
An overview of my research
Paolo Romano

Lisbon University & INESC-ID

Roadmap

• About me
• About IST & INESC-ID
• An overview of my past research activities
• Current research lines:
• Transactional Memory & emerging HW technologies:

• Persistent Memory
• GPUs

• Leveraging Symbolic Execution for Distributed Transactional Systems
• Parallel/distributed platforms for Machine Learning

About me: scientific career

• MSc at Tor Vergata (2002)
• Thesis on Formal Verification of the HTTPR protocol (Adv. Prof. B. Ciciani)

• PhD at Sapienza (2004-2007)
• Protocols for End-to-End Reliability in Multi-tier systems (Adv. Prof. F. Quaglia)

• PostDoc at Rome University (2007)
• Senior Researcher at INESC-ID, Lisbon, Portugal (2008-today)
• Assistant Professor, Comp. Engineering, U. Lisbon (2011-2015)
• Associate Professor, Comp. Engineering, U. Lisbon (2015-today)

About IST

• IST, Lisbon University:
• Top engineering school of Portugal
• Two sites: Lisbon center & Tagus Park

• Computer Engineering Department:
• 91 Faculty members, 5 scientific areas
• Pioneering open search process for faculty positions

• Courses I’ve been teaching so far:
• BSc: Operating Systems, Computer Architectures
• MSc: Highly Dependable Systems, Distributed Systems
• PhD: Advance Topics in Parallel & Distributed Systems

About INESC-ID

• Research center affiliated with IST
• Partly owned by IST

• No-profit & private nature enables agile processes (e.g., hiring, purchases)

• Hosts researchers (mostly IST faculty members) with diverse background
• Strong impulse to pursue interdisciplinary research
• Support for both project administration and proposals

• Recently opened new office in Brussels to
support EU project proposal preparation

• 20th anniversary in 2019!

About INESC-ID

• I am a member of the Distributed Systems Group
• 15 faculty members from IST

• 2 full professors, 5 associate professors, 8 assistant professors
• Expertise in a broad range of areas, including:

• Autonomic computing
• Fault tolerance
• Mobile computing
• Parallel programming
• Theory of distributed computing
• Transaction processing
• Security

• Member of the Scientific Board of the INESC-ID in 2018

Roadmap

• About me
• About IST & INESC-ID
• An overview of my past research activities
• Current research lines:
• Transactional Memory & emerging HW technologies:

• Persistent Memory
• GPUs

• Leveraging Symbolic Execution for Distributed Transactional Systems
• Parallel/distributed platforms for Machine Learning

Past research activities:
MsC Thesis (2002)
• Formal Verification of HTTPR

• Extension of HTTP to ensure exactly-once semantics
• Goal: enhance reliability of Web Services

• very hot topic back in the days!

• Model checking of HTTPR specification (PROMELA & SPIN)

Past research activities:
PhD thesis (2003-2006)

• Jointly address reliability and performance issues in multi-tier systems
• Mix of theory and systems:
• Theory: minimum synchrony requirements for solving the e-Transaction problem

• End-to-end reliability guarantees in three-tier system
• In a nutshell: exactly-once semantics despite failures of clients, mid-tier, back-end DBMS(s)

• Practice: multi-path/parallel invocation schemes in multi-tiered applications
• Goal: reduce client-perceived latency in geo-distributed systems

Client Application Servers DBMSs

Past research activities:
PostDoc@Sapienza(2007) (1/3)
• Approximate solution of MMPP/MMPP/1 queues
• Markov Modulated Poisson Processes:

• Poisson processes whose means change according to a Markov Chain
• Useful to capture burstiness, self-similarity, failure/recovery of servers

Past research activities:
PostDoc@Sapienza(2007) (2/3)
• Efficient replication schemes for data streaming applications

Sensing
devices

• RFID
• WSN

Replicated sinks

filter/correlate input streams and output
relevant events, e.g.:

• objects entering/exiting an area

Back-end data center

• centralized component
(at the logical level)

Past research activities:
PostDoc@Sapienza(2007) (3/3)
• Performance modelling of Multi-Version Concurrency Control
• Analytical model of Oracle’s MVCC scheme

• Main publication: MASCOTS’08

Past research activities:
PostDoc@INESC-ID (2008-2010) (1/2)
• Distributed Software Transactional Memory
• My group at INESC-ID pioneered this research area
• Hot topic at the intersection between STM and distributed databases
• Advantage position thanks to FénixEDU
• Management system of IST’s teaching activities (Moodle-like)
• One of the first systems to adopt STM in production….
• …and faced with real reliability and scalability challenges!

• Research funded by 2 Portuguese research projects :
• PASTRAMY, coordinated by Prof. Luís Rodrigues
• ARISTOS, my first project as coordinator

Past research activities:
PostDoc@INESC-ID (2008-2010) (2/2)

• Investigation of a number of research lines:
• Design of novel replication protocols for STM

• PhD thesis of Nuno Carvalho (IST)

• Speculative transaction processing techniques
• PhD thesis of Roberto Palmieri (Sapienza)

• Autonomic replicated STM (start of research on ML for system optimization)
• PhD thesis of Maria Couceiro (IST)

• Performance modelling of STM concurrency control schemes
• PhD thesis of Pierangelo Di Sanzo (Sapienza)

Past research activities:
Assistant Professor@IST (2011-2015)
• Research propelled by 3 EU projects:
• Cloud-TM (serving as coordinator)

• Distributed TM platform for the Cloud
• Natural evolution of previous research on DTM, with emphasis on:

• Scalability
• Elasticity
• Self-tuning

• FastFix (participant)
• Reducing cost and latency of software maintenance
• INESC-ID focus: deterministic fault replication

• in multi-threaded applications (non deterministic scheduling)
• anonymizing sensible application data

• Euro-TM (serving as chair)
• Pan-european research network on Transactional Memory

Past research activities:
Cloud-TM (2011-2013) (1/2)

Past research activities:
Cloud-TM (2011-2013) (2/2)

• Main research lines:
• Scalable protocols for distributed transactions

• PhD thesis of Sebastiano Peluso (Sapienza & IST)
• IEEE/IFIP William C. Carter PhD Dissertation Award in Dependability 2016

• Enhancing the efficiency of (non-distributed) TM, both hw and sw
• PhD thesis of Nuno Diegues (IST)

• Joint usage of analytical methods and machine learning for
modelling and optimization of complex systems
• PhD thesis of Diego Di Dona (IST)

Past research activities:
FastFix (2011-2013) (1/2)

Past research activities:
FastFix (2011-2013) (2/2)

