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Abstract

In today’s data processing systems, both the policies pro-
tecting stored data and the mechanisms for their enforce-
ment are spread over many software components and con-
figuration files, increasing the risk of policy violation due
to bugs, vulnerabilities and misconfigurations. Guardat ad-
dresses this problem. Users, developers and administrators
specify file protection policies declaratively, concisely and
separate from code, and Guardat enforces these policies by
mediating I/O in the storage layer. Policy enforcement relies
only on the integrity of the Guardat controller and any exter-
nal policy dependencies. The semantic gap between the stor-
age layer enforcement and per-file policies is bridged using
cryptographic attestations from Guardat. We present the de-
sign and prototype implementation of Guardat, enforce ex-
ample policies in a Web server, and show experimentally that
its overhead is low.

1. Introduction

As the volume and value of digitally stored assets keep in-
creasing, so do the risks to the integrity and confidentiality
of said data. Data processing systems are increasing in com-
plexity, exposing data to risks from software bugs, security
vulnerabilities and human error. In addition, data is increas-
ingly stored on third-party platforms, introducing additional
risks like unauthorized data use.

In today’s systems, the confidentiality and integrity of
persistent data depend on many components of a system,
as well as appropriate operator action. Applicable data pro-
tection policies may be implicit in code and configuration,
and their specification and enforcement spread over differ-
ent subsystems and multiple software layers, increasing the
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risk of policy violation due to bugs, vulnerabilities and mis-
configurations. Reasoning about and debugging the policy in
effect for a given collection of files can be challenging.

Guardat addresses these challenges by allowing users, de-
velopers and administrators to specify file protection poli-
cies declaratively, concisely and separately from code. This
makes it easy to reason about policies and to write and de-
bug them. Guardat enforces policies in the storage layer by
mediating I/O. Compared to policy enforcement in higher
layers, this reduces the scope for accidental policy circum-
vention due to bugs, misconfiguration, or operator error.
Guardat also provides cryptographic attestations of files and
their policies to bridge the semantic gap between per-file
policies and block-level enforcement. Structurally, Guardat
adds a declarative policy interpreter, per-file policy meta-
data, crypto and enforcement logic to the storage layer.

Guardat policies cover data integrity, confidentiality and
access accounting. Following are example policies that can
be enforced by Guardat to mitigate important threats: A pol-
icy can protect executable files from trojan horses by allow-
ing only updates signed by a trusted party; an append-only
policy can protect system logs from corruption and tamper-
ing; a policy preventing modifications for a specific period
of time can protect backup data from accidental deletion or
corruption; a policy requiring an authenticated secure ses-
sion to read data can protect the confidentiality of a user’s
private data; and, a policy may stipulate that accesses to a
file require a corresponding record be added to an append-
only log file (mandatory access logging).

Unlike techniques that protect data in a system’s main
memory, including information flow control [30, 69], trusted
computing [40], secure operating systems and secure hyper-
visors [12, 51], Guardat has low overhead, is readily deploy-
able, and requires few (if any) changes to applications and
operating systems. While Guardat does not protect transient
data in main memory, it offers a low-cost safety net to pro-
tect persistent data from a wide range of threats, including a
compromised system. Specifically, Guardat can protect the
integrity of a system’s long-term state, which can be recov-
ered by rebooting. Moreover, Guardat can ensure the con-
fidentiality of persistent data as long as the keys of users
authorized to access the data are not compromised.



For instance, suppose a Guardat-enabled web server is
compromised. Guardat can prevent access to private content
and manipulation of content files without the owner’s key. It
can prevent the manipulation of log files and access control
lists, and the installation of trojans without the sysadmin’s
key. Thus, Guardat minimizes damage during the attack (be-
cause it ensures the confidentiality of private data), and en-
ables admins to quickly recover by patching the exploited
vulnerability and rebooting (because it ensures the integrity
of the server’s persistent state, i.e., its executables, content
files, access control lists and log files).

The contributions of this work include (1) the Guardat
architecture and interface; (2) a declarative policy language,
which balances expressiveness and efficient evaluation; (3) a
prototype implementation of Guardat in the iSCSI Enterprise
Target SAN server; and, (4) an experimental evaluation,
which shows that Guardat policies can be enforced with low
overhead. The following section provides an overview of
the Guardat design and presents example policies. Section 3
describes the design of Guardat and its policy language in
more detail. Section 4 presents experimental results with a
prototype based on the iSCSI IET SAN server. We discuss
implementation alternatives in Section 5, cover related work
in Section 6 and conclude in Section 7.

2. Guardat overview

This section provides an overview of Guardat’s design, and
illustrates its capabilities with some example policies.

Principles. The design was guided by four principles:
1) Guardat policies are attached to files, separate from
code, and specified in a custom declarative policy language.
Therefore, the policy for a file’s data can be specified con-
cisely in one place and audited easily.
2) Guardat enforces policies in the storage layer to minimize
the risk of policy circumvention. Our implementation of
Guardat in a SAN server, for instance, allows a scalable
configuration where policies are enforced by block servers
in a machine room, while client computers and the enterprise
network are untrusted.
3) Guardat policies state merely what accesses are allowed
under which conditions, leaving it to untrusted code how

to demonstrate compliance with a policy. This separation
keeps the policy language small and policies concise, while
shifting complexity to untrusted software and overhead to
client computers.
4) Guardat relies on cryptographic file attestations to bridge
the semantic gap between per-file policies and block-level
enforcement. By requesting an attestation of a file’s policy,
name and content hash, an application can verify that Guar-
dat associates data and policy correctly, independent of the
filesystem or its metadata.

Overview. Guardat’s program logic, called the Guardat
controller or GDC, is integrated with a storage block device

Figure 1. Guardat implementation in a SAN server

and enforces policies on every read and write. The GDC
extends the standard block-device interface with a file-level

interface, which allows higher software layers to (a) create,
delete, read and update files using simple transactions, (b)
associate policies with sequences of storage blocks that rep-
resent a file, (c) cryptographically authenticate and establish
secure sessions, (d) provide credentials and other evidence
of policy compliance, and (e) obtain attestations on stored
files and their policies. The file-level interface can be used
by a Guardat-aware filesystem, or by an application library
in combination with a legacy filesystem via IOCTL calls.

Guardat maintains its own metadata for policy-protected
files, allowing it to enforce file-level policies at the block
level without depending on a filesystem. For each policy-
protected file, Guardat maintains an ordered list of extents1

that hold the file’s data, a unique numeric identifier, a textual
name string (typically used to store the file’s pathname(s) -
one for each hard link), and a pointer to a policy in effect
for the file. The set of unique numeric identifiers forms a flat
namespace, while the set of names typically encode a con-
ventional namespace hierarchy maintained by an untrusted
filesystem (file names). Each file can have its own policy
but, typically, a collection of files share the same policy.

Besides one or more primary storage devices, Guardat
requires a small amount of fast, persistent memory like Flash
for storing policies and other metadata. Flash memory is
widely available now; hybrid disks even combine a HDD
and Flash in a single enclosure [50]. To authenticate itself as
a legitimate Guardat device and sign attestations, the GDC
includes a private key and a corresponding manufacturer-
provided public key certificate.

Implementation, threat model and scope. In this paper,
we focus on an implementation of Guardat within a storage
area network (SAN) server for use in a data center (see Fig-
ure 1). We discuss implementation alternatives in Section 5.

The GDC, metadata and data must be protected from
unauthorized access and undetected tampering. In our im-
plementation, the SAN server includes the GDC, data and
metadata storage devices, and is assumed to be physically
protected, e.g., in a machine room with restricted access.
In this scenario, Guardat policies are enforced regardless

1 An extent is a sequence of storage blocks with consecutive indices.



of bugs, misconfigurations, or security incidents outside the
SAN server, including incidents on any number of client ma-
chines, and regardless of actions by employees without ac-
cess to the machine room.

