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ABSTRACT
Being much simpler to compose and verify than classical
lock based synchronization schemes, Software Transactional
Memories (STMs) have emerged as an attractive paradigm
for supporting concurrent access to in-memory storage sys-
tems. This paper is focused on the issue of how to replicate
STMs to enhance both their performance and dependability.
This is an extremely challenging problem, since the commu-
nication/processing ratio in STMs is typically several orders
of magnitude higher than in conventional database systems,
thus amplifying the relative cost of replication.

We present SCert (Speculative Certification), a novel repli-
cation protocol for STMs that exploits early knowledge about
message ordering in the underlying atomic broadcast layer
to propagate, in a speculative fashion, the updates of trans-
actions before there is an agreement on the final serialization
order. This speculative approach brings the two following
key benefits. On one hand, it lowers the chances that trans-
actions access stale snapshots, thus minimizing the proba-
bility of later incurring in an abort. On the other hand, it
provides early conflict detection, thus reducing the amount
of wasted computation and/or waiting time from transac-
tions doomed to abort. An experimental study of SCert,
based on a fully fledged distributed STM prototype and
heterogeneous benchmarks, has shown performance gains of
up to 4.5x when compared with previous certification based
schemes.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Distributed memories; D.4.7
[Organization and Design ]: Distributed systems
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1. INTRODUCTION
Building on the abstraction of atomic transactions, and

freeing the programmer from the complexity of conventional
lock-based synchronization schemes, Software Transactional
Memory (STM) provides the support for building concur-
rent in-memory data stores, improving the system reliabil-
ity and boosting productivity [6]. Over the last years, a
wide body of literature has been developed in the area of
STMs and the first enterprise-class STM-based applications
have started to be deployed in production systems [18]. A
fundamental challenge in this context is to design efficient
schemes capable of fulfilling the scalability and reliability
requirements of real-world applications.

At current date, only a handful of replication protocols ex-
plicitly targeted at STMs have been proposed [23, 4, 26, 11,
9]. On the other hand, since STMs and databases share the
common abstraction of atomic transaction, the wide body
of literature on replicated and distributed databases repre-
sents a natural reference point to architect STM replication
protocols. Among the vast range of transactional replica-
tion schemes targeting database systems, approaches based
on Atomic Broadcast (AB) [16] and distributed certification
procedures [32, 21, 31] appear to be particularly suited for
implementing STMs and have inspired several recent STM
replication protocols [11, 9].

Unlike classic eager replication schemes (based on fine-
grained distributed locking and atomic commit), which suf-
fer from large communication overheads and distributed dead-
locks [14], AB based certification schemes do not require any
replica coordination during the transaction execution phase.
Instead, transactions are executed locally in an optimistic
fashion and consistency (typically, 1-Copy serializability [3])
is ensured at commit-time, via a distributed certification
phase that uses AB to enforce agreement on a common
transaction serialization order. This provides the following
benefits: it avoids distributed deadlocks, which are known
to significantly limit scalability of eagerly replicated transac-
tional systems [14]; it offers non-blocking guarantees in the
presence of failures; it allows for a modular implementation,
where the complexity associated with failure handling is en-
capsulated by the AB and group management system layers
(typically providing View-Synchrous communication [16]).

Further, certification schemes are more scalable and easy
to deploy in practice than classical active replication schemes
[22, 35, 29]. Active replication requires write transactions



to be executed on every replica, which limits the system
scalability in presence of write intensive workloads. Also,
it requires the transaction to be deterministic, which typi-
cally forces the use of complex mechanisms to filter out any
source of non-determinism [31] during transaction process-
ing. With a few exceptions [35, 29], optimizations of active
replication require a priori knowledge about the data items
to be accessed by transactions during their execution [16].

On the downside, certification replication schemes rely on
an inherently optimistic assumption: the data snapshot pro-
vided to a transaction is unlikely to be invalidated by the
stream of updates generated by concurrent transactions. In
high conflict scenarios, where this assumption does not hold,
certification schemes may suffer from undesirably high abort
rates and be prone to trashing [9].

The replication protocol presented in this paper, named
SCert (Speculative Certification), tackles precisely this is-
sue. The key idea at the core of SCert is to reduce the time
to disseminate the updates generated by committing trans-
actions in order to achieve the following two complementary
goals:

• to provide executing transactions with fresher snap-
shots, thus reducing the probability of abort due to
reads from stale data;

• to detect conflicts earlier during transaction execution,
thus reducing the amount of wasted computation and
useless waiting time caused by transactions doomed to
abort.

This is achieved via a speculative approach, which leverages
on the service provided by an Optimistic Atomic Broadcast
(OAB) layer [33]. OAB allows to propagate the post-images
of committing transactions well before their final serializa-
tion order is defined by the AB service. In addition to the fi-
nal, total delivery order notification, which is available only
after several communication steps (typically at least three
[12]), an OAB service also provides an earlier guess of the fi-
nal total order. This guess, called optimistic delivery order,
normally corresponds with the spontaneous network delivery
order and can therefore be made available after a single com-
munication step. Also, as discussed in [33] and confirmed
by our experimental study, the probability of mismatch be-
tween optimistic and final delivery order is typically fairly
low in LANs (< 15%).

SCert takes advantage of this property in a twofold way.
First, it propagates the updates in a speculative serialization
order that corresponds to the sequence of optimistically de-
livered messages. Second, it allows speculatively activated
transactions to further propagate the snapshots they gener-
ate across chains of speculative transactions. This provides
an effective pipelining of speculative transactions that al-
lows to maximize the gains achievable via speculation. On
the other hand, speculation exposes SCert to risks of cas-
cading abort in case of mismatches between the optimistic
and final delivery order of two conflicting transactions. As
we will demonstrate in our experimental study, this rep-
resents an advantageous tradeoff. In all the scenarios we
tested, including those generating higher loads (and conse-
quently mismatches between optimistic and final delivery
orders) the performance penalty associated with the occur-
rence of mismatches between final and optimistic delivery
orders is largely compensated by the benefits achievable by
the aggressive propagation of speculative snapshots.

