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Abstract

Incremental computation strives for efficient successive runs
of applications by re-executing only those parts of the com-
putation that are affected by a given input change instead
of recomputing everything from scratch. To realize these
benefits automatically, we describe iThreads, a threading
library for parallel incremental computation. iThreads sup-
ports unmodified shared-memory multithreaded programs:
it can be used as a replacement for pthreads by a simple
exchange of dynamically linked libraries, without even re-
compiling the application code. To enable such an interface,
we designed algorithms and an implementation to operate at
the compiled binary code level by leveraging MMU-assisted
memory access tracking and process-based thread isolation.
Our evaluation on a multicore platform using applications
from the PARSEC and Phoenix benchmarks and two case-
studies shows significant performance gains.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.4.1 [Operating
Systems]: Process Management; F.1.2 [Computation by Ab-
stract Devices]: Modes of Computation

General Terms Algorithms, Design, Performance

Keywords Incremental computation, shared-memory multi-
threading, self-adjusting computation, memoization, Concur-
rent Dynamic Dependence Graph (CDDG), Release Consis-
tency (RC) memory model
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1. Introduction

Many applications operate incrementally by repeatedly in-
voking an algorithm or a program over input data that differs
slightly from that of the previous invocation [25, 30, 37, 38,
42, 46, 68]. In such a workflow, small, localized changes to
the input often require only small updates to the output, creat-
ing an opportunity to update the output incrementally instead
of recomputing it from scratch. Since the work done is of-
ten proportional to the change size [6], rather than the total
input size, incremental computation can achieve significant
performance gains and efficient use of computing resources.

To obtain the benefits of incremental computation auto-
matically, researchers in the programming-languages com-
munity have proposed compiler- and language-based ap-
proaches. While this has been an area of active research for
several decades (§7), almost all prior work targets sequen-
tial programs—with the notable exceptions of two recent
approaches for parallel incremental computation [27, 48].

Importantly, by leveraging a language-based approach,
these two prior proposals [27, 48] have demonstrated substan-
tial speedups, thus establishing that the promise of incremen-
tal computation can be realized in parallel programs. Specifi-
cally, these systems enable efficient and correct incremental
updates to the output through the use of new programming
languages with special data types (§7), and by requiring a
strict fork-join programming model, where threads commu-
nicate only at end points (i.e., when forking/joining).

These choices reflect a difficult design tradeoff: they
provide the compiler and runtime system with the information
required to maximize reuse, but they also impose a cost on the
programmer, who has to provide appropriate type annotations
and, in some cases, also application-specific functions to
safely implement the new type system. Furthermore, due to
the restricted programming model, they also preclude support
for many existing shared-memory multithreaded programs



$ LD_PRELOAD=iThreads.so
$./<program_executable> <input-file>
$ emacs <input-file>

$ echo "<off> <len>" >> changes.txt
$./<program_executable> <input-file>

// preload iThreads
// initial run

// input modified

// specify changes

// incremental run

Figure 1. How to run an executable using iThreads

and synchronization primitives (such as R/W locks, mutexes,
semaphores, barriers, and conditional wait/signal).

In this paper, we instead target increased generality, and to
this end propose an OS-based approach to parallel incremen-
tal computation. More specifically, we present iThreads, a
threading library for parallel incremental computation, which
achieves the following goals.

* Practicality: iThreads supports the shared-memory
multi-threaded programming model with the full range of
synchronization primitives in the POSIX APL

* Transparency: iThreads supports unmodified programs
(e.g., C/C++) without requiring the use of a new language
with special data types.

* Efficiency: iThreads achieves efficiency, without limit-
ing the available application parallelism, as its underlying
algorithms are parallel as well.

The iThreads library is easy to use (see Figure 1 for the
workflow): the user just needs to preload iThreads to replace
pthreads by using the environment variable LD_PRELOAD.
The dynamically linkable shared library interface allows
existing executables to benefit from iThreads.

For the first run of a program (or the initial run), iThreads
computes the output from scratch and records an execution
trace. All subsequent runs for the program are incremental
runs. For an incremental run, the user modifies the input
and specifies the changes; e.g., assuming that the program
reads the input from a file, the user specifies the offset and
len for the changed parts of the file. Thereafter, iThreads
incrementally updates the output based on the specified input
changes and the recorded trace from the previous run.

Our approach relies on recording the data and control
dependencies in a computation during the initial run by con-
structing a Concurrent Dynamic Dependence Graph (CDDG).
The CDDG tracks the input data to a program, all sub-
computations (a sub-computation is a unit of the computation
that is either reused or recomputed), the data flow between
them, and the final output. For the incremental run, a (paral-
lel) change propagation algorithm updates the output and the
CDDG by identifying sub-computations that are affected by
the changes and recomputing only those sub-computations.

We make the following main contributions:

* We present parallel algorithms for incremental multi-
threading (§4).

Thread 1 (77) Thread 2 (75)

/¥ Ty.a %/ lock();

read={y} Z=++y;

write={y,z} unlock();

p
lock(); 1% Ty.a %/
X++; read={z}
unlock(); write={z}
1

lock(); /% To.b*/
y =2%X + z; read={z, z}
unlock(); write={y}

Figure 2. An example of shared-memory multithreading

* We present an implementation of the algorithms encapsu-
lated in a dynamically linkable shared library built using
Dthreads [63], which we call iThreads (§5).

* We empirically demonstrate the effectiveness of iThreads
by applying it to applications taken from the PARSEC [24]
& Phoenix [74] benchmark suites and case studies (§6).

Our experience with iThreads shows that significant perfor-
mance gains (time savings) and efficient resource utilization
(work savings) can be achieved in many parallel applications
without requiring any effort from the programmer.

2. Design Overview

We base our design on POSIX threads, or pthreads, a widely
used threading library for shared-memory multithreading
with a rich set of synchronization primitives.