• 2 main research lines:
• Reducing cost of deterministic bug replay in multi-threaded programs

• How? By combining the partial traces of multiple clients
• Reduce logging cost at each client, leveraging large client populations
• Recombine traces of independent executions using lightweight similarity metrics

• PhD thesis of Nuno Machado (IST)

• Anonymization of information included in bug reports
• Leverage symbolic execution to identify alternative user inputs that lead

to the same bug
• First contact with symbolic execution toolkits

• PhD thesis of João Matos (IST)

Past research activities:
Euro-TM (2011-2015)

• Research network bridging >200 researchers, 50 institutions, 17 EU
countries active in the área of Transactional Memory
• Interdisciplinary research across the entire stack
• Support for mobility of researchers
• Organization of 10 scientific meetings
• Organization of 2 PhD schools
• Dissemination of results in industrial

conferences
• 20 joint project proposals
• Final book coauthored by 60 autors from 13 countires

Theory &
Algorithms

Hardware &
OS

Language &
Tools

Applications &
Performance Evaluation

Cr
os

s W
G

 A
ct

iv
iti

es
Sh

ow
ca

se
s

Past research activities:
2015-2018

• 4 main research lines:
• Energy efficiency for TM systems

• PhD Thesis of Shady Issa (IST & KTH)
• Extending capacity of Hardware TM (HTM) via software

mechanisms
• PhD Thesis of Shady Issa (IST & KTH)

• Integrating Futures and (S)TM
• Phd Thesis of Jingna Zeng (IST & KTH, planned for. Jan. 2020)

• Speculative processing in partially replicated
transactional systems
• PhD Thesis of Zhongmiao Li (IST & UCL, planned for Jan. 2020)

Past research activities:
Energy efficiency of TM systems

• Due to their speculative nature, TM systems are prone to
waste work/energy when conflicts do arise.
• Contention Management (CM) policies have long been

studied to enhance TM efficiency in unfavorable workloads
• Green-CM:
• First CM designed to maximize energy efficiency
• 2 main ideas:

• Adaptive implementation of “wait” mechanism (spin vs sleep)
• Leverage Dynamic Voltage and Frequency Scaling via Asymmetric CM

• Diversify duration of waiting phases among threads (linear vs exponential back-off)
• Threads using EBO likely to release processor for long time, lowering thermal envelope
• Threads using LBO likely to be boosted by DVFS

Past research activities:
Stretching HTM capacity via software techniques

• Base idea:
• Run read-only transactions without any HW instrumentation

• Infinite capacity
• Allow update transactions to commit only in absence of concurrent

readers
• Exploit IBM Power8/9 tx suspend/resume to let writers monitor state of concurrent readers

• Applied to elide Read Write Lock
• Hardware Elided Read Write Lock (HERWL) [EuroSys’16]

Past research activities:
Stretching HTM capacity via software techniques

Reader

Writer

r-lock

r(X)

r-unlock

r(?)

w-lock

w(X) w(Y)

w-unlock
Begin
HW Tx

Commit
HW Tx

Past research activities:
Stretching HTM capacity via software techniques

Reader

Writer

r-lock

r(X)

r-unlock

r(?)

w-lock

w(X) w(Y)

w-unlock

? = Y

Begin
H/W Tx

Commit
H/W Tx

Past research activities:
Stretching HTM capacity via software techniques

Reader

Writer

r-lock

r(X)

r-unlock

r(?)

w-lock

w(X) w(Y)

w-unlock

? = Y

w-unlock
Begin

H/W Tx
Commit
H/W Tx

Past research activities:
Stretching HTM capacity via software techniques

Reader

Writer

r-lock

r(X)

r-unlock

r(Y)

w-lock

w(X) w(Y)

w-unlock
abort

Begin
H/W Tx

Commit
H/W Tx

Past research activities:
Stretching HTM capacity via software techniques

Reader

Writer

r-lock

r(X)

r-unlock

r(?)

w-lock

w(X) w(Y)

Suspend
HW Tx

Resume
HW Tx

Commit
HW Tx

w-unlock
Begin
HW Tx

wait for concurrent readers
active here

Past research activities:
Stretching HTM capacity via software techniques

• Enhancements:
• Increase capacity of update transactions by exploiting another

unique feature of IBM Power processors:
• Rollback Only Transactions (ROTs):

• Atomic but not isolated HW transaction
• ROTs do not track readsets of transactions
• ROTs have infinite read capacity
• Unsafe to run concurrently!

• Follow ups:
• Enable concurrent execution of ROTs [DISC’17]
• Avoid reliance on IBM-unique HTM features (Suspend/Resume + ROTs) [MW’18]
• Adaptation of the mechanism to ensure Snapshot Isolation [PPoPP’19]

Past research activities:
Integrating futures and (S)TM

• Well-known abstraction to manage asynchronous
parallel computations:
– promise to deliver the result of some computation
– eval() used to retrieve computation’s result

• possibly blocking till the result is computed
– unlike parallel nesting does not block “submitter” while

parallel computation takes place
• code executed in parallel with the future is called continuation
f=submit(task) x=f.eval()

future

continuation

How to support Futures in TM?
• Basic idea – Transactional Future:
• allow transactions to submit/evaluate futures
• futures run as transactions that:

• can access shared variables
• can return some result value

• a future and its continuation appear as atomic units

• 2 key issues:
• which serialization orders should be allowed for futures and continuations?
• how to define the boundaries of a continuation?

Transactional Futures Semantics:
a basic example

• Intuitively we want to guarantee atomicity
between TF and its continuation…

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future TF can be uniquely associated with one top-level transaction Ts within whose context
TF is submitted, and with one top-level transaction Te within whose context TF is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly Ts 6= Te.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X
and then submits a transactional future TF , which reads and increments X by 1. In parallel with TF , i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating TF , T reads X and writes its value to variable Y .

Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and
which are their admissible serialization orders, i.e., the read and write operations by TF should be serialized all before or all after
the operations executed by thread running T after the creation of of TF and before its evaluation. We call this subsequence of
operations of T the continuation of TF , and denote it as C(TF).

In this example, serialization orders TF ! C(TF) and C(TF) ! TF provide the same outcome, because the operations
executed by TF and C(TF) commute. Clearly this may not the case in general, e.g., if TF had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of TF and C(TF) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by TF before the ones by C(TF). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

Transactional Futures Semantics:
a basic example

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future TF can be uniquely associated with one top-level transaction Ts within whose context
TF is submitted, and with one top-level transaction Te within whose context TF is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly Ts 6= Te.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X
and then submits a transactional future TF , which reads and increments X by 1. In parallel with TF , i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating TF , T reads X and writes its value to variable Y .

Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and
which are their admissible serialization orders, i.e., the read and write operations by TF should be serialized all before or all after
the operations executed by thread running T after the creation of of TF and before its evaluation. We call this subsequence of
operations of T the continuation of TF , and denote it as C(TF).

In this example, serialization orders TF ! C(TF) and C(TF) ! TF provide the same outcome, because the operations
executed by TF and C(TF) commute. Clearly this may not the case in general, e.g., if TF had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of TF and C(TF) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by TF before the ones by C(TF). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

• …but what are the expected serialization orders
between TF and its continuation?

Transactional Futures Semantics:
a basic example

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future TF can be uniquely associated with one top-level transaction Ts within whose context
TF is submitted, and with one top-level transaction Te within whose context TF is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly Ts 6= Te.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X
and then submits a transactional future TF , which reads and increments X by 1. In parallel with TF , i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating TF , T reads X and writes its value to variable Y .

Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and
which are their admissible serialization orders, i.e., the read and write operations by TF should be serialized all before or all after
the operations executed by thread running T after the creation of of TF and before its evaluation. We call this subsequence of
operations of T the continuation of TF , and denote it as C(TF).

In this example, serialization orders TF ! C(TF) and C(TF) ! TF provide the same outcome, because the operations
executed by TF and C(TF) commute. Clearly this may not the case in general, e.g., if TF had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of TF and C(TF) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by TF before the ones by C(TF). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

serialization point

• …but what are the expected serialization orders
between TF and its continuation?
• before TF’s continuation: strongly ordered

Transactional Futures Semantics:
a basic example

• …but what are the expected serialization orders
between TF and its continuation?
• before TF’s continuation: strongly ordered
• either before or after TF’s continuation: weakly ordered

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future TF can be uniquely associated with one top-level transaction Ts within whose context
TF is submitted, and with one top-level transaction Te within whose context TF is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly Ts 6= Te.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X
and then submits a transactional future TF , which reads and increments X by 1. In parallel with TF , i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating TF , T reads X and writes its value to variable Y .

Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and
which are their admissible serialization orders, i.e., the read and write operations by TF should be serialized all before or all after
the operations executed by thread running T after the creation of of TF and before its evaluation. We call this subsequence of
operations of T the continuation of TF , and denote it as C(TF).

In this example, serialization orders TF ! C(TF) and C(TF) ! TF provide the same outcome, because the operations
executed by TF and C(TF) commute. Clearly this may not the case in general, e.g., if TF had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of TF and C(TF) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by TF before the ones by C(TF). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

serialization point serialization point

How to support Futures in TM?
• Basic idea – Transactional Future:
• allow transactions to submit/evaluate futures
• futures run as transactions that:

• can access shared variables
• can return some result value

• a future and its continuation appear as atomic units

• 2 key issues:
• which serialization orders should be allowed for futures and continuations?
• how to define the boundaries of a continuation?

How to define continuations?

• The Future abstraction enables parallel computations with complex
dependency graphs, e.g.:
• submitting futures from within continuations
• escaping transactional futures

• within the same top-level transaction, or
• submitted and evaluated in different top-level transact.

• Pro: great flexibility for expert programmers
• Con: non-trivial to define continuations

Submission of a future
by a continuation

continuation of TF1 continuation of TF2

40

Escaping transactional future

Here TF1 returns the reference of TF2 to T0,
in order to allow T0 to evaluate TF2

41

Escaping transactional future

• Continuation of TF2 spans two transactional futures!
• TF2 should observe both writes on x and y or none!

Logic underlying definition of TF2 continuation:
Sequence of causally-related operations that leads

from TF2’s submission to its evaluation

42

Transactional future escaping
from its top-level transaction

T1 writes TF’s reference in variable x and commits.
This allows a different top-level transaction, e.g. T2, to

evaluate TF.

TF is used as a communication means between T1 and T2.

read-after-write

43

Transactional future escaping
from its top-level transaction

Logic underlying definition of TF continuation:
Sequence of causally-related operations that leads from

TF’s submission to its evaluation

read-after-write

• Using the above rationale, a continuation can span two or more top-
level transactions è strongly atomic continuation

• Constrain TF’s continuation within the top-level tx that submitted TF
è weakly atomic continuation

How to formalize these concepts?

• Via a Future Serialization Graph:
– similar in spirit to transaction serialization graph
– but aimed to:
1. allow for rigorous definition of futures and their continuations
2. capture ordering relations between futures and continuations

How to implement the abstraction of
Transactional Futures

• First implementation proposed in [ICPP’16]
– Support only for strongly ordered futures
– Transactional futures serialized solely

upon submission:
• No escaping futures

è FSG encoded via a tree
• Versions produced by futures managed via an

innovative multi-versioned concurrency control scheme

T0

TF1

TF2 TC3

TC4

TF5 TC6

TF7 TC8

How to implement the abstraction of
Transactional Futures

• Second implementation (under submission)
– Support for weakly ordered futures
• 2 serialization points for futures
• Possibility of escaping futures

– Novel concurrency control based on explicit management of the FSG

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Roadmap

• About me
• About IST & INESC-ID
• An overview of my past research activities
• Current research lines:
– Transactional Memory & emerging HW technologies:
• Persistent Memory
• GPUs

– Leveraging Symbolic Execution for Distributed Transactional Systems
– Parallel/distributed platforms for Machine Learning

Persistent Memory (PM)

• Fast byte-addressable storage
• Higher density when compared with volatile RAM
• Expect writes to be slower than RAM (2x-5x):
• Subject to wear off upon write (technology dependent)

48

Database

PMIn-memory
tables

Durable
support

Database

DiskRAM
In-memory

tables
Durable
support+

Free durability?

Persistent Memory (PM)

Co
re

Co
re

Co
re

Co
re

Main
Memory

Caches

Still volatile Now persistent
49

• CPU Caches (most likely) will continue being volatile:
• What is effectively written into memory?

• Applications must explicitly bypass caches:
• clflush, clflushopt, clwb
• Else:

• writes are not guaranteed to enter PM
• writes may be reordered

• What about applications that require
atomic access/transactions to memory
regions?