We make standard assumptions about policies: correct
policies must be installed when data is first stored, and ex-
ternal dependencies of policies like time servers, client au-
thentication keys, and admin authentication keys must be
trustworthy (in particular, admin authentication keys should
be stored offline and protected physically). Under these as-
sumptions, Guardat defends against threats to confidentiality
and integrity of stored data. In addition, Guardat can protect
the integrity and confidentiality of files transferred between
Guardat devices, and between a Guardat device and a client
device through a secure channel. Guardat is not concerned
with data availability. To mask the effects of a hardware or
media failure, loss, or destruction of a Guardat device, data
must be replicated on multiple Guardat devices with inde-
pendent failure modes.

2.1 Policy examples

Next, we illustrate Guardat’s capabilities by presenting sev-
eral example policies. We begin with a brief primer on the
policy language; a more detailed description of the language
follows in Section 3.3.

A Guardat policy contains four rules, one for each of
the permissions read, update, destroy and setpolicy. Ab-
stractly, the read rule represents the file’s confidentiality pol-
icy; the update rule encodes the file’s integrity policy; the
destroy rule governs when the file’s name can be recycled;
and the setpolicy rule restricts policy changes.

Each rule specifies the conditions under which the respec-
tive permission holds. A rule has the form (perm :- conds)
and means that permission “perm” is granted if the con-
ditions “conds” are satisfied. The conditions “conds” con-
sist of predicates (e.g., fileNameIs) connected with con-
junction (“and”, written ∧ ) and disjunction (“or”, writ-
ten ∨ ). Identifiers starting with uppercase letters (e.g., F
in fileNameIs(F )) are variables. A variable stands for an
arbitrary value and is instantiated during the evaluation of
the first predicate in which it appears. Operationally, policy
rules are clauses of Datalog [31]. Datalog is a standard foun-
dation for access policies [6, 14, 42] known for its clarity,
high-level of abstraction and ease of implementation.

In the following policy examples, if the read or update

rule is omitted, then the permission is always allowed and if
a setpolicy or destroy rule is omitted, then that permission
is never allowed.

Protected executables. For an executable file, it is desir-
able to prevent accidental or malicious overwriting or roll-
back to a prior version. A representative Guardat policy to
accomplish this is shown below. The policy states that the
new content of the executable after any update must be
signed by the software vendor (called “Vendor”) as being

version 10 or later. Moreover, any policy changes must be
certified with the administrator’s key, kad.

update :- fileNameIs(F ) ∧ fileNewLenIs(L)
∧ (0, L) willHaveHash Nh ∧ keyIs(K, “Vendor”)
∧ K signs okHash(F,N,Nh) ∧ (N ≥ 10)

setpolicy :- fileNameIs(F ) ∧ filenewPolIs(Nph)
∧ kadsigns goodPolicy(F,Nph)

The first rule allows an update to the file only if there is a
public key K belonging to “Vendor” (condition keyIs

(K, “Vendor”)), which signs that the file’s new content
hash, Nh, is the N th version of the executable (condition
K signs okHash(F,N,Nh)) and N ≥ 10. The predicates
keyIs(K, “Vendor”) andK signs okHash(F,N,Nh) are ver-
ified from client-provided certificates signed by a certifying
authority and the vendor, respectively. The second rule al-
lows a change to the executable’s policy only if the hash of
the new policy, called Nph, was certified by the administra-
tor (condition kad signs goodPolicy(F,Nph)).
Properties: As long as the integrity of the vendor’s and
the administrator’s keys is maintained, files protected by the
policy cannot be overwritten except with content signed by
the vendor and version ≥ 10, even if the entire system is
compromised (write integrity). A variant of this policy can
limit content on the system’s boot sector to vendor-signed
boot images, thus protecting the boot sequence from trojans
and rootkits.

Append-only logs. The following policy restricts a file
such that it may be extended by anyone but modified in-
place (e.g., rotated) only by an administrator identified by
the public key kad. The policy prevents accidental or mali-
cious manipulation of system log files.

update :- sessionKeyIs(kad)
∨ (fileCurrLenIs(Lc) ∧ fileNewLenIs(Ln)
∧ (Ln ≥ Lc) ∧ txUpdatedExAre(M)
∧ listsAreDisjoint(M, [0, Lc]))

The policy allows an update if either the session is authenti-
cated by the administrator (condition sessionKeyIs(kad)) or
the file’s new length Ln exceeds its current length Lc and
the first Lc bytes of the file are not modified.
Properties: As long as the integrity of the admin’s key is
maintained, the policy is enforced even if the system is com-
promised.

Protected backup. Backup files can be protected from ac-
cidental or malicious modification for a fixed period of time
using the following policy.

update :- keyIs(K, “TimeServer”)
∧ K signs time(T ) at Ti ∧ (T + Ti > endT)

The policy allows modification to the file only if the cur-
rent time exceeds a pre-determined time endT. To enforce



time-based policies, Guardat relies on signed certificates
from time servers and a short-range internal timer. In de-
tail, the policy says that there should be a key K belong-
ing to a time server (condition keyIs(K, “TimeServer”)),
which issued a certificate Ti timer steps ago (condition
K signs time(T ) at Ti) and the current time (calculated
as T + Ti) exceeds the backup’s expiration time endT.
Properties: As long as the integrity of the time server and
its signing key is maintained, a file with this policy cannot be
modified before the designated time, even if the system, the
admin’s and the file owner’s private keys are compromised.

Mandatory access logging. Legislation and organizational
policies often mandate that all read and write access to sen-
sitive information like medical records be logged. A manda-
tory access logging (MAL) policy can be enforced by Guar-
dat. Let P be a sensitive file that must be protected by MAL
and let L be its log file. We assume that L is append-only,
enforced by the policy described earlier. The MAL require-
ment is three-fold: 1) (Completeness) For every read on P ,
an entry in L should describe who read and from where in
P . For every write, a similar entry must exist in L and it
must additionally contain a hash of the content written. 2)
(Causality) Given two write entries or a read and a write en-
try in L, the order in which they were applied to P should be
evident. 3) (Precision) Write entries in L that do not corre-
spond to actual writes on P should be detectable. (Note: Re-
quiring precision for reads would be pointless, because it is
impossible to tell whether the data obtained in a read reached
the user application before a crash. Instead, the presence of
a read entry in L shows that the user application intended to
and could have read the corresponding version of P .)

A policy that enforces these requirements can be encoded
in the Guardat policy language. The representation has sev-
eral straightforward but mundane details described in a tech-
nical report (TR) [58]. Here, we sketch the high-level idea.
(An alternate design for MAL could add a “logging rule” to
the policy language. In line with our design principles of a
minimal language that specifies policy but not mechanism,
we rejected this design.)

First, P ’s update policy requires that a version number
CP embedded in P is incremented during each modification
of P . Second, P ’s update and read policies require that a
record describing the write or read operation on P , respec-
tively, exists in L, with a version number equal to the current
value of CP . Third, L’s update policy does not allow mod-
ification of records whose version numbers are less than or
equal to the current value of CP . The resulting policy satis-
fies the MAL requirements.
Properties: The policies enforce MAL even if the system is
compromised.

Other policy idioms. Many other common policies can
be expressed in Guardat. Examples include: (a) Role-based
policies where access depends on the client’s role in an orga-
nization (certificates can relate clients to roles), (b) Blacklist

(whitelist) policies where access is denied (allowed) if the
client’s identity exists in a sorted file (the file’s sortedness
can also be enforced by a Guardat policy), and (c) History-
based policies where access depends on past events that are
visible to Guardat. The latter can be enforced by recording
events in a dedicated log file and allowing access to the data
file only when the log file is in certain states. The MAL pol-
icy is a simple history-based policy that allows access when
the event of creating an appropriate log entry has occurred.

