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About me: scientific career

* MSc at Tor Vergata (2002)
* Thesis on Formal Verification of the HTTPR protocol (Adv. Prof. B. Ciciani)

* PhD at Sapienza (2004-2007)
* Protocols for End-to-End Reliability in Multi-tier systems (Adv. Prof. F. Quaglia)

* PostDoc at Rome University (2007)

 Senior Researcher at INESC-ID, Lisbon, Portugal (2008-today)
 Assistant Professor, Comp. Engineering, U. Lisbon (2011-2015)
* Associate Professor, Comp. Engineering, U. Lisbon (2015-today)



About IST

* IST, Lisbon University:
* Top engineering school of Portugal
* Two sites: Lisbon center & Tagus Park

* Computer Engineering Department:
* 91 Faculty members, 5 scientific areas
* Pioneering open search process for faculty positions

* Courses I've been teaching so far:
* BSc: Operating Systems, Computer Architectures

* MSc: Highly Dependable Systems, Distributed Systems
* PhD: Advance Topics in Parallel & Distributed Systems




About INESC-ID

e Research center affiliated with IST
* Partly owned by IST

* No-profit & private nature enables agile processes (e.g., hiring, purchases)

* Hosts researchers (mostly IST faculty members) with diverse background

e Strong impulse to pursue interdisciplinary research
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About INESC-ID

* | am a member of the Distributed Systems Group
15 faculty members from IST
2 full professors, 5 associate professors, 8 assistant professors
* Expertise in a broad range of areas, including: o oo
« Autonomic computing Dmm  —

e Fault tolerance o
. . uppo o o esources
* Mobile computing offce offce

 Parallel programming :

* Theory of distributed computing
* Transaction processing | :
 Security ° ° ° ° °

e Member of the Scientific Board of the INESC-ID in 2018
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* Transactional Memory & emerging HW technologies:

* Persistent Memory
* GPUs

* Leveraging Symbolic Execution for Distributed Transactional Systems
* Parallel/distributed platforms for Machine Learning



Past research activities:
MsC Thesis (2002)

 Formal Verification of HTTPR

e Extension of HTTP to ensure exactly-once semantics
* Goal: enhance reliability of Web Services
* very hot topic back in the days!

* Model checking of HTTPR specification (PROMELA & SPIN)



Past research activities:
PhD thesis (2003-2006)

* Jointly address reliability and performance issues in multi-tier systems

* Mix of theory and systems:

* Theory: minimum synchrony requirements for solving the e-Transaction problem
* End-to-end reliability guarantees in three-tier system
* In a nutshell: exactly-once semantics despite failures of clients, mid-tier, back-end DBMS(s)
* Practice: multi-path/parallel invocation schemes in multi-tiered applications
* Goal: reduce client-perceived latency in geo-distributed systems

Client Application Servers DBMSs




Past research activities:
PostDoc@Sapienza(2007) (1/3)

* Approximate solution of MMPP/MMPP/1 queues

* Markov Modulated Poisson Processes:
* Poisson processes whose means change according to a Markov Chain
» Useful to capture burstiness, self-similarity, failure/recovery of servers
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Past research activities:

PostDoc@Sapienza(2007) (2/3)

e Efficient replication schemes for data streaming applications

Sensing Replicated sinks
devices
filter/correlate input streams and output
* RFID relevant events, e.g.:

. ng> + objects entering/exiting an area

Back-end data center

* centralized component
(at the logical level)




Past research activities:
PostDoc@Sapienza(2007) (3/3)

* Performance modelling of Multi-Version Concurrency Control
 Analytical model of Oracle’s MVCC scheme

* Main publication: MASCOTS’08




Past research activities:
PostDoc@INESC-ID (2008-2010) (1/2)

* Distributed Software Transactional Memory

* My group at INESC-ID pioneered this research area
* Hot topic at the intersection between STM and distributed databases

* Advantage position thanks to FénixEDU
* Management system of IST’s teaching activities (Moodle-like)

* One of the first systems to adopt STM in production....
» ...and faced with real reliability and scalability challenges!

e Research funded by 2 Portuguese research projects :

 PASTRAMY, coordinated by Prof. Luis Rodrigues
e ARISTOS, my first project as coordinator




Past research activities:
PostDoc@INESC-ID (2008-2010) (2/2)