Integrating PM and Software-based TM

• Durability of transactions regulated via software concurrency is well-
understood: decades of literature in DBMS area!
• Example based on a recent PM-oriented software-based approach

[ASPLOS’16]:
• Upon write

1. Lock the value
2. Log (flush) the old value
3. Do the write

• Upon commit
1. Flush write-set
2. Add commit marker
3. Unlock values
4. Destroy log

50

begin

end

x ß R(X)

W(X, x+2) crash
recoverability

begin

end

x ß R(X)

W(X, x+2)

log(X)

commit_log

Unfortunately
not possible with
HTM!

Hardware Transactional Memory (HTM)

Co
re

Co
re

Co
re

Co
re

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Main
Memory

Shared
Cache

51

On
Cache

On
Memory

(PM)

time

_xbegin _xend
Concurrency is built on on cache
coherency protocols [ISCA’93]

Example of a story of a non-durable (and
non-atomic after recovery) transaction!

W(X,1)
W(Y,2)

W(Z,3)
Atomically

committed on cache

Crash

Y=2

Evicted

Hardware Transactional Memory (HTM)

Externalization of cache-lines while the
transactions is running is not allowed!

52

On
Cache

On
Memory

(PM)

time

_xbegin

W(X,1)

Abort
Log(X) clflush

Related Work
STM-based solutions[ASPLOS’11, ASPLOS’16]
• build on DBMS literature on logging

schemes:
• adapted & optimized for PM
• flexible design
• boilerplate on each load and store

53

HTM-based solutions [DISC’15, CAL’15]
• Rely on modified HTM implementation
• PHTM [DISC’15]:
• Flush cache-lines within transaction
• Order writes to logs via additional locks
• Commit flushes a commit marker

Drawbacks:
- STM incurs much larger overhead

than HTM!
- Do not work with HTM

Drawbacks:
- Incompatible with commodity HTM
- Additional locks reduce concurrency

and available capacity

NV-HTM: Transaction logging – 1/3

54

_xbegin

log(X)

W(X, x+2)

_xend

flush_log

x ß R(X)

TS ß ReadTS()

commit_log(TS)

Wait preceding transactions

Non-Durable
commit

Durable commit

Working
Snapshot

logs 1

Tr
an

sa
ct

io
n

1

logs 2
Tr

an
sa

ct
io

n
2

log flushed only after HTM
commit

commit confirmed
to application only
after transaction’s
log is fully flushed totally ordered log

maintained in a
decentralized fashion

NV-HTM: Transaction logging – 1/3

Pros:
ü Ensure interoperability with existing HTM systems!
ü Avoid contention hot-spots to maximize scalability

Challenge:
• If a transaction is durable, all transactions it depends upon also are:
• novel synchronization scheme based on physical clock

• Upon crash:
• no guarantee that updates of non-durably committed transaction hit PM
• possible corrupted snapshot upon failure!

55

NV-HTM: Transaction logging – 1/3

Pros:
ü Ensure interoperability with existing HTM systems!
ü Avoid contention hot-spots to maximize scalability

Challenge:
• If a transaction is durable, all transactions it depends upon also are:
• novel synchronization scheme based on physical clock

• Upon crash:
• no guarantee that updates of non-durably committed transaction hit PM
• possible corrupted snapshot upon failure!

56

NV-HTM: Working and Persistent Snapshots – 2/3

• Application writes in a (volatile) working snapshot
• Logged writes are replayed asynchronously to produce a consistent

persistent snapshot on PM
• via background checkpoint process

57

Replayed via a
background process

Working
Snapshot

logs

Tr
an

sa
ct

io
n Persistent

Snapshot

in volatile RAM in PM

Replay

NV-HTM: Working and Persistent Snapshots – 2/3

Pros:
üWrites to PM are 2x-5x slower than on volatile RAM!
ü Provides opportunity to filter redundant (duplicate) writes in the log
• less writes/flushes === longer life for PM!

Challenge:
- Memory efficiency: avoid maintaining 2 full copies of application’s

memory

58

Log filtering

A=
3

B=
5

Co
m

m
it(

TS
=1

)

A=
5

C=
1

Co
m

m
it(

TS
=3

)

Co
m

m
it(

TS
=5

)

E=
5

G
=1

B=
3

D
=2

Co
m

m
it(

TS
=2

)

Co
m

m
it(

TS
=4

)

F=
3

H
=2

A B C D E F G H

Cache Line

Th
re

ad
 1

Th
re

ad
 2

The Checkpoint Process may follow different policies to flush
the logs:
- Naïve approach: flush every log entry:

- Forward No Filtering (FNF)

- Replay all writes but flush each updated cache line only once:
- Forward Flush Filtering (FFF)

- Scan logs backwards and write/flush only most recent update:
- Backward Filtering Checkpointing (BFC)

59

NV-HTM: Working and Persistent Snapshots – 2/3

Pros:
üWrites to PM are 2x-5x slower than on volatile RAM!
ü Provides opportunity to filter redundant (duplicate) writes in the log
• less writes/flushes === longer life for PM!

Challenge:
- Memory efficiency: avoid maintaining 2 full copies of application’s

memory

60

Memory efficiency via CoW – 3/3

• Efficient management of working and persistent snapshot via OS/HW-
assisted Copy-on-Write mechanism:
• duplicate on volatile memory only regions actually modified by application

61

Ap
pl

ic
at

io
n

CoW
Em

pty
Em

pty

Persistent
Snapshot

Working
Snapshot

Recovering from a crash

1. Checkpoint Process replays any pending logged transaction
• Updated persistent snapshot

2. Fork the Checkpoint Process:
• Checkpoint Process mmaps the Persistent Snapshot in shared mode

3. Worker Process mmaps the Persistent Snapshot in private mode
• Obtains a volatile copy of the Persistent Snapshot (the Working Snapshot)
• OS ensures Copy-on-Write

62

Experimental evaluation

• System configuration:
• 14C/28T TSX enabled Intel Xeon Processor (E5-2648L v4), 22MB L3 cache
• 32 GB RAM
• Emulate write to PM latency by spinning 500ns

• Synthetic Benchmark: Bank

• STAMP Benchmark Suit [IISWC’08]

• Baselines:
• PHTM [DISC’15]
• PSTM [ASPLOS’11]

63

STAMP benchmarks

64

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (x

10
5 T

Xs
/s

)

Number of threads

PSTM
PHTM

NV-HTMNLP
NV-HTM10x

• Comparison for Kmeans (High contention)
• NV-HTMNLP: enough capacity for all writes
• NV-HTM10x: logs are 1/10 of all writes
• Checkpoint Manager has minimal impact in

throughout

Up to ~4x greater
throughput than PHTM

STAMP benchmarks

65

- In average, NV-HTMx10 produces 2.72x less writes than PHTM and 6.72x
less than PSTM, while only producing 13% more writes than NV-HTMNLP