Expressiveness. As these examples demonstrate, the Guar-
dat policy language can express rich state- and content-based
policies like MAL, which prior declarative policy languages
cannot. However, the language has limitations. It disallows
recursively-defined predicates and, hence, cannot express
layouts defined by iteration or recursion, e.g., it cannot ex-
press that the content of a file be well-formed XML. Such
constraints may be checked by a trusted external verifier
using certificates to communicate between the verifier and
Guardat. A complete description of the policy language and
its semantics is given in Section 3.3.

3. Guardat design

In this section, we describe the Guardat design in more
detail, including the Guardat command interface and its use,
as well as the policy language.

3.1 Overview

We begin with an overview of how a filesystem interacts with
Guardat. The (untrusted) filesystem assigns names and stor-
age blocks to a file and translates file requests into block
requests using its metadata, as usual. Guardat maintains its
own shadow metadata to look up the file and policy asso-
ciated with a block request securely and efficiently. Guar-
dat also assigns its own unique file identifiers, which can be
reused only under policy control.

File attestations tie the GDC’s view of a file as a sequence
of extents to an application’s view of a named file, thereby
removing the need to trust the filesystem and its metadata.
By requesting an attestation after a file is written or read, an
application can verify that its view of the file is identical to
the GDC’s. Guardat has support for sparse files. The current
design assumes that a block is assigned to at most one file;
block sharing to support de-duplication, for instance, could
be added easily.

3.2 Guardat commands

Guardat extends the standard block device interface with
means to establish sessions, create, update and delete files,
install policies, provide evidence of policy compliance, and
obtain attestations. Untrusted code uses the interface to re-
quest file access while demonstrating to Guardat that the ac-
cess satisfies the file’s policy. Failure to demonstrate compli-
ance will cause Guardat to deny the access. In the following,
we describe the functionality provided by the interface. A



full list of commands (17 in total) can be found in a techni-
cal report (TR) [58].

Session interface. A user application (also called a client)
interacts with Guardat in a session. A secure, authenticated
session must be used to access files whose policy requires
client authentication. To access other files, no explicit ses-
sion is required. Such use is conceptually treated as part of a
default, untrusted session.

A session is established with a standard handshake pro-
tocol in which the client and Guardat authenticate each
other using their private keys. As part of the protocol, new,
session-specific keys are created. These keys are used to en-
crypt and/or authenticate (through message authentication
codes) all subsequent communication in the session. This
protects in-transit data and commands from snooping and
modification in intermediate layers. Moreover, the client’s
public key (which acts as a client identifier) becomes avail-
able during every policy evaluation in the session; hence,
Guardat can enforce policies that restrict access to a specific
user. At the end of the handshake, Guardat returns a unique
session identifier that links later commands to the session.
Guardat can work with any client-side infrastructure for cre-
ating, managing and distributing public keys.

Transaction interface. Rich policies may require more
than one read or write operation to transition a file from one
compliant state to another. For instance, a file’s integrity pol-
icy may require that each update increments an embedded
version counter. For this purpose, Guardat supports trans-

actions consisting of a sequence of reads and updates on a
single file. Transactions are atomic: either all the updates are
persisted or they are all discarded. Policies may refer to both
the current and new content of a file in a transaction, as well
as the content of other files. The policy is checked once at
the end of the transaction, which commits if the policy check
succeeds, and aborts otherwise.

We find this design useful in encoding policy state ma-
chines and access-accounting policies, as illustrated in Sec-
tion 2.1. However, the design comes with a trade-off: To
avoid buffering a potentially unbounded number of updates
during a transaction, Guardat forbids destructive updates as
part of a transaction. Instead, new content must be written
to fresh (not currently allocated to a policy-protected file)
extents on disk. This choice mirrors modern file system de-
signs with copy-on-write block allocation, e.g., in WAFL,
ZFS, and Btrfs [8, 23, 39]. Outside a transaction, destructive
writes succeed if allowed by the policy. Guardat metadata
changes are buffered in memory during a transaction.

Content caches. Guardat policies may be contingent on
the current content of one or more files and the proposed
new content of the updated file in the context of a transac-
tion. To enable the efficient evaluation of such policies, two
Guardat caches hold file content for use in policy evalua-
tion. A per-session cache contains entries that refer to cur-

rent file contents, either as a sequence of bytes at a given
file offset and length, or as the hash of such a sequence.
A per-transaction cache contains the same types of entries
but refers to tentative updates to a file. Entries are added to
the cache as a side-effect of read and write commands with
appropriate flags. When a transaction commits, any entries
in the transaction cache are moved into the session cache,
and any existing session cache entries they supersede are
evicted. When a transaction aborts, the entries in the trans-
action cache are discarded. To satisfy a policy that refers to
current or pending file content, untrusted client code is ex-
pected to fill appropriate cache entries by issuing read/write
commands before attempting a transaction commit.

Certificate interface. Cryptographically signed certificates
represent facts asserted by a trusted third party, for instance,
the wall clock time as reported by a trusted time server
or the presence of a file on another Guardat device. The
certificate interface has commands to obtain a fresh nonce
to be included in a third-party certificate, and commands to
add a signed third-party certificate to the Guardat cache for
use in subsequent policy evaluations. Third-party certificates
are described further in Section 3.3.

The call attest(fileName, nonce) returns a GDC-signed
certificate that attests the existence of a file with its (set of)
pathname(s), extents and policy. Optionally, the certificate
may also include a hash of any of the file’s contents. The
attestation embeds a client-provided nonce. The read policy
rule authorizes this call.

Replication/migration interface. A set of commands al-
low untrusted client software to securely manage the repli-
cation and migration of policy-protected files among Guar-
dat devices, without access to their cleartext contents. A file
copy succeeds only if the file’s policy allows it, and if the in-
tegrity of the file’s contents, name and policy are maintained
during the transfer. The pickle operation invoked at a source
Guardat device encrypts a file and its policy for a specific
target Guardat device, while the unpickle operation installs
the file at the target Guardat device. An attestation from the
target Guardat device can then be used to prove to the source
device that the file resides on the target device. A file’s pol-
icy controls if, when and where a file can be migrated or
replicated.

Application library. Guardat applications are linked with
an untrusted library, which extends the POSIX API with
commands to set policies, provide authentication credentials
and certificates, and request attestations. The library also
interposes the existing POSIX file API to perform actions
required to satisfy a file’s policy. It interacts with the GDC
through IOCTL calls. We provide more details about an
application library for a specific use case in Section 4.4.

Example usage. As an example, we show the sequence
of steps required to update an executable file protected by
the policy described in Section 2.1. First, a software update



application (supd) supplies the required vendor certificate,
which is passed by the Guardat library to the GDC to be
cached. When supd opens the executable file for writing,
the library starts a transaction with the GDC, and arranges
that the hashes of all subsequent writes are added to the
transaction cache. When supd is done writing and closes
the file, the library asks Guardat to commit the transaction,
which causes the GDC to evaluate the policy and commit
if successful. Otherwise, the commit fails and the file is not
modified.

Filesystem interoperability. Full interoperability with Guar-
dat requires modest filesystem modifications to add session
ids to the buffer cache tags for secure sessions, to asso-
ciate write commands with appropriate transactions, and to
enable policy-compliant file reallocation/defragmentation.
In our prototype, we modified Linux’s Btrfs for this pur-
pose (the details of the Btrfs implementation are beyond the
scope of this paper). However, unmodified filesystems can
be used with many policies. In fact, all policies described
in this paper except MAL operate with an unmodified ext4
filesystem. When an unmodified filesystem is used, the ap-
plication library provides additional hashes of written data
to enable the GDC to associate newly allocated blocks with
files, while ext4 uses the standard block read and write com-
mands. We refer the interested reader to our technical report
(TR) for more details [58].