* Investigation of a number of research lines: .[M‘.),

* Design of novel replication protocols for STM
* PhD thesis of Nuno Carvalho (IST)

» Speculative transaction processing techniques
* PhD thesis of Roberto Palmieri (Sapienza)

* PhD thesis of Maria Couceiro (IST)

* Performance modelling of STM concurrency control schemes
* PhD thesis of Pierangelo Di Sanzo (Sapienza)



Past research activities:
Assistant Professor@I|ST (2011-2015)

* Research propelled by 3 EU projects:

* Cloud-TM (serving as coordinator)
e Distributed TM platform for the Cloud
* Natural evolution of previous research on DTM, with emphasis on:
* Scalability
* Elasticity
e Self-tuning
 FastFix (participant)
* Reducing cost and latency of software maintenance
* INESC-ID focus: deterministic fault replication
* in multi-threaded applications (non deterministic scheduling)
* anonymizing sensible application data
e Euro-TM (serving as chair)
* Pan-european research network on Transactional Memory



Past research activities:

Cloud-TM (2011-2013

-

* low #resources:
- minimum costs
* primary-backup:
- low % write:

low load on primary

* auto-scale up:

- new nodes hired for
read-only requests
* primary-backup:

- low % write:
primary stands the lood

* multi-master:

- hi % write:
primary overwhelmed

* higher scalability

*auto-scale down:
- minimum costs

* switch back to
primary-backup
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Past research activities:
Cloud-TM (2011-2013) (2/2)

* Main research lines:

 Scalable protocols for distributed transactions
* PhD thesis of Sebastiano Peluso (Sapienza & IST)
* |EEE/IFIP William C. Carter PhD Dissertation Award in Dependability 2016

* Enhancing the efficiency of (non-distributed) TM, both hw and sw
* PhD thesis of Nuno Diegues (IST)

* Joint usage of analytical methods and machine learning for
modelling and optimization of complex systems

* PhD thesis of Diego Di Dona (IST)




Past research activities:
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Past research activities:
FastFix (2011-2013) (2/2)

* 2 main research lines:

e Reducing cost of deterministic bug replay in multi-threaded programs

* How? By combining the partial traces of multiple clients
* Reduce logging cost at each client, leveraging large client populations

* Recombine traces of independent executions using lightweight similarity metrics
* PhD thesis of Nuno Machado (IST)

* Anonymization of information included in bug reports

* Leverage symbolic execution to identify alternative user inputs that lead
to the same bug

* First contact with symbolic execution toolkits
* PhD thesis of Jodo Matos (IST)




Past research activities:
Euro-TM (2011-2015)

* Research network bridging >200 researchers, 50 institutions, 17 EU

countries active in the area of Transactional Memory
* Interdisciplinary research across the entire stack

* Support for mobility of researchers

. . . .o . Applications &

* Organization of 10 scientific meetings Performance Evaluation .

Q9
* Organization of 2 PhD schools g 2z 9
< g
* Dissemination of results in industrial 23
conferences i

. . Theory & ©

* 20 joint project proposals Algorithms

* Final book coauthored by 60 autors from 13 countires




Past research activities:
2015-2018

* 4 main research lines:

* Energy efficiency for TM systems
* PhD Thesis of Shady Issa (IST & KTH)
* Extending capacity of Hardware TM (HTM) via software
mechanisms
* PhD Thesis of Shady Issa (IST & KTH)
* Integrating Futures and (S)TM
* Phd Thesis of Jingna Zeng (IST & KTH, planned for. Jan. 2020)
» Speculative processing in partially replicated
transactional systems
* PhD Thesis of Zhongmiao Li (IST & UCL, planned for Jan. 2020)




Past research activities:
Energy efficiency of TM systems

* Due to their speculative nature, TM systems are prone to
waste work/energy when conflicts do arise.