It should be highlighted that the benefits of speculatively
propagating the snapshots are higher in the context of STMs
than in conventional databases. In fact, unlike classical
database systems, STMs incur neither in disk access laten-
cies nor in the overheads of SQL statement parsing and plan
optimization. This makes the execution time of typical STM
transactions two or three orders of magnitude shorter than
in database settings [34]. Since the ratio between coordi-
nation times and transaction processing times is higher in
STMs, there are also more opportunities to obtain perfor-
mance gains from optimistic schemes that shorten the coor-
dination phase, such as SCert.

In order to evaluate the actual speed-ups offered by SCert
we have developed a complete system prototype based on
JVSTM [7] and the APPIA Group Communication Sys-
tem [28]. While the SCert scheme could be in principle
coupled with STMs that employ different concurrency con-
trol policies, our choice to integrate SCert with a multi-
versioned STM (like JVSTM), is motivated by a twofold rea-
son. First, the multi-versioning concurrency control mech-
anism adopted by JVSTM allows maximizing the perfor-
mance of read-only transactions, preventing them from abort-
ing or ever blocking due to conflicts with write transactions.
Further, since JVSTM already maintains and manages mul-
tiple data item versions, it lends itself naturally to be ex-
tended to support the additional, speculative data item ver-
sions exploited by SCert. Through an extensive experimen-
tal evaluation, based on both synthetic micro-benchmarks,
as well as complex STM benchmarks we show that SCert
achieves speed-ups of up to 4.5x when compared with com-
peting replicated STMs [11].

The remainder of this paper is structured as follows. Sec-
tion 2 discusses relationships with related work. Section 3
presents the system model and Section 4 describes the ar-
chitecture. Section 5 introduces SCert and discusses the is-
sues associated with its integration with JVSTM. Section 6
presents the results of our experimental study. Finally, Sec-
tion 7 concludes the paper.

2. RELATED WORK
There are many similarities among replication of in-memory

software transactional storages and database replication, gi-
ven that they both implement the abstraction of atomic
transactions. Modern database replication schemes [32, 31,
21] rely on Atomic Broadcast (AB) to enforce a global trans-
action serialization order. AB-based schemes are non-blocking
and avoid the scalability problems affecting classical eager
replication mechanisms based on distributed locking and
atomic commitment [14]. They can be classified in two main
categories: optimistic (or certification based) approaches [32,
21] and conservative approaches [22].

Conservative approaches can be seen as an instance of the
classical state-machine (active replication) approach [16].
They serialize transactions through AB prior to their ac-
tual execution, which then follows a deterministic schedule
on each replica. This prevents aborts that could result from
the concurrent execution of conflicting transactions in differ-
ent replicas. On the other hand, they require transactions
to be deterministic. This leads to several drawbacks in re-
alistic settings. First, it demands to intercept and filter any
source of non-determinism in the user level logic (such as in-
teraction with local timers or devices), which may be costly,
intrusive, and non-trivial. Second, enforcing deterministic



thread scheduling at each replica requires a careful identifi-
cation of the data items to be accessed by each transaction,
prior to its actual execution. This is particularly complex
with STMs, since they expose a more loosely structured data
model (e.g., word-based [13] or object-oriented [7] program-
ming interfaces) than relational databases. Finally, these
approaches require update transactions to be fully executed
by all replicas [31], which strongly hampers their scalability
in presence of write intensive workloads.

Optimistic approaches [32, 36], on the other hand, avoid
all of the above problems by executing transactions at a
single node without acquiring any (distributed) lock during
their execution, and relying on a commit-time global certifi-
cation phase to ensure consistency. Unfortunately, in these
approaches local transactions are vulnerable to aborts in-
duced by conflicting transactions that execute concurrently
on remote nodes. This can lead to severe performance degra-
dation in high conflict scenarios, where these approaches
may cause high abort rates. The SCert protocol aims pre-
cisely at tackling this problem. By speculatively exposing
the updates of committing transactions as soon as these are
optimistically delivered, SCert maximizes the chances that
new transactions access a non-obsolete data snapshot (thus
sparing them from a later abort), and provides earlier con-
flict detection for already executing transactions (thus min-
imizing the amount of computational resources wasted by
transactions doomed to be aborted).

The idea of exploiting the early notifications provided by
the spontaneous network delivery order has been originally
proposed in the context of active replication schemes [31,
22]. By activating the processing of a transaction as soon
as the corresponding message is optimistically delivered, the
solution in [22] aims at overlapping the transaction process-
ing and replication phases. Unfortunately, as highlighted
in [30], the effectiveness of this optimization is strongly re-
duced when applied to STMs, given that the transaction
execution times are typically several orders of magnitude
shorter than the AB latency.

The distributed STM solutions we are aware of are those
described in [23, 4, 26, 11, 9, 24, 29, 35]. Here, we will not
discuss the algorithms of [23, 4, 26, 24] as they do not in-
tegrate any fault-tolerance or replication features, which is
the focus of this paper. We will therefore focus our discus-
sion on analyzing the relationships between SCert and the
replication mechanisms employed by [11, 9, 29, 35].

To the best of our knowledge, D2STM [11] has been the
first fault-tolerant replicated STM platform to be proposed.
D2STM adopts an optimistic certification scheme, and uses a
Bloom-filter based encoding scheme to minimize the amount
of information transmitted via the AB primitive, at the cost
of a tunable (and typically negligible) additional abort rate.
D2STM’s bloom filter based certification can be transpar-
ently coupled with our SCert scheme (and indeed the SCert
prototype described in the following does integrate this tech-
nique). Unlike D2STM, however, SCert takes a speculative
approach which allows achieving up to 4.5x speed-ups in
high conflict scenarios, as reported in Section 6.

The Asynchronous Lease Certification (ALC) [9] relies on
AB to enforce agreement on the order of acquisition of lease
requests on subsets of data in a non-blocking, deadlock-free
fashion. This allows replicas that already own leases on the
data accessed by their transaction to disseminate data up-
dates using Uniform Reliable Broadcast (URB) [16], which

is a group communication primitive faster than AB. Further,
by holding leases when a transaction aborts, the transaction
re-execution becomes sheltered from subsequent aborts as
long as it accesses the same data set. The SCert protocol
represents a complementary, lightweight technique, which
may even be combined with ALC protocol to boost its per-
formance. Among the STM replication mechanisms pro-
posed up to date, the ones that are closer in spirit to SCert
are those presented in [35, 29, 5], which also speculatively
process transactions exploiting the optimistic delivery order
notifications provided by an OAB service. The fundamental
difference between SCert and these approaches is that the
latter ones belong to the previously described class of con-
servative, active replication schemes, whereas SCert is, to
the best of our knowledge, the first speculative certification
replication protocol ever proposed in literature.