3.3 Guardat policy language

A brief overview of the Guardat policy language and several
examples demonstrating its expressiveness were presented
in Section 2.1. Here, we provide details of the language.

Types. The policy language supports three numeric types
(boolean, integer and float), content hashes (SHA256),
strings, public keys, lists of extents (each element of an ex-
tent list stores the logical byte offset within the file, physical
block address and the length), variables and predicates.

Predicates. The Guardat policy language is based on stan-
dard Datalog but omits recursively-defined predicates for
simplicity. Its expressiveness stems from custom predicates
(40 in total) that are listed in Table 1. We divide the lan-
guage’s predicates into several categories. Relational, arith-

metic and list predicates codify standard data operations like
addition and subtraction of numeric types and disjointedness
of extent lists. Access predicates provide the physical block
addresses, the logical byte offset and the number of bytes ac-
cessed, giving policies control over block-level accesses out-
side of transactions. Session predicates provide authentica-
tion information for the current session and the current value
of the internal timer. File predicates provide the accessed
file’s metadata (file name, length, extents and policy hash).
Transaction predicates provide information about the meta-
data and policy updates during a transaction. Content pred-

icates provide access to the per-session and per-transaction

Relational, arithmetic and list predicates

eq(x,y) x==y or x<-y add(x,y,z) x=y+z
neq(x,y) x!=y sub(x,y,z) x=y-z
lt(x,y) x<y mul(x,y,z) x=y*z
gt(x,y) x>y div(x,y,z) x=y/z
le(x,y) x<=y rem(x,y,z) x=y mod z
ge(x,y) x>=y
listGet(l, i, (o, b, len)) (o, b, len)==l(i) where i∈{0,. . .,|l|-1}
listLen(l, len) len == | l |
listIsMember(l, x) x ∈ l
listIsSubset(l1, l2) l2 ⊆ l1
listsAreDisjoint(l1,l2) l1 ∩ l2 == ∅

listIsPrefix(l, p) l == [p | S] where S is suffix and |
concatenates

listIsSuffix(l, s) l == [P | s] where P is prefix and |
concatenates

Access predicates (outside transactions)
accStartBlkIs(b) access starts at block b
accOffIs(o) access offset at byte o
accLenIs(len) access length is len
Certificate predicates

keyIs(k, d) Public key k is a signing authority for
domain d (established by a standard
certificate chain)

k signs k signed the relation rel(x1, . . . , xn)
rel(x1, . . . , xn) at T T counter ticks ago (only with nonce)

Session predicates

sessionKeyIs(k) k == current session’s client authenti-
cation key

File predicates

fileNameIs(s) s == pathname of file
fileCurrLenIs(x) x == file length
fileCurrExAre(l) l == list of the file’s extents
fileCurrPolIs(h) h == file policy’s hash
Transaction predicates

txUpdatedExAre(l) l == {x | x ∈ WriteSet}
txReadExAre(l) l == {x | x ∈ ReadSet}
txReuseExAre(l) l == CurrExtents ∩ NewExtents
txIsPickle(k) current tx prepared pickled data for

identity k
txIsUnpickle(k) current tx holds unpickled data from

identity k
fileNewLenIs(x) x will be the new file length
fileNewExAre(l) l will be the new list of file’s extents
fileNewPolIs(h) h will be the new file policy’s hash
Content predicates

(f,off,len) says x1, . . . , xn is the tuple at off,len in
rel(x1, . . . , xn) file f

(off,len) willSay ditto for the updated content of the
rel(x1, . . . , xn) current transaction

(f,off,len) hasHash h hash of file f’s content at off,len equals
h

(off,len) ditto for the updated content in the
willHaveHash h current transaction

Table 1. Guardat policy language predicates



content caches. Finally, certificate predicates provide infor-
mation about cached third-party certificates.

Third-party certificates. Section 2.1 illustrates several
predicates that are verified and asserted by third parties
(predicates keyIs, okHash, time). Such predicates are pro-
vided to Guardat as cryptographic certificates, signed by
the respective third-parties. Guardat verifies every certifi-
cate provided to it using standard certificate chain verifica-
tion [13] and makes the certificate’s content and its signer’s
public key available to the policy interpreter through the
predicate signs. Guardat relies on untrusted clients to pro-
vide relevant certificates before access. If certificates re-
quired for policy evaluation are missing, access is denied.
When a certificate issuer is offline and previous certificates
time out, access to files that rely on certificates from that
issuer may be denied, but access to other files remains un-
affected. To prevent replay attacks, each certificate must in-
clude either a recent Guardat-generated nonce or an explicit
expiration time (time server certificates must contain a re-
cent nonce).

Semantics. Guardat’s policy language uses standard Pro-
log semantics (Datalog is a sublanguage of Prolog). These
semantics have been studied extensively, both in the con-
text of access control [6, 42] and more generally, so we re-
view them only briefly. Predicates are evaluated left-to-right
in a rule. Variables are implicitly existentially quantified. If
a variable appears in many predicates joined by conjunc-
tion (∧), it gets bound to a concrete value (public key, file
name, time point, etc.) when the first predicate in which it
appears evaluates. Of all policy clauses joined by disjunction
(∨), only one has to evaluate affirmatively to allow access.
The language is implemented using a stack machine, which
is standard for languages like Prolog [60]. We describe the
evaluation time complexity of the language in Section 4.2.

Usability. Declarative languages similar to ours are widely
used as policy languages (e.g., XACML, SecPAL, Binder,
SD3, and KeyNote [6, 7, 14, 28, 36]) due to their simplicity,
which enables a very concise policy specification, as well as
a very small interpreter, minimizing the TCB. A standard,
imperative language could be used instead, but at the loss
of the above mentioned benefits. Several security-oriented
operating systems incorporate similar policy languages (e.g,
Taos, Nexus and Singularity [51, 66, 67]). More broadly,
the source of our policy language, Datalog, is an industry-
strength alternative for SQL. Datalog is also used for other
purposes like declarative specification of network protocols
(languages NDlog and Overlog [32, 33]).

We believe that policies will be written mostly by privacy
and security experts. For any application, there will be a
limited number of basic useful policies, and most system
administrators, users or developers will merely select from
a library of policies, perhaps with minor customization or
parameterization.

3.4 Summary

We close with a summary of the key ideas in Guardat’s de-
sign. Attaching declarative policies to files enables the con-
cise specification and auditing of rich data policies in one
place. Enforcing policies at the block layer enables scalable
system configurations that minimize the risk of policy cir-
cumvention. With our SAN server implementation, for in-
stance, policies can be enforced in the machine room, while
clients and enterprise network are untrusted. Guardat bridges
the semantic gap between file-level policies and block-level
enforcement by maintaining its own metadata associating
blocks, files and policies, and providing cryptographic attes-
tations for end-to-end verification of the policy in place for
a file’s data. Certificates allow policies to refer to facts at-
tested by trusted third parties like time servers, other Guardat
devices, or external verifiers. Transactions support rich pol-
icy state machines, where a transition between two policy-
compliant states requires multiple read and write operations.
The Guardat policy language and interface shift the burden
of demonstrating policy compliance to untrusted software,
thereby keeping policies concise and policy evaluation effi-
cient, while shifting overhead to client computers.

4. Experimental evaluation

In this section, we describe a prototype implementation of
Guardat within a SAN server. We evaluate its performance
on a series of microbenchmarks, and in the context of a
web server that enforces several of the policies explained in
Section 2.1.

