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Abstract TPM chip would store a strong identity (unique key) and
Accidental or intentional mismanagement of cloud soft- & fingerprint (hash) of the software stack that booted on
ware by administrators poses a serious threat to the in-the cloud node. TPMs could then restrict the upload of
tegrity and confidentiality of customer data hosted by Customer data to cloud nodes whose identities or finger-
cloud services. Trusted computing provides an im- Prints are consideretiusted This capability offers a
portant foundation for designing cloud services that Puilding blockin the design of trusted cloud services by
are more resilient to these threats. However, current SECUring data confidentiality and integrity against insid-
trusted computing technology is ill-suited to the cloud ©rs: Or confining the data location to a desired geograph-
as it exposes too many internal details of the cloud in- i@l Or jurisdictional boundary. _
frastructure, hinders fault tolerance and load-balancing DeSPite their benefits, current trusted computing ab-
flexibility, and performs poorly. We present Excal- Stractions are |II—su_|ted to the requirements of cloud ser-
ibur, a system that addresses these limitations by en-Vices for Fhree main reasons. First, TPM abstractions
abling the design of trusted cloud services. Excalibur Were designed to protect data and secrets on a stan-
provides a new trusted computing abstraction, called dalone machine; they are thus cumbersome to use in
policy-sealed datathat lets data beealed(i.e., en- a multi-node dataqenter envwo_nment where d_ata mi-
crypted to a customer-defined policy) and thersealed grates across multiple nodes with potgnually different
(i.e., decrypted) only by nodes whose configurations conﬂgurau_ons. Second, TPM abst_racuons_ over-expose
match the policy. To provide this abstraction, Excalibur the cloud infrastructure by revealing the identity and
uses attribute-based encryption, which reduces the over-Software fingerprint of individual cloud nodes; external
head of key management and improves the performance_agen.ts could use this information to .epr0|.t vulnerabil-
of the distributed protocols employed. To demonstrate [ti€s in the clogd mfrastructurg or gain bus!ness advan-
that Excalibur is practical, we incorporated it in the Eu- t2g€ [40]. Third, the current implementation of TPM
calyptus open-source cloud platform. Policy-sealed data abstractions is |neff|C|ent_ and can introduce scalability
can provide greater confidence to Eucalyptus customersPottlenecks to cloud services.

that their data is not being mismanaged. This paper presents Excalibur, a system that provides
) cloud service designers with new trusted computing ab-
1 Introduction stractions that overcome these barriers. These abstrac-

Managing cloud computing services is complex and tions provide another critical building block for con-
error-prone. Cloud providers therefore delegate this task structing services that offer better guarantees regarding
to skilled cloud administrators who manage the cloud data integrity, confidentiality, or location. Excalibur’s
infrastructure software. However, it is difficult to assure design includes two main innovations crucial to over-
that their actions are error-free. In particular, an acci- coming the concerns posed by using TPMs in the cloud.
dental or, in some cases, intentional action from a cloud First, Excalibur provides a new trusted computing
administrator could leak, corrupt, or lose customer data. abstraction, callegolicy-sealed datathat allows cus-
The threat of potential violations to the integrity and tomer data to be encrypted according to a customer-
confidentiality of customer data is often cited as a key chosen policy and guarantees that only the cloud nodes
barrier to the adoption of cloud services [2,15]. Further- whose configuration satisfies that policy can decrypt and
more, publicized incidents involving the loss of confi- retrieve the data. We devised this abstraction to address
dentiality or integrity of customer data [1, 4, 7, 23, 25] the first two limitations of current TPM abstractions;
and the growing amount of security-sensitive data out- the abstraction permits multiple nodes with or without
sourced to the cloud [3,6] only heightens these concerns.identical configurations to flexibly access data as long
Recently, several proposals [22,39,45,53] have advo- as they satisfy the customer policies. Moreover, since it
cated leveraging trusted computing technology to make allows policies to be specified using human-readable at-
cloud services more resilient to integrity and confiden- tributes, policy-sealed data hides the low-level idegditi
tiality concerns. This technology relies on a secure co- and software fingerprints of nodes.
processor — typically a Trusted Platform Module (TPM) Second, Excalibur implements the policy-sealed data
chip [17] — deployed on every node in the cloud. Each abstraction in a way that overcomes the inefficiency hur-



dles of current TPMs and scales to the demand of cloud platforms (e.g., secure hypervisors) to host customers’
services. To do this, we designed a centralinsahi- data and computations.