The large body of literature on Distributed Shared Mem-
ory (DSM) is also related to our work. Early DSM sys-
tems [25] enforced strong consistency guarantees at the gran-
ularity of a single memory access. Those systems have proved
hard to implement with good performance. Due to this rea-
son, a significant body of research was devoted to build DSM
systems that aim at achieving better performance at the cost
of relaxing memory consistency guarantees [20]. Unfortu-
nately, developing software for relaxed DSM’s consistency
models can be challenging as programmers are required to
fully understand sometimes unintuitive consistency models.
Conversely, the simplicity of the atomic transaction abstrac-
tion, at the core of STM platforms, allows to increase pro-
grammers’ productivity [6] with respect to both locking dis-
ciplines and relaxed memory consistency models. Further,
the strong consistency guarantees provided by atomic trans-
actions can be supported through much more efficient algo-
rithms that, like SCert, incur only in a single synchroniza-
tion phase per transaction, amortizing the communication
overhead across a (possibly large) set of memory accesses.

Atomic transactions play a key role also in the Sinfonia [1]
platform, where these are referred to as “mini-transactions”.
However, unlike in conventional (distributed) STM settings
or in SCert, Sinfonia assumes transactions to be static, i.e.
that their data-sets and operations are known in advance,
which limits the generality of the programming paradigm
provided by this platform.

3. SYSTEM MODEL
We consider a system composed of a set of processes Π =
{p1, . . . , pn} that communicate via message passing. We as-
sume that a majority of processes is correct and that the re-
maining minority may fail according to the fail-stop (crash)
model. Furthermore we assume that the system is asyn-
chronous but augmented with an unreliable failure detec-
tor such that a primary partition view synchronous Group
Communication Service (GCS) [10, 2] can be implemented.
GCS integrates two complementary services: membership
and multicast communication. Informally, the role of the
membership service is to provide each participant in a dis-
tributed computation with information about which pro-
cesses are active and which ones are failed. Such informa-
tion is called a group view. The multicast service allows a
member to send a message to the group of participants with
different reliability and ordering properties.

A primary-component group membership service GCS pro-
vides a totally ordered sequence of group views to every



correct participant. Specifically, the GCS delivers to the ap-
plication a viewChange event to notify the alteration of the
(primary component) view, and an ejected event to notify
the exclusion of the process from the primary component
(typically because of a false failure suspicion). We say that
a process is vi-correct in a given view vi if it does not fail
in vi and if vi+1 exists, it transits to it. We assume a GCS
ensuring the following properties on the delivered views:

• Self-inclusion: if process p delivers view vi, then p
belongs to vi.

• Strong view-synchrony: messages are delivered in
the same view in which they were sent.

• Primary component view: the sequences of views
delivered are totally ordered and for any two consec-
utive views vi, vi+1 there always exists a vi-correct
process p that belongs to both views.

• Non-Triviality: when a process fails or it is parti-
tioned from the primary view, it will be eventually
excluded from the primary component view.

• Accuracy: a correct process that is not is partitioned
from the primary view, is eventually included in every
view delivered by the GCS.

The GCS provides an Optimistic Atomic Broadcast (OAB)
[12] communication service, which exports three communi-
cation primitives: OA-broadcast(m), which is used to broad-
cast message m; Opt-deliver(m), which delivers message m
without providing ordering guarantees; TO-deliver(m), which
delivers message m in the final total order. Informally,
OAB ensures total order of the TO-deliver events in a non-
blocking fashion despite process crashes. A TO-Deliver event
for a message m is however always preceded by a correspond-
ing Opt-deliver event, which provides an early, and possibly
incorrect, estimate of the final order in which m will be de-
livered by the OAB service. The OAB service guarantees
the following properties:

• Validity If a vi-correct process p OA-broadcasts mes-
sage m in vi, then p Opt-delivers and TO-delivers m.

• Integrity Any message m is Opt-delivered and/or TO-
delivered by a process p at most once, and only if it
had been previously OA-broadcast.

• Optimistic Order If a node p TO-delivers m, then
node p has previously Opt-delivered m.

• Uniform Agreement If process p TO-delivers m in
view vi, then any vi-correct process TO-delivers m in
view vi.

• Total Order If two processes p and q TO-deliver mes-
sages m and m′, then they do so in the same order.

4. SCERT ARCHITECTURE
The architecture of the software deployed on each replica

is illustrated in Figure 1. The top layer is a wrapper that
intercepts the application level calls for transaction demar-
cation (i.e. to begin, commit or abort transactions), not
interfering with the application (read/write) access to the
transactional data items, which are managed directly by the

Distributed STM API Wrapper

JVSTM

Replication Manager

Speculative 
Extensions

Group Communication Service

Application

Figure 1: Architecture of a SCert replica.

underlying STM layer. This approach allows for transpar-
ently extending the classic STM programming model to a
distributed setting.

The mechanisms for maintaining and managing specula-
tive data item versions are provided by the two core com-
ponents of the SCert protocol: the STM’s Speculative Ex-
tensions (SE) and the Replication Manager (RM). We have
opted to implement the SE for a multi-versioned STM, namely
JVSTM [7]. As already mentioned in the Introduction sec-
tion, JVSM maximizes the performance of read-only trans-
actions and, since it already embodies mechanisms to main-
tain multiple copies of the same data, it lends itself naturally
to support the additional speculative data item versions re-
quired by SCert. We will detail thse mechanisms in Sec-
tion 5.2. The RM is responsible of coordinating the commit
phase, implementing the speculative certification scheme by
leveraging on the services provided by the STM, the SE and
the GCS.

Finally, the bottom layer is the Group Communication
Service [10], which provides the view synchronous OAB ser-
vices. All the experiments described in this paper have been
performed using the Appia GCS [28]. However, to maximize
portability, our implementation uses a generic GCS, namely
JGCS [8], which supports several other group communica-
tion implementations.