4.1 Prototype

Our prototype is based on the iSCSI Enterprise Target (IET)
SAN server, which implements the server-side iSCSI pro-
tocol and provides SCSI block storage access via Ethernet.
IET is in production use and available for many Linux dis-
tributions. It consists of a kernel module, which implements
block accesses, and a user-level daemon process, which im-
plements iSCSI management functions. To implement Guar-
dat, we extended the kernel module and added a second user-
level daemon, which implements the Guardat interface and
evaluates policies. The kernel module performs upcalls to
determine if iSCSI block accesses should be allowed. The
server is configured with a small SSD for storing Guardat
metadata, as well as one or more magnetic disks or SSDs for
the payload data.

The Guardat daemon maintains two B-tree index struc-
tures on the metadata SSD: a block-to-file index to find the
file and policy associated with a given block number, and
a name-to-file index to retrieve the file information (set of
extents, policy, etc.) given a file id. For performance, the
Guardat daemon maintains a write-through DRAM cache of
B-tree nodes and policies, backed by the SSD. Updates are
persisted on the SSD during a transaction commit.



When the kernel module receives a block access request,
it passes the access type (read/write) and location (disk off-
set, length) to the multi-threaded Guardat daemon, which
consults the block-to-file index. If the block location is not
associated with a policy-protected file, the access is granted.
Otherwise, the daemon evaluates the policy and returns the
result to the kernel module. For read requests, the block read
is scheduled while checking the permission to reduce la-
tency. During a write request, the block write must be de-
ferred until the Guardat daemon grants the permission.

To reduce the number of upcalls and policy evaluations,
the kernel module maintains a cache of previous policy eval-
uation results of the form 〈extent, permissions〉. To feed
this cache, the Guardat daemon always returns the largest
extent encompassing the presently requested block for which
the same permissions hold. The cache is flushed when a pol-
icy changes.

To support Guardat, we added about 20,000 LOC to the
existing IET codebase, plus the OpenSSL and glib libraries
that Guardat relies on. Despite the relatively large codebase
of our proof-of-concept prototype, which includes a mini-
mally configured Linux kernel (no remote login or user pro-
gram execution), its attack surface is small. It consists of the
IET management interface, the block-device interface, the
Guardat interface extensions and the policy language.

Experimental setup. The Guardat-enhanced IET SAN ser-
ver (based on version 1.4.20.3-9.6.1) [57] runs on a server
connected to the client via one 10Gbit Ethernet link. The
client software runs on OpenSuse Linux 12.1 (kernel version
3.1.10-1.16, x86-64). The Linux iSCSI client connects to the
IET server, and appears to the Linux filesystems as a locally
connected SCSI block device.

The IET server and the Linux client each run on a Dell
Precision T1600 workstation with an Intel Xeon E3-1225
3.1Ghz quad core CPU (AES and AVX instruction set) and
8GB main memory. The server has a 500GB disk drive ded-
icated to the server OS installation. Data blocks are stored
either on a separate Seagate Barracuda 2TB 7200 rpm hard
drive with a 64MB cache [49], or on a 512GB Samsung
SSD [44]. The Guardat metadata is stored on a OCZ Deneva
2 C SLC 60GB (raw 64GB) SSD [37]. Only 4GB of that
SSD is actually used for Guardat metadata. Guardat uses a
DRAM metadata cache that holds 100K b-tree nodes.

The OpenSSL crypto library [38], Intel AES encryption
library [25], and Intel’s fast SHA256 implementation [26]
are used for Guardat cryptographic operations.

4.2 Microbenchmarks

Read/write latency. We first examine the read/write la-
tency of the Guardat prototype under synthetic workloads,
using either a HDD or an SSD as the block store.

We use a 2TB image with 3.8 million files, each span-
ning a single 512KB extent. To use the same metadata
size and access pattern on the HDD and SSD despite their
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Figure 2. Absolute Guardat latency overhead

different capacities, we access files allocated in the first
512GB of the image only. We compare the Guardat pro-
totype with the original IET under three different configura-
tions. iSCSI: The plain IET iSCSI implementation. Guar-

datempty: Guardat is used, but no files are protected by a
policy. Guardatfile: An “allow all” policy is associated with
each file. Guardatpolicy: Each file is protected by a policy
selected at random from a set of 40,000 different policies,
each of which allows access after a past date.

Each configuration is exercised with three different ac-
cess patterns (Sequential: blocks accessed in order of in-
creasing block id, Local: each accessed block chosen ran-
domly within 40,000 block ids of the previous block, Ran-
dom: each accessed block chosen randomly on the entire
disk), and two access types (Read and Write). Each access
reads or writes a single 512 byte block. For each access
pattern in each configuration, we perform five experimental
runs; each run has 20,000 accesses (a total of 100,000 ac-
cesses for each configuration). Each run starts at a randomly
chosen location on the disk.

Figure 2 shows the absolute Guardat latency for meta-
data lookup and policy evaluation in the experiment. (Note
that these results are independent of whether a SSD or HDD
is used as the data store.) Error bars indicate the standard
deviation. In the Guardatempty case, the userspace dae-
mon spends 2.5µs upon the first access to check for a (non-
existent) policy. A single entry is then added to the ker-
nel module’s permission cache, covering the entire disk and
granting universal permission (no policies). Subsequent re-
quests are granted from this cache at near zero cost making
all bars invisible in Figure 2. In the other cases, the time
spent by Guardat depends on the locality of the workload,
which determines the hit rate in the kernel permission cache
and the daemon’s DRAM cache of b-tree nodes. For exam-
ple, the Guardat overhead averages 2.2µs for Guardatpolicy

in the sequential access cases, since caching is very effective.
However, under the random workloads, Guardatpolicy has
to perform on average 0.7 reads on its metadata SSD per
check, increasing its overhead to 160µs. The variable num-
ber of metadata SSD accesses required for a given policy
check explains the high variance.
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Figure 3 shows the resulting average access latency with
the SSD, relative to the plain iSCSI. Even with the fast SSD
as a block store device, the Guardat latency overhead is
generally low, but significant for random writes (2-fold in-
crease). The fact that our block store SSD performs random
writes much faster than random reads (153µs versus 233µs),
presumably due to write buffering in its internal DRAM,
combined with the fact that the policy check cannot be over-
lapped with the access during a write, contributes to this high
relative overhead.

Note that the random access workload is extreme: The
SSD block store device is very fast, we are measuring the la-
tency of tiny accesses (512 bytes) at random locations over
the entire disk, and there are many files and policies. Increas-
ing the request size reduces the overhead. For example, with
a 4K request size, the overheads decrease from 29.3% for
RR and 101.6% for RW to 17.7% and 96.1%, respectively.
With 128K requests, the overheads go further down to 0.9%
and 23.5%, respectively. Moreover, as we show next, even
under this workload the SSD retains much of its latency ad-
vantage over the HDD with Guardat, and Guardat’s through-
put overhead is very low on both the SSD and the HDD.

Figures 5 and 6 compare the absolute latencies achieved
on a HDD and SSD with and without Guardat. Despite Guar-
dat’s large relative overheads for purely random writes, the
SSD retains its towering latency advantage on such accesses
over the HDD (note that the y-axis is different for SSD and
HDD). With the magnetic HDD, the Guardat latency over-
heads for all configurations are negligible (below 1%).

Compared to a locally attached SSD, the average latency
of a remotely connected iSCSI SSD increases by 0.051 ms,
a little more than one network round trip (0.047 ms).

Read/write throughput. Next we examine the read/write
throughput of the Guardat prototype, using the same config-
urations as the latency experiment. The test client issues four
128KB requests concurrently, which is sufficient to achieve
maximal read and write throughput in the baseline iSCSI in
all cases. For each access pattern in each configuration, we
run the throughput test 5 times; each run issues a total of
20,000 accesses and starts at a random block within the disk.