tor that checks the integrity of cloud nodes and acts as

a single point-of-contact for customers to bootstrap trust  However, current cloud architectures provide scant
in the cloud infrastructure. To prevent the potential scal- assurances that the data that customers ship to the cloud
ability challenges associated with a centralized monitor, s being handled by integrity-protected nodes running
we designed a set of distributed protocols to efficiently secure software platforms. Insecure software platforms
implement the new abstractions. Our protocols use the (e.g., ones that have been tampered with or that run un-
Ciphertext Policy Attribute-Based Encryption (CPABE) patched software versions) put at risk cloud service in-
encryption scheme [11], which drastically reduces the tegrity and thus customer data. Trusted computing tech-
communication needs between the monitor and prOdUC-nology addresses this problem by providing customers
tion nodes by requiring each node contact the monitor with integrity guarantees of the cloud nodes themselves.
only once during a boot cycle, a relatively infrequent

operation. We validated the correctness of Excalibur's  Tr,sted computing technology provides the hardware
cryptographic protocols using a protocol verifier [12].  sypport needed to bootstrap trust in a computer [38]. To
To demonstrate the practicality of Excalibur, we built do so, it offers system designers four main abstractions.
a proof-of-concept compute service akin to EC2. Based First, strong identitieset the computer be uniquely iden-
on the Eucalyptus open source cloud management plat-tified without having to trust the OS or the software run-
form [36], our service leveraged Excalibur to give users ning on the computer. Secontysted booproduces a
better guarantees regarding the type of hypervisor or the unique fingerprint of the software platform running on
location where their VM instances run. Our experience the computer; the fingerprint consists of hashes of soft-
shows that Excalibur’s primitive is simple and versatile: ware platform components (e.g., BIOS, firmware con-
our changes required minimal modifications to the Eu- trolling the computer's devices, bootloader, OS) com-
calyptus codebase. puted at boot time. Third, this fingerprint can be se-
Our evaluation suggests that Excalibur scales well. curely reported to a remote party usingeanote attesta-
Due to CPABE, the monitor’s load scales independent of tion protocol; this protocol lets the remote party authen-
the workload. In addition, according to our simulations, ticate both the computer and the software platform so it
one server acting as a monitor was sufficient to managecan assess whether the computer is trustworthy, e.g., if it
a large cluster; for example, a server took5 seconds s a trusted platform that is designed to protect the con-
to check the node configurations of a cluster with 10K fidentiality and integrity of data [20, 32]. Fourtbealed
nodes that all rebooted simultaneously. Finally, offer- storageallows the system to protect persistent secrets
ing trusted computing guarantees to the EC2-like ser- (e.g., encryption keys) from an attacker with the ability
vice added modest overhead during VM managementto reboot the machine and install a malicious OS that can
operations only. inspect the disk; the secrets are encrypted so that they
. can be decrypted only by the same computer running
2 Trusted Computing Concepts the trusted software platform specified upon encryption.
The success of a cloud provider hinges on its customers
being willing to entrust the provider with their data [2, An important instance of trusted computing hard-
15]. A key factor in strengthening customers’ trust is ware is the Trusted Platform Module (TPM) [17], a se-
providing strong assurances about the integrity of the cure co-processor widely deployed on desktops, laptops
cloud infrastructure. TPMs can play a fundamental role and increasingly on servers. To offer a strong iden-
in providing these assurances. tity, the TPM uses an Attestation Identity Key (AIK).
The integrity of the cloud infrastructure depends on To track the hash values that constitute a fingerprint, the
the security of its hardware and software components. TPM uses special registers called Platform Configura-
For hardware security, cloud providers already rely on tion Registers (PCRs). Whenever a reboot occurs, the
surveillance devices and physical access control thatPCRs are reset and updated with new hash values. To
severely restrict physical access to cloud nodes, even byperform remote attestation, the TPM can issupiate
cloud provider staff [19]. In certain cases, by deploy- which includes the PCR values signed by the TPM with
ing cloud nodes in sealed containers, they ensure thatan AIK. For sealed storage, the TPM offers two prim-
physical access is fully disallowed [19]. For software itives, calledseal and unsea) to encrypt and decrypt
security, providers could take advantage of techniques secrets, respectively. Seal encrypts the input data and
that reduce the size of the TCB [53], narrow the man- binds it to the current set of PCR values. Unseal val-
agement interfaces [34], and verify the TCB code [24]. idates the identity and fingerprint of the software plat-
These techniques help designers build secure softwareform before decrypting sealed data.



