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Abstract
Redundancy elimination using data deduplication and

incremental data processing has emerged as an important
technique to minimize storage and computation require-
ments in data center computing. In this paper, we present
the design, implementation and evaluation of Shredder,
a high performance content-based chunking framework
for supporting incremental storage and computation sys-
tems. Shredder exploits the massively parallel process-
ing power of GPUs to overcome the CPU bottlenecks of
content-based chunking in a cost-effective manner. Un-
like previous uses of GPUs, which have focused on ap-
plications where computation costs are dominant, Shred-
der is designed to operate in both compute-and data-
intensive environments. To allow this, Shredder provides
several novel optimizations aimed at reducing the cost
of transferring data between host (CPU) and GPU, fully
utilizing the multicore architecture at the host, and re-
ducing GPU memory access latencies. With our opti-
mizations, Shredder achieves a speedup of over 5X for
chunking bandwidth compared to our optimized parallel
implementation without a GPU on the same host system.
Furthermore, we present two real world applications of
Shredder: an extension to HDFS, which serves as a basis
for incremental MapReduce computations, and an incre-
mental cloud backup system. In both contexts, Shred-
der detects redundancies in the input data across succes-
sive runs, leading to significant savings in storage, com-
putation, and end-to-end completion times.

1 Introduction
With the growth in popularity of Internet services, on-
line data stored in data centers is increasing at an ever-
growing pace. In 2010 alone, mankind is estimated to
have produced 1,200 exabytes of data [1]. As a result
of this “data deluge,” managing storage and computation
over this data has become one of the most challenging
tasks in data center computing.

A key observation that allows us to address this chal-
lenge is that a large fraction of the data that is produced

and the computations performed over this data are redun-
dant; hence,notstoring redundant data or performing re-
dundant computation can lead to significant savings in
terms of both storage and computational resources. To
make use of redundancy elimination, there exist a se-
ries of research and product proposals (detailed in §8)
for performingdata deduplicationandincremental com-
putations, which avoid storing or computing tasks based
on redundant data, respectively.

Both data deduplication schemes and incremental
computations rely on storage systems to detect duplicate
content. In particular, the most effective way to perform
this detection is usingcontent-based chunking, a tech-
nique that was pioneered in the context of the LBFS [35]
file system, where chunk boundaries within a file are dic-
tated by the presence of certain content instead of a fixed
offset. Even though content-based chunking is useful, it
is a computationally demanding task. Chunking meth-
ods need to scan the entire file contents, computing a fin-
gerprint over a sliding window of the data. This high
computational cost has caused some systems to simplify
the fingerprinting scheme by employing sampling tech-
niques, which can lead to missed opportunities for elim-
inating redundancies [9]. In other cases, systems skip
content-based chunking entirely, thus forgoing the op-
portunity to reuse identical content in similar, but not
identical files [24]. Therefore, as we get flooded with in-
creasing amounts of data, addressing this computational
bottleneck becomes a pressing issue in the design of stor-
age systems for data center-scale systems.

To address this issue we propose Shredder, a sys-
tem for performing efficient content-based chunking to
support scalable incremental storage and computations.
Shredder builds on the observation that neither the exclu-
sive use of multicore CPUs nor the specialized hardware
accelerators is sufficient to deal with large-scale data in
a cost-effective manner: multicore CPUs alone cannot
sustain a high throughput, whereas the specialized hard-
ware accelerators lack programmability for other tasks



and are costly. As an alternative, we explore employing
modern GPUs to meet these high computational require-
ments (while, as evidenced by prior research [25, 28],
also allowing for a low operational cost). The applica-
tion of GPUs in this setting, however, raises a significant
challenge — while GPUs have shown to produce per-
formance improvements for computation intensive ap-
plications, where CPU dominates the overall cost enve-
lope [25, 26, 28, 45, 46], it still remains to be proven that
GPUs are equally as effective for data intensive applica-
tions, which need to perform large data transfers for a
significantly smaller amount of processing.

To make the use of GPUs effective in the context of
storage systems, we designed several novel techniques,
which we apply to two proof-of-concept applications. In
particular, Shredder makes the following technical con-
tributions:

GPU acceleration framework. We identified three key
challenges in using GPUs for data intensive applications,
and addressed them with the following techniques:

• Asynchronous execution.To minimize the cost of
transferring data between host (CPU) and GPU, we
use a double buffering scheme. This enables GPUs
to perform computations while simultaneously data
is transferred in the background. To support this
background data transfer, we also introduce a ring
buffer of pinned memory regions.

• Streaming pipeline. To fully utilize the availabil-
ity of a multicore architecture at the host, we use
a pipelined execution for the different stages of
content-based chunking.

• Memory coalescing. Finally, because of the high
degree of parallelism, memory latencies in the GPU
will be high due to the presence of random ac-
cess across multiple bank rows of GPU memory,
which leads to a higher number of conflicts. We
address this problem with a cooperative memory ac-
cess scheme, which reduces the number of fetch re-
quests and bank conflicts.

Use cases.We present two applications of Shredder to
accelerate storage systems. The first case study is a
system called Inc-HDFS, a file-system that is based on
HDFS but is designed to support incremental computa-
tions for MapReduce jobs. Inc-HDFS leverages Shred-
der to provide a mechanism for identifying similarities
in the input data of consecutive runs of the same MapRe-
duce job. In this way Inc-HDFS enables efficient incre-
mental computation, where only the tasks whose inputs
have changed need to be recomputed. The second case
study is a backup architecture for a cloud environment,
where VMs are periodically backed up. We use Shred-
der on a backup server and use content-based chunking

to perform efficient deduplication and significantly im-
prove backup bandwidth.

We present experimental results that establish the ef-
fectiveness of the individual techniques we propose, as
well as the ability of Shredder to improve the perfor-
mance of the two real-world storage systems.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide background on content-based chunk-
ing, and discuss specific architectural features of GPUs.
An overview of the GPU acceleration framework and its
scalability challenges are covered in Section 3. Section 4
presents present a detailed system design, namely sev-
eral performance optimizations for increasing Shredder’s
throughput. We present the implementation and evalua-
tion of Shredder in Section 5. We cover the two case
studies in Section 6 and Section 7. Finally, we discuss
related work in Section 8, and conclude in Section 9.