Figure 4 shows the absolute throughput with the SSD.
The results shown are the averages of 5 runs, where error
bars indicate the standard deviation. The Guardat overhead
is below 2% for all access patterns with the SSD. With the
HDD, the overheads are in the same range.

The high latency overhead on random writes does not
significantly affect the throughput because policy evaluation
for different requests can be performed in parallel by the
multi-threaded Guardat daemon, and overlapped with disk
and SSD accesses to metadata and blocks.

Moreover, compared to a locally attached SSD, the
throughput overhead is at most 3% for all iSCSI and Guardat
configurations and workloads.

I/O performance summary. While Guardat adds little la-
tency to HDD accesses and SSD accesses with good locality,
it has a noticeable latency overhead on small, purely ran-
dom writes to an SSD. However, this overhead diminishes
quickly with larger request sizes and more locality, and can
be overlapped with concurrent accesses, so that the SSD’s
throughput is not affected.



Policy

size

Domain size

1 2 4 8 16

1 2.2 3.4 5.8 10.7 20.4
2 4.6 10.4 28.9 95.1 345.8
3 7.0 24.0 121.2 770.5 5,518.1
4 9.4 50.9 485.3 6,156.4 88,319.3
5 11.9 104.9 1,951.3 49,234.7 1,411,800.8

Table 2. Evaluation latency in µs for varying policy size
(number of predicates and variables in the policy) and do-
main size (maximum number of cache entries)

Policy evaluation overhead. Consistent with Datalog, the
theoretical worst-case evaluation time for a policy rule is in
O(m ·Dn), where m is the size of the rule (number of pred-
icates), D is the size of the domain (bounded by the size
of the Guardat cache) and n is the number of variables in
the rule. In Table 2, we show the measured policy evalua-
tion time for synthetic policies designed to extricate worst-
case execution from our policy interpreter. D varies along
columns of the table andm and n vary along rows (m = n in
all experiments). The results match the expected complexity
O(m ·Dn). The table indicates (correctly) that policy evalu-
ation could be a substantial bottleneck for some policies but
we do not observe this bottleneck in practice. The average
policy evaluation latency of the most complex policy eval-
uated, MAL (Section 4.5) is only 27.7µs, even though the
policy has m = 4, n = 4 and D = 40. This is because
of a careful implementation of the policy interpreter to con-
sider more recent cache entries first. Our other example poli-
cies evaluate even faster; the average evaluation time of the
time-based policy from the latency experiment configuration
Guardatpolicy is only 3.7µs.

Space requirements for metadata. We quantify the meta-
data storage requirements. Because the metadata size de-
pends on the structure of the payload data, we analyzed
the metadata space requirements for 70,825 filesystem snap-
shots collected by Agrawal et al. [1]. The snapshots were
taken from Windows systems within Microsoft corporation
between 2000 and 2004, and contain between 30k and 90k
files each with an average file size between 108KB and
189KB. For evaluation purposes, we give each file in each
snapshot an integrity policy that disallows modification prior
to a given date. The snapshots are more than 10 years old at
the time of this writing. Because the average file size in to-
day’s systems has likely increased, however, our analysis of
Guardat’s metadata requirements relative to the size of the
data is conservative.

The required metadata can be accommodated in a solid
state memory of 0.8% of the data size for 99.89% of the
snapshots. As a point of reference, even commercially avail-
able hybrid disks provide at least 0.8% Flash [50] at the time
of this writing. And, newer combinations of Flash/disk de-
vices achieve much higher Flash to disk capacity ratios. For
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example, Apple’s Fusion Drive [4] has a ratio of 128GB
Flash for a 1TB HDD, which can easily accommodate all
the snapshots. In all our experiments, which use other data
sets, the metadata fit into only 0.2% of the data size.

Flash memory wear. Because Flash memory can endure
only a limited number of erase/program cycles, we must
check that the SSD used to store metadata will not wear
quickly. To be conservative, we assume that the Flash must
last at least 10 years. The lifetime is influenced by the size
of the metadata, the rate of metadata updates, and the Flash
capacity. A smaller capacity causes the Flash log to wrap
around faster and leads to higher utilization, which in turn
reduces cleaning efficiency and requires even more Flash
writes.

Under the configuration of Guardatpolicy used above,
we keep track of how much wear the Flash experiences while
presented with a series of metadata updates, i.e., adding and
removing extents to a content file picked at random. Enter-
prise environments typically deploy single-level cell (SLC)
Flash memory, which has a nominal lifetime of 100,000
erase/program cycles. Using only 4GB of such memory we
can accommodate up to 19.5M updates per day (225 per
second). This is an extraordinarily high update rate that
can accommodate even the most write-intensive applica-
tions. Cheaper multiple-level cell (MLC) and triple-level cell
(TLC) Flash memory with nominal lifetimes of 10,000 and
1,000 erase/program cycles would support up to 1.95M and
195,000 metadata updates per day, respectively.

4.3 File system benchmarks

Next, we measure the performance of the Guardat prototype
using the standard file system benchmarks iozone v3.429
and Bonnie++ v1.03. The block store was formatted un-
der ext4. iozone uses four worker threads to write 1GB
sequentially to four separate files.2 Later, each worker per-
forms a sequential read of the file they previously wrote.
Similarly, Bonnie++ writes then reads 1GB each to 16
files. Figure 7 shows the performance for the baseline and
Guardat under the Guardatpolicy configuration. The results
shown are the averages of 5 runs and error bars indicate the

2 We used the command iozone -i 0 -i 1 -r 512k -I -c -e

-T -t 4 -s 1g -F files
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standard deviation. The Guardat overheads are below 1.0%
for both benchmarks on both the HDD and the SSD. Note
that Bonnie++ uses the C library functions getc and putc
to perform file reads and writes, and is therefore unable to
saturate the disks.

Similar to the throughput experiment, the iSCSI SSD
results are close to those achieved with a locally attached
SSD (at most 3.5% lower).

4.4 Use case: Web server

Next, we consider the performance of the Guardat prototype
as part of a modified Apache Web server. The server holds a
220GB static snapshot of English language Wikipedia arti-
cles from 2008 [64] and Wikimedia images from 2005 [63],
containing 15 million files with an average file size of 15KB
and maximum file size of ∼500KB. The HTTP client asyn-
chronously requests HTML pages from the Web server,
using a workload based on the actual access counts of
Wikipedia pages during one hour on April 1, 2012 [65].
Because our snapshot is much older and had fewer articles
at the time, we ignore accesses to non-existing pages. In to-
tal, about 350,000 different pages were accessed in the trace,
of which 250,000 are part of the 2008 snapshot. Since we do
not have access to time stamps, we distributed the individ-
ual accesses evenly within an hour, and replayed the first
100,000 page requests.

We use the following Guardat policies to protect the
server’s persistent state: Content: Require content updates
signed by owners. We randomly assign one of 40,000 own-
ers to each content file. Executables/Config: Require that
updates to executable and configuration files be signed by
the administrator. Log files: The Apache log files can only
be appended, except with an administrator key used to rotate
the log. To satisfy the log file policy, we added a total of
51 lines of code to Apache. This extra code issues Guardat
commands to send content hashes to Guardat and flush ap-
plication and filesystem caches (fflush & fsync) before every
log file update. The policies protecting the content, executa-
bles and configuration files do not require any modifications
to Apache.

Figure 8 shows the average throughput of three runs as
a function of the number of concurrent HTTP accesses, for
plain iSCSI and Guardat (standard deviation is below 0.5%).