3 Threat Model tection against the inspection or corruption of customer

Our premise is that the attacker seeks to compromise YMS Py a cloud administrator. .
customer data by extracting it from integrity-protected  1he first step in designing the strawman is to protect
cloud nodes. An attack is successful if either the data the state of customer VMs running on cloud nodes. To
is accessible on a machine running an insecure softwared0 this, we use recent proposals from research and in-
platform or is moved outside the provider's premises. ~ dustry that offer such guarantees ot a single node

The attacker is assumed to be an agent with privileged ©Nly- For example, CloudVisor [53] retrofits Xen so that
access to the cloud nodes’ management interface. SucHne nypervisor guarantees the integrity and confidential-
an agent is typically a cloud provider's employee who ity of data and softwa_re_ running in guest_ \(Ms even in
manages cloud software and behaves inappropriatelythe presence of a malicious system admmlstraftor. Cus-
due either to negligence (e.g., misconfiguring the nodes [0Mers can leverage the TPM's remote attestation capa-
where a computation should run) or to malice (e.g., de- bility to verify t_hat a cloud_ node is running CloudVisor
sire to steal customer data). The management interface®€fore uploading data to it.
is accessible only from &mote site Therefore, we However, this verification step checks these guaran-
assume the attacker cannot launch physical attacks. Inte€s only for the cloud node on which the data is first
fact, software and hardware management roles are usutPloaded. Once in the cloud, the customer’s data and
ally differentiated and assigned to different teams. VMs often migrate from one node to another, or are

The management interface grants the attacker privi- Suspended to disk and resumed at a later time. To of-
leges to the software platform running on the node (e.g., fer end-to-end protection, the checks must be repeated
access to the root account) and to a dedicated hard-UPon such events.
ware component for power cycling the nodes. These Thus, to accommodate VM migration, the strawman
privileges empower him to access customer data on thedesign of a trusted EC2 must perform remote attesta-
nodes: he can reboot any node, access its local disk af-tion each time a customer’s VM migrates to verify that:
ter rebooting, install arbitrary software on the node, and (1) the destination node’s identity is signed by the cloud
eavesdrop the network. However, whenever cloud nodesProvider, and (2) the fingerprint matches that of Cloud-
boot a secure software platform whose TCB we assume Visor. To protect the VM upon suspension to disk, the
to be correct, the attacker can no longer exploit vulnera- VM state must be encrypted using sealed storage before
bilities through the software platform’s interface. suspension occurs.