Average Writes and Flushes per transaction

only ~13% extra
writes by using our
filtering approach

less 2.72x writes
than PHTM in
average

less 6.72x writes
than PSTM in
average

Ongoing work/opportunities of collaboration

• NV-HTM introduces a serial step in commit phase:
• Waiting for previous transactions to be durably committed, before a new

transaction can be durably committed
• Latency for flushing commit marker is on critical path of execution
• Can limit throughput especially if NVM latency is high

• Ongoing work on how to bypass this limitation

• Intel has finally made NVM commercially available
• Every previous work was based on simulation…
• Need to reassess actual performance on realistic system

66

Roadmap

• About me
• About IST & INESC-ID
• An overview of my past research activities
• Current research lines:
– Transactional Memory & emerging HW technologies:
• Persistent Memory
• GPUs

– Leveraging Symbolic Execution for Distributed Transactional Systems
– Parallel/distributed platforms for Machine Learning

Gap in literature:
no CPU+GPU TM system

Transactional Memory

Shared Memory

TX2 TX3

TX1

HeTM
Transactional Memory
for CPU+GPU systems

CPU TM
• Mature research
• Widely available in:
• Software
• Hardware
• combinations thereof

GPU TM

• More recent
• Adapted for GPUs
• Highly parallel architecture
• Threads execute lockstep

68

Challenges

CP
U

core core

cache

0 1

Existing TM implementations rely on
fast intra-device communication

PCIe

Need to revisit the TM abstraction
and consistency criteria

Serial inter-device communication makes
fine-grained synchronization difficult

Build a system upon this new abstraction
69

warp warp

 shared

SM0

0 1 warp warp

 shared

SM1

0 1

GP
U

 Cache

Correctness guarantee for traditional TM

P1. The behavior of every committed transaction has to be justifiable by the same sequential
execution containing only committed transactions, without contradicting real-time order.

P2. The behavior of any active transaction, even if it eventually aborts, has to be justifiable
by some sequential execution (possibly different) containing only committed transactions.

GPU

CPU

X = X + 1

Y = Y + 1

70

Commit

Commit

Hard notion of committed transaction:
need to transfer single transaction metadata over PCIe

Correctness guarantee for traditional TM

Begin Commit

Active

Abort

71

Correctness guarantee for HeTM

Begin

Commit

Active

Abort
Speculative

Commit

72

Inter-device
sync

Intra-device
sync

- Slow
+ Syncs global state

+ Fast
- Syncs local state

Speculative HeTM (SHeTM): architecture

GPU TM CPU TM

SHeTM
instrum

entation

SHeTM
instrum

entation

RS
G

PU

W
S

CPU

W
S

G
PU

CPUQ

Shared dataset

SHeTM metadata

Queueing
System

GPUQ

SHAREDQ

73

Transaction batching
+ Amortizes synchronization costs
+ load-balancing using a shared queue

Modular design

Speculative HeTM (SHeTM): overview

GPU

CPU

Da
ta

se
t 0

time

Da
ta

se
t 1

Sy
nc

hr
on

iza
tio

n

CPU Batch TXC1

GPU Batch TXG1

Synchronization phase
constructs the new dataset

CPU and GPU
work in parallel

Device local TM instrumentation
collects read/write sets

SHeTM sees TXG1 and TXC1 as
two very large transactions Da

ta
se

t 2

Batch GPU TXG2

Batch CPU TXC2

…

Sy
nc

hr
on

iza
tio

n

74

Base (unoptimized) idea

collect:
RSGPU + WSGPU

collect:
WSCPU

GPU

CPU

Execution phase Validation phase Merge phase

Dataset synchronizationconfigurable
time interval

RSGPU ∩ WSCPU = ∅?

time
tra

ns
fe

r W
SC

PU

apply WSCPU

Case of
Commit

75

transfer

dataset[W
S GPU

]
bm

p

Base (unoptimized) idea

collect:
RSGPU + WSGPU

collect:
WSCPU

GPU

CPU

Execution phase Validation phase Merge phase

Dataset synchronizationconfigurable
time interval

RSGPU ∩ WSCPU = ∅
?

time
tra

ns
fe

r W
SC

PU

apply WSCPU

Case of
Abort

76

W
S GPU

bm
p tra

ns
fe

r
da

ta
se

t[W
SG

PU
]

bm
p

Optimizations

• Synchronization imposes significative overheads!
• Some optimizations:
• Early validation kernels may reduce wasted work
• Execution of transactions can be overlapped with synchronization stages

GPU

CPU

Execution Validation Merge

time

Non-blocking
execution

WSGPU
VAL

77

VAL

Details
in the paper

Synchronization

Evaluation

• Intel Xeon E5-2648L v4 (14C/28T, HTM, 32GB DRAM)
• Nvidia GTX 1080 (8GB XDDR5, driver 387.34, CUDA 9.1)
• CPU TM:

• Intel’s hardware TM implementation (TSX)
• TinySTM in the paper

• GPU TM:
• PR-STM [EuroPar’15]

• Synthetic benchmark
• Random memory accesses on array of integers

• MemcachedGPU-TM
• Popular web caching application

78

Synthetic benchmark

• Evaluate the impact of the duration of the Execution phase
• Overhead of synchronization

• Benefits of two main optimizations
1. Early validation
2. Overlapping execution and synchronization

GPU

CPU

Execution Validation Merge

time

Non-blocking
execution

WSGPU
VAL

79

VAL

Synthetic benchmark – Execution time

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(n

o
rm

a
liz

e
d

)

SHeTMPR-STM (large bmp, W1)

SHeTMPR-STM (small bmp, W1)

SHeTMPR-STM (large bmp, W2)

SHeTMPR-STM (small bmp, W2)

 10 20 30 40 50 60 70 80 90

Write Transactions (%)

SHeTMTSX (W1)

SHeTMTSX (W2)

SHeTMTinySTM (W1)

SHeTMTinySTM (W2)

Figure 2: Cost of instrumentation of guest TM libraries.

to the current state of the CPU, it suffices to apply to it the
CPU’s write-set logs.

• Enhancing memory transfer’s throughput. In order to
exploit PCIe bandwidth while transferring information, transfers
are performed in chunks of relatively coarse granularity. To
this end, the CPU write-set logs are shipped to the GPU using
a granularity of 48 KB; also, the write-set bitmap on the GPU
tracks updates with a granularity of 16KB.