2.1 The Basic Approach

Our design adapts the principles of self-adjusting computa-
tion [6] for shared-memory multithreading, and also makes
use of techniques from record-replay systems employed for
reliable multithreading (§7). At a high level, the basic ap-
proach proceeds in the following three steps:

1. Divide a computation into a set of sub-computations V.

2. During the initial run, record an execution trace to con-
struct a Concurrent Dynamic Dependence Graph (or
CDDG). The CDDG captures a partial order O = (N, —)
among sub-computations with the following property:
given a sub-computation n (where n € N) and the subset
of sub-computations M that precede it according to —,
ie, M ={M C N |¥Ym € M,m — n}, if the inputs to
all m € M are unchanged and the incremental run follows
the partial order —, then n’s input is also unchanged and
we can reuse n’s memoized effect without recomputing n.

3. During the incremental run, propagate the changes
through the CDDG. That is, the incremental run follows
an order that is consistent with the recorded partial order
—, reusing sub-computations whose input is unchanged
and re-computing those whose input has changed.



Sub-computations
Case | Input Thread schedule Reused Recomputed
A z,y* z| Tir.a = Ta.a — T2.b Ts.a Ti.a,T>.b
B z,y,z | (To.a = To.b — Th.a)* | T2.a Ti.a,T>2.b
C z,y,z | Ti.a = Ta.a = T2.b |T1r.a,T1.b,T2.a | —

Figure 3. For the incremental run, some cases with changed
input or thread schedule (changes are marked with *)

2.2 Example

We next use a simple example, shown in Figure 2, to explain
how our basic approach works. The example considers a
multi-threaded execution with two threads (77 & T5) modify-
ing three shared variables (z, y, & z) using a lock.

Step #1: Identifying sub-computations. We divide a thread
execution into sub-computations at the boundaries of 1ock ()
/ unlock(). (We explain this design choice in §3.) We
identify these sub-computations as 77 .a for thread 77, and
T5.a & T5.b for thread T5. For the initial run, let us assume
that thread 75 acquired the lock after the execution of sub-
computation 7%.a. This resulted in the following thread
schedule for sub-computations: 77.a — T5.a — T5.b.

Step #2: Construct the CDDG. To understand the depen-
dencies that need to be recorded to build the CDDG, we
consider incremental runs with changes either in the input
data or the thread schedule (shown in Figure 3).

We first consider the case of change in the input data. An
important function of the CDDG is to propagate the changes
through the graph by determining whether a sub-computation
is transitively affected by the input change. For example
consider case A in Figure 3, when the value of variable y is
changed—in this case, we need to recompute 7} .a because it
reads the modified value of y. In contrast, we can still reuse
T5.a because it is independent of y and also not affected by
the writes made by 77.a. However, we need to recompute
T5.b even though it does not directly depend on y, since it
is still transitively affected (via modified z) by the writes
made by T7.a. Therefore, the CDDG needs to record data
dependencies (meaning which sub-computations modify a
value that is read by another sub-computation) to determine
whether a sub-computation can be reused or if it has to be
recomputed.

We next consider the case of a change in the thread
schedule. In general, multi-threaded programs are non-
deterministic because the OS scheduler is free to interleave
sub-computations in different ways. As a result, a prob-
lem can arise if the initial and the incremental runs follow
different schedules. This might alter the shared state, and
therefore cause unnecessary re-computations even without
any input changes. For example consider case B in Figure 3:
if thread T} acquires the lock after the execution of 75.b (i.e.,
a changed thread schedule of T5.a — T5.b — T} .a) then sub-
computations 77 .a and T5.b need to be recomputed because
of the changed value of y. Therefore, (and as observed by
prior work on reliable multithreading (§7)) the partial order

Algorithm 1: Basic algorithm for the incremental run

dirty-set + {changed input};
executeThread(t)
forall sub-computations in thread t do
/I Check a sub-computation’s validity in happens-before order
if (read-set N dirty-set) then
— recompute the sub-computation
‘ — add the write-set to the dirty-set

else
— skip execution of the sub-computation
— write memoized value of the write-set to address space

end
end

captured by the CDDG (—) is a happens-before order among
synchronization events, which ensures that, given unchanged
input and that all threads acquire locks in the same order as
dictated by —, all sub-computations remain unchanged, as
shown in case C in Figure 3. We explain how to build this
partial order in §4.

Step #3: Change propagation. The previous observations
allow us to reach a refined explanation of our basic algo-
rithm (see Algorithm 1). The starting point is the CDDG
that records the happens-before order (—) between sub-
computations, according to the synchronization events. Fur-
thermore, data dependencies are recorded implicitly in the
CDDG by recording the read and write sets: if we know what
data is read and written by each sub-computation, we can
determine whether a data dependency exists, i.e., if a sub-
computation is reading data that was modified by another
sub-computation. Therefore, the incremental run visits sub-
computations in an order that is compatible with —, and,
for each sub-computation, uses the read and write sets to
determine whether part of its input was modified during the
incremental run. If the read-set is modified then the sub-
computation is re-computed, otherwise we skip the execution
of the sub-computation, and directly write the memoized
value of the write-set to the address space.

3. System Model

Memory consistency model. As we explained in the previ-
ous section, the CDDG implicitly records read-after-write
data dependencies between sub-computations using the read
and write sets. The efficiency of the mechanism that records
these dependencies is related to the memory model we use,
and consequently on the granularity of sub-computations. As
a design choice, our approach relies on the use of the Release
Consistency [44] (RC) memory model. To understand this
design choice, consider a possible option of using a strict
memory model such as Sequential Consistency [58] (SC).
Under the SC model, one would have to define the regions of
code bounded by shared-memory accesses as the granularity
of sub-computations. This is because any write made by a
thread can potentially affect the execution of another thread
since it may read the same memory location. Intercepting this



inter-thread communication would be prohibitively expensive,
essentially requiring tracking of shared-memory accesses at
the granularity of individual load/store instructions.

In contrast, the RC model only requires writes made by
one thread to become visible to other threads at synchro-
nization points, thus restricting inter-thread communication
to such points. This allows us to define the granularity of a
sub-computation at the boundaries of synchronization points,
which is essential to achieving feasible runtime overheads.