Multiple t.rusted parties p_erform all other manage- 4.2 Limitations of TPM Abstractions
ment tasks in the cloud provider’s infrastructure. These
tasks include, e.g., procuring and deploying the hard- The strawman design highlights some shortcomings of
ware, securing the premisesy deve|0ping the software current TPM abstractions Stemming from a fundamen-
platforms, managing the provider’s private keys, endors- tal principle upon which TPMs were built: they were
ing whether a software platform is secure, certifying the designed to offer guarantees about one single computer.
software and hardware, etc. Trusted parties can be em-In particular, TPMs suffer from three major problems
ployees of the cloud provider or external trusted organi- When they are used to build trusted cloud services.
zations. Due to the nature of their roles, however, trusted ~ First, the sealed storage abstraction was not designed
partiesdo nothave access to the cloud nodes’ manage- for a distributed and dynamic environment like the dat-

ment interface. acenters where cloud services operate. It precludes the
We assume that the TPMs are correct, and we do notapplication developer from encrypting and storing sen-
consider side-channel attacks. sitive data in an untrusted medium (e.g., a local hard

. drive, or the Amazon S3 service) and retrieving it from
4 Policy-sealed Data a different node or from the same node running a soft-
This section makes the case for our new trusted com-ware configuration that differs from that in place when
puting abstraction, callegolicy-sealeddata. We first  the data was encrypted. However, developers might be
discuss the limitations of existing TPM abstractions in interested in suspending the VM to disk and resuming it
the context of the design of a strawman trusted cloud later on a different node (e.qg., if, in the interim, the orig-
service. We then describe how policy-sealed data ad-inal node was shut down to save power) or on the same

dresses these limitations. node running a different configuration (e.g., if, in the
. interim, the hypervisor was upgraded to a more recent
4.1 Strawman Design of a Trusted Cloud o7 yp Pg

Service Second, today’s TPMs are not built for high perfor-
Our strawman trusted cloud service offers features sim- mance. TPMs can execute only one command at a time,
ilar to Amazon's EC2 but aims to provide better pro- and many TPM commands, such as remote attestation,



Attribute | Value Description 4.3 The Policy-sealed Data Abstraction

service “EC2” service name Lo .

version "1 version of the service To overcome these limitations, we propose the new

Vlymm “Xe”’l'i “CI'OUdViSOT” virtual maCh]j”erT,\‘AO”'tOV policy-sealed databstraction. This abstraction allows
pe “small”, “large” resources of a _

country | *Us", "DE" country of deployment qustomer Qata to pg bound to cloud nodes_ whose con

zone 717, 72", 7%, *z4" | availability zone figuration is specified by a customer-defined policy.

Table 1: Example of service attributes. In this case, EC2  Policy-sealed data offers two primitives for securing
supports two types of VM instances, two types of VMMs, and customer datasealandunseal Seal can be invoked
four availability zones (datacenters) in the US and Germany  anywhere — either on the customer’s computer or on the
cloud nodes. It takes as input the customer’s data and

Node | Configuration apolicy and outputs ciphertext. The reverse operation,
N service: “EC2” ; version: “1” ; type: “small” ; country .
“DE" : zone: "z2" : vmm : “CloudVisor” unseal, can be invoked only on the cloud nodes that need
Table 2: Example of a node configuration. This configura- {0 decryptthe data. Unseal takes as input the sealed data
tion contains the values for the attributes that charaaetie and decrypts iff and only if the node’s configuration
hardware and software of a specific nasle satisfies the policy specified upon seal; otherwise, de-
cryption fails.
Policy | Policy Specification _ With our abstraction, each cloud node has a configu-
P service="EC2" and vmm = "CloudVisor* and ration, which is a set of human-readabléributes At-
version> “1” and instance= “large . ,
j2) Service— "EC2" and VI = "CloudVisor and tributes express features that refer to the node’s software
(zone= “z1” or zone= z3") (e.g., “vmm”, “version”) or hardware (e.g., “location”).
Ps service="EC2" and vmm = “CloudVisor’ and A policy expresses a logical condition over the attributes
country="DE supported by the provider (e.g., “vmm=Xen and loca-

Table 3: Examples of policies.P; expresses version and VM
instance type requirementB; specifies a zone preference for
different sites, and’ expresses a regional preference.