5. THE SCERT PROTOCOL
Before delving in the detailed description of the SCert pro-

tocol, we provide a brief, informal overview of its key mecha-
nisms. As in conventional certification protocols, e.g. [11], in
SCert transactions are run locally, without incurring in any
replica coordination during their execution. Once a trans-
action reaches its commit phase, it is first locally validated
and then its read-set and write-set are disseminated to all
replicas by means of an (optimistic) atomic broadcast. Un-
like conventional certification protocols, however, SCert does
not wait until the final delivery order of the atomic broad-
cast is known to certify the transaction. Instead, SCert
speculatively certifies a transaction as soon as the broad-
cast is optimistically delivered. If the validation succeeds,



the transaction is speculatively committed.
Note that the application call to commit a transaction

does not return if the transaction is only speculatively com-
mitted. Therefore, user-level code is not affected by mis-
peculations that may result from a mismatch between the
optimistic and final delivery orders. Still, the post-images
(i.e. the values of the write-set) of a speculatively commit-
ted transaction are applied (added) to the STM and marked
as speculative. A speculatively committed transaction will
eventually be finally committed, its updates marked as com-
mitted and the user-level code allowed to return from the
invocation of the commit method. Speculative values only
become committed values if there is no mismatch between
the optimistic and the final order of the OAB or, when a
mismatch occurs, if the transaction can be safely re-ordered.
Roughly speaking, the latter case corresponds to scenarios in
which the transaction did not develop any read-from depen-
dency from transactions that were speculatively committed
in a serialization order not conciliable with the final delivery
order.

Speculatively committed versions of data items (simply
named speculative versions) are immediately made available
to new transactions. Therefore, new transactions are tenta-
tively serialized after the last speculatively committed trans-
action, thus improving their chances to observe a non-stale
snapshot. In the following, transactions that are activated
while the local STM maintains speculative versions will be
denoted as speculative transactions.

In SCert, speculative transactions that enter their commit
phase can also atomically broadcast, in their turn, a certi-
fication request. Upon the optimistic delivery of a specu-
lative transaction T , T is validated to detect conflicts not
only against committed transactions, but also against specu-
latively committed transactions that were optimistically de-
livered before T . This allows to generate a chain of specu-
latively committed transactions that are serialized in an or-
der compliant with the sequence of optimistic deliveries. In
other words, during the time window that starts with the op-
timistic delivery of a transaction T and ending with its final
delivery, SCert strives to serialize any concurrently execut-
ing T 1, . . . , Tn according to their optimistic delivery order,
achieving an overlap between communication and process-
ing that is not possible with a conventional (non-speculative)
certification scheme.

Furthermore, SCert also exploits speculative versions to
implement early conflict detection. As soon as a transaction
T is speculatively committed, any other local transaction
that i) was serialized before T , and that ii) has read, or
reads, a data item updated by T is immediately aborted.
Whenever the optimistic order matches the final delivery
order, this early abort mechanism prevents the waste of
time/computational resources with respect to conventional
certification schemes, where conflicts are only detected upon
the final AB delivery.

The remainder of this section is structured as follows. In
Section 5.1, we start by providing an overview of the key
mechanisms of JVSTM, followed by a discussion, in Sec-
tion 5.2, on how JVSTM has been extended to maintain and
manage speculative versions. Next, in Section 5.3, we de-
scribe how the Replication Manager orchestrates the execu-
tion of transactions across the distributed STM platform. In
Section 5.4 we highlight the performance benefits of SCert,
by illustrating some of its execution sketches. Finally, in

Section 5.5 we provide some informal arguments on its cor-
rectness.

5.1 Overview of JVSTM’s internals
JVSTM implements a multi-version scheme which is based

on the abstraction of a versioned box (VBox). A VBox is
a container that keeps a tagged sequence of values - the
history of the versioned box. Each of the history’s values
corresponds to a change made to the box by a successfully
committed transaction and is tagged with the timestamp
of the corresponding transaction. The versions of VBox are
arranged into a linked list, whose head maintains the version
created by the last transaction that committed (and issued
a write on the VBox).

To keep track of the serialization order of transactions,
JVSTM maintains a global integer timestamp, commitTimes-
tamp, which is incremented whenever a transaction com-
mits. Each transaction stores its timestamp in a local snap-
shotID variable, which is initialized at the time of the trans-
action activation with the current value of commitTimes-
tamp. This information is used both during transaction ex-
ecution, to identify the appropriate values to be read from
the VBoxes, and, at commit time, during the validation
phase, to determine the set of concurrent transactions to
check against possible conflicts.

More in detail, when a transaction T having snapshotID=s
issues a read operation on a VBox X, JVSTM returns the
version stored in X associated with the largest timestamp
smaller or equal to s. In other words, it returns the version
created by the last transaction that i) has issued a write on
X and ii) was serialized before T . For what concerns write
operations, JVSTM stores the values written by a trans-
action in a private buffer, and applies them to the corre-
sponding VBoxes only at commit time, provided that the
transaction passes a validation phase.

The validation is performed by checking whether any of
the VBoxes read by a transaction T has been updated by
some committed transaction T ′ with a larger timestamp.
In this case T is aborted. Otherwise, T is committed by
atomically executing (within a critical section) the follow-
ing operation. The commitTimestamp variable is increased,
and the transaction’s snapshotID is set to the new value of
commitTimestamp. Finally the new values of all the VBoxes
written by the transaction are appended to the linked list
of versions tagged with the current value of commitTimes-
tamp.

As a final note, JVSTM integrates a garbage collection
mechanism that detects if there are versions stored within
some VBox that are no longer visible by any currently active
transaction. The interested reader may refer to [7] for a
detailed description of this mechanism.

5.2 JVSTM Extensions for Speculative Trans-
actions

In order to maintain and manage speculative versions, the
following extensions have been integrated in JVSTM. In ad-
dition to commitTimestamp, JVSTM now maintains an ad-
ditional global timestamp called speculativeTimestamp that
is incremented whenever a transaction is speculatively com-
mitted. Note that since a transaction is only committed
after it is final delivered, and given that a final delivery
for a message is always preceded by its optimistic delivery,
it follows that speculativeTimestamp ≥ commitTimestamp.
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Figure 2: VBox with speculative versions.