Note that the RC model still guarantees correctness and
liveness for applications that are data-race-free [9]. Conse-
quently, iThreads assumes that the programs are data-race-
free w.r.t. pthreads synchronization primitives. In fact, the
semantics provided by iThreads is no more restrictive than
pthreads semantics [4], which mandate that all accesses to
shared data structures must be properly synchronized using
pthreads synchronization primitives, and which guarantees
only that any updates become visible to other threads when
invoking a pthreads synchronization primitive.

Synchronization model. We support the full range of syn-
chronization primitives in the pthreads API. However, due
to the weakly consistent RC memory model, our approach
does not support ad-hoc synchronization mechanisms [82]
such as user-defined spin locks. (We will revisit this limita-
tion in §8.) Our current implementation also does not handle
C/C++ atomic synchronization constructs.

4. Algorithms

In this section we present two parallel algorithms for incre-
mental multithreading. The first algorithm is for the initial
run that executes the program from scratch and constructs
the CDDG. The second algorithm is for the incremental run
that performs change propagation through the CDDG. Both
algorithms rely on the CDDG, which we explain first.

4.1 Concurrent Dynamic Dependence Graph (CDDG)

The CDDG is a directed acyclic graph with vertices represent-
ing sub-computations (or thunks), and two types of edges to
record dependencies between thunks: happens-before edges
and data-dependence edges. We next explain how to derive
vertices and edges.

Thunks (or sub-computations). We define a thunk as the
sequence of instructions executed by a thread between two
pthreads synchronization API calls. We model an execution
of thread ¢ as a sequence of thunks (L;). Thunks in a thread
are totally ordered based on their execution order using a
monotonically increasing thunk counter (o). We refer to a
thunk of thread ¢ using the counter « as an index in the thread
execution sequence (L), i.e., L¢[a].

Happens-before edges. There are two types of happens-
before edges: control edges, which record the intra-thread
execution order; and synchronization edges, which record
explicit inter-thread synchronization events.

Control edges are simply derived by ordering thunks of the
same thread based on their execution order. Synchronization
edges are derived by modeling synchronization primitives
as acquire and release operations. In particular, during syn-
chronization, a synchronization object s is released by one
set of threads and subsequently acquired by a correspond-
ing set of threads blocked on the synchronizing object. For
example, an unlock(s) operation releases s and a corre-
sponding lock(s) operation acquires it. Similarly, all other
synchronization primitives can also be modeled as acquire
and release operations [43, 71].

Under the acquire-release relation, a release operation
happens-before the corresponding acquire operation. Given
that a thunk’s boundaries are defined at synchronization
points, the acquire and release operations also establish the
happens-before ordering between thunks of different threads.
Formally, two thunks L;,[a] & L,)[f] are connected by a

* control edge iff they belong to the same thread (t; = t2)
and L;,)[a] was executed immediately before Ly, [3]:

* synchronization edge iff L )[c] releases a synchroniza-
tion object s and L4, [f] is a thunk that acquires s next.

Data-dependence edges. Data dependencies are tracked
to establish the update-use relationship between thunks.
Intuitively, such a relationship exists between two thunks
if one reads data written by the other. More formally, for a
thunk L[], the read-set Li[«].R and the write-set Li[o]. W
are the set of addresses that were read-from and written-to,
respectively, by the thread ¢ while executing the thunk. Two
thunks L;,y[a] and L, [0] are then connected by a

* data-dependence edge iff L,)[f] is reachable from
Lty[a] via happens-before edges and L )[a]. W N

4.2 Algorithm for the Initial Run

During the initial run, we record the execution of the program
to construct the CDDG. Algorithm 2 presents the high-level
overview of the initial run algorithm, and details of the subrou-
tines used in the algorithm are presented in Algorithm 3. The
algorithm is executed by threads in parallel. The algorithm
employs run-time techniques to derive the information needed
for the CDDG. In particular, during a thread execution, the
thread traces memory accesses on load/store instructions
(using routine onMemoryAccess()), and adds them to the
read and the write set of the executing thunk. (Our implemen-
tation, described in §5, derives the read and write sets at the
granularity of memory pages using the OS memory protec-
tion mechanism.) The thread continues to execute instructions
and perform memory tracing until a synchronization call is
made to the pthreads library. At the synchronization point,
we define the end point for the executing thunk and memoize
its end state (using routine endThunk () ). Thereafter, we let
the thread perform the synchronization. Next, we start a new
thunk and repeat the process until the thread terminates.



Algorithm 2: The initial run algorithm

Algorithm 3: Subroutines for the initial run algorithm

/* Let S be the set of synchronization objects and 7" be the number
of threads in the system. */
Vs € S,Vi € {1,...,T} : Cs[i] < 0;// All sync clocks set to zero
executeThread(t)
begin
initThread(t);
while ¢ has not terminated do
startThunk(); // Start new thunk
repeat

Execute instruction of ¢;

if (instruction is 1load or store) then

‘ onMemoryAccess();

end
until ¢ invokes synchronization primitive;
endThunk(); // Memoize the end state of thunk
a < o« + 1; // Increment thunk counter
/I Let s denote invoked synchronization primitive
onSynchronization(s);

end
end

To infer the CDDG, control and synchronization edges are
derived by ordering thunks based on the happens-before order.
To do so, we use vector clocks (C') [65] to record a partial
order that defines the happens-before relationship between
thunks during the initial run, and in the incremental run we
follow this partial order to propagate the changes. Our use
of vector clocks is motivated by its efficiency for recording a
partial order in a decentralized manner, rather than having to
serialize all synchronization events in a total order.

Our algorithm maintains one vector clock for each thread,
thunk, and synchronization object. These vector clocks are
an array of size T, where T' denotes the number of threads in
the system, which are numbered from 1 to 7.

Each thread ¢ has a vector clock, called its thread clock Cy,
to track its local logical time, which is updated at the start of
each thunk (using routine startThunk ()) by setting C}[¢]
to the thunk index . Further, each thunk L;[a] has a thunk
clock L[a].C, which stores a snapshot of C¢[t] to record the
thunk’s position in the CDDG.