* Contention Management (CM) policies have long been
studied to enhance TM efficiency in unfavorable workloads

* Green-CM.:

 First CM designed to maximize energy efficiency

* 2 main ideas:
* Adaptive implementation of “wait” mechanism (spin vs sleep)

* Leverage Dynamic Voltage and Frequency Scaling via Asymmetric CM
» Diversify duration of waiting phases among threads (linear vs exponential back-off)

* Threads using EBO likely to release processor for long time, lowering thermal envelope
* Threads using LBO likely to be boosted by DVFS



Past research activities:
Stretching HTM capacity via software techniques

* Base idea:
* Run read-only transactions without any HW instrumentation
* Infinite capacity

* Allow update transactions to commit only in absence of concurrent
readers

» Exploit IBM Power8/9 tx suspend/resume to let writers monitor state of concurrent readers

* Applied to elide Read Write Lock
* Hardware Elided Read Write Lock (HERWL) [EuroSys’16]




Past research activities:
Stretching HTM capacity via software techniques

r(X) "(?)
Reader —] l | |
r-lock r-unlock

w(X) w(Y)
| |

Writer ] I ] .
w-lock w-unlock



Past research activities:
Stretching HTM capacity via software techniques

r(X) (?)
Reader — ] i
r-lock

i
r-unlock

?=Y

w(X) w(Y)

Writer } ] ] }

w-lock w-unlock




Past research activities:
Stretching HTM capacity via software techniques
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Past research activities:
Stretching HTM capacity via software techniques
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Past research activities:
Stretching HTM capacity via software techniques

r(X) r(?)
Reader —] l i I
r-lock r-unlock
wait for concurrent readers
active here
Writer

w-unlock

Suspend Resume Commit
HW Tx HW Tx HW Tx




Past research activities:
Stretching HTM capacity via software techniques

* Enhancements:

* Increase capacity of update transactions by exploiting another
unique feature of IBM Power processors:

* Rollback Only Transactions (ROTs):

* Atomic but not isolated HW transaction

* ROTs do not track readsets of transactions
* ROTs have infinite read capacity

* Unsafe to run concurrently!

* Follow ups:
* Enable concurrent execution of ROTs [DISC’17]

 Avoid reliance on IBM-unique HTM features (Suspend/Resume + ROTs) [MW’18]
e Adaptation of the mechanism to ensure Snapshot Isolation [PPoPP’19]



Past research activities:
Integrating futures and (S)TM

Future<T> § = submit(task); // submit an asynchronous task
//do something else

T x = f.eval(); //pick up task’s result

( future

| —

QntinuatioD

f=submit(task) x=f.eval()




How to support Futures in TM?

» Basic idea — Transactional Future:
* allow transactions to submit/evaluate futures

e futures run as transactions that:
e can access shared variables
e can return some result value

* a future and its continuation appear as atomic units

* 2 key issues:

* how to define the boundaries of a continuation?



Transactional Futures Semantics:
a basic example

T
F W(X,X+1)
4
T wix,1) J w(x,x+1) | w(y,X)
o— o -0 - —o
submitFuture evaluateFuture

* Intuitively we want to guarantee atomicity
between Tr and its continuation...



Transactional Futures Semantics:
a basic example

T
F W(X,X+1)
4
T wix,1) J w(x,x+1) | w(y,X)
o— o -0 - —o
submitFuture evaluateFuture

e ...but what are the expected serialization orders
between Tr and its continuation?



Transactional Futures Semantics:
a basic example

serialization point

T
F W(X,X+1)
4
N w(x.x+1) | wiyx)
o— o -0 - —o
submitFuture evaluateFuture

e ...but what are the expected serialization orders
between Tr and its continuation?
* before Tr’s continuation: strongly ordered



Transactional Futures Semantics:
a basic example

serialization point

T . :
F W x+1) serialization point
4
T wix,1 w(x,x+1) w(y,X)
o— ' -0~ o —o
submitFuture evaluateFuture

e ...but what are the expected serialization orders
between Tr and its continuation?
* before Tr’s continuation: strongly ordered
 either before or after T¢’s continuation: weakly ordered




How to support Futures in TM?

» Basic idea — Transactional Future:
* allow transactions to submit/evaluate futures

e futures run as transactions that:
* can access shared variables
* can return some result value

* a future and its continuation appear as atomic units

* 2 key issues:
e which serialization orders should be allowed for futures and continuations?



How to define continuations?

* The Future abstraction enables parallel computations with complex
dependency graphs, e.g.:
e submitting futures from within continuations

e escaping transactional futures
e within the same top-level transaction, or
e submitted and evaluated in different top-level transact.