2 Background
In this section, we first present background on content-
based chunking, to explain its cost and potential for par-
allelization. We then provide a brief overview of the mas-
sively parallel compute architecture of GPUs, namely
their memory subsystem and its limitations.

2.1 Content-based Chunking
Identification of duplicate data blocks has been used for
deduplication systems in the context of both storage [35,
41] and incremental computation frameworks [15]. For
storage systems, the duplicate data blocks need not to be
stored and, in the case of incremental computations, a
sub-computation based on the duplicate content may be
reused. Duplicate identification essentially consists of:

1. Chunking: This is the process of dividing the data
set into chunks in a way that aids in the detection of
duplicate data.

2. Hashing: This is the process of computing a
collision-resistant hash of the chunk.

3. Matching: This is the process of checking if the
hash for a chunk already exists in the index. If it ex-
ists then there is a duplicate chunk, else the chunk
is new and its hash is added to the index.

This paper focuses on the design of chunking schemes
(step 1), since this can be, in practice, one of the main
bottlenecks of a system that tries to perform this class
of optimizations [9, 24]. Thus we begin by giving some
background on how chunking is performed.

One of the most popular approaches for content-based
chunking is to compute a Rabin fingerprint [42] over slid-
ing windows ofw contiguous bytes. The hash values
produced by the fingerprinting scheme are used to create
chunk boundaries by starting new chunks whenever the
computed hash matches one of a set of markers (e.g., its
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value mod pis lower or equal to a constant). In more
detail, given aw-bit sequence, it is represented as a poly-
nomial of degreew−1 over the finite fieldGF(2):

f (x) = m0+m1x+ · · ·+mw−1xw−1 (1)

Given this polynomial, an irreducible polynomialdiv(x)
of degreek is chosen. The fingerprint of the original bit
sequence is the remainderr(x) obtained by division of
f (x) usingdiv(x). Chunk boundary is defined when the
fingerprint takes some pre-defined specific values called
markers. In addition, practical schemes define a mini-
mummin and maximummaxchunk size, which implies
that after finding a marker the fingerprint computation
can skipmin bytes, and that a marker is always set when
a total ofmaxbytes (including the skipped portion) have
been scanned without finding a marker. The minimum
size limits the metadata overhead for index management
and the maximum size limits the size of the RAM buffers
that are required. Throughout the rest of the paper, we
will usemin= 0 andmax= ∞ unless otherwise noted.

Rabin fingerprinting is computationally very expen-
sive. To minimize the computation cost, there has been
work on reducing chunking time by using sampling tech-
niques, where only a subset of bytes are used for chunk
identification (e.g., SampleByte [9]). However, such ap-
proaches are limiting because they are suited only for
small sized chunks, as skipping a large number of bytes
leads to missed opportunities for deduplication. Thus,
Rabin fingerprinting still remains one of the most pop-
ular chunking schemes, and reducing its computational
cost presents a fundamental challenge for improving sys-
tems that make use of duplicate identification.

When minimum and maximum chunk sizes are not re-
quired, chunking can be parallelized in a way that differ-
ent threads operate on different parts of the data com-
pletely independent of each other, with the exception
of a small overlap of the size of the sliding window (w
bytes) near partition boundaries. Usingmin and max
chunk sizes complicates this task, though schemes exist
to achieve efficient parallelization in this setting [31, 33].

2.2 General-Purpose Computing on GPUs

GPU architecture. GPUs are highly parallel, multi-
threaded, many-core processors with tremendous com-
putational power and very high memory bandwidth. The
high computational power is derived from the special-
ized design of GPUs, where more transistors are de-
voted to simple data processing units (ALUs) rather
than used to integrate sophisticated pre-fetchers, control
flows and data caches. Hence, GPUs are well-suited for
data-parallel computations with high arithmetic intensity
rather than data caching and flow control.

Figure 1 illustrates a simplified architecture of a GPU.
A GPU can be modeled as a set of Streaming Multipro-

CPU 

(Host)

GPU (Device)

D
e

v
ice

M
e

m
o

ry

Host Memory

Multiprocessor  N

Multiprocessor  2

Multiprocessor  1

Shared 

Memory

Reg

Cache

PCI

SP

SP

SP

SP

SP

SP SP

SP

Figure 1: A simplified view of the GPU architecture.

cessors (SMs), each consisting of a set of scalar proces-
sor cores (SPs). An SM works as SIMT (Single Instruc-
tion, Multiple Threads), where the SPs of a multiproces-
sor execute the same instruction simultaneously but on
different data elements. The data memory in the GPU
is organized as multiple hierarchical spaces for threads
in execution. The GPU has a large high-bandwidth de-
vice memory with high latency. Each SM also contains
a very fast, low latency on-chip shared memory to be
shared among its SPs. Also, each thread has access to a
private local memory.

Overall, a GPU architecture differs from a traditional
processor architecture in the following ways: (i) an or-
der of magnitude higher number of arithmetic units; (ii )
minimal support for prefetching and buffers for outstand-
ing instructions; (iii ) high memory access latencies and
higher memory bandwidth.

Programming model. The CUDA [6] programming
model is amongst the most popular programming mod-
els to extract parallelism and scale applications on GPUs.
In this programming model, a host program runs on the
CPU and launches a kernel program to be executed on
the GPU device in parallel. The kernel executes as a grid
of one or more thread blocks, each of which is dynam-
ically scheduled to be executed on a single SM. Each
thread block consists of a group of threads that cooper-
ate with each other by synchronizing their execution and
sharing multiprocessor resources such as shared memory
and registers. Threads within a thread block get executed
on a multiprocessor in scheduling units of 32 threads,
called a warp. A half-warp is either the first or second
half of a warp.