Finally, each synchronization object s has a synchroniza-
tion clock Cj that is used to order release and acquire op-
erations (see onSynchronization()). More precisely, if a
thread ¢ invokes a release operation on s, then ¢ updates C
to the component-wise maximum of its own thread clock C;
and C. Alternatively, if ¢ invokes an acquire operation on
s, it updates its own thread clock C; to the component-wise
maximum of C; and s’s synchronization clock C. This en-
sures that a thunk acquiring s is always ordered after the last
thunk to release s.

At the end of the initial run algorithm, the CDDG is
defined by the read/write sets and the thunk clock values
of all thunks.

4.3 Algorithm for the Incremental Run

The incremental run algorithm takes as input the CDDG
(Vt : Ly) and the modified input (named the dirty set M), and

initThread(t)

begin

«a < 0; // Initializes thunk counter () to zero

Vi € {1,...,T} : C¢[i] < 0;// ¢’s clock set to zero

end
startThunk()
begin
Ct[t] < o // Update thread clock
Vi€ {1,...,T} : L¢[a].C[i] < C¢[i]; // Update thunk clock
Li¢[a].R/W <« 0; // Initialize read/write sets to empty set
end
nMemoryAccess()
begin
if load then
‘ L¢[a].R + L¢[a].R U {memory-address}; // Read

else
‘ Li[a].W < L¢[a].W U {memory-address}; // Write

end

=}

end

endThunk()

begin

memo (L¢[a].W) < content(L¢[c].W); // Globals & heap
memo (L¢[a.Stack) <—content (Stack);

memo (L¢[a].Reg) <—content (CPU_Registers);

end

onSynchronization(s)

begin

switch Syncronization type do

case release(s):

// Update s’s clock to hold max of its and ¢’s clocks
Vi€ {1,...,T} : Cs[i] < max(Cs[i], C¢i]);
sync(s); // Perform the synchronization

case acquire(s):

sync(s); // Perform the synchronization

// Update t’s clock to hold max of its and s’s clocks
Vi € {1,...,T} : C¢[i] « max(Cs[i], Ct[7]);

end

end

performs change propagation to update the output as well
as the CDDG for the next incremental run. As explained in
the basic change propagation algorithm (Algorithm 1), each
thread transitions through its list of thunks by following the
recorded happens-before order to either reuse or recompute
thunks. To make this algorithm work in practice, however,
we need to address the following three challenges.

(1) Missing writes. When a thunk is recomputed during the
incremental run, it may happen that the executing thread no
longer writes to a previously written location because of a
data-dependent branch. For such cases, our algorithm should
update the dirty set with the new write-set of the thunk as
well as the missing writes. These consist of the set of memory
locations that were part of the thunk’s write-set in the previous
run, but are missing in the current write-set.

(2) Stack dependencies. As mentioned previously, we trans-
parently derive read and write sets by tracking the global
memory region (heap/globals) using the OS memory protec-
tion mechanism (detailed in §5). Unfortunately, this mech-
anism is inefficient for tracking the per-thread stack region



Algorithm 4: The incremental run algorithm
Data: Shared dirty set M < {modified pages }and L;

Vs € S,Vi € {1,...,T} : Cs[i] « 0;// All sync clocks set to 0
executeThread(t)
begin
initThread(t); // Same as initial run algorithm
while (¢ has not terminated and isValid(Li[a])) do
/] Thread t is valid
await (isEnabled(L¢[a]) or ! isValid(L¢[a]));
if (isEnabled(L¢[a]) then
resolveValid(L¢[a]);
Ct[t] < o // Update thread clock
a < « + 1; // Increment thunk counter

end
end
// The thread has terminated or a thunk has been invalidated
L} < Ly;// Make a temp copy for missing writes
while (¢ has not terminated or o« < |L}|) do
// Thread t is invalid
if (o < [L}|) then
M «+ M U L}[o]. W // Add missing writes
Ct[t] < o // Update thread clock

end
if (t has not terminated) then
‘ resolvelnvalid(L¢[a]);

end
o < « + 1; // Increment thunk counter

end
// The thread has terminated

end

(which usually resides in a single page storing local vari-
ables) because the stack follows a push/pop model, where the
stack is written (or gets dirty) when a call frame is pushed
or popped, even without a local variable being modified. To
avoid the overheads of tracking local variables, we do not
track the stack. Instead, we follow a conservative strategy
to capture the intra-thread data dependencies. In our design,
once a thunk is recomputed (or invalidated) in a thread, all
remaining thunks of the thread are also invalidated in order
to capture a possible change propagation via local variables.

(3) Control flow divergence. During the incremental run, it
may happen that the control flow diverges from the recorded
execution. As a result of the divergence, new thunks may be
created or existing ones may be deleted. As in the previous
challenge, the algorithm we propose takes a simple approach
of only reusing a prefix of each thread (before the control
flow diverges), and subsequently recording the new CDDG
for enabling change propagation in subsequent runs.

Details. Algorithm 4 presents the overview of the incremental
run algorithm, and details of subroutines used in the algorithm
are presented in Algorithm 5. The incremental run algorithm
allows all threads to proceed in parallel, and associates a
state with each thunk of every thread. The state of each
thunk follows a state machine (shown in Figure 4), which
enforces that each thread waits until all thunks that happened-
before its next thunk to be executed are resolved (i.e., either
recomputed or reused), and only when it is certain that reusing
memoized results is not possible will it start to re-execute

Algorithm 5: Subroutines for the incremental run algo-
rithm
isEnabled(L¢[a])
begin
if (Vi € {1,...,T}\ {t}: (C;[i] > L¢[a].C[i])) then
/1 All thunks happened-before are resolved
return (isValid(L¢[a])); // check if it’s valid
end
return false;
end
isValid(L[a])
begin
if (L¢[a). RN M) = () then
‘ return true; // Read set does not intersects with dirty set

end
return false;
end
resolveInvalid(L¢[«])
begin
startThunk(); // Same as initial run algorithm
repeat
Execute instruction of ¢;
if (instruction is load or store) then
‘ onMemoryAccess(); // Same as initial run algorithm

end
until ¢ invokes synchronization primitive;
M < M U L¢[a].W; // Add the new writes
endThunk(); // Same as initial run algorithm
onSynchronization(s); / Same as initial run algorithm

end

resolveValid(L [«])

begin

address space — memo(L¢[c].WW); / Globals and heap
stack < memo(L¢[a].Stack);