* Pro: great flexibility for expert programmers
e Con: non-trivial to define continuations



Submission of a future
by a continuation

TF1 r(x) wiy,x+1)
o o

~

continuation of Tg,

T0 riy) rn)

rz) wiz,z+y)
: @

continuation of T,

T



Escaping transactional future

Tr2 rx) ry)

Try_r@) wixx4)
" wicke) l w0 | wing)

Here Tg, returns the reference of T, to TO,
in order to allow TO to evaluate Ty,

40



Escaping transactional future

Logic underlying definition of T, continuation:
Sequence of causally-related operations that leads
from Tg,’s submission to its evaluation

Tr2 rx) ry)

TF1 r(en) wW(X,X4)

0w wikko) why) | winng)

* Continuation of T, spans two transactional futures!
* Tq, should observe both writes on x and y or none!

41



Transactional future escaping
from its top-level transaction

T is used as a communication means between T1 and T2.

T
T1 v wizzq) | ((wix) Wiryq)

submitFuture T~ °

A r(x) w(z,z,)
T2 o—eo B —eo—eo
evaluateFuture

T1 writes T¢'s reference in variable x and commits.
This allows a different top-level transaction, e.g. T2, to
evaluate T,

42



Transactional future escaping
from its top-level transaction

Logic underlying definition of T, continuation:
Sequence of causally-related operations that leads from
T¢'s submission to its evaluation

TF ry) (@)

T1 rx) wiz,zq) wixf) wivys)

submitFuture

S r(x) w(z,z5)
Th—————————o

evaluateFuture

 Using the above rationale, a continuation can span two or more top-

level transactions =2 strongly atomic continuation
* Constrain T;’s continuation within the top-level tx that submitted T

= weakly atomic continuation 23




How to formalize these concepts?

* Via a Future Serialization Graph:
— similar in spirit to transaction serialization graph
— but aimed to:
1. allow for rigorous definition of futures and their continuations
2. capture ordering relations between futures and continuations



How to implement the abstraction of
Transactional Futures

* First implementation proposed in [ICPP’16]
— Support only for strongly ordered futures /TO\

— Transactional futures serialized solely T

[l Tea
upon submission: / / \

* No escaping futures
T T T T
= FSG encoded via a tree F2 G R BN

 Versions produced by futures managed via an ‘/ \‘
innovative multi-versioned concurrency control scheme Tey Tes



How to implement the abstraction of
Transactional Futures

e Second implementation (under submission)

— Support for weakly ordered futures
2 serialization points for futures
* Possibility of escaping futures

— Novel concurrency control based on explicit management of the FSG

TF r('y) r(‘z)

T1 r(x) W(Z,Z.I) W()é’f) W(w

o0—e—@

submitFuture

r(x) w(z,zz)
T2 oO—e—B—¢—9
evaluateFuture
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Persistent Memory (PM)

* Fast byte-addressable storage

* Higher density when compared with volatile RAM

* Expect writes to be slower than RAM (2x-5x):

 Subject to wear off upon write (technology dependent)

r==-= _Dz;aI;se_ T T T :- Database

| In-memory Durable | I

I tables support |

! I In-memory Durable

I et | : tables T support b

Free durability? s



Persistent Memory (PM)

* CPU Caches (most likely) will continue being volatile:
* What is effectively written into memory?

— — * Applications must explicitly bypass caches:
e clflush, clflushopt, clwb
* Else:
* writes are not guaranteed to enter PM
Caches * writes may be reordered

* What about applications that require
atomic access/transactions to memory
regions?

Still volatile Now persistent

49



Integrating PM and Software-based TM

* Durability of transactions regulated via software concurrency is well-
understood: decades of literature in DBMS areal!

* Example based on a recent PM-oriented software-based approach

[RSPLOST6]: Unfortunately

* Upon write - .
1. Lock the value not possible with
2. Log (flush) the old value
3. Do the write HTM! "o’ begin

* Upon commit « & Bmiv)
1.  Flush write-set :
2. Add commit marker log(X)
3. Unlock values crash - —— -
4. Destroy log

recoverability end
commit_log




Hardware Transactional Memory (HTM)

_xbegin _xend

Concurrency is built on on cache
coherency protocols [ISCcA93]

Atomically

W(X,1) W(zZ,3) committed on cache
W(Y,2)

Private
Cache

Private
Cache

Private
Cache

Private

o Example of a story of a non-durable (and
dache

non-atomic after recovery) transaction!