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 32 128 512

A
c
c
e

s
s
 l
a

te
n

c
y
 (

m
s
)

Accesses per log entry

Read log
Read Guardat MAL

Write log
Write Guardat MAL

read no log
write no log

Figure 9. Latency with MAL, voluntary and no logging

Each run loads 100,000 Wikipedia pages. The throughput
overhead of the Guardat configuration over the unmodi-
fied iSCSI server is 1.95% at 60 concurrent requests, where
iSCSI reaches its peak throughput, and always within 2.7%.
This result shows that the Guardat overheads mostly overlap
with other activities in the Web server. The 100,000 page re-
quests result in approximately 350,000 Guardat reads, for
an average of 3.5 reads per page. This shows that a sub-
stantial number of reads reach the Guardat device and are
not absorbed by the filesystem buffer cache. In addition,
Apache writes 2.7MB of log records in 170 transactions un-
der the append-only policy. There are no updates to content,
executables and configuration files, nor log rotations in the
workload, but policies must still be checked during each ac-
cess.

In terms of functionality, Guardat protects content, logs,
configuration and executable files from tampering by unau-
thorized parties, which we confirmed through fault injection
experiments.

4.5 Mandatory access logging (MAL)

In our final experiment, we perform accesses to a file with
our mandatory access logging (MAL) policy. The policy re-
quires an appropriate entry in a separate log file for an ac-
cess to be allowed by Guardat. We use a 64MB primary
file with or without the MAL policy in place. The primary
file and the log file reside on different HDDs attached to
the same Guardat IET server. The version counter embed-
ded in the primary file is stored in Flash memory not used
by Guardat. The client connects to the Guardat device and
accesses the primary file in three different configurations.
no log: file accessed without any logging and enforcement.
log: accesses logged without policy enforcement. Guardat-

MAL: accesses logged and policy enforced by Guardat.
Figure 9 shows the average access latency for 100,000

sequential 4KB reads and writes of the primary file, vary-
ing the number of accesses per recorded log entry from 1 to
512. Error bars indicate the standard deviation. In the case of
a single access per log entry, enforcing the MAL policy in-
creases the read/write latency by 11.5% and 50.6%, respec-
tively, over voluntary logging. The higher cost for logged
writes compared to reads reflects the need to update the ver-
sion number. Both costs can be reduced by issuing version



counter updates, log writes, and primary file accesses in par-
allel. Moreover, as shown in the figure, the cost of MAL can
be amortized by logging several accesses in a single log en-
try, and approaches the cost of completely unlogged accesses
for 512 accesses per log entry.

5. Discussion

Enforcement layer. Guardat enforces policies at the stor-
age layer, which may seem surprising, given that policies are
associated with files, not blocks. However, enforcement at
this layer minimizes the risk of circumvention, and makes it
easy to physically protect the trusted Guardat components
in a machine room. For instance, Guardat is robust even
to compromised SAN clients issuing illicit block requests.
An implementation at a higher layer (e.g., NAS fileserver,
VMM or client OS layer) is possible, but would would ex-
tend trust to additional, and likely more distributed, compo-
nents. Moreover, Guardat is able to bridge the semantic gap
between files and blocks without relying on the filesystem
and its metadata, through its file-level interface and file at-
testations.

Implementation alternatives. Besides the Guardat proto-
type implementation in a SAN server, a GDC can be imple-
mented within the microcontroller of a hybrid disk for use
in an individual machine. A possible third implementation
of the GDC is a trustlet within a VMM or operating system,
isolated using trusted hardware features like Intel SGX [27]
or ARM TrustZone [5].

In each implementation, the GDC, metadata and data
must be protected from unauthorized access and undetected
tampering. In our prototype, the SAN server must be phys-
ically protected, e.g., in a machine room where access is
restricted to trusted staff. When the GDC is implemented
as part of a microcontroller embedded in a hybrid disk, the
metadata and data are encrypted and authenticated to pro-
tect them from unauthorized access and undetected tamper-
ing. The microcontroller implements the GDC and stores its
private key in an embedded TPM. In this scenario, Guar-
dat policies are enforced as long as the microcontroller has
not been physically tampered with (the disk enclosure may
be tampered with). While we have not attempted this im-
plementation, we believe it is feasible with a high-end mi-
crocontroller that has on-chip hardware support for secure
hashing and cryptography, as well as a TPM. An implemen-
tation as a trustlet has similar security properties, except that
the GDC executes on the main CPU and trust is derived from
this CPU’s isolation capabilities.

Support for databases. Some applications and systems in-
creasingly rely on databases rather than files to represent
their state. In databases, each row and each column may
have a different policy, so enforcement at the file or block
level is generally not appropriate. Table or column policies
can be enforced with an appropriate file-based data model

with Guardat in special cases. Nevertheless, we believe that
Guardat can be generalized to fully support databases, but a
design remains as future work.

6. Related work

Policy languages based on Datalog. Many declarative
policy language are based on Datalog and resemble the
Guardat policy language in syntax and semantics. Some
examples are Soutei [42], Binder [14] and SecPAL [6].
Whereas these languages are generic, the Guardat policy
language is domain-specific and contains custom-designed,
storage-relevant predicates (Section 3.3). Soutei, Binder and
SecPAL allow intensional (recursive, rule-defined) predi-
cates, which the Guardat policy language omits to keep the
implementation simple. These predicates can be added to
Guardat without any conceptual challenges. DKAL [20] ex-
tends Datalog with declarative rules for exchanging autho-
rization credentials in distributed systems. Such rules can be
added to Guardat as well.

TCG storage work group specification. Although devel-
oped independently, the Guardat architecture bears some re-
semblance to storage work group standards of the trusted
computing group (TCG) [55]. Similar to Guardat, the TCG
standard prescribes session-based communication with stor-
age devices and access control on all calls. This industry in-
terest supports the case for Guardat’s architecture. Unlike
our work, however, the TCG standard does not describe a
concrete design, implementation, or policy language, leav-
ing these to device vendors; nor does it include attestation
of stored data. Implementations exist for a subset of the
TCG specification [54], providing full-disk encryption to
preserve confidentiality of data upon device theft, loss or
end of life. They do not include secure sessions, universal
access checks, integrity policies, or attestations, all of which
Guardat does.

Trusted computing. Trusted computing (TC) relies on a
trusted platform module (TPM) attached to a computer’s
motherboard to provide a hardware root-of-trust [40], while
Guardat relies on a controller (GDC) attached to a storage
device, enclosure or server. While TC provides remote attes-
tation of the software executing on a computer, Guardat pro-
tects stored files and attests their state. TC provides sealed
storage, where data is encrypted with a key stored in the
TPM and released only when the computer runs a specific,
trusted software configuration. Guardat instead enforces a
declarative policy on all data accesses. Compared to TC,
Guardat can reduce the size of the TCB and its attack sur-
face. Depending on the policy, the TCB may be as small as
the GDC. TC can complement Guardat: A Guardat policy
for file access can require that trusted software, verified via
TC remote attestation, execute on the client computer. Con-
versely, TC can be used to attest the GDC.



Related trusted computing proposals. Building on TC, se-
mantic attestation [21] enforces properties of a computation
by a runtime verification substrate within a VMM. Guar-
dat provides a limited form of semantic attestation that en-
forces a data access policy, and does not require machine
virtualization. With Excalibur [45] data can be bound cryp-
tographically to a predicate on nodes (e.g., “this node is in
Europe” or “this node is running Xen”). Guardat can imple-
ment a similar capability with the help of a trusted author-
ity to certify the predicate. However, Guardat can enforce
many other policies directly, without requiring an external
trusted authority. Pasture [29] is a TPM-backed messaging
and logging library that enforces MAL on data stored on an
untrusted client machine. Furthermore, clients can delete un-
accessed data in a way that provably prevents future access.
In Section 2.1, we describe a similar MAL policy in Guardat.
Provable deletion can be added, as described in our TR [58].