CPU registers <— memo(L¢[c].Reg); // Also adjusts PC
onSynchronization(s); / Same as initial run algorithm

end

Unresolved Resolved

@ Resolved\ Reused and applied
@ > valid / memoized effects |
@ @ [ Resolved Re-executed and
Z\_invalid / modified dirty set |

Figure 4. State transition for thunks during incremental run

Enabled

Invalid

its next thunk. In particular, the state of a thunk is either
resolved or unresolved. The state of a thunk is resolved when
the thunk has either been reused (resolved-valid) or re-
executed (resolved-invalid). Otherwise, the thunk is still
unresolved. An unresolved thunk is in one of the following
states: pending, enabled or invalid.

Initially, the state of all thunks is pending, except for
the initial thunk, which is enabled. A pending thunk is
not “ready” to be considered for re-computation or reuse.
A pending thunk of a thread is enabled (state transition
(D) when all thunks (of any thread) that happened-before are
resolved (either resolved-valid or resolved-invalid).
To check for this condition (using routine isEnabled()),
we make use of the strong clock consistency condition [65]



provided by vector clocks to detect causality (¢« — b iff
C(a) < C(b)). In particular, we compare the recorded clock
value of the thunk against the current clock value of all
threads to check that all threads have passed the time recorded
in the thunk’s clock.

An enabled thunk transitions to invalid (state tran-
sition () if the read set of the thunk intersects with the
dirty set. Otherwise, the enabled thunk transitions to
resolved-valid (state transition (3)), where we skip the
execution of the thunk and directly apply the memoized
write-set to the address space, including performing the syn-
chronization operation (using the resolveValid () routine).

A pending thunk transitions to invalid (state transition
@) if any earlier thunk of the same thread is invalid
or resolved-invalid. The invalid thunk transitions to
resolved-invalid (state transition (3)) when the thread
re-executes the thunk and adds the write set to the dirty
set (including any missing writes). The executing thread
continues to resolve all the remaining invalid thunks to
resolved-invalid until the thread terminates. To do so,
we re-initialize the read/write sets of the new thunk to the
empty set and start the re-execution, similarly to the initial run
algorithm (using the resolveInvalid () routine). While re-
executing, the thread updates the CDDG, and also records
the state of the newly formed thunks for the next run.

5. Implementation

We implemented iThreads as a 32-bit dynamically link-
able shared library for the GNU/Linux OS (Figure 5).
iThreads reuses two mechanisms of the Dthreads imple-
mentation [63]: the memory subsystem (§5.1) and a custom
memory allocator (§5.4). Additionally, our implementation
also includes the i Threads memoizer, which is a stand-alone
application. We next describe the implementation in detail.

5.1 iThreads Library: Memory Subsystem

The iThreads memory subsystem implements the RC mem-
ory model and derives per-thunk read/write sets.

Release consistency memory model. To implement the RC
memory model, iThreads converts threads into separate
processes using a previously proposed mechanism [17]. This
“thread-as-a-process” approach provides each thread with its
own private address space, and thus allows iThreads to
restrict inter-thread communication. In practice, iThreads
forks a new process on pthread_create() and includes
a shared memory commit mechanism [28, 56] that enables
communication between processes at the synchronization
points, as required by the RC memory model.

At a high level, throughout the application execution,
iThreads maintains a copy of the address space contents in a
(shared) reference buffer, and it is through this buffer, with in-
strumentation provided by iThreads at the synchronization
points, that the processes transparently communicate (Fig-
ure 6). Communication between processes is implemented

Application

iThreads library

M -
‘ Recorder / Replayer ‘ H
OSsupport | (—}-CDDG

\ 0s \

[Memory subsystem |

Figure 5. iThreads implementation architecture. Shaded
boxes represent the main components of the system.

by determining the thunk write-set, as explained next, which
is then used to calculate a byte-level delta [63].

To compute the byte-level delta for each dirty page,
iThreads performs a byte-level comparison between the
dirty page and the corresponding page in the reference buffer,
and then applies atomically the deltas to the reference buffer.
In case there are concurrent writes by different processes to
the same memory location, iThreads resolves the conflict
by using a last-writer wins policy.

Furthermore, for efficiency reasons, the implementation
of the communication mechanism relies on private memory-
mapped files—this allows different processes to share phys-
ical pages until processes actually write to the pages, and
still keeps performance overheads low by virtue of the OS
copy-on-write mechanism.

Read and write set. Besides serving as the foundation for
the RC memory model, the adopted thread-as-a-process
mechanism is also essential for easily deriving per-thread
read and write sets. More specifically, iThreads uses the OS
memory protection mechanism to efficiently track the read
and write sets. In particular, iThreads renders the address
space inaccessible by invoking mprotect (PROT_NONE) at
the beginning of each thunk, which ensures that a signal is
triggered the first time a page is read or written by the thunk.
Hence, within the respective signal handler, iThreads is able
to record the locations of the accesses made to memory at the
granularity of pages. Immediately after recording a memory
access, the iThreads library proceeds to reset the page
protection bits, allowing the thunk to resume the read/write
operation as soon as the handler returns. In addition, resetting
the permissions also ensures that subsequent accesses proceed
without further page faults. In this way, iThreads incurs at
most two page faults (one for reads & one for writes) for each
accessed page during a thunk execution.

5.2 iThreads Library: Recorder and Replayer

The iThreads library executes the application in either
recording or replaying mode. We next describe the two sub-
components, recorder and replayer, that realize these modes
of execution by implementing the algorithms described in §4.

