YCSB workloads for different transaction mixes

as the size of a transaction grows. PHTM includes an STM
fallback path to allow such transactions to succeed, but the
STM path acquires a global lock, so transactions on the
STM path are serialized. This represents a severe bottleneck,
especially as systems with HTM support become increasingly
parallel (with configurations supporting hundreds of threads
currently possible).
To study what happens when a nontrivial fraction of trans-

actions fail in hardware, and must be executed in software,
we added a workload containing large transactions that are
unlikely to commit in hardware. When all transactions are
large WRQs, we see in Figure 7a that PHTM is not scalable
at all, while PHyTM is as scalable as 2PL. PHyTM scales
because STM transactions can run concurrently with each
other, and with other hardware transactions. The overhead
that PHyTM incurs by optimistically trying transactions in
hardware before falling back to software does not prevent
it from matching the performance of 2PL (which never has
to abort), even in this workload with many aborts. We be-
lieve this is because PHyTM avoids performing expensive
writes/flushes to NVM until after it commits. Thus, aborted
transactions avoid this overhead.
In the workload consisting entirely of large WRQs, PHyTM

and 2PL achieve approximately the same throughput, and
perform an order of magnitude better than PHTM. In the

workload consisting entirely of RRQs, PHTM and PHyTM
achieve approximately the same throughput, and perform
an order of magnitude better than 2PL.
The most significant advantage of PHyTM over PHTM

and 2PL becomes clear when a subset of the processes are
running transactions on the STM path while most of the
processes successfully commit transactions in HTM. This
situation is demonstrated in Figure 8, where only one process
is executing large RRQs (which are unlikely to succeed in
hardware, and often run on the STM path), and the other
processes execute smaller transactions that are typically able
to commit in hardware.
When the smaller transactions are mostly read-only, as

in Figure 8, PHyTM is an order of magnitude faster than
its competitors. The STM path of PHTM performs reads
with no overhead, so it is much faster than 2PL (which
must acquire locks) at low process counts. However, since
the STM path of PHTM acquires a global lock, it does not
scale 2PL, which scales in this workload, ties PHTM with
eight concurrent processes, but suffers from the high cost
of acquiring locks. Whenever there is no transaction on
the STM path in its write-back phase, PHyTM transactions
can run on Fast HTM, where their read operations have no
overhead. Furthermore, even when a transactions on the
STM path is in its write-back phase, PHyTM transactions

11



can run on Slow HTM, where their read operations can
simply read the state of locks instead of acquiring them.

9. CONCLUSION
Efficient, persistent hybrid TM will allow in-memory databases

to benefit from the research accumulated in the TM literature.
More than two decades ago, transactional memory started
as a hardware proposal for efficient execution of short trans-
actions, and was later expanded to efficient synchronization
of general transactions in memory. Recently, databases have
begun to move away from disks and become fully in-memory.
PHyTM’s line of research promises to connect transactional
memory with cutting-edge in-memory databases.

10. REFERENCES
[1] Intel architecture instruction set extensions

programming reference.
[2] H. Avni, E. Levy, and A. Mendelson. Hardware

transactions in nonvolatile memory. In Proc. of 29th
Int. Sym., DISC 2015, pages 617–630. Springer, 2015.

[3] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. Nv-heaps:
Making persistent objects fast and safe with
next-generation, non-volatile memories. In Proceedings
of the Sixteenth International Conference, ASPLOS
XVI, pages 105–118, New York, NY, USA, 2011. ACM.

[4] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[5] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir,
M. L. Scott, and M. F. Spear. Hybrid norec: a case
study in the effectiveness of best effort hardware
transactional memory. In Proc. of 16th Int. Conf. on
Arch. Supp. for Prog. Lang. and Oper. Sys., ASPLOS
2011, Newport Beach, CA, USA, March 5-11, 2011,
pages 39–52, 2011.

[6] P. Damron, A. Fedorova, Y. Lev, V. Luchangco,
M. Moir, and D. Nussbaum. Hybrid transactional
memory. In Proc. of the 12th International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2006, San Jose, CA,
USA, October 21-25, 2006, pages 336–346, 2006.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional
locking ii. In S. Dolev, editor, Distributed Computing,
volume 4167 of Lecture Notes in Computer Science,
pages 194–208. Springer Berlin Heidelberg, 2006.

[8] P. Felber, C. Fetzer, and T. Riegel. Dynamic
performance tuning of word-based software
transactional memory. In PPoPP ’08: Proceedings of
the 13th ACM SIGPLAN Sym. on Principles and
Practice of Par. Prog., pages 237–246. ACM, 2008.

[9] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming, pages 175–184. ACM, 2008.

[10] T. Harris, J. Larus, and R. Rajwar. Transactional
memory. Synthesis Lectures on Computer Architecture,
5(1):1–263, 2010.

[11] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In

Proceedings of the 20th Annual International
Symposium on Computer Architecture, ISCA ’93, pages
289–300, New York, NY, USA, 1993. ACM.

[12] Y. Huai. Spin-transfer torque MRAM (STT-MRAM):
Challenges and prospects. AAPPS Bulletin, 18(6),
2008.

[13] Intel. Private communication with hardware engineers,
February 2016.

[14] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. D.
Nguyen. Hybrid transactional memory. In Proc. of the
ACM SIGPLAN Sym. on Principles and Practice of
Parallel Programming, PPOPP 2006, New York, New
York, USA, March 29-31, 2006, pages 209–220, 2006.

[15] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao,
E. Ipek, O. Mutlu, and D. Burger. Phase-change
technology and the future of main memory. IEEE
Micro, 30(1):143, 2010.

[16] V. Leis, A. Kemper, and T. Neumann. Exploiting
hardware transactional memory in main-memory
databases. In IEEE 30th International Conference on
Data Engineering, Chicago, ICDE 2014, IL, USA,
March 31 - April 4, 2014, pages 580–591, 2014.

[17] A. Matveev and N. Shavit. Reduced hardware norec: A
safe and scalable hybrid transactional memory. In
Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 59–71, New
York, NY, USA, 2015. ACM.

[18] D. Narayanan and O. Hodson. Whole-system
persistence. SIGPLAN Not., 47(4):401–410, Mar. 2012.

[19] T. Riegel, P. Marlier, M. Nowack, P. Felber, and
C. Fetzer. Optimizing hybrid transactional memory:
the importance of nonspeculative operations. In SPAA
2011: Proceedings of the 23rd Annual ACM Symposium
on Parallelism in Algorithms and Architectures, San
Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC
2011), pages 53–64, 2011.

[20] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature,
453(7191):80–83, May 2008.

[21] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. SIGPLAN Not.,
47(4):91–104, Mar. 2011.

[22] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted
transactional memory to build a scalable in-memory
database. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, pages
26:1–26:15, New York, NY, USA, 2014. ACM.

[23] Z. Wang, H. Yi, R. Liu, M. Dong, and H. Chen.
Persistent transactional memory. Computer
Architecture Letters, 14(1):58–61, 2015.

[24] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and
M. Stonebraker. Staring into the abyss: An evaluation
of concurrency control with one thousand cores. Proc.
VLDB Endow., 8(3):209–220, Nov. 2014.

12