2.3 SDRAM Access Model
Offloading chunking to the GPU requires a large amount
of data to be transferred from the host to the GPU mem-
ory. Thus, we need to understand the performance of
the memory subsystem in the GPU, since it is critical to
chunking performance.
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The global memory in the Nvidia C2050 GPU is
GDDR5, which is based on the DDR3 memory archi-
tecture [2]. Memory is arranged into banks and banks
are organized into rows. Every bank also has a sense
amplifier, into which a row must be loaded before any
data from the row can be read by the GPU. Whenever
a memory location is accessed, anACT command se-
lects the corresponding bank and brings the row contain-
ing the memory location into a sense amplifier. The ap-
propriate word is then transferred from the sense ampli-
fier. When an access to a second memory location is
performed within the same row, the data is transferred
directly from the sense amplifier. On the other hand, if
the data is accessed from a different row in the bank,
a PRE (pre-charge) command writes the previous data
back from the sense amplifier to the memory row. A sec-
ond ACT command is performed to bring the row into
the sense amplifier.

Note that bothACT andPRE commands are high la-
tency operations that contribute significantly to overall
memory latency. If multiple threads access data from
different rows of the same bank in parallel, that sense
amplifier is continually activated (ACT) and pre-charged
(PRE) with different rows, leading to a phenomenon
called bank conflict. In particular, a high degree of un-
coordinated parallel access to the memory subsystem is
likely to result in a large number of bank conflicts.

3 System Overview and Challenges

In this section, we first present the basic design of Shred-
der. Next, we explain the main challenges in scaling up
our basic design.

3.1 Basic GPU-Accelerated Framework

Figure 2 depicts the workflow of the basic design for the
Shredder chunking service. In this initial design, a multi-
threaded program running in user mode on the host (i.e.,
on the CPU) drives the GPU-based computations. The
framework is composed of four major modules. First, the
Readerthread on the host receives the data stream (e.g.,
from a SAN), and places it in the memory of the host for
content-based chunking. After that, theTransferthread
allocates global memory on the GPU and uses the DMA
controller to transfer input data from the host memory
to the allocated GPU (device) memory. Once the data
transfer from the CPU to the GPU is complete, the host
launches theChunkingkernel for parallel sliding win-
dow computations on the GPU. Once the chunking ker-
nel finds all resulting chunk boundaries for the input data,
theStorethread transfers the resulting chunk boundaries
from the device memory to the host memory. When min-
imum and maximum chunk sizes are set, theStorethread
also adjusts the chunk set accordingly. Thereafter, the
Storethread uses an upcall to notify the chunk bound-

CPU (Host) GPU (Device)

Reader
Chunking

Kernel

Data for 

Chunking
Chunked

Data

Transfer

Store

Figure 2: Basic workflow of Shredder.

aries to the application that is using the Shredder library.
The chunking kernel is responsible for performing par-

allel content-based chunking of the data present in the
global memory of the GPU. Accesses to the data are per-
formed by multiple threads that are created on the GPU
by launching the chunking kernel. The data in the GPU
memory is divided into equal sized sub-streams, as many
as the number of threads. Each thread is responsible for
handling one of these sub-streams. For each sub-stream,
a thread computes a Rabin fingerprint in a sliding win-
dow manner. In particular, each thread examines a 48-
byte region from its assigned sub-stream, and computes
the Rabin fingerprint for the selected region. The thread
compares the resulting low-order 13 bits of the region’s
fingerprint with a pre-defined marker. This leads to an
expected chunk size of 4 KB. If the fingerprint matches
the marker then the thread defines that particular region
as the end of a chunk boundary. The thread continues to
compute the Rabin fingerprint in a sliding window man-
ner in search of new chunk boundaries by shifting a byte
forward in the sub-stream, and repeating this process.

3.2 Scalability Challenges
The basic design for Shredder that we presented in
the previous section corresponds to the traditional way
in which GPU-assisted applications are implemented.
This design has proven to be sufficient for computation-
intensive applications, where the computation costs can
dwarf the cost of transferring the data to the GPU mem-
ory and accessing that memory from the GPU’s cores.
However, it results in only modest performance gains
for data intensive applications that perform single-pass
processing over large amounts of data, with a compu-
tational cost that is significantly lower than traditional
GPU-assisted applications.

To understand why this is the case, we present in Ta-
ble 1 some key performance characteristics of a specific
GPU architecture (NVidia Tesla C2050), which helps us
explain some important bottlenecks for GPU-accelerated
applications. In particular, and as we will demonstrate in
subsequent sections, we identified the following bottle-
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Parameter Value
GPU Processing Capacity 1030 GFlops
Reader (I/O) Bandwidth 2 GBps

Host-to-Device Bandwidth 5.406 GBps
Device-to-Host Bandwidth 5.129 GBps
Device Memory Latency 400 - 600 cycles

Device Memory Bandwidth 144 GBps
Shared Memory LatencyL1 latency (a few cycles)

Table 1: Performance characteristics of the GPU (NVidia
Tesla C2050)

necks in the basic design of Shredder.

GPU device memory bottleneck. The fact that data
needs to be transferred to the GPU memory before being
processed by the GPU represents a serial dependency:
such processing only starts to execute after the corre-
sponding transfer concludes.

Host bottleneck. The host machine performs three se-
rialized steps (performed by the Reader, Transfer, and
Store threads) in each iteration. Since these three steps
are inherently dependent on each other for a given input
buffer, this serial execution becomes a bottleneck at host.
Also, given the availability of multicore architecture at
the host, this serialized execution leads to an underuti-
lization of resources at host.

High memory latencies and bank conflicts.The global
device memory on the GPU has a high latency, of the
order of 400 to 600 cycles. This works well for HPC
algorithms, which are quadraticO(N2) or a higher de-
gree polynomial in the input sizeN, since the compu-
tation time hides the memory access latencies. Chunk-
ing is also compute intensive, but it is only linear in
the input size (O(N), though the constants are high).
Hence, even though the problem is compute intensive
on traditional CPUs, on a GPU with an order of magni-
tude larger number of scalar cores, the problem becomes
memory-intensive. In particular, the less sophisticated
memory subsystem of the GPU (without prefetching or
data caching support) is stressed by frequent memory ac-
cess by a massive number of threads in parallel. Fur-
thermore, a higher degree of parallelism causes memory
to be accessed randomly across multiple bank rows, and
leads to a very high number of bank conflicts. As a re-
sult, it becomes difficult to hide the latencies of accesses
to the device memory.

4 Shredder Optimizations

In this section, we describe several novel optimizations
that extend the basic design to overcome the challenges
we highlighted in the previous section.
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Figure 3: Bandwidth test between host and device.