Recorder. Since iThreads reuses the Dthreads memory
subsystem, which serializes memory commit operations
from different threads, the implementation of the recording
algorithm is greatly simplified. Due to the resulting implicit
serialization of thunk boundaries, the employed thread, thunk,
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and synchronization vector clocks effectively reduce to scalar
sequence numbers, which allows the recorder to simply
encode the thread schedule using thunk sequence numbers.
The recorder is further responsible for memoizing the state
of the process at the end of each thunk. To this end, using
an assembly routine, iThreads stores the register values on
the stack, takes a snapshot of the dirty pages in the address
space, and stores the snapshot in the memoizer (§5.4). In
addition, the recorder also stores the CDDG, consisting of
thunk identifiers (thread number and thunk sequence number)
and their corresponding read/write sets, to an external file.

Replayer. Similarly to the recorder, the replayer relies on
thunk sequence numbers to enforce the recorded schedule
order. The replayer first reads the file with the input changes
and the CDDG to initialize the replay algorithm. During an
incremental run, whenever memoized thunks can be reused,
the replayer retrieves the appropriate state from the memoizer,
patches the address space and restores the state of registers.

5.3 iThreads Library: OS Support

As practical applications depend on OS services, there are
two important aspects related to the OS that iThreads needs
to address. First, system calls are used by the application
to communicate with the rest of the system, so the effects
of system calls (on the system and application) need to be
addressed; in particular, input changes made by the user need
to be handled. Second, there are OS mechanisms that can
unnecessarily change the memory layout of the application
across runs, preventing the reuse of memoized thunks.

System calls and input changes. Since iThreads is a user-
space library running on top of an unmodified Linux kernel, it
has no access to kernel data structures. The effects of system
calls thus cannot be memoized or replayed. To support system
calls, iThreads instead considers system calls to be thunk
delimiters (in addition to synchronization calls). Hence, im-
mediately before a system call takes place, iThreads mem-
oizes the thunk state, and immediately after the system call
returns, iThreads determines whether it still can reuse the
subsequent thunks according to the replayer algorithm.

To ensure that system calls take effect (externally and inter-
nally), iThreads invokes system calls in all executions, even

during replay runs. To guarantee that effects of system calls
on the application (i.e., the return values and writes made to
the address space) are accounted for by the thunk invalidation
rules, iThreads infers the write-set of the system calls and
checks whether the write-set contents match previous runs by
leveraging knowledge of system call semantics (e.g., some
system call parameters return pointers where data is written).

An important special case is that of reading the potentially
large input to the computation (e.g., using mmap). In this
case, iThreads efficiently identifies the content that does
not match across runs by allowing the user to specify input
changes explicitly. This relies on an external file, either
written manually by users or produced by external tools, that
lists the modified offset ranges (Figure 1).

In practice, our implementation intercepts system calls
through wrappers at the level of glibc library calls.

Memory layout stability. To avoid causing unnecessary
data dependencies between threads, iThreads reuses the
custom memory allocator of Dthreads, which is based
on HeapLayer [16]. The allocator isolates allocation and
deallocation requests on a per-thread basis by dividing the
application heap into a fixed number of per-thread sub-heaps.
This ensures that the sequence of allocations in one thread
does not impact the layout of allocations in another thread,
which otherwise might trigger unnecessary re-computations.

In addition, iThreads disables Address Space Layout
Randomization (ASLR) [1], an OS feature that deliberately
randomizes the memory layout.

5.4 iThreads Memoizer

The memoizer is responsible for storing the end state of
each thunk so that its effects can be replayed in subsequent
incremental runs. The memoizer is implemented as a separate
program that stores the memoized state in a shared memory
segment, which serves as the substrate to implement a key-
value store that is accessible by the recorder/replayer.

6. Evaluation

Our evaluation answers the following three main questions:

* What performance gains does iThreads provide for the
incremental run? (§ 6.1)

* How do these gains scale with increases in the size of the
input, the computation, and the input change? (§ 6.2)

* What overheads does iThreads impose for memoization
and for the initial run? (§ 6.3)

Experimental setup. We evaluated iThreads on a six-core
Intel(R) Xeon(R) CPU X5650 platform with 12 hardware
threads running at 2.67 GHz and 32 GB of main memory.

Applications and datasets. We evaluated iThreads with
applications from two benchmark suites: PARSEC [24] and
Phoenix [74]. Table 1 lists the applications evaluated and their
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Figure 8. Performance gains of iThreads with respect to Dthreads for the incremental run

respective input sizes in terms of 4KB pages. In addition, we
also report the gains with two case studies (§6.4).

Metrics: work and time. We consider two types of measures,
work and time. Work refers to the total amount of computation
performed by all threads and is measured as the sum of the
total runtime of all threads. Time refers to the end-to-end
runtime to complete the parallel computation. Time savings
reflect reduced end user perceived latency, whereas work
savings reflect improved resource utilization.

Measurements. For all measurements, each application was
executed 12 times. We exclude the lowest and highest mea-
surements, and report the average over the 10 remaining runs.

6.1 Performance Gains

We first present a comparison of iThreads’s incremental run
with pthreads and Dthreads, as shown in Figures 7 and 8
respectively. In this experiment, we modified one randomly
chosen page of the input file prior to the incremental run. We
then measured the work and time required by iThreads’s
incremental run, as well as by pthreads and Dthreads,
which re-compute everything from scratch. We report the
work and time speedups (i.e., iThreads’s performance nor-
malized by the performance of pthreads/Dthreads) for a
varying number of threads ranging from 12 to 64 threads.
When comparing the performance, we use the same number
of threads in iThreads and pthreads/Dthreads.

The experiment shows that the benefits of using iThreads
vary significantly across applications. In over half of the evalu-
ated benchmarks (7 out of 11), iThreads was able to achieve
at least 2.X time speedups. In contrast, for applications such

as canneal and reverseindex, iThreads can be very in-
efficient, by a factor of more than 15X, an effect that we
explain in further detail in §6.3. Overall, the results show that
iThreads is effective across a wide range of applications,
but also that the library is not a one-size-fits-all solution.

As expected, we observed that increasing the number of
threads tended to yield higher speedups. This is because,
for a fixed input size, a larger number of threads translates
to less work per thread. As a result, iThreads is forced to
recompute fewer thunks when a single input page is modified.