As a further optimization, the GPU-controller coalesces
transfers of contiguous chunks from the GPU to the CPU during
the merge phase (in the case of no inter-device contention),
as well as when performing the device to device copy from
the shadow to the working copy of the STMR (in the case of
inter-device contention).

V. EVALUATION

This Section presents an experimental study that aims at
answering the following key questions: the costs imposed by the
instrumentation of the guest TM libraries (Sec. V-A); overhead
introduced to workloads whose scalability is not limited by
inter-device contention (Sec. V-B); performance degradation
due to inter-device contention (Sec. V-C); optimization gains
over simpler designs (Sec. V-B and Sec. V-C); and finally, how
effective SHeTM is with realistic applications (Sec. V-D).

Our evaluation is conducted using a machine equipped with
an Intel Xeon E5-2648L v4 CPU (14 cores with support
for HTM, 32GB DRAM), an Nvidia GTX 1080 GPU (8GB
XDDR5, driver 387.34, CUDA 9.1), and running Ubuntu
16.04.3 LTS (kernel 4.4.0-57). Applications are manually
instrumented to use the SHeTM API.

We based our evaluation on a set of synthetic benchmarks
conceived to assess different aspects of SHeTM’s design, and
on MemcahedGPU [25].

In all the tests, we use 8 worker threads on the CPU side.
As for the transactional kernels, we tuned their configuration
(number of transactions per kernel activation, active threads
and thread blocks) on the basis of preliminary evaluations to
maximize the GPU throughput. The synthetic workloads use
the same transactional logic on both the CPU and GPU and
operate on a STMR of size 600MB, unless otherwise specified;
the STMR size in MemcachedGPU is around 480MB.

A. Instrumentation Costs

Let us start by assessing the overhead induced by the software
instrumentation that SHeTM requires for its guest TM libraries.
To this end we consider two workloads, noted W1 and W2,

(a) 100% update transactions

0

2

4

6

8

10

12

14

16

 0 100

 200

 300

 400

 500

 600

T
h

ro
u

g
h

p
u

t
(M

T
X

/s
)

Execution Phase (msec)

CPU-only

GPU-only

SHeTMbasic

SHeTM

(b) 10% update transactions

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

 0 50

 100

 150

 200

 250

 300

 350

 400

T
h

ro
u

g
h

p
u

t
(M

T
X

/s
)

Execution Phase (msec)

Figure 3: Efficiency in absence on contention.

that access the STMR uniformly at random. In W1, read-only
transactions issue 4 reads, whereas update transactions read and
update 4 memory positions. W2 is identical to W1, except that
both transaction types issue 40, and not 4 reads. W1 is designed
to stress the instrumentation of read and write operations. W2

is selected as representative of many realistic workloads, in
which reads outnumber the writes.

In the plot in Figure 2 we vary on the x-axis the percentage
of the update transactions from 10% to 90% and report on the
y-axis the throughput normalized w.r.t. un-instrumented version
of PR-STM [49] for the GPU (left plot), and of TinySTM [15]
and TSX for the CPU (right plot).

In the left plot (GPU), we consider using two different
levels of tracking granularity for the read-set bitmap (RSGPU

bmp),
namely 4B (small bmp) and 1KB (large bmp). We can see that,
independently of the considered workload, the use of the small
granularity bitmaps induce, larger overheads, approx. 20%,
as its larger size leads to a lower locality of reference. In
contrast, the coarser granularity bitmap reduces significantly the
instrumentation overhead, to approx. 5%, at the cost, though, of
spurious aborts due to the risk of false positives in the conflict
detection scheme. As a matter of fact, the trade-off between
instrumentation overhead and access tracking granularity is
well known in the literature, e.g., TM [15].

In the right plot (CPU), we observe that the instrumentation
cost is on average around 5% for W2 for both TinySTM and
TSX. In all scenarios, the overhead is below 10% except for the
most write intensive variants of W1, where it remains anyway
below 20% even in presence of 90% of update transactions.

B. Efficiency in absence of inter-device contention

Next, we intend to assess which overheads SHeTM incurs
in workloads whose scalability is not limited by inter-device
contention. Here, we consider two variants of the W1 workload,
generating 100% (W1-100%) and 10% (W1-10%) update
transactions, respectively.

We avoid inter-device contention by partitioning the STMR
in two halves and restricting CPU and GPU to access a different
half. The results of this study are reported in Figure 3, in which
we vary on the x-axis the duration of the execution phase from
1 msec to 600 msec and report on the y-axis the throughput
of SHeTM and of the following baselines: the basic variant
of SHeTM presented in Section IV-C, noted SHeTM basic;
TSX running solo, noted CPU-only; PR-STM running solo and
copying its STMR to the host, after executing a kernel, using
double buffer (i.e., without blocking), noted GPU-only.

80

In this experiment:
• no inter-devices conflicts (stresses the

overheads of commit batches)

GPU

CPU

Execution

Vali
dati

on
M

erge
time

Write intensive workloads:
- stress more SHeTM
still only ~25% below sum
CPU+GPU performance

Read intensive workloads:
+ SHeTM throughput is
~95% the sum CPU+GPU

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

SHeTMPR-STM (large bmp, W1)
SHeTMPR-STM (small bmp, W1)
SHeTMPR-STM (large bmp, W2)
SHeTMPR-STM (small bmp, W2)

 10 20 30 40 50 60 70 80 90
Write Transactions (%)

SHeTMTSX (W1)
SHeTMTSX (W2)
SHeTMTinySTM (W1)
SHeTMTinySTM (W2)

Figure 3. Cost of instrumentation of guest TM libraries.

use the same transactional logic on both the CPU and GPU and
operate on a STMR of size 600MB, unless otherwise specified.

A. Instrumentation Costs
Let us start by assessing the overhead induced by the software

instrumentation that SHeTM requires for its guest TM libraries.
To this end we consider two workloads, noted W1 and W2,
that access the STMR uniformly at random. In W1, read-only
transactions issue 4 reads, whereas update transactions read and
update 4 memory positions. W2 is identical to W1, except that
both transaction types issue 40, and not 4 reads. W1 is designed
to stress the instrumentation of read and write operations. W2
is selected as representative of many realistic workloads, in
which reads outnumber the writes.

In the plot in Figure 3 we vary on the x-axis the percentage
of the update transactions from 10% to 90% and report on
the y-axis the throughput normalized w.r.t. un-instrumented
versions PR-STM, for the GPU (left plot), and of TinySTM
and TSX, for the CPU (right plot).