4.1 Device Memory Bottlenecks

4.1.1 Concurrent Copy and Execution

The main challenge we need to overcome is the fact that
traditional GPU-assisted applications that follow the ba-
sic design were designed for a scenario where the cost of
transferring data to the GPU is significantly outweighed
by the actual computation cost. In particular, the ba-
sic design serializes the execution of copying data to the
GPU memory and consuming the data from that memory
by the Kernel thread. This serialized execution may not
suit the needs of data intensive applications, where the
cost of the data transfer step becomes a more significant
fraction of the overall computation time.

To understand the magnitude of this problem, we mea-
sured the overhead of a DMA transfer of data between
the host and the device memory over the PCIe link con-
nected to GPU. Figure 3 summarizes the effective band-
width between host memory and device memory for dif-
ferent buffer sizes. We measured the bandwidth both
ways between the host and the device to gauge the DMA
overhead for the Transfer and the Store thread. Note
that the effective bandwidth is a property of the DMA
controller and the PCI bus, and it is independent of the
number of threads launched in the GPU. In this experi-
ment, we also varied the buffer type allocated for the host
memory region, which is allocated either as pageable or
pinned memory regions. (The need for pinned memory
will become apparent shortly.)

Highlights. Our measurements demonstrate the follow-
ing: (i) small sized buffer transfers are more expensive
than those using large sized buffers; (ii) the throughput
saturates for buffer sizes larger than 32 MB (for page-
able memory region) and 256 KB (for pinned memory
region); (iii) for large sized buffers (greater than 32 MB),
the throughput difference between pageable and pinned
memory regions is not significant; and (iv) the effective
bandwidth of the PCIe bus for data transfer is on the or-
der of 5 GB/sec, whereas the global device memory ac-
cess time by scalar processors in GPUs is on the order of
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Figure 4: Concurrent copy and execution.

144 GB/sec, an order of magnitude higher.

Implications. The time spent to chunk a given buffer is
split between the memory transfer and the kernel com-
putation. For a non-optimized implementation of the
chunking computation, we spend approximately 25% of
the time performing the transfer. Once we optimize the
processing in the GPU, the host to GPU memory trans-
fer may become an even greater burden on the overall
performance.

Optimization. In order to avoid the serialized execution
of the copy and data consumption steps, we propose to
overlap the copy and the execution phases, thus allowing
for the concurrent execution of data communication and
the chunking kernel computations. To enable this, we
designed a double buffering technique as shown in Fig-
ure 4, where we partition the device memory into twin
buffers. These twin buffers will be alternatively used
for communication and computation. In this scheme, the
host asynchronously copies the data into the first buffer
and, in the background, the device works on the previ-
ously filled second buffer. To be able to support asyn-
chronous communication, the host buffer is allocated as
a pinned memory region, which prevents the region from
being swapped out by the pager.

Effectiveness. Figure 5 shows the effectiveness of
the double buffering approach, where the histogram for
transfer and kernel execution shows a 30% time over-
lap between the concurrent copy and computation. Even
though the total time taken for concurrent copy and ex-
ecution (Concurrent) is reduced by only 15% as com-
pared to the serialized execution (Serialized), it is im-
portant to note that the total time is now dictated solely
by the compute time. Hence, double buffering is able to
remove the data copying time from the critical path, al-
lowing us to focus only on optimizing the computation
time in the GPU (which we address in § 4.3).

To support the concurrent copy and execution, how-
ever, requires us to pin memory at the host, which re-
duces the memory allocation performance at the host.
We next present an optimization to handle this side effect
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Figure 5: Normalized overlap time of communication
with computation with varied buffer sizes for 1GB data.

and ensure that double buffering leads to an end-to-end
increase in chunking bandwidth.

4.1.2 Circular Ring Pinned Memory Buffers

As explained above, the double buffering requires an
asynchronous copy between host memory and device
memory. To support this asynchronous data transfer, the
host side buffer should be allocated as a pinned mem-
ory region. This locks the corresponding page so that
accessing that region does not result in a page fault until
the region is subsequently unpinned.

To quantify the allocation overheads of using a pinned
memory region, we compared the time required for dy-
namic memory allocation (usingmalloc) and pinned
memory allocation (using the CUDA memory allocator
wrapper). Since Linux follows an optimistic memory al-
location strategy, where the actual allocation is deferred
until memory initialization, in our measurements we ini-
tialized the memory region (usingbzero) to force the
kernel to allocate the desired buffer size. Figure 6 com-
pares the allocation overhead of pageable and pinned
memory for different buffer sizes.

Highlights. The important take away points are the fol-
lowing: (i) pinned memory allocation is more expensive
than the normal dynamic memory allocation; and (ii) an
adverse side effect of having too many pinned memory
pages is that it can increase paging activity for unpinned
pages, which degrades performance.

Implications. The main implication for our system de-
sign is that we need to minimize the allocation of pinned
memory region buffers, to avoid increased paging activ-
ity or even thrashing.

Optimization. To minimize the allocation of pinned
memory region while restricting ourselves to using the
CUDA architecture, we designed a circular ring buffer
built from a pinned memory region, as shown in Fig-
ure 7, with the property that the number of buffers can
be kept low (namely as low as the number of stages in
the streaming pipeline, as described in §4.2). The pinned
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regions in the circular buffer are allocated only once dur-
ing the system initialization, and thereafter are reused in
a round-robin fashion after the transfer between the host
and the device memory is complete. This allows us to
keep the overhead of costly memory allocation negligi-
ble and have sufficient memory pages for other tasks.

Effectiveness. Figure 6 shows the effectiveness of our
approach, where we compare the time for allocating
pageable and pinned memory regions. Since we incur
the additional cost of copying the data from pageable
memory to the pinned memory region, we add this cost
to the total cost of using pageable buffers. Overall, our
approach is faster by an order of magnitude, which high-
lights the importance of this optimization.

4.2 Host Bottleneck
The previously stated optimizations alleviate the device
memory bottleneck for DMA transfers, and allow the
device to focus on performing the actual computation.
However, the host side modules can still become a bot-
tleneck due to the serialized execution of the following
stages (Reader→Transfer→Kernel→Store). In this
case, the fact that all four modules are serially executed
leads to an underutilization of resources at the host side.