Note that work speedups do not directly translate into
time speedups. This is because even if just a single thread is
affected by changes, the end-to-end runtime is still dominated
by the (slowest) invalidated thread’s execution time.

6.2 iThreads Scalability

In a second experiment, we investigated the scalability of
iThreads w.r.t. increases in the size of the input, the amount
of computation (work), and the size of the input change.

Input size. We first present the performance of iThreads
as we increase the input data size for the three applica-
tion benchmarks (histogram, linear regression, and
string match) that are available in three input sizes: small
(S), medium (M), and large (L). (We used the large size
in §6.1.) Figure 9 shows a bar plot of the work and time
speedups w.r.t. pthreads for different input sizes (S, M, L)
with a single modified page for 64 threads. For reference,
the normalized input size is also shown by the line plot in
the same figure. In summary, this result shows that speedups
increase with the input size due to increased work savings.



>
o

(=2

w

" pthreads Blackscholes -~
iThreads Blackscholes -«
pthreads Swapations =
iThreads Swapations

S

o N

Normalized total work

" Work :| ' ® sl " Time :| ' ™
100 ¢ Input —m— 1183 N Input —m— 118 N
g = 8% 5
3 lwogd S 3 1083
@ £ o 25| £ 8
@ ® & 2l B3
< o 17 N [} 17 N 6
S ® E 15 s 4 .
= 14 E ot 14 E 5
sl 4 5 -
! S M L k S M L S M L S M L ! 1X2X 4X . 8X . . 16X
Hlstogram Llnear reg String-match Histogram Linear-reg.  String-match Normalized computation size

Figure 9. Scalability with data (work and time speedups)

Number of dirty pages
C1 16 KXXX 32 mmmmm 64 XA

2 mmmm 4 O

0.1

Work speedup

Eevavavavavavava avavavas

0.01

lstog, L K 7 s St T
S'Ogram near. o "’eans atrix meapa[/Onsackschmes 9 ,,752574

I

Figure 10. Scalability with work

Number of dirty pages
8 1 16 KXXX

2 mmmm 4 Ty 32 mmmmm 64 RXRXA

Time speedup

Strip, Pc/q Canne, o Wor,

Histog, Li Rove
Oles -Metch ~Count "S8_inglg,,

’°gram inea, reé(’”eans Matrjy mjwa/aa;,a,,sacksah

Figure 11. Scalability with input change compared to pthreads for 64 threads

Computation (work). We next present iThreads’s incre-
mental run performance for two applications (swapations
and blackscholes) that allow the amount of work required
to be tuned with a parameter. Figure 10 reports work speedups
as the normalized work is increased (from 1.X to 16X) for
a single modified page and 64 threads. The result shows the
gap between pthreads and iThreads widens as the total
work increases, which directly translates to higher speedups.

Input change. Finally, we present iThreads’s incremental
run performance in the case of multiple modified input pages.
To avoid confining changes to a single thread, we modified
multiple non-contiguous pages of the input that are read by
different threads. Figure 11 shows speedups w.r.t. pthreads
with different change sizes (ranging 2 to 64 dirty pages) for 64
threads. As expected, the results show that speedups decrease
as larger portions of the input are changed because more
threads are invalidated.

6.3 Overheads

iThreads imposes two types of overheads: (1) space over-
heads; and (2) performance overheads during the initial run.

Space overheads. Table 1 shows the space overheads for
memoizing the end state of the thunks and storing the CDDG.
We report the overheads in terms of 4KB pages for 64 threads
(space overhead grows with the number of threads). To put
the overheads into perspective, we also report overheads as a
percentage of the input size.

The space overheads varied significantly across ap-
plications. We found that three applications (canneal,
swapations and reverse-index) incur very high over-
heads (exceeding 1000% of the input size), but, interestingly,

Application | Input size Memoized state CDDG

Histogram 230400 347 (0.15%) | 57 (0.02%)
Linear-reg. 132436 192 (0.14%) | 33 (0.02%)
Kmeans 586 1145 (195.39%) | 27 (4.61%)
Matrix-mul. 41609 4162 (10.00%) | 64 | (0.15%)
Swapations 143 1473 (1030.07%) | 1 (0.70%)
Blackscholes 155 201 (129.68%) | 1 (0.65%)
String match 132436 128 (0.10%) | 33 (0.02%)
PCA 140625 3777 (2.69%) | 43 (0.03%)
Canneal 9 | 15381 | (170900.00%) | 4 | (44.44%)
Word count 12811 10191 (79.55%) | 24 (0.19%)
Rev-index 359 | 260679 (72612.53%) | 64 | (17.83%)

Table 1. Space overheads in pages and input percentage

nearly half of the applications (5/11) have a very low over-
head (ranging from 0.1% to 10% of the input size).

Performance overheads. We measured iThreads’s perfor-
mance overheads during the initial run (in terms of work and
time) by comparing it against both pthreads and Dthreads
(Figures 12 and 13). Our results show that most of the appli-
cations (7/11) incur modest overheads when compared with
either pthreads (i.e., lower than 50%) or Dthreads (i.e.,
lower than 25%). In fact, 1inear-reg and string-match
even performed better during the initial run of iThreads than
with pthreads, which is explained by the fact that private
address space mechanism avoid false sharing, as previously
noted by Sheriff [62]. At the other end of the spectrum, ap-
plications such as canneal and reverse-index incur high
overheads mainly due to the high number of memory pages
written by these applications (as shown in Table 1).

When compared to Dthreads as the baseline, iThreads
incurs work overheads of up to 3.58X and time overheads
of up to 3.13X. iThreads incurs additional overheads on
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Figure 13. Performance overheads of iThreads with respect to Dthreads for the initial run

top of Dthreads mainly from two sources: memoization
of the intermediate address space state and read page faults
(Dthreads incurs write faults only). We show the work over-
heads along with a breakdown of these two sources of over-
heads with respect to Dthreads for 64 threads in Figure 14.
The overheads are dominated by read page faults (around
98%) for most applications. For instance, histogram in-
curs overheads of roughly 3.5X due the large number of
page faults while reading a large input file (as shown in Ta-
ble 1). In contrast, some application such as canneal and
reverse-index suffer a significant overhead for memoiza-
tion (around 24%) due to a large number of dirtied pages.