51



Hardware Transactional Memory (HTM)

_xbegin

W(X,1)
Log(X) clflush

A

(0]

Externalization of cache-lines while the
transactions is running is not allowed!

52



Related Work

STM-based solutions[ASPLOS'11, ASPLOS'16] | HTM-based solutions [DISE'15, CAL'15]

* build on DBMS literature on logging| « Rely on modified HTM implementation

SChe(;“ESZd& RO » PHTM [DISE'15]:
adapted & optimized for * Flush cache-lines within transaction

. ibl ign . : .
fle?ub e desig * Order writes to logs via additional locks
* boilerplate on each load and store . .
* Commit flushes a commit marker

Drawbacks: Drawbacks:
- STM incurs much larger overhead | - Incompatible with commodity HTM
than HTM!

- Additional locks reduce concurrency
- Do not work with HTM and available capacity

53



NV-HTM: Transaction logging — 1/3

Working

_xbegin
Snapshot

x € R(X)
W(X, x+2)

Transaction 1
Transaction 2

log(X)
TS € ReadTS()

Non-Durable

commit confirmed commit__ G S |og flushed only after HTM
to application only flush_log commit

after transaction’s _ _ _
log is fully flushed Wait preceding transactions

totally ordered log
commit_log(TS) maintained in a

decentralized fashion
Durable commit




NV-HTM: Transaction logging — 1/3

Pros:
v’ Ensure interoperability with existing HTM systems!

v’ Avoid contention hot-spots to maximize scalability

Challenge:

* Upon crash:
* no guarantee that updates of non-durably committed transaction hit PM

 possible corrupted snapshot upon failure!

55



NV-HTM: Transaction logging — 1/3

Pros:
v’ Ensure interoperability with existing HTM systems!
v’ Avoid contention hot-spots to maximize scalability

Challenge:

* Upon crash:

* no guarantee that updates of non-durably committed transaction hit PM
 possible corrupted snapshot upon failure!

56



NV-HTM: Working and Persistent Snapshots — 2/3

* Application writes in a (volatile) working snapshot

* Logged writes are replayed asynchronously to produce a consistent
persistent snapshot on PM

* via background checkpoint process

in volatile RAM

Working Persistent Replayed via a
Snapshot : | SIEEEISEY  background process

Transaction

57



NV-HTM: Working and Persistent Snapshots — 2/3

Pros:

v’ Writes to PM are 2x-5x slower than on volatile RAM!

Challenge:

- Memory efficiency: avoid maintaining 2 full copies of application’s
memory

58



Thread 1

Thread 2

I_Og fllte rlng Cache Line

3)
5)

E=5

The Checkpoint Process may follow different policies to flush
the logs:

=y
]
(75
=
=
&
e
(@]
(@)

Commit(TS
G=1
Commit(TS

- Naive approach: flush every log entry:
- Forward No Filtering (FNF)

- Replay all writes but flush each updated cache line only once:
- Forward Flush Filtering (FFF)

:2)

- Scan logs backwards and write/flush only most recent update:
- Backward Filtering Checkpointing (BFC)

Commit(TS=4)

)
=
=
£
£
o
O
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NV-HTM: Working and Persistent Snapshots — 2/3

Pros:
v Writes to PM are 2x-5x slower than on volatile RAM!
v’ Provides opportunity to filter redundant (duplicate) writes in the log

* less writes/flushes === longer life for PM!

Challenge:

- Memory efficiency: avoid maintaining 2 full copies of application’s
memory

60



Memory efficiency via CoW — 3/3

e Efficient management of working and persistent snapshot via OS/HW-
assisted Copy-on-Write mechanism:
* duplicate on volatile memory only regions actually modified by application

Working Persistent
Snapshot Snapshot

Application

61



Recovering from a crash

1. Checkpoint Process replays any pending logged transaction
* Updated persistent snapshot

2. Fork the Checkpoint Process:
* Checkpoint Process mmaps the Persistent Snapshot in shared mode

3. Worker Process mmaps the Persistent Snapshot in private mode
* Obtains a volatile copy of the Persistent Snapshot (the Working Snapshot)

* OS ensures Copy-on-Write



Experimental evaluation

 System configuration:
» 14C/28T TSX enabled Intel Xeon Processor (E5-2648L v4), 22MB L3 cache