To quantify this underutilization at the host, we mea-
sured the number of idle spare cycles per core after the
launch of the asynchronous execution of the kernel. Ta-
ble 2 shows the number of RDTSC tick cycles for dif-
ferent buffer sizes. The RDTSC [8] (Read-Time Stamp
Counter) instruction keeps an accurate count of every
cycle that occurs on the processor for monitoring the
performance. The device execution time captures the
asynchronous copy and execution of the kernel, and the
host kernel launch time measures the time for the host to
launch the asynchronous copy and the chunking kernel.

Highlights. These measurements highlight the follow-
ing: (i) the kernel launch time is negligible compared to
the total execution time for the kernel; (ii) the host is idle
during the device execution time; and (ii) the host has a
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Host Memory

CPU (Host)

Figure 7: Ring buffer for the pinned memory region.

Buffer size (bytes) 16M 32M 64M 128M 256M

Device execution time (ms) 11.3922.7442.85 85.7 171.4
Host kernel launch time (ms)0.03 0.03 0.03 0.08 0.09
Total execution time (ms) 11.4222.7742.8885.78171.49
HostRDTSC ticks @ 2.67 GHz3.0e76.1e71.1e82.7e8 5.3e8

Table 2: Host spare cycles per core due to asynchronous
data-transfer and kernel launch.

large number of spare cycles per core, even with a small
sized buffer.

Implications. Given the prevalence of host systems run-
ning on multicore architectures, the sequential execution
of the various components leads to the underutilization of
the host resources, and therefore these resources should
be used to perform other operations.

Optimization. To utilize these spare cycles at the host,
Shredder makes use of a multi-stage streaming pipeline
as shown in Figure 8. The goal of this design is that
once the Reader thread finishes writing the data in the
host main memory, it immediately proceeds to handling
a new window of data in the stream. Similarly, the other
threads follow this pipelined execution without waiting
for the next stage to finish.

To handle the specific characteristics of our pipeline
stages, we use different design strategies for different
modules. Since the Reader and Store modules deal
with I/O, they are implemented as Asynchronous I/O
(as described in §5.2.1), whereas the transfer and kernel
threads are implemented using multi-buffering (a gen-
eralization of the double buffering scheme described in
§4.1.1).

Effectiveness.Figure 9 shows the average speedup from
using our streaming pipeline, measured as the ratio of
time taken by a sequential execution to the time taken
by our multi-stage pipeline. We varied the number of
pipeline stages that can be executed simultaneously (by
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restricting the number of buffers that are admitted to
the pipeline) from 2 to 4. The results show that a full
pipeline with all four stages being executed simultane-
ously achieves a speedup of 2; the reason why this is
below the theoretical maximum of a 4X gain is that the
various stages do not have equal cost.

4.3 Device Memory Conflicts
We have observed (in Figure 5) that the chunking ker-
nel dominates the overall time spent by the GPU. In this
context, it is crucial to try to minimize the contribution
of the device memory access latency to the overall cost.

Highlights. The very high access latencies of the device
memory (on the order of 400-600 cycles @ 1.15 GHz)
and the lack of support for data caching and prefetching
can imply a significant overhead in the overall execution
time of the chunking kernel.

Implications. The hierarchical memory of GPUs pro-
vides us an opportunity to hide the latencies of the global
device memory by instead making careful use of the
low latency shared memory. (Recall from § 2.2 that the
shared memory is a fast and low latency on-chip mem-
ory which is shared among a subset of the GPU’s scalar
processors.) However, fetching data from global to the
shared memory requires us to be careful to avoid bank
conflicts, which can negatively impact the performance
of the GPU memory subsystem. This implies that we
should try to improve the inter-thread coordination in
fetching data from the device global memory to avoid
these bank conflicts.

Device Memory

Shared  Memory

Half-warp 

Memory

 Coalescing

Thread-n 

Fetching the Data in Shared Memory

Processing the Data in Shared Memory  

T
im

e

... ... 

Thread-1 Thread-2 

Shared  Memory

Figure 10: Memory coalescing to fetch data from global
device memory to the shared memory.

Optimization. We designed a thread cooperation mech-
anism to optimize the process of fetching data from the
global memory to the shared memory, as shown in Fig-
ure 10. In this scheme, a single block that is needed by a
given thread is fetched at a time, but each block is fetched
with the cooperation of all the threads, and their coordi-
nation to avoid bank conflicts. The idea is to iterate over
all data blocks for all threads in a thread block, fetch one
data block at a time in a way that different threads request
consecutive but non-conflicting parts of the data block,
and then, after all data blocks are fetched, let each thread
work on its respective blocks independently. This is fea-
sible since threads in a warp (or half-warp) execute the
same stream of instructions (SIMT). Figure 10 depicts
how threads in a half-warp cooperate with each other to
fetch different blocks sequentially in time.

In order to ensure that the requests made by different
threads when fetching different parts of the same data
block do not conflict, we followed the best practices sug-
gested by the device manufacturer to ensure these re-
quests correspond to a single access to one row in a
bank [6, 7, 44]. In particular, Shredder lets multiple
threads of a half-warp read a contiguous memory inter-
val simultaneously, under following conditions: (i) the
size of the memory element accessed by each thread is
either 4, 8, or 16 bytes; (ii) the elements form a contigu-
ous block of memory; i.e, the Nth element is accessed by
the Nth thread in the half-warp; and (iii) the address of
the first element is aligned at a boundary of a multiple of
16 bytes.
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Effectiveness.Figure 11 shows the effectiveness of the
memory coalescing optimization, where we compare the
execution time for the chunking kernel using the normal
device memory access and the optimized version. The
results show that we improve performance by a factor of
8 by reducing bank conflicts. Since the granularity of
memory coalescing is 48 KB (which is the size for the
shared memory per thread block), we do not see any im-
pact from varying buffer sizes (16 MB to 512 MB), and
the benefits are consistent across different buffer sizes.

5 Implementation and Evaluation
We implemented Shredder in CUDA [6], and for an ex-
perimental comparison, we also implemented an opti-
mized parallel host-only version of content-based chunk-
ing. This section describes these implementations and
evaluates them.