6.4 Case-study Applications

In addition to the benchmark applications, we report the per-
formance gains for two case-study applications: (1) Pigz [3],
a parallel gzip compression library compressing a SOMB file,
and (2) a monte-carlo simulation [2]. To compute speedups,
we modified a random input block and compared the perfor-
mance of the iThreads incremental run with the pthreads
run. Figure 15 shows the work and time speedups with a
varying number of threads (from 12 to 64). The performance
gains peak at 24 threads for both applications. In particular,
iThreads achieves a time speedup of 1.45X and a work
speedup of 4X for Pigz, and a time speedup of 2.28 X and a
work speedup of 22.5X for the monte-carlo simulation.

To conclude, while there exist specific workloads for
which our OS-based approach is not suitable, our evaluation
is overall positive: iThreads is able to achieve significant

time and work speedups both for many of the benchmark
applications and also for the two considered case-studies.

7. Related Work

Researchers in the algorithms community proposed several
dynamic algorithms, a class of algorithms that take advantage
of application-specific properties to incrementally update
the output. Dynamic algorithms have been shown to be
asymptotically more efficient than their conventional non-
dynamic versions (e.g., [25, 30, 37, 38, 42, 46, 68]). However,
they can be difficult to design, implement, and maintain
even for simple problems [10, 45]. Moreover, most dynamic
algorithms are sequential, and cannot be easily parallelized
due to their highly specialized nature. In contrast, iThreads
provides incremental computation in a transparent way.
Incremental computation is a well-studied area in the pro-
gramming languages community; see [73] for a classic survey.
Earlier work on incremental computation was primarily based
on dependence graphs [36, 53] and memoization [5, 51, 72].
In the past decade, with the development of self-adjusting
computation [6-8, 29, 49, 50, 60, 61], the efficiency of in-
cremental computation has much improved. In contrast to
iThreads, however, most prior work in this area targets
sequential programs only. Nonetheless, iThreads’s central
data structure, the CDDG, is based on these foundations.
For supporting parallel incremental computation, exist-
ing proposals [27, 48] require a strict fork-join programming
model without supporting other synchronization primitives.
Furthermore, these proposals rely on the use of a new pro-
gramming language with special data types (e.g., isolation,
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Figure 14. Work overheads breakdown w.r.t Dthreads

versioned, cumulative, merge function [27] and read, write,
mod, and letpar [48]). In contrast, our approach targets un-
modified multithreaded programs supporting the full range
of synchronization primitives in the POSIX APIL

In very recent work, Tseng and Tullsen [78] proposed
compiler-based whole-program transformations to eliminate
redundant computation, which can be leveraged for faster
incremental computation. The transformed programs rely
on underlying hardware [76] and software [77] support to
dynamically identify redundant code that can be skipped. In
contrast, our approach directly operates at the binary level
without requiring access to source code. A further design
difference is that iThreads realizes incremental computation
based on explicit change propagation, and that iThreads
memoizes and reuses intermediate results of previous runs.

Incremental processing of “big data” is an active area of
research [18-20, 22, 23, 26, 31, 47, 64, 70]. These “big data”
systems exploit the underlying data-parallel programming
model such as MapReduce [35] or Dryad [55] for supporting
incremental computation. In contrast to these structured ap-
proaches where the dependence graph is explicitly available
based on the programming model, iThreads is designed to
support general shared-memory multithreaded programs.

In the context of increased reliability, prior work has
yielded a large range of solutions to eliminate non-determinism
from multithreaded programs. Most relevant to iThreads
are the wide range record and replay techniques (e.g., [12, 41,
52,57,59, 69, 75, 79-81]) and deterministic multithreading
approaches (e.g., [13-15, 17, 32-34, 39, 40, 54, 63, 67]). As
described throughout the paper, these proven techniques are
leveraged by iThreads, which applies them in a novel con-
text, namely transparent parallel incremental computation.

8. Conclusion

We have presented iThreads, a practical, transparent, and
efficient solution for parallel incremental computation. Our
approach targets unmodified, multithreaded programs and
supports the full range of synchronization primitives in
the POSIX APIL. The iThreads library is easy to use: it
simply replaces the pthreads library. Our experience with
iThreads shows that significant performance gains (time
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savings) and efficient resource utilization (work savings) can
be achieved for incremental workflows in many applications.

Limitations and future work. While iThreads is a signifi-
cant step towards general and practical support for parallel
incremental computation, plenty of opportunities remain to
further increase the range of supported workloads.

For one, iThreads’s memory model currently lacks sup-
port for ad-hoc synchronization mechanisms [82]. While such
mechanisms are error-prone [82], they are nonetheless used
for either flexibility or performance reasons in some applica-
tions. Replacing the ad-hoc synchronization calls with equiv-
alent pthread calls might solve the problem in some cases, but
perhaps a better solution would be to extend iThreads with
an interface for annotating ad-hoc synchronization primitives
(e.g., at the level of gcc’s built-in atomic primitives).

Another interesting research challenge is improving sup-
port for small, localized insertions and deletions in the input
data. Since iThreads is currently tuned for in-place modifi-
cations of the input data, insertions and deletions lead to the
displacement of otherwise unchanged data, which causes
an excessively large dirty-set. Prior work has solved the
displacement problem in the context of data-deduplication
by replacing fixed-size input chunking with variable-size,
content-based chunking [21, 66]. We plan to explore similar
approaches in the context of iThreads.

Lastly, our current implementation assumes the number
of threads in the system remains the same. However, our
approach can be extended to handle dynamically varying
number of threads by considering newly forked threads
or deleted threads as invalidated threads, where the writes
of deleted threads are handled as “missing writes”. The
happens-before relationship for dynamically varying number
of threads can be detected using interval tree clocks [11].
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