Also, speculativeTimestamp = commitTimestamp only if
currently there are no speculatively committed transactions
(and consequently speculative data items’ versions). When-
ever a transaction is activated, its snapshotID variable is
assigned the current value of speculativeTimestamp, thus
serializing it after the last speculatively committed transac-
tion.

To distinguish between speculative and non-speculative
data item versions, we extended the original JVSTM VBox
data structure as shown in Figure 2. The VBox stores both
committed and speculative versions into a single linked list,
maintaining one reference to the most recent committed ver-
sion (lastCommitted) and one to the most recent speculative
version (lastSpeculative). Unlike final committed versions,
versions created by speculatively committed transactions are
not associated with a version timestamp; instead, they store
a reference to a data structure that keeps the snapshotID,
the read-set, and the write-set of the (local or remote) trans-
action that created them. As we will see in Section 5.3,
this indirection mechanism allows to manage efficiently the
case in which, due to mismatches between optimistic and fi-
nal delivery orders, speculative transactions need to be final
committed in an order different from that in which they had
been originally speculatively committed.

These additional data structures are used to implement
early conflict detection. In JVSTM, if during a read oper-
ation a transaction T realizes that a version tagged with a
timestamp larger than its own snapshotID is already stored
within the VBox, T is not aborted right away. Conversely,
T navigates the linked list of versions to retrieve the version
generated by the last transaction that committed before T
started. This prevents read-only transactions from aborting
(by serializing them in the past). Unfortunately, for up-
date transactions, even though at this stage T is already
doomed to abort, JVSTM will only abort it during the val-
idation phase taking place during T ’s commit phase. In our
speculative version of JVSTM, we patched this suboptimal
behavior by immediately aborting an update transaction T
that reads a VBox for which a (committed or speculatively
committed) version exists with a timestamp larger than T ’s
snapshotID.

Furthermore, in order to allow the RM to orchestrate the

SCert replication protocol, the JVSTM API has been ex-
tended with the following primitives:

specCommit(Transaction T) This method speculatively
commits a transaction T . To this end, it increases
speculativeTimestamp, assigns the new value to T’s
snapshotID, and updates the VBoxes of all items in
T’s write set. The VBoxes are updated as follows: i)
a new speculative version is added to the head of the
versions’ list tagged with the current value of specu-
lativeTimestamp, and ii) the lastSpeculative pointer is
set to this new version.

specAbort(Transaction T) This method is used to abort
a previously speculatively committed transaction. To
this end, it eliminates the corresponding speculative
versions of data items in T’s write-set from their VBoxes
(updating the lastSpeculative pointer accordingly).

specValidate(Transaction T) This method validates T
by iterating over its read-set and returning true only
if T has read the most recent speculatively or finally
committed version of each data item.

validate(Transaction T) This method validates T by it-
erating over its read-set and returning true only if T
has read the most recent finally committed version of
each data item.

commit(Transaction T) This method finalizes the com-
mit of a transaction T that is currently the oldest
of the speculatively committed transactions. To this
end, it increases the commitTimestamp and updates
the VBoxes of all items in T’s write-set. The VBoxes
are updated as follows: i) the speculative version pre-
viously created by T is replaced by a non-speculative
version tagged with the current value of commitTimes-
tamp, and ii) the lastCommitted pointer is set to this
new version.

abort(Transaction T) This method aborts the transac-
tion T . Since the transaction will not be applied to
memory, all the data of this transaction is discarded,
including the read-set and the write-set.

specOutOfOrderCommit(Transaction T) This method
is used to speculatively commit a transaction without
adding its write-set to the head of the linked list of
versions. To this end, it first increases speculative-
Timestamp and assigns it to T’s snapshotID. Next,
for each data item in T ’s write-set, it inserts into the
corresponding VBoxes a speculative version after the
speculative version created by the transaction with the
largest not null snapshotID. If no such transaction ex-
ists, T ’s version is just inserted after the last commit-
ted version. Finally, the lastSpeculative pointer is set
to refer to the version created by T .

outOfOrderCommit(Transaction T) This method is used
to commit a transaction T that is not currently the old-
est of the speculatively committed transaction. As we
will see this is possible either because T was not previ-
ously speculatively committed (upon its optimistic de-
livery), or because it was speculatively committed in a
different order. In both cases the commitTimestamp is
increased and the lastCommitted pointer is set to refer



to a new non-speculative data item version that is in-
serted between the last finally committed version and
the first speculatively committed version (if any). If
T had previously been speculatively committed, how-
ever, any speculative version it had previously stored
in JVSTM is also erased.

5.3 Replication Manager
The pseudocode describing the behavior of the RM is

shown in Algorithm 1 and Algorithm 2. As outlined be-
fore, transactions execute in a single machine, accessing the
most recent speculatively committed snapshot available at
the time they were activated. The RM is activated whenever
a local transaction requests to commit. At this point, the
transaction undergoes first a local validation. Conflicts with
concurrent transactions that have already locally (specula-
tively or finally) committed are detected at this stage. If
this validation fails, the transaction is immediately aborted.
Otherwise, its read-set, write-set, and snapshotID are sent to
all replicas using the OA-broadcast primitive (described in
the Section 3). At this point, the user call becomes blocked
until the transaction outcome is defined.

A transaction is received by all nodes twice. The first
time, it is received by the Opt-deliver primitive, which pro-
vides an early estimate of the final delivery order. As already
discussed, SCert leverages on the observation that in a local
network, the spontaneous order of delivery of the messages
from the network coincides, with high probability [22], with
the final total delivery eventually determined by the OAB
service.

Optimistic Delivery
When the transaction is optimistically delivered, it is vali-
dated to detect possible conflicts with the transactions that
committed so far, either finally or speculatively. This phase
is called speculative validation. If it successfully passes this
phase, the transaction is speculatively committed and the
transaction is appended to the specComm set. Otherwise,
the transaction is added to the specAborted set. Note that
at this stage the transaction is not aborted yet. The trans-
action may in fact be still committed if, upon its final de-
livery, a mismatch between the optimistic and final delivery
orders is detected, and if the serialization order determined
by the final delivery order results to be equivalent to the
one in which the transaction was originally processed. In
both cases, the transaction is added to the optDel queue.
As we will see, this queue will be later used to detect pos-
sible mismatches between the optimistic and final delivery
orders.