5.1 Host-Only Chunking usingpthreads
We implemented a library for parallel content-based
chunking on SMPs using POSIX pthreads. We derived
parallelism by creating pthreads that operate in differ-
ent data regions using a Single Program Multiple Data
(SPMD) strategy and communicate using a shared mem-
ory data structure. At a high level, the implementation
works as follows: (1) divide the input data equally in
fixed-size regions among N threads; (2) invoke the Ra-
bin fingerprint-based chunking algorithm in parallel on
N different regions; (3) synchronize neighboring threads
in the end to merge the resulting chunk boundaries.

An issue that arises is that dynamic memory allocation
can become a bottleneck due to the the serialization re-
quired to avoid race conditions. To address this, we used
the Hoard memory allocator [13] instead ofmalloc.

5.2 Shredder Implementation
The Shredder library implementation comprises two
main modules, thehost driverand theGPU kernel. The
host driver runs the control part of the system as a multi-
threaded process on the host CPU running Linux. The

GPU kernel uses one or more GPUs as co-processors for
accelerating the SIMT code, and is implemented using
the CUDA programming model from the NVidia GP-
GPU toolkit [6]. Next we explain key implementation
details for both modules.

5.2.1 Host Driver

The host driver module is responsible for reading the in-
put data either from the network or the disk and trans-
ferring the data to the GPU memory. Once the data is
transferred then the host process dispatches the GPU ker-
nel code in the form of RPCs supported by the CUDA
toolkit. The host driver has two types of function-
ality: (1) the Reader/Store threads deal with reading
and writing data from and to I/O channels; and (2)
the Transfer thread is responsible for moving data be-
tween the host and the GPU memory. We implemented
the Reader/Store threads using Asynchronous I/O and
the Transfer thread using CUDA RPCs and page-pinned
memory.

Asynchronous I/O (AIO). With asynchronous non-
blocking I/O, it is possible to overlap processing and I/O
by initiating multiple transfers at the same time. In AIO,
the read request returns immediately, indicating that the
read was successfully initiated. The application can then
perform other processing while the background read op-
eration completes. When the read response arrives, a sig-
nal registered with the read request is triggered to signal
the completion of the I/O transaction.

Since the Reader/Store threads operate at the granular-
ity of buffers, a single input file I/O may lead to issuing
multipleaio-read system calls. To minimize the over-
head of multiple context switches per buffer, we used
lio-listio to initiate multiple transfers at the same
time in the context of a single system call (meaning one
kernel context switch).

5.2.2 GPU Kernel

The GPU kernel can be trivially derived from the C
equivalent code by implementing a collection of func-
tions in equivalent CUDA C with some assembly anno-
tations, plus different access mechanisms for data layout
in the GPU memory. However, an efficient implementa-
tion of the GPU kernel requires a bit more understanding
of vector computations and the GPU architecture. We
briefly describe some of these considerations.

Kernel optimizations. We have implemented minor ker-
nel optimizations to exploit vector computation in GPUs.
In particular, we used loop unrolling and instruction-
level optimizations for the core Rabin fingerprint block.
These changes are important because of the simpli-
fied GPU architecture, which lacks out-of-order execu-
tion, pipeline stalling in register usage, or instruction
reordering to eliminate Read-after-Write (RAW) depen-
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Figure 12: Throughput comparison of content-based
chunking between CPU and GPU versions.

dencies.

Warp divergence. Since the GPU architecture is Single
Instruction Multiple Threads (SIMT), if threads in a warp
diverge on a data-dependent conditional branch, then the
warp is serially executed until all threads in it converge
to the same execution path. To avoid a performance dip
due to this divergence in warp execution, we carefully
restructured the algorithm to have little code divergence
within a warp, by minimizing the code path under data-
dependent conditional branches.

5.3 Evaluation of Shredder
We now present our experimental evaluation of the per-
formance of Shredder.

Experimental setup. We used a fermi-based GPU ar-
chitecture, namely the Tesla C2050 GPU consisting of
448 processor cores (SPs). It is organized as a set of 14
SMs each consisting of 32 SPs running at 1.15 GHz. It
has 2.6 GB of off-chip global GPU memory providing
a peak memory bandwidth of 144 GB/s. Each SM has
32768 registers and 48 KB of local on-chip shared mem-
ory, shared between its scalar cores.

We also used an Intel Xeon processor based system
as the host CPU machine. The host system consists of
12 Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz with 48
GB of main memory. The host machine is running Linux
with kernel 2.6.38 in 64-bit mode, additionally patched
with GPU direct technology [4] (for SAN devices). The
GCC 4.3.2 compiler (with -O3) was used to compile the
source code of the host library. The GPU code is com-
piled using the CUDA toolkit 4.0 with NVidia driver ver-
sion 270.41.03. The posix implementation is run with 12
threads.

Results. We measure the effectiveness of GPU-
accelerated content-based chunking by comparing the
performance of different versions of the host-only and
GPU based implementation, as shown in Figure 12. We
compare the chunking throughput for the pthreads imple-
mentation with and without using the Hoard memory al-

Shredder

Data Incremental

MapReduce

Hadoop

M M M

R R

Incremental

HDFS

Figure 13: Incremental computations using Shredder.

locator. For the GPU implementation, we compared the
performance of the system with different optimizations
turned on, to gauge their effectiveness. In particular,
GPU Basic represents a basic implementation without
any optimizations. The GPU Streams version includes
the optimization to remove host and device bottlenecks
using double buffering and a 4-stage pipeline. Lastly
GPU Streams + Memory represents a version with all
optimizations, including memory coalescing.

Our results show that a naive GPU implementation can
lead to a 2X improvement over a host-only optimized im-
plementation. The observation clearly highlights the po-
tential of GPUs to alleviate computational bottlenecks.
However, this implementation does not remove chunk-
ing as a bottleneck since SAN bandwidths on typical data
servers exceed 10 Gbps. Incorporating the optimizations
lead to Shredder outperforming the host-only implemen-
tation by a factor of over 5X.

6 Case Study I: Incremental Computations
This section presents a case study of applying Shredder
in the context of incremental computations. First we re-
view Incoop, a system for bulk incremental processing,
and then describe how we used Shredder to improve it.