VMM/OS data protection. Overshadow [12] uses VMM
interception of application-to-kernel switches to protect con-
fidentiality and integrity of in-memory application data from
a corrupted OS. Using memory-mapped files, the same pro-
tection extends to persistent files. Guardat enforces declar-
ative policies (not considered in Overshadow) on persistent
files. Overshadow’s in-memory protection can be combined
with Guardat for end-to-end enforcement of policies on data
flowing through a system.

In InkTag [24], designated high-assurance processes
(HAPs) are protected from the OS by the VMM, which ver-
ifies the OS’s actions. The VMM also intercepts all I/O and
enforces access control list-based protection on file accesses.
Guardat supports richer policies. Protections provided by
InkTag can be circumvented by rebooting into an OS with-
out InkTag. Guardat protections cannot be bypassed by re-
booting. InkTag requires changes to the OS and, depending
on the application workload, may add 2-3x overhead. Guar-
dat does not require any changes to the OS and incurs only
moderate overheads even for very challenging workloads.
Furthermore, Guardat provides policy protection even for
remote clients, which Inktag does not.

The Nexus operating system [51], like the earlier Taos
operating system [66], applies policy-based authorization on
OS interfaces for file access, memory mapping, IPC and
process management. The Nexus policy language, NAL, is
similar to Guardat’s [46]. Like Guardat, the untrusted ap-
plication demonstrates policy compliance by providing cre-
dentials ahead of access. However, Guardat focuses exclu-
sively on the storage subsystem and its policy language is
more expressive for this subdomain, e.g., it can express the
MAL policy, which NAL cannot. Moreover, Guardat is im-
plemented in the storage layer. Nexus optionally provides
data integrity by maintaining a Merkle hash tree over the en-
tire filesystem and storing the root hash in a TPM. The same
idea may be applied to Guardat.

DCAC [68] modifies the OS kernel to enforce attribute-
based access control on files. In DCAC, processes have at-
tributes (privileges) and file policies are conjunctions and
disjunctions of these attributes. A process may create sub-
attributes of any attribute it controls, and it may delegate
these sub-attributes to other processes. DCAC can be used
to build security primitives like process sandboxing and
application-controlled ad hoc sharing. The same primitives
can be built on Guardat, using application-created private
keys instead of attributes for authorization. Additionally,
Guardat can enforce data integrity, access logging and time-
dependent access policies that DCAC cannot.

Protected storage. Butler et al. [9–11] describe storage
devices that control access to storage segments contingent
on the presence of a hardware token, or on successful remote
attestation of the host computer. Guardat can also express
such policies.

Commercially available self-encrypting disks [48] en-
crypt data to ensure its confidentiality when the device is
lost or stolen. Our Guardat prototype includes this capabil-
ity. Web storage services like Amazon S3 [3] provide access
control to a client’s data based on user identities, groups and
roles, encryption for secure data storage and transit, and ac-
cess logging. Guardat can enforce these (and many other)
policies and provides file attestations. Because it operates
at the storage layer, it does not require trust in the Cloud
provider’s remaining platform.

In capability-based network-attached storage (NAS) [2,
15, 18], access requests include a cryptographic capability
created out of band by a policy manager, a trusted compo-
nent that serves all storage devices in a data center. A Guar-
dat device, on the other hand, can interpret and enforce many
policies without relying on an external policy manager; thus,
Guardat can operate in an otherwise offline environment (un-
less a policy specifically delegates to an external verifier).
Guardat can enforce content-based policies and attest files,
which capability-based NAS cannot.

Type-safe disks (TSD) [52] track the filesystem’s rela-
tionship among disk blocks using an extended block inter-
face. Thus, a TSD can enforce basic filesystem integrity
invariants, such as preventing access to unlinked blocks.
A security extension called ACCESS adds read and write
capabilities to selected disk blocks, thus enabling access
control for entire files and directories. Guardat addition-
ally supports cryptography and secure channels, which pro-
vide stronger protection against compromised hosts, buggy
filesystems and operator mistakes. Also, Guardat’s policy
language can support rich policies beyond filesystem meta-
data integrity.

Storage systems such as Self Securing Storage (S4) [56]
and NetApp’s SnapVault [22] RAID storage server retain
shadow copies of overwritten data or disable writes for a
given period of time to address the specific problem of acci-
dental or malicious corruption of data. Guardat can enforce



these and much richer integrity constraints (Section 2.1), as
well as confidentiality and access accounting.

Protected filesystems. jVPFS [61, 62] is a stacked, micro-
kernel-based filesystem that combines a small, isolated
trusted component with a conventional untrusted filesystem.
jVPFS uses encryption, hash trees and logging to ensure
data confidentiality and integrity. Guardat instead operates
at the storage layer, and supports a much wider range of
confidentiality and integrity policies.

SQCK [19] states a filesystem’s metadatay invariants as
SQL queries, and checks/repairs these invariants off-line.
Recon [16] enforces declarative invariants on a filesystem’s
metadata at runtime. Guardat instead enforces data confi-
dentiality and integrity, and does not rely on correct filesys-
tem metadata.

PCFS [17] and PFS [59] enforce declarative integrity and
confidentiality policies at the filesystem-level. Unlike Guar-
dat, PCFS and PFS cannot enforce policies that depend on
the content or size of files, do not attest stored files, and can
be bypassed by booting into a different configuration. PFS
uses the NAL policy language, which we discussed earlier.
PCFS uses a formal logic with more connectives than the
Guardat policy language. However, the logic is undecidable,
which increases the clients’ work in establishing policy com-
pliance.

Extended storage functionality. Commercial hybrid disks
[50] package a magnetic disk drive with a modest amount
of NAND Flash memory, used as a non-volatile write-back
cache to increase performance. Guardat uses a compara-
ble amount of Flash memory to store its policy metadata
but, in addition, protects data. Object-based storage devices
replace the traditional block-based storage with an object-
based interface [35]. These systems offer capability-based
security for whole objects, which we already compared to.
Some Guardat commands are also object-based, and could
therefore be integrated with an object-based storage stan-
dard. Seagate’s recent Kinetic Open Storage Platform [47]
is based on storage devices with Ethernet interfaces and
in-built key-value stores and secure data migration abili-
ties (similar to Guardat pickle/unpickle commands). Unlike
Guardat, access control relies on a trusted library outside the
drive. Several storage subsystems like active disks [43], se-
mantically smart disks [53] and differentiated storage ser-
vices [34] include program logic to improve performance.
Guardat addresses the orthogonal concerns of data confiden-
tiality, integrity and access accounting.

Pennington et al. [41] describe an intrusion detection
system (IDS) at the storage layer, which raises an alarm
when an access matches a per-file or global rule. Guardat
instead is able to enforce per-file security policies, and the
policies can be richer than the rules of an IDS system.

7. Conclusion

To the best of our knowledge, Guardat is the first system
that enforces, at the storage layer, rich per-file confidential-
ity, integrity and access accounting policies, and attests the
state of files. Enforcement at the storage layer reduces the
risk of policy circumvention due to software bugs, miscon-
figurations and operator error. The Guardat policy language,
although based on well-understood foundations, provides
domain-specific predicates to enforce rich confidentiality, in-
tegrity and access accounting policies based on a wide range
of conditions, including client authentication, trusted wall-
clock time, and the state (content) of files, even at sub-file
granularity. Guardat ensures the confidentiality and integrity
of a system’s persistent state and data, yet is easy to de-
ploy and amenable to an efficient implementation, as demon-
strated by an experimental evaluation.
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