Final Delivery of Aborted Transactions
Upon TO-delivery of a transaction T , it is first checked (via
the isFinalAborted method) if the transaction has already
been aborted. As we will see, this can happen in case T had
observed the speculative snapshot generated by a transac-
tion T ′ that was later on aborted, generating the cascading
abort of T . In this case, T is simply removed from the optDel
queue.

Final Delivery with “Matching-Order”
If the outcome of T has still to be determined, it is checked
whether T is at the head of the optDel queue. If it is true,
this means that the final delivery order matches the opti-

Algorithm 1: Replication Protocol (Part I).

FIFOQueue<Transaction> optDel = ∅
Set<Transaction> specComm = ∅
Set<Transaction> specAborted = ∅

void commit (Transaction T)
if ( ¬ JVSTM.specValidate (T) ) then

JVSTM.abort (T)
else

trigger OA-broadcast [T]
wait until ( isTransactionFinished (T) ∨ ejected )
if ( ejected ) then

JVSTM.abort (T)

boolean isTransactionFinished (Transaction T)
return ( JVSTM.isAborted (T) ∨ JVSTM.isCommitted (T) )

upon event Opt-deliver ([Transaction T]) atomically do
optDel.add (T)
if ( ¬JVSTM.validate (T) ) then

JVSTM.abort (T)
else

if ( ¬JVSTM.specValidate (T) ) then
specAborted.add (T)

else
specComm.add (T)
JVSTM.specCommit (T)

upon event TO-deliver ([Transaction T]) atomically do
if ( JVSTM.isFinalAborted (T) ) then

optDel.remove (T)
else

if ( optDel.getFirst () 6= T ) then
handleOutOfOrder (T)

else
optDel.removeFirst ()
if ( specAborted.contains (T) ) then

specAborted.remove (T)
JVSTM.abort (T)

else
specComm.remove (T)
JVSTM.commit (T)

mistic delivery order. In this case, the transaction’s out-
come (abort or commit) can be easily determined by check-
ing whether the transaction has been placed in the spec-
Comm set or in the specAborted set. If the transaction had
executed locally and was speculatively aborted, the local in-
stance of JVSTM is notified. This last step is not necessary
if the transaction has been executed remotely, as the local
instance of JVSTM has no knowledge of the transaction. If
the transaction is committed, the commit() method is called
to update the VBoxes as detailed in Section 5.2.

Final Delivery with “Mismatching-Order”
On the other hand, T is not at the head of the optDel queue,
then a mismatch between the optimistically delivery and fi-
nal delivery has occurred. Naturally, this is the most com-
plex scenario that has to be managed by SCert. The pseudo-
code for this case is depicted in the handleOutOfOrder()
method (see Algorithm 2).

After removing T from the optDel queue, T is validated
to detect whether, despite the misalignment between the
optimistic and final delivery orders, it can still be serialized
immediately after the last finally committed transaction. If
this validation fails and T had not been previously specu-
latively committed, T can be aborted right away, since no
other transaction may have ever observed its snapshot.

Additional care is needed in the following two cases:



Algorithm 2: Replication Protocol (Part II).

void handleOutOfOrder (Transaction T)
optDel.remove (T)
boolean outcome = JVSTM.validate (T)
if ( ¬ outcome ∧ specAborted.contains (T)) then
// avoid revalidate other txs
specAborted.remove (T)
JVSTM.abort (T)

else
temporarily block activation of new transactions
abort local transactions not yet in their commit phase
if ( ¬ outcome ) then

specComm.remove (T)
JVSTM.abort (T)

else // tx out of order, but still committable
if ( specAborted.contains (T) ) then specAborted.remove (T)
if ( specComm.contains (T) ) then specComm.remove (T)
JVSTM.outOfOrderCommit (T)

revalidateOptDelTxs ()
unblock activation of new transactions

void revalidateOptDelTxs ()
JVSTM.lastSpeculativeTimestamp =
JVSTM.lastCommittedTimestamp

foreach Transaction T ∈ optDel ∧¬ JVSTM.isFinalAborted (T) do
// reset snapshotIDs before re-assigning them
T.snapshotID = null

foreach Transaction T ∈ optDel ∧¬ JVSTM.isFinalAborted (T) do
if ( ¬JVSTM.validate (T) ) then

JVSTM.abort(T)
else

if ( ¬JVSTM.specValidate (T) ) then
if ( specComm.contains (T) ) then

// Tx prev. speculatively committed
specComm.remove (T)
specAborted.add (T)
specAbort (T)

else // Tx passed speculative validation
if ( specAborted.contains (T) ) then

// Tx prev. speculatively aborted
specAborted.remove (T)
specComm.add (T)
JVSTM.specOutOfOrderCommit (T)

else // Tx already spec. committed, update its snapshotID
T.snapshotID = ++JVSTM.lastSpeculativeTimestamp

• T had previously been speculatively committed, but
it needs to abort. In this case, in fact, T ’s snapshot
may have already been observed by other transactions,
that may possibly be still executing (i.e. not yet in their
commit phase).

• T may be (finally) committed. In this case, either T
had been previously speculatively aborted, or had been
speculatively committed in a different serialization or-
der. Either way, this can impact both the speculative
decision (commit/abort) already taken for the remain-
ing optimistically delivered transactions, and the snap-
shots observed by currently executing transactions.

In order to avoid currently executing transactions from ac-
cessing inconsistent snapshots and suffering of anomalies due
to the loss of opacity [15], the required readjustments of the
speculative snapshots are done only after having blocked
new transactions from starting and after having aborted
any ongoing transaction. Also, only after having concluded
readjusting the speculative snapshots, the activation of new
transactions will be allowed again.

The snapshot realignment consists of the following steps.
First, the outcome of transaction T is finalized either via the
abort() or the outOfOrderCommit(), depending on the

Algorithm 3: Replication Manager at process pi - Deal-
ing with View Changes.