6.1 Background: Incremental MapReduce
Incoop [15] is a generic MapReduce framework for in-
cremental computations. Incoop leverages the fact that
data sets that are processed by bulk data processing
frameworks like MapReduce evolve slowly, and often the
same computation needs to be performed repeatedly on
this changing data (such as computing PageRank on ev-
ery new web crawl) [23, 34, 36]. Incoop aims at pro-
cessing this data incrementally, by avoiding recomputing
parts of the computation that did not change, and trans-
parently, by being backwards-compatible with the inter-
face used by MapReduce frameworks.

To achieve these goals, Incoop employs a fine-grained
result reuse mechanism, which captures a dependence
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graph among inputs and sub-computations, propagates
changes along that graph so that only sub-computations
that have changed need to be recomputed, and uses
memoization to be able to reuse outputs from sub-
computations whose inputs did not change. Incoop uses
the Inc-HDFS file system (an extension to HDFS) to
identify changes in the input and propagate them.

6.2 GPU-Accelerated Incremental HDFS
We use Shredder to support Incoop by designing a GPU-
accelerated Incremental HDFS (Inc-HDFS), which is in-
tegrated with Incoop as shown in Figure 13. Inc-HDFS
leverages Shredder to perform content-based chunking
instead of using fixed-size chunking as in the original
HDFS, thus ensuring that small changes to the input lead
to small changes in the set of chunks that are provided as
input to Map tasks. This enables the results of the com-
putations performed by most Map tasks to be reused.

6.3 Implementation and Evaluation
We built our prototype GPU-accelerated Inc-HDFS on
Hadoop-0.20.2. It is implemented as an extension to
HDFS, where the computationally expensive chunking
is offloaded to the Shredder-enabled HDFS client (as
shown in Figure 14), before uploading chunks to the re-
spective data nodes that will be storing them.

Inc-HDFS client. We integrated the Shredder library
with Inc-HDFS client using a JAVA-CUDA interface.
Once the data upload function is invoked, the Shredder li-
brary notifies the chunk boundaries to the Store thread,
which in turn pushes the chunks from the memory of the
client to the data nodes of HDFS.

Semantic chunking framework. The default behav-
ior of the Shredder library is to split the input file into
variable-length chunks based on the contents. However,
since chunking is oblivious to the semantics of the input
data, this could cause chunk boundaries to be placed any-
where, including, for instance, in the middle of a record
that should not be broken. To address this, we lever-
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Figure 15: Speedup for incremental computation

age the fact that the MapReduce framework relies on the
InputFormat class of the job to split up the input file(s)
into logical InputSplits, each of which is then assigned to
an individual Map task. We reuse this class to ensure that
we respect the record boundaries in the chunking pro-
cess.

HDFS shell. We extended the HDFS shell interface to
invoke content-based chunking using the Shredder im-
plementation. In particular, the shell interface offers new
command (in addition tocopyFromLocal) for upload-
ing data in Inc-HDFS:copyFromLocalGPU.

Evaluation. We evaluated the effectiveness of incre-
mental computations by measuring the speedups w.r.t.
Hadoop for varying percentages of changes in the in-
put data. Figure 15 shows the performance gains on
a 20-node cluster, where all three MapReduce appli-
cations (K-means, Word-Count, Co-occurrence Matrix)
show significant improvement in run-time for incremen-
tal runs. The effectiveness of the incremental approach
degrades as the percentage of changes in the data set in-
creases. Note that this experiment is not meant to high-
light the speedup enabled by GPU acceleration, but in-
stead shows how, after the data is chunked using Shred-
der, detecting duplicates at the storage level can imply
savings in computation time.

7 Case Study II: Incremental Storage
In this section, we present our second case study where
we use Shredder in the context of a consolidated incre-
mental backup system.

7.1 Background: Cloud Backup
Figure 16 describes our target architecture, which is typ-
ical of cloud back-ends. Applications are deployed on
virtual machines hosted on physical servers. The file
system images of the virtual machines are hosted in a
virtual machine image repository stored in a SAN vol-
ume. In this scenario, the backup process works in the
following manner. Periodically, full image snapshots are
taken for all the VM images that need to be backed up.
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The core of the backup process is a backup server and
a backup agent running inside the backup server. The
image snapshots are mounted by the backup agent. The
backup server performs the actual backup of the image
snapshots onto disks or tapes. The consolidated or cen-
tralized data backup process ensures compliance of all
virtual machines with the agreed upon backup policy.
Backup servers typically have very high I/O bandwidth
since, in enterprise environments, all operations are typ-
ically performed on a SAN [30]. Furthermore, the use
of physical servers allows multiple dedicated ports to be
employed solely for the backup process.

7.2 GPU-Accelerated Data Deduplication
The centralized backup process is eminently suitable
for deduplication via content-based chunking, as most
images in a data-center environment are standardized.
Hence, virtual machines share a large number of files
and a typical backup process would unnecessarily copy
the same content multiple times. To exploit this fact, we
integrate Shredder with the backup server, thus enabling
data to be pushed to the backup site at a high rate while
simultaneously exploiting opportunities for savings.

The Reader thread on the backup server reads the
incoming data and pushes that into Shredder to form
chunks. Once the chunks are formed, the Store thread
computes a hash for the overall chunk, and pushes the
chunks in the backup setup as a separate pipeline stage.
Thereafter, these hashes collected for the chunks are
batched together to enqueue in an index lookup queue.
Finally, a lookup thread picks up the enqueued chunk
fingerprints and looks up in the index whether a partic-
ular chunk needs to be backed up or is already present
in the backup site. If a chunk already exists, a pointer
to the original chunk is transferred instead of the chunk
data. We deploy an additional Shredder agent residing on
the backup site, which receives all the chunks and point-
ers and recreates the original uncompressed data. The
overall architecture for integrating Shredder in a cloud

Backup Site   Backup Server

Shredder

Backup

Agent

Shredder 

Agent

Image Snapshot

Figure 17: GPU-accelerated consolidated backup setup

backup system is described in Figure 17.