* 32 GBRAM
* Emulate write to PM latency by spinning 500ns

e Synthetic Benchmark: Bank
 STAMP Benchmark Suit [ISWC'08]

e Baselines:
« PHTM [DISC'15]
e PSTM [ASPLOS'11]



STAMP benchmarks

i pstm | = wHmMee | * Comparison for Kmeans (High contention)
—¥— PHTM NV-HTM, o,

(o]

* NV-HTMyp: enough capacity for all writes

* NV-HTM,,: logs are 1/10 of all writes

* Checkpoint Manager has minimal impact in
throughout

BN (¢)] (o)) ~ o
T T T T
>

w
T

Throughput (x105 TXs/s)

N
T

\ Up to ~4x greater

throughput than PHTM

o &) o B O S Y

Number of threads o



STAMP benchmarks

NV-HTMy 2 7|

PSTM 1744

- In average, NV-HTM,,, produces 2.72x less writes than PHTM and 6.72x
less than PSTM, while only producing 13% more writes than NV-HTM,
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Ongoing work/opportunities of collaboration

* NV-HTM introduces a serial step in commit phase:

* Waiting for previous transactions to be durably committed, before a new
transaction can be durably committed
 Latency for flushing commit marker is on critical path of execution

* Can limit throughput especially if NVM latency is high
: T (intel) OPTANE DC O»
* Ongoing work on how to bypass this limitation

e ———

* Intel has finally made NVM commercially available
* Every previous work was based on simulation...
* Need to reassess actual performance on realistic system

66
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Transactional Memory

CPU TM

e Mature research
* Widely available in:
» Software
* Hardware
e combinations thereof

Shared Memory ‘,

\/"'T'\'\'

(
|
|
|

HeTM

Transactional Memory
for CPU+GPU systems

GPU TM

* More recent

» Adapted for GPUs
* Highly parallel architecture
* Threads execute lockstep




Challenges

Existing TM implementations rely on
fast intra-device communication

Serial inter-device communication makes
fine-grained synchronization difficult

Need to revisit the TM abstraction
and consistency criteria

Build a system upon this new abstraction

GPU

SN S,
warp, warpy | warpg warp,

shared shared

Cache

PCIei

cache

CPU




Correctness guarantee for traditional TM

P1. The behavior of every committed transaction has to be justifiable by the same sequential
execution containing only committed transactions, without contradicting real-time order.

P2. The behavior of any active transaction, even if it eventually aborts, has to be justifiable
by some sequential execution (possibly different) containing only committed transactions.

_ .. ]
Hard notion of committed transaction:

need to transfer single transaction metadata over PCle
T o e .
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Correctness guarantee for traditional TM

Active




Correctness guarantee for HeTM

Intra-device
—__sync Inter-device
+ Fast sync

R

- Syncs local state \/'

N

- Slow
+ Syncs global state

Speculative
Commit




Speculative HeTM (SHeTM): architecture

SHeTM metadata

Transaction batching
+ Amortizes synchronization costs
+ load-balancing using a shared queue

Shared dataset

Queueing
System Modular m

CPU, | GPU,

uolleuswWnNIISul
IL3HS

SHARED,

uollejuswniisul

W.19HS



Speculative HeTM (SHeTM): overview

Device local TM instrumentation

collects read/write sets
GPU  ______ Z 00 .

N
7’

Batch GPU TX., time

|
[ GPU Batch TXG1 1 : |
ol ! ol Sl o |
v I 5 o | = Q
© | | | N (7p) | N (s}
| SHeTM sees TX;;, and TX.; as Sl S|l S B S| &
2 | twoverylargetransactions | ! Bl S | sHHA
I I : A I A
|
CPU! b
! | '
‘\ CPU Batch TX¢; ,' | | Batch CPUTX,
N o— —m—— e e —EE—_E—EE—E__—_ e 7’ \ - —_—
CPU and GPU Synchronization phase
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work in parallel constructs the new dataset



Base (unoptimized) idea

Execution phase

Validation phase

Merge phase

? Case of
collect: RSGPU N WSCPU = @) .
GPU RSGPU + WSGPU apply WSCPU Commit

> o time
0 5 o
Y %3
Q —n
collect: o i <
CPU WS g 32
configurable
time interval

Dataset synchronization
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Base (unoptimized) idea

Execution phase Validation phase Merge phase

? Case of
collect: RSGPU N WSCPU = @ AbOrt

RSGPU + \\/SGPU

configurable
time interval 76

Dataset synchronization



Optimizations

* Synchronization imposes significative overheads!