View currentView={p1,. . .,pi,. . .,pn}
boolean inPrimaryComponent=true

upon event ViewChange(View newView) do
if (¬inPrimaryComponent ∨ pi is joining for the first time) then

perform state transfer
inPrimaryComponent=true

else
∀pj s.t. (pj ∈ currentView ∧ pj /∈ newView) do

∀ T ∈ specComm s.t. T.proc = pj do
specComm.remove (T)

∀ T ∈ specAborted s.t. T.proc = pj do
specAborted.remove (T)

∀ T ∈ optDel s.t. T.proc = pj do
optDel.remove (T)

currentView = newView

upon event ejected do
inPrimaryComponent=false

output of its validation phase. At this point, in the reval-
idateOptDelTxs() method, the remaining optimistically
delivered transactions are revalidated to take into account
the unexpected order in which T was committed. This also
includes reassigning the snapshotID timestamps to every
transaction which were found to be speculatively commit-
table. To achieve this result, SCert starts by setting the
lastSpeculativeTimestamp to lastCommitTimestamp and re-
setting the snapshotIDs of all the optimistically delivered
transactions. This has the effect of resetting the STM to the
state it had before having speculatively committed any of
the optimistically delivered transactions. Next, SCert iter-
ates over these transactions following their (updated) order
of optimistic delivery. Each of them is first validated against
the already committed transactions and, in case the first
validation succeeds, against those that have already been
speculatively committed. If the speculative validation fails,
the transaction is simply speculatively aborted. If it suc-
ceeds, however, it is checked whether the transaction had
previously been speculatively committed or aborted. In the
former case, it means that its snapshot is already present
in memory. Thus it suffices to increase the lastSpeculative
timestamp and assign its updated value to the transaction’s
snapshotID. If the transaction was previously speculatively
aborted, instead, its write-set must be applied, in the right
order, in the linked list of versions maintained by the cor-
responding VBoxes. This is done using the specOutOf-
OrderCommit() primitive (see Section 5.2).

Dynamic Membership
It remains to discuss the replicas’ behavior in the presence
of view changes and ejections from the primary component
view, which is shown in the pseudo-code in Algorithm 3.
Upon delivery of a new view event, if the replica re-joins the
primary component or is joining the group of replicas for
the first time, it triggers a state transfer procedure that re-
aligns the content of the local replica of the STM, as well as
of the state variables of the replication protocol. The state
transfer procedure is a complex task that can be solved us-
ing several existing mechanisms (e.g. [19]), and will not be
further detailed in this paper.
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Figure 3: Comparing SCert with a classic certification protocol. SC and FC stand for, respectively, Specula-
tive Commit and Final Commit.

5.4 Example execution sketches
To clarify the dynamics of the SCert protocol, in the dia-

gram of Figure 3 we illustrate two sketches of its execution,
contrasting it with analogous execution sketches for a con-
ventional certification protocol, such as [11, 32].

On the left side of the diagram, it is shown the execution
of three conflicting concurrent transactions, T1, T2 and T3,
which all issue a read and write operation on a data item
X. Let us assume that the transactions are executed on dif-
ferent replicas, even though the same considerations drawn
in the following would apply in case the transactions were
all executing in the same machine. Note that the execution
times of transactions and atomic broadcast are not in scale
as, in typical STM applications, the average transaction ex-
ecution time is normally several orders of magnitude smaller
than the completion time of atomic broadcast.

In non speculative certification schemes, the post-images
of the data updated by transactions are propagated only
after the corresponding message is final delivered. As the
level of concurrency among transactions grows, the chances
that transactions miss the snapshots generated by previously
completed transactions increase significantly, leading to a
corresponding increase of the abort rate. Due to this, in
the example reported in Figure 3, both transactions T2 and
T3 would need to abort, as both have read an obsolete ver-
sion of X. In SCert, conversely, transactions T2 and T3 can
benefit from the early propagation (via optimistic delivery)
of speculatively committed snapshots and can be success-
fully committed if, as considered in this example, there is
no mismatch between optimistic and final delivery orders.

Note that, in this example, the speculative propagation of
snapshots takes place through a chain of transactions, as
T2 reads the version of X generated by T1, and T3 ob-
serves the version of X written by T2. This brings two main
benefits: i) it reduces the abort rate of concurrent trans-
actions by exposing fresh data to the system sooner, ii) it
allows overlapping the processing of transactions with the
commit process. The execution sketch shown on the right
side of Figure 3 illustrates the benefits deriving from the
early abort notification scheme provided by SCert. Even in
scenarios where it is not possible to propagate the snapshots
of a concurrent transaction in time, as in the case of T2 that
has already issued a read operation on X before T1 is op-
timistically delivered, SCert exploits speculation to abort
immediately transactions that will certainly abort once that
they will be final delivered in absence of mismatches be-
tween the optimistic and final delivery orders. Clearly, the
effectiveness of SCert depends significantly on the probabil-
ity that the optimistic order matches the final (total) order
and, consequently, it results particularly attractive in Lo-
cal Area Networks, where the probability that the network
spontaneous order will match the final order is high. When
considering, for instance, the scenario on the left side of Fig-
ure 3, had the final delivery order been {T3,T2,T1}, SCert
would have induced the abort of T3 and (the cascading abort
of) T2, committing only T1. It is noteworthy to highlight,
however, that, also this worst case scenario for SCert, SCert
would not have been outperformed by a conventional certifi-
cation protocol; a non-speculative protocol would also have
committed only one transaction (namely T3).
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deliveries (Bank benchmark).

5.5 Correctness arguments
Our target consistency criterion for replication is 1-copy

serializability [3], which ensures that the execution history
of committed transactions across the whole set of replicas is
equivalent to a serial transaction execution history on a not
replicated STM. In SCert a transaction returns from an ap-
plication’s commit request only if the OAB service has estab-
lished its final delivery order for which group-wide consensus
is ensured. Further, a replica final commits a transaction T
only if it passes a deterministic validation phase that en-
sures that T has been serialized in an order compliant with
the OAB’s final delivery order. To this end, SCert performs
a first speculative validation upon the optimistic delivery of
transactions. At this stage, however, no irreversible decision
on the transaction’s outcome is taken, or is externalized to
user level applications. This only occurs upon final deliv-
ery of transaction. If at this point, it is found out that the
optimistic and final delivery orders coincided, SCert avoids
re-validating the transaction (as this would yield the same
result of the speculative validation), and simply confirms
the outcome of the speculative validation, final committing
or aborting the transaction. If, on the other hand, upon
the final delivery of transaction T a replica detects that the
optimistic delivery order has been contradicted by the final
delivery order, a corrective action is taken which re-validates
both T and every optimistically (but not yet finally) deliv-
ered transaction. This ensures that the final decision taken
on T ’s outcome is identical at each replica. Also, it guar-
antees that the outcome of the speculative validation for
optimistically delivered transactions is consistent with the
updated optimistic and final delivery orders. This allows to
safely avoid further validations in the future, if optimistic
and final delivery orders were to no longer diverge.