7.3 Implementation and Evaluation
Since high bandwidth fibre channel adapters are fairly
expensive, we could not recreate the high I/O rate of
modern backup servers in our testbed. Hence, we used
a memory-driven emulation environment to experimen-
tally validate the performance of Shredder. On our
backup agent, we keep a master image in memory us-
ing memcached [5]. The backup agent creates new file
system images from the master image by replacing part
of the content from the master image using a predefined
similarity table. The master image is divided into seg-
ments. The image similarity table contains a probability
of each segment being replaced by a different content.
The agent uses these probabilities to decide which seg-
ments in the master image will be replaced. The image
generation rate is kept at 10 Gbps to closely simulate the
I/O processing rate of modern X-series employed for I/O
processing applications [30].

In this experiment, we also enable the requirement of
a minimum and maximum chunk size, as used in practice
by many commercial backup systems. As mentioned in
Section 3, our current implementation of Shredder is not
optimized for including a minimum and maximum chunk
size, since the data that is skipped after a chunk bound-
ary is still scanned for computing a Rabin fingerprint on
the GPU, and only after all the chunk boundaries are col-
lected will the Store thread discard all chunk boundaries
within the minimum chunk size limit. As future work,
we intend to address this limitation using more efficient
techniques that were proposed in the literature [31, 33].

As a result of this limitation, we observe in Fig-
ure 18 that we are able to achieve a speedup of only
2.5X in backup bandwidth compared to the pthread im-
plementation, but still we manage to keep the backup
bandwidth close to the target 10 Gbps. The results
also show that even though the chunking process oper-
ates independently of the degree of similarity in input
data, the backup bandwidth decreases when the similar-
ity between the data decreases. This is not a limitation
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of our chunking scheme but of the unoptimized index
lookup and network access, which reduces the backup
bandwidth. Combined with optimized index mainte-
nance (e.g., [18]), Shredder is likely to achieve the tar-
get backup bandwidth for the entire spectrum of content
similarity.

8 Related Work
Our work builds on contributions from several different
areas, which we briefly survey.

GPU-accelerated systems. GPUs were initially de-
signed for graphics rendering, but, because of their cost-
effectiveness, they were quickly adopted by the HPC
community for scientific computations [3, 37]. Re-
cently, the systems research community has leveraged
GPUs for building other systems. In particular, Pack-
etShader [25] is a software router for general packet pro-
cessing, and SSLShader [28] uses GPUs in web servers
to efficiently perform cryptographic operations. GPUs
have also been used to accelerate functions such as pat-
tern matching [46], network coding [45], and complex
cryptographic operations [26]. In our work, we explored
the potential of GPUs for large scale data, which raises
challenges due to the overheads of data transfer.

Recently, GPUs have been shown to accelerate stor-
age systems. In particular, Gibraltar RAID [17], uses
GPUs in software-based RAID controllers for perform-
ing high-performance calculations of error correcting
codes. However, this work does not propose optimiza-
tions for efficient data transfer.

The most closely related work to Shredder proposes
a framework for using GPUs to accelerate computation-
ally expensive MD-based hashing primitives in storage
systems [10, 22]. Our work focuses on large-scale data
systems where the relative weight of data transfer can
be even more significant. In particular, our chunking
service uses Rabin fingerprinting, which is less compu-
tationally demanding than MD5, and is impacted more
significantly by the serialization and memory latency is-

sues. In addition, while the two papers address sim-
ilar bottlenecks in GPU-based systems, our techniques
go beyond the ones proposed in [10, 22]. In particular,
this prior work proposes memory management optimiza-
tions to avoid memory bank conflicts when accessing the
shared memory, whereas in contrast we address the is-
sue of bank conflicts in the global device memory of the
GPU, which required us to introduce a novel thread co-
operation mechanism using memory coalescing. In com-
parison to the remaining two optimizations we propose
in Shredder, this prior work does not mention an execu-
tion pipeline that uses multicores at the host, and support
for asynchronous data transfer is mentioned but not de-
scribed in detail in their paper. We also present two real
life end-to-end case studies of incremental MapReduce
and cloud backup that benefit from Shredder.

Incremental Computations. Since modifying the out-
put of a computation incrementally is asymptotically
more efficient than recomputing everything from scratch,
researchers and practitioners have built a wide range
of systems and algorithms for incremental computa-
tions [15, 23, 27, 34, 36, 38, 39]. Our proposal speeds
up the process of change identification in the input and is
complementary to these systems.

Incremental Storage. Data deduplication is commonly
used in storage systems. In particular, there is a large
body of research on efficient index management [14, 18,
32, 48, 49]. In this paper, we focus on the complemen-
tary problem of content-based chunking [21, 29, 35].
High throughput content-based chunking is particularly
relevant in environments that use SANs, where chunk-
ing can become a bottleneck. To overcome this bottle-
neck, systems have compromised the deduplication effi-
ciency with sampling techniques or fixed-size chunking,
or they have tried to scale chunking by deploying multi-
node systems [16, 19, 20, 47]. A recent proposal shows
that multi-node systems not only incur a high cost but
also increase the reference management burden [24]. As
a result, building a high throughput, cost-effective, single
node systems becomes more important. Our system can
be seen as an important step in this direction.

Network Redundancy Elimination. Content-based
chunking has also been proposed in the context of
redundancy elimination for content distribution net-
works (CDNs), to reduce the bandwidth consumption of
ISPs [9, 11, 12, 40]. Also, many commercial vendors
(such as Riverbed, Juniper, Cisco) offer middleboxes to
improve bandwidth usage in multi-site enterprises, data
centers and ISP links. Our proposal is complementary to
this work, since it can be used to improve the throughput
of redundancy elimination in such solutions.
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9 Conclusions and Future Work
In this paper we have presented Shredder, a novel frame-
work for content-based chunking using GPU accelera-
tion. We applied Shredder to two incremental storage
and computation applications, and our experimental re-
sults show the effectiveness of the novel optimizations
that are included in the design of Shredder.

There are several interesting avenues for future work.
First, we would like to incorporate into the library
several optimizations for parallel content-based chunk-
ing [31, 33]. Second, our proposed techniques need to
continuously adapt to changes in the technologies that
are used by GPUs, such as the use of high-speed Infini-
Band networking, which enables further optimizations in
the packet I/O engine using GPU-direct [4]. Third, we
would like explore new applications like middleboxes for
bandwidth reduction using network redundancy elimina-
tion [11]. Finally, we would like to incorporate Shredder
as an extension to recent proposals to devise new operat-
ing system abstractions to manage GPUs [43].
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