* Some optimizations:

* Early validation kernels may reduce wasted work
* Execution of transactions can be overlapped with synchronization stages

. Synchronization Details
GPU Execution Validation - I}{I1erge in the paper
T time
}'ﬂ 147 e
i Non- bIocklng

execution 7



Evaluation

* Intel Xeon E5-2648L v4 (14C/28T, HTM, 32GB DRAM)
* Nvidia GTX 1080 (8GB XDDRS5, driver 387.34, CUDA 9.1)

* CPU TM:
* Intel’s hardware TM implementation (TSX)
e TinySTM in the paper

* GPU TM:
* PR-STM [EuroPar13]

e Synthetic benchmark
« Random memory accesses on array of integers

* MemcachedGPU-TM
* Popular web caching application
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Synthetic benchmark

* Evaluate the impact of the duration of the Execution phase

* Overhead of synchronization

* Benefits of two main optimizations
1. Early validation
2. Overlapping execution and synchronization

. Execution Validation Merge
GPU EM i :"_""""u

time

CPU /m/ / % / 1\‘\WISGPU

Non-blocking
execution
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Synthetic benchmark — Execution time

GPU Execution

time

cpy | >

(a) 100% update transactions

w16 e O—e— D
|_
< N
5
2 8ld = CPUoNY
L 6 N i} |
=2 —4A— GPU-only
o 4 —e— SHeTMu.
,Eg —e— SHeTM

I S T A

2 2 2 % D %

Execution Phase (msec

In this experiment:

* no inter-devices conflicts (stresses the
overheads of commit batches)

Werite intensive workloads:

- stress more SHeTM
still only ~25% below sum

gbs) 10% update transactions

Dol —_— % CPU+GPU performance
S
= 3.50 f@a// ®
= 3.0
s 2 Read intensive workloads:
E‘? + SHeTM throughput is
cg» " ~95% the sum CPU+GPU
E 0.

0.

%
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Synchronization overlapping

(O]

£
L : -0l
Significative reduction on PNl

;0005
S Merge
GPU«< ' .
/// N time
cou U s
| " "Non-blocking
execution
Optimized
SHeTM ~ cpy  >HeTM S

Non optimized

CPU and GPU idle time:
* CPU: 60% =» 45%
* GPU: 60% = 20%

E==3 Non-blocking

|= Processing

— Validation

Execution Phase (msec)

SHeTM,sic SHeTM

‘.5.

SRS ) NS = [o)
2R B2 2R ©20RRRRRY

|=—= DtH
—3 Processing
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MemcachedGPU-TM

* Popular object caching system built by Facebook

* [S06C'19]: port of Memcached to GPU
* Complex lock-based scheme that unnecessarily restricts concurrency

* Workload:
* 99.9% of GETs and key frequency follow a Zipfian distribution (a = 0.5)

» Keys partitioned based on last bit:
* Odd keys = GPU; Even keys = CPU

* Emulate load unbalances:
* vary the popularity of keys maintained by GPU and CPU
* GPU steals CPU requests (non-zero probability of conflicting in a key)



MemcachedGPU-TM

* Emulate load unbalances:

* vary the popularity of keys maintained by GPU and CPU

* GPU steals CPU requests (non-zero probability of conflicting in a key)
GPU Steal with probability X%
(X=100% means that GPU

operates only on the keys
CPU requests assigned to CPU)

The higher the “steal” probability,
GPU requests the higher the inter-device
contention probability
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MemcachedGPU-TM

Tuning the durations allows
high contention workloads to
still benefit from CPU+GPU \

overhead is “10% in
absence of contention

208

GPU-only
3 05k —©~- SHeTM no-conflicts
o .
bt SHeTM steal 20%
= —3¢ SHeTM steal 80%

0oL 2 SHeTMsteal100%
YO S 0 75 {JO {3\

Execution phase (msec) 84



Ongoing work/opportunities of collaboration

e Extend SHeTM to support multiple GPUs
* Exploit integrated GPUs to accelerate STMs

* Design of STMs for GPUs



Roadmap

 About me
* About IST & INESC-ID
* An overview of my past research activities

— Transactional Memory & emerging HW technologies:

* Persistent Memory
* GPUs

— Parallel/distributed platforms for Machine Learning




Symbolic Execution

Typical usage: testing/verification

int £() {

1

2 -

3 vy

4 z

5 if (z == 12) { 7 == 12 7 =12
6 fail();
7

8

9

0

;read(); Z=y*2

y * 2;

} else { _
printf("0OK"); y= 6 y #6

} FAIL!!! OK!!!