SCert preserves the strong atomicity [27] and opacity [15]
properties provided by JVSTM. The former property avoids
conflicts among transactional and non-transactional mem-
ory accesses. Opacity [15], on the other hand, can be infor-
mally viewed as an extension of the classical database se-
rializability property with the additional requirement that
also non-committed transactions are prevented from observ-
ing inconsistent states, namely snapshots that could not be
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Figure 5: Bank Benchmark.
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Figure 6: STMBench7.

generated in any sequential transaction execution history.
Strong atomicity is ensured by JVSTM at the language

level, via the VBox abstraction, which prevents the possi-
bility for any non-transactional manipulation of its state.
Layering on top of JVSTM, and sharing the reliance on the
VBox abstraction, SCert simply inherits this property.

Opacity in SCert is guaranteed since every transaction is
forced, since its start, to observe a consistent snapshot ob-
tained by sequentially executing transactions according to
the order defined by the delivery of messages of the OAB
service. More in detail, SCert forces the underlying STM to
serialize all transactions according to the optimistic delivery
order. The validation phase performed as transactions are
optimistically delivered, in fact, allows speculatively com-
mitting a transaction only if it can be serialized after the
last speculatively committed transaction. In absence of mis-
matches between the optimistic and final delivery orders,
this serialization order is then simply confirmed as the OAB
establishes the final delivery order. Were the two message
delivery orders differ, SCert atomically aborts any transac-
tion that was speculatively serialized in an order that is not
conciliable with the final delivery order and reassigns times-
tamps to the remaining speculatively transactions. Before
doing this, however, SCert aborts every ongoing transaction
and prevents new transactions to start until this reconcilia-
tion phase is completed. This clearly rules out the possibility
that ongoing transactions can observe any inconsistent state
during this phase.

6. PERFORMANCE EVALUATION
In this section we report results from an experimental

study aimed at quantifying the performance gains achievable
by SCert when compared with non-speculative certification
based protocols. To this purpose, we have used as a baseline
the D2STM [11] protocol. D2STM is an Atomic Broadcast
based certification scheme that embodies a number of opti-
mizations to maximize performance by minimizing the size
of the messages disseminated during the certification phase
via Atomic Broadcast. In the remaining of the text we refer
to this protocol solely as “CERT”.

Our testbed platform consists of a cluster of 8 nodes, each

one equipped with two Intel Quad-Core XEON at 2.0 GHz,
8 GB of RAM, running Linux 2.6.32-26-server and intercon-
nected via a private Gigabit Ethernet. The results shown in
this section are an average of 10 runs, each lasting between
10 and 30 minutes.

6.1 Bank Benchmark
We start by considering a synthetic workload, obtained

by adapting the Bank Benchmark originally used in [17].
In this benchmark, each transaction transfers an amount
between variables representing distinct bank accounts. This
is a simple benchmark that has the advantage of providing
a fine control on the conflict rate. We have initialized the
benchmark such that all nodes replicate an array of accounts
of size numMachines·numThreads·2 items. Depending on
the accounts accessed by each transaction, we can have from
0% to 100% conflicts among concurrent transactions.

We performed experiments to evaluate the performance
of SCert in a scenario where all transactions touch the same
accounts, i.e., where we have 100% conflicts. The number
of replicas varied between 2 and 8, and we fixed the num-
ber of threads on each replica. Depending on the test, we
configured the number of threads between 1 or 8. Since all
nodes are continuously processing very small transactions
and sending OAB messages, this quickly saturates the group
communication service and generates a significant amount of
contention in the network.

Figure 4 shows the number of messages that were delivered
out of order by the Opt-delivery primitive when 8 threads
are used. As it is shown in the figure, even in a high network
contention scenario the number of messages optimistically
delivered out of order never goes over 15%.

Figure 5 reports the speed-ups achieved by SCert with re-
gard to CERT, as well as the observed abort-rate for both
SCert and CERT. It can be observed that SCert is able to
improve the system performance up to a striking 4.5x factor
(see Figure 5(a)) when compared with CERT, even for small
reductions in the abort rate. SCert provides the best results
when the conflict rate is high but the network is not satu-
rated (this is achieved by using 8 threads on just 2 replicas).
When the network load increases (more replicas are used),



the performance advantages of SCert decrease but, in most
cases, SCert is still able to reduce significantly the abort rate
in the system (as shown in Figures 5(b) and 5(c)).

6.2 STMBench7
We now show results using STMBench7, a richer bench-

mark featuring a number of operations with different levels
of complexity over an object-graph with millions of objects.
Figure 6 depicts the performance of both protocols using the
“write dominated” workload. As before, each plot shows the
speed-up of SCert over CERT and the abort rate of both
protocols (SCert and CERT). The number of replicas varies
between 2 and 8 and we fixed the number of threads to
2. Unsurprisingly, the speed-ups achieved by SCert (Fig-
ure 6(a)) are higher in the scenarios where CERT suffers
from higher abort rates (Figure 6(b)). This shows that also
with realistic, complex applications, like STMBench7, the
speculation mechanism employed by SCert succeeds in sig-
nificantly reducing the abort rate, boosting throughput, on
average, by about 45%.

7. CONCLUSIONS
This paper has introduced a new Speculative Certifica-

tion protocol, named SCert, to implement distributed repli-
cated STMs. SCert leverages on Optimistc Atomic Broad-
cast (OAB) protocols to speed-up the propagation of write-
sets, reducing the number of transactions that read stale
data and allowing early detection of conflicts among trans-
actions. This novel manner of exploiting OAB is much more
suited for STM implementations than previous strategies
designed for database replication, that were based on active
replication. By aggressively using speculation, SCert is able
to achieve performance gains of up to 4.5x when compared
to non-speculative certification schemes. We also plan to
apply the key idea underlying the SCert protocol, namely
speculatively propagating information on the data accessed
by transactions prior to the completion of the group com-
munication primitive used to disseminate this information,
to the Asynchronous Lease proptocol described in [9].
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