tion=US"). Table 1 shows an example of the attributes
of a hypothetical deployment of a service akin to EC2.
Table 2 illustrates the configuration of a particular node,
take approximately one second to complete. This inef- and Table 3 lists example policies over node configura-
ficiency hampers the scalability of cloud services that tions in that deployment.
use the TPM and can even open avenues for denial of Our primitive can replace the existing remote attesta-
service attacks if the TPM abstractions were invoked by tion and sealed storage calls for securing customer data
customer-accessible operations. on the cloud. In particular, to protect data upon upload
or migration, the customer needs only to seal the data to
Finally, the cloud infrastructure may be overexposed. a policy: if the destination cannot unseal the data, then
By revealing TPM node identities and allowing cus- its configuration does not match the policy; therefore,
tomers to remotely attest the nodes, any outsider couldthe node is not trusted from the perspective of the cus-
learn, for instance: (1) the number of cloud nodes that tomer who originally specified the policy.
constitute the infrastructure of the cloud provider, and . .
(2) the distribution of different platforms they run. This 5 Excalibur Design
information could be used by external attackers to trace This section presents Excalibur, a system that provides
vulnerabilities in the infrastructure, or by competitast policy-sealed data support for building trusted cloud ser-
learn business secrets. Handing over such informationvices.
is often unacceptable to cloud providers. 51 Design Goals & Assumptions
Recent proposals for TPMs in the cloud do not com- Our central goal is to design and implement a system
pletely address these TPM limitations. Systems like that offers the policy-sealed data primitive by making
Nexus [50] or CloudVisor [53] use TPMs to allow cus- use of commodity TPMs. Furthermore, the system de-
tomers to remotely attest only a single cloud node and sign must overcome the preceding limitations of the in-
therefore do not address the preceding issues. Essenterface offered by current TPMs.
tially, these systems address the complementary prob- We focus on the design of the primitive used by the
lem of securing the platform running on a single node. cloud platforms running on individual nodes. There-
Our previous workshop paper [45] took preliminary fore, we are not concerned with securing these plat-
steps to address some of these issues, but its solutiorforms themselves. In particular, our goal is not to pre-
did not handle situations where sensitive data needed tovent the management interface exposed to cloud ad-
be secured persistently, which is unrealistic to assume ministrators from leaking or corrupting sensitive data
on real-world cloud services; our prior solution also suf- (e.g., direct memory inspection of VM memory). Simi-
fered from scalability limitations. larly, we require that the individual cloud platforms pro-



Customer Datacenter dentials that are sent to the node. These credentials are

— 7 unseale' ] { unsea?j ] { unseaﬂ‘ required by cloud nodes to unseal policy-sealed data and
8 e -1 are destroyed whenever the nodes reboot.
seal ffe=-1-mmm" The monitor exposes a narrow management interface
\M that lets the cloud administrator configure the mappings
\ o Certificates between attributes and identities (i.e., fingerprints)sTh

\) Monitor is necessary for routing system maintenance as new soft-

ware platforms and cloud nodes are deployed on the

Cloud nodes = infrastructure. The management interface also allows

multiple clones of the monitor to be securely spawned
Figure 1: Excalibur deployment. The dashed lines show the ?nlorder to scalelup Fhe system. To assure customers that
flow of policy-sealed data, and the solid lines represertrint it is properly maintained, the monitor accepts only map-
actions between clients and the monitor. The monitor checks pings that are vouched for by specértificates cus-

the configuration of cloud nodes. After a one-time moniter at tomers can directly attest the monitor in order to check
testation step, clignts can se_al data. Data can be unsedled o  jts authenticity and integrity.