In the right plot (GPU), we consider using two different
tracking granularities for the read-set bitmap (RS

GPU
BMP), namely

4 bytes and 1KB. We can see that, independently of the
considered workload, the use of the small granularity bitmaps
induce, larger overheads, approx. 20%, as its larger size leads
to a lower locality of reference. The use of a coarser granularity,
in contrast, allows to reduce significantly the instrumentation
overhead, to approx. 5%, at the cost, though, of spurious aborts
due to the risk of false positives in the conflict detection scheme.
As a matter of fact, the trade-off between instrumentation
overhead and access tracking granularity is well known in the
literature, e.g., TM [15].

In the left plot (CPU), we observe that the instrumentation
cost is on average around 5% for W2 for both TinySTM and
TSX. In all scenarios, the overhead is below 10% except for the
most write intensive variants of W1, where it remains anyway
below 20% even in presence of 90% of update transactions.

B. Efficiency in absence of inter-device contention
Next, we intend to assess which overheads SHeTM incurs

in workloads whose scalability is not limited by inter-device
contention. Here, we consider two variants of the W1 workload,
generating 100% (W1-100%) and 10% (W1-10%) update
transactions, respectively.

We avoid inter-device contention by partitioning the STMR
in two halves and restricting CPU and GPU to access a different
half. The results of this study are reported in Figure 4, in which
we vary on the x-axis the duration of the execution phase from

0
2
4
6
8

10
12
14
16

 0 100

 200

 300

 400

 500

 600

Th
ro

ug
hp

ut
 (M

TX
/s

)

Execution Phase (msec)

CPU-only
GPU-only
SHeTMbasic
SHeTM

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

 0 50
 100
 150
 200
 250
 300
 350
 400

Th
ro

ug
hp

ut
 (M

TX
/s

)

Execution Phase (msec)
Figure 4. Efficiency in absence on contention. Left plot: 100% update
transactions. Right plot: 10% update transactions.

0
20
40
60
80

100

20 40 80 120
200
300
400
500
600

20 40 80 120
200
300
400
500
600

SHeTMbasic CPU SHeTM
%

 T
im

e
Idle
Non-blocking
Processing

0
20
40
60
80

100

20 40 80 120
200
300
400
500
600

20 40 80 120
200
300
400
500
600

SHeTMbasic GPU SHeTM

%
 T

im
e

Execution Phase (msec)

Validation
DtH
Processing

Figure 5. Break-down of exec. times (100% update transactions)

1 msec to 600 msec and report on the y-axis the throughput
of SHeTM and of the following baselines: the basic variant
of SHeTM presented in Section IV-C, noted SHeTM basic;
TSX running solo, noted CPU-only; PR-STM running solo and
copying its STMR to the host, after executing a kernel, using
double buffer (i.e., without blocking), noted GPU-only.

The throughput plot on the left, which refers to W1-100%,
shows that as the execution period grows the performance of
SHeTM also increases — as expected, since the relative amount
of time spent performing the validation and merge phases
reduces, amortizing their cost over larger period of useful
processing (see right plot of Figure 4). The peak throughput
of approx. 17M tx/sec, is reached at 200 msecs and plateaus
beyond that value. SHeTM’s peak throughput is about 55%
higher than the peak throughput of CPU-only and GPU-only
(approx. 11 M tx/sec) and only 23% lower than the throughput
of an idealized system that could total the combined throughput
of both uninstrumented devices.

By contrasting the performance of SHeTM with that of basic
we can clearly appreciate the performance gains enabled by the
optimizations described in Section IV-D, which are particularly
significant with small execution periods (up to +56% higher
throughput when the execution period lasts 1 msec). The bar
plots in Figure 5, which report the breakdown of times spent
by the CPU and GPU in various phases, allow us to derive
additional insights on the sources of these gains. The use of
double buffering on the GPU side to overlap kernel processing
with the device to host transfer in the merge phase is the largest
source of gains and, despite the device to device cost has a
relatively larger cost for the smallest execution periods, the
gains it enables largely outweigh the costs it imposes. On the
CPU side, the ability to overlap transaction processing (noted
non-blocking in the figure) with the shipping of logs to the
GPU has also a meaningful impact on reducing the blocking

10

Significative reduction on
CPU and GPU idle time:
• CPU: 60% è 45%
•GPU: 60% è 20%

Non optimized
SHeTM

Optimized
SHeTM

81

Synchronization overlapping Ex
ecu

tio
n

GPU

CPU

Validation Merge

time

Non-blocking
execution

WSGPU

MemcachedGPU-TM
• Popular object caching system built by Facebook

• [SoCC’15]: port of Memcached to GPU
• Complex lock-based scheme that unnecessarily restricts concurrency

• Workload:
• 99.9% of GETs and key frequency follow a Zipfian distribution (α = 0.5)
• Keys partitioned based on last bit:

• Odd keys è GPU; Even keys è CPU

• Emulate load unbalances:
• vary the popularity of keys maintained by GPU and CPU
• GPU steals CPU requests (non-zero probability of conflicting in a key)

82

MemcachedGPU-TM

• Emulate load unbalances:
• vary the popularity of keys maintained by GPU and CPU
• GPU steals CPU requests (non-zero probability of conflicting in a key)

83

GPU requests

CPU requests

GPU Steal with probability X%
(X=100% means that GPU
operates only on the keys
assigned to CPU)

The higher the “steal” probability,
the higher the inter-device
contention probability

MemcachedGPU-TM

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

 0 20

 40

 60

 80

 100

Th
ro

ug
hp

ut
 (w

rt
C

PU
)

Probability of Conflict (%)

GPU-only
SHeTM
SHeTMno early val

Figure 6. Sensitivity to inter-device contention.

time, although not as strong as on the GPU side.
Finally, let us analyze the results reported in the right plot

of Figure 4, which refers to the workload with 10% of update
transactions. In this scenario, which considers a less extreme
(and arguably more realistic) application workload we can see
that the peak throughput of SHeTM converges to 4, which ,is
very close to the peak throughput achieved by an idealized
solution that achieves a performance equal to that of the
two device — an additional evidence of the efficiency of
the proposed design.

C. Sensitivity to contention
We now consider the same workload as in the previous study,

but inject with a given probability a conflicting access at random
in the stream of writes generated by the CPU transactions.

We vary on the x-axis the inter-device conflict probability, fix
the duration of the execution phase at 80 msecs and compare, in
Figure 6, the performance of SHeTM with and without the early
validation mechanism. On the y-axis we report the throughput
normalized with respect to TSX (unistrumented) running solo
and report, as reference, also the throughput achieved using
PR-STM, running solo with double buffering.