10 }



Symbolic execution of transactional programs

Data access prediction

public void buy_umbrella(int client_id, int input){ ’/'AACCGSSGSLunbreHa_]d
if(input>=0 && input <=2){ 0,2 and 4
int umbrella_id = inputx2;
int price = kv.get(umbrella_id);
kv.put(umbrella_id,pricex2);
}else if(input <= NUM_RECORDS){
int umbrella_id = inputx5;
int price = kv.get(umbrella_id);

X kv.put(umbrella_id,price*5); — Accesses umbrella_id

15,
20,25...NUM_RECORDS
*5



Possible applications & collaboration opportunities

* A priori-knowledge of Read&Write-set of txs opens a number
of interesting opportunities

— Scheduling
— Deterministic concurrency control (State Machine Replication)
— Automatic data partitioning schemes



Challenges

e State explosion:
— SE is sound but not complete (halting problem)

* |f used prior to program execution, SE suffers of limitations of
static analysis techniques
— What if program behavior depends on the DB’s state?

* Over-approximation
* Combine SE && run-time execution



Roadmap

 About me
* About IST & INESC-ID
* An overview of my past research activities

— Transactional Memory & emerging HW technologies:

* Persistent Memory
* GPUs

— Leveraging Symbolic Execution for Distributed Transactional Systems



“Training a single Al model can emit as much carbon
as five cars in their lifetimes
(and that includes manufacture of the car itself)” [ACL'19]

Common carbon footprint benchmarks

in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF (1

passenger) | 1,984
Human life (avg. 1 year) I 11,023
American life (avg. 1 year) . 36,156

US car including fuel (avg. 1 lifetime) 126,000

Transformer (213M parameters) w/
neural architecture search 626,155



The estimated costs of training a model

Date of Energy Carbon

original consumption footprint (Ibs

paper (kWh) of CO2e) Cloud compute cost (USD)
Transformer (65M |, 5417 27 26 $41-$140
parameters)
Transformer
(213M Jun, 2017 201 192 $289-$981
parameters)
ELMo Feb, 2018 275 262 $433-$1,472
AT L Oct, 2018 1,507 1,438 $3,751-§12,571
parameters)
Transformer
(213M
parameters) w/ Jan, 2019 656,347 626,155  $942,973-$3,201,722
architecture
search
GPT-2 Feb, 2019 - - $12,902-$43,008



Typical architecture of ML Platforms
a.k.a. Parameter Server

server a server
mana\ger

server group node

)

resource
manager

task
scheduler

a worker
node



To synchronize or not to synchronize?

Synchronization Sync.
| '

(a) Synchronous, Parameter Server (c) Asynchronous, Parameter Server



Other training related
design choices/parameters

 How many parameter servers/worker nodes?
— Extreme settings: fully decentralized (1 to 1)

Max. Staleness
A,

. i . ‘
pon 1 TN T - Agent 1 ;mm
W(O) All- All- ' W(O) - Atl- AT" g (T)
. & Reciuce Reciuce . & ’ Re(iuce Reduceg w
. .
;entm---v:” Agent m M
Time o

Time

(b) Synchronous, Decentralized (d) Stale-Synchronous, Decentralized

* Size of the batch processed by each worker
* Learning rate



Ongoing work & collaboration opportunities

* Understand the system-related trade-offs associated with
these design choices

— ...and propose novel approaches to enhance efficiency of state of the
art approaches



Ongoing work & collaboration opportunities

 Automate the identification of the “optimal” configuration:

— Challenges/opportunities:
* Building black box models of these platforms can be prohibitively expensive
» Configuration space is huge:

— Cartesian product of model related and cloud related parameters

* Techniques to minimize the cost of “testing” configurations
— Bayesian optimization
— Sub-sampling
— Aborting testing of “bad” connfigurations ASAP