The analysis of this plots reveals several insights. The first
observation is that SHeTM consistently outperforms both TSX
and PRSTM for abort rates as high as 80%. In medium con-
tention, e.g., 50% probability of contention, SHeTM continues
to deliver a 40% gain over the fastest individual device (CPU).
Even when operating at the extreme 100% abort rate it incurs
only a modest overhead (approx. 20% if the early validation
is disabled. Overall, these results confirm the robustness of
SHeTM performance even in adverse scenarios.

Early validation appears to be a powerful mechanism
to mitigate overhead, especially in medium-high contention
scenario (60% and 80% abort rate). The only exception is
the case of 100% inter-device contention: in such an extreme
(and arguably non-representative of the desirable operational
region of HeTM or of any other TM systems) scenario, early
validation fails constantly, triggering the completion of the
current execution phase and device transfer of the CPU logs.
This is logically equivalent to operate with a much shorter
execution phase, which, as seen in Figure 4, tends to induce
longer blocking periods of the CPU.

D. MemcachedGPU
As mentioned, MemcachedGPU extends Memcached, a

popular in-memory object caching system, in order to use GPUs
to serve lookup requests for cached objects (GET operations).

0.0

0.5

0.8
1.0
1.2

1.5

1.8

 0 5 10 15 20 25

Th
ro

ug
hp

ut
 (w

rt
C

PU
)

Concurrent Execution (ms)

GPU-only
SHeTM no-conflicts
SHeTM steal 20%
SHeTM steal 80%
SHeTM steal 100%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0 5 10 15 20 25
Pr

ob
ab

ilit
y

of
 C

om
m

it
Concurrent Execution (ms)

Figure 7. Throughput of HeTM for Memcached with possible conflicts.

The original implementation MemcachedGPU does not
integrate a TM. As such, its developers had to implement an
ad-hoc synchronization mechanism to propagate the effects of
updates to the cache (e.g., via PUT operations) to the contents
maintained in the GPU’s cache. Besides being non-trivial, the
synchronization scheme used in the original MemcachedGPU
system suffers of a notable limitation. PUT operations on the
GPU kernel need to be executed in a single threaded fashion
and blocking any other concurrent GET operation. Both these
problems can be avoided thanks to the HeTM abstraction, which
we use to transparently keep the cache’s state synchronized
both on the CPU and GPU and to support (via its guest TM
library, PR-STM) the concurrent execution of state-changing
operations on both devices.

In this experiment, we use a cache with 1000000 sets, which
corresponds to a size of approx. 480MB. The sets are 8-way
associative, and the size of the key is 16 bytes while that of
the value is 32 bytes. We use LRU as replacement policy in
case of eviction. The workload is composed by 99.9% of GETs
and the object popularity follows a Zipfian distribution with
parameter ↵ = 0.5 — which represent typical is a common
distribution when settings for evaluating caches [5].

We consider 4 different workloads, defined as follows. In
the first workload (no-conflicts), we balance the load (i.e.,
cache operations) in input to the GPU and CPU by using the
last bit of the key accessed by an operation. This guarantees
that the input queues of the CPU and GPU can never contain
operations that access a common key, excluding the possibility
of inter-device contention.

We then emulate load unbalances scenarios, in which the
GPU receives progressively less input operation (e.g., due to
shifts in keys’ popularity) and starts stealing requests from
the CPU queue with increasing probability (steal 20% and
steal 80%). We consider also the extreme scenario in which
no device affinity is set to mitigate contention, so that both
devices access the same set of keys (steal 100%).

Note that in this case the peak normalized throughput
achievable by an ideal solution that incurs no overhead and
totals the equivalent normalized throughput of both CPU-only
and GPU-only is of approx. 1.9.

The plot shows that SHeTM achieves almost indistinguish-
able performance in the no-conflict and the 20% conflicts
scenarios, being in both cases less than 20% away from
the ideal solution and 80% better than both GPU-only and

11

Execution phase (msec)

Tuning the durations allows
high contention workloads to
still benefit from CPU+GPU

84

overhead is ~10% in
absence of contention

Ongoing work/opportunities of collaboration

• Extend SHeTM to support multiple GPUs

• Exploit integrated GPUs to accelerate STMs

• Design of STMs for GPUs

85

Roadmap

• About me
• About IST & INESC-ID
• An overview of my past research activities
• Current research lines:
– Transactional Memory & emerging HW technologies:
• Persistent Memory
• GPUs

– Leveraging Symbolic Execution for Distributed Transactional Systems
– Parallel/distributed platforms for Machine Learning

Symbolic Execution

Z = y * 2

y = 6

Z == 12

OK!!!FAIL!!!

Typical usage: testing/verification

Symbolic execution of transactional programs

Accesses umbrella_id
15,
20,25…NUM_RECORDS
*5

Accesses umbrella_id
0, 2 and 4

Data access prediction

Possible applications & collaboration opportunities

• A priori-knowledge of Read&Write-set of txs opens a number
of interesting opportunities
– Scheduling
– Deterministic concurrency control (State Machine Replication)
– Automatic data partitioning schemes
– …

Challenges

• State explosion:
– SE is sound but not complete (halting problem)

• If used prior to program execution, SE suffers of limitations of
static analysis techniques
– What if program behavior depends on the DB’s state?
• Over-approximation
• Combine SE && run-time execution

Roadmap

• About me
• About IST & INESC-ID
• An overview of my past research activities
• Current research lines:
– Transactional Memory & emerging HW technologies:
• Persistent Memory
• GPUs

– Leveraging Symbolic Execution for Distributed Transactional Systems
– Parallel/distributed platforms for Machine Learning

“Training a single AI model can emit as much carbon
as five cars in their lifetimes

(and that includes manufacture of the car itself)” [ACL’19]

The estimated costs of training a model

Typical architecture of ML Platforms
a.k.a. Parameter Server

To synchronize or not to synchronize?

Other training related
design choices/parameters

• How many parameter servers/worker nodes?
– Extreme settings: fully decentralized (1 to 1)

• Size of the batch processed by each worker
• Learning rate
• …

Ongoing work & collaboration opportunities

• Understand the system-related trade-offs associated with
these design choices
– …and propose novel approaches to enhance efficiency of state of the

art approaches

Ongoing work & collaboration opportunities

• Automate the identification of the “optimal” configuration:
– Challenges/opportunities:
• Building black box models of these platforms can be prohibitively expensive
• Configuration space is huge:

– Cartesian product of model related and cloud related parameters

• Techniques to minimize the cost of “testing” configurations
– Bayesian optimization
– Sub-sampling
– Aborting testing of “bad” connfigurations ASAP