on nodes that satisfy the policy (unshaded boxes). Though our high-level design is simple, we still need
tect certain key material used to seal and unseal data !0 Overcome two main challenges: 1) to cryptographi-
and that the system interface does not allow the finger- cally enforce policies in a scalable, fault tolerant and ef-
print stored in the TPM to be changed so that it be- ficientway, and 2) to assure customers that the monitor
comes inconsistent with the current system state. To OPerates correctly despite the fact that it is managed by
address these complementary goals, applications mustntrusted cloud administrators. To address these chgl-
make use of a series of existing systems and hardening€nges, we: 1) use CPABE cryptography to enforce poli-

techniques [20, 24, 33, 53]. cies, and 2) devise certificates and a scalable monitor at-
) testation mechanism to ensure that the monitor is trust-
5.2 System Overview worthy. We next explain these design choices in more

The design of Excalibur is based on a centralized com- detail.
pone_nt, calle_d anonito_r. The monitor is a dedicated_ 5.3 Cryptographic Enforcement of
service running on a single cloud node (or, as we will L
explain, on a small set of nodes for fault tolerance and Policies
scalability). It coordinates the enforcement of policy- The main challenge in implementing the seal and un-
sealed data on the entire cloud infrastructure by map- seal primitives is avoiding scalability bottlenecks. A
ping TPM identities and fingerprints of the cloud nodes possible design is for the monitor itself to evaluate the
to policy-sealed data attributes. Only the monitor can policies: upon sealing, the client encrypts the data with
trigger TPM primitives on the cloud nodes, minimizing a symmetric key and sends this key and the policy to
the negative performance impact of TPM operations and the monitor; the monitor then encrypts this key and the
preventing the exposure of infrastructure details. policy with a secret key and returns the outcome to the
Figure 1 illustrates a deployment of Excalibur, high- client. To unseal, the encrypted key is sent to the moni-
lighting the separation between the two main system tor, which internally recovers the original symmetric key
components: thelientand themonitor. The client con- and policy, evaluates the policy, and releases the sym-
sists of a library that allows the implementation of a metric key if the node satisfies the policy. Although this
trusted cloud service to use the policy-sealed data prim- solution implements the necessary functionality, it in-
itives. This library can be used on both the customer volves the monitor in every seal and unseal operation
side (e.g., before uploading data) and by the software and thereby introduces a scalability bottleneck.
platforms running on the cloud nodes (e.g., before mi-  An alternative design is to evaluate the policies on
grating data between nodes). The customer-side clientthe client side using public-key encryption. Each cloud
does not expose the unseal primitive since the notion of node receives from the monitor a set of private keys that
a configuration applies to cloud nodes only. match its configuration; in this scheme, each key cor-
Whenever a cloud node reboots, the monitor runs a responds to an attribute-value pair of the configuration.
special remote attestation protocol to obtain the finger- Sealing is done by encrypting the data with the corre-
print and identity of the node and translates these to a sponding public keys according to the attributes defined
node configuration by consulting an internal database. in the policies. This solution avoids the bottlenecks of
The node configuration — which expresses physical the first approach because all cryptographic operations
characteristics, like hardware or location, and software take place on the client side, without involving the mon-
features as a set of attributes — is then encoded as creitor. Its main shortcoming is complicated key manage-



ment due to the number of key-pairs that nodes must TPM fingerprints and therefore reflect current node con-
handle to reflect all possible attribute combinations us- figurations.
able by policies. The benefits of using CPABE are twofold. First, it lets
The solution we chose uses a cryptographic schemethe system scale independently of the workload since
called Ciphertext Policy Attribute-Based Encryption the seal and unseal primitives do not interact with the
(CPABE) [11]. This scheme first generates a pair of monitor (and run entirely on the client side). Second,
keys: a publicencryption keyand a secremaster key it permits the creation of expressive policies directly
Unlike traditional public key schemes, the encryption supported by the CPABE policy specification language
key allows a piece of data to be encrypted and bound to while only requiring two keys — the CPABE encryption
apolicy. A policy is a logical expression that uses con- and decryption keys — to be sent to the nodes.
junction and disjunction operations over a set of terms.  The cost using CPABE is a performance hit when
Each term tests a condition over an attribute, which can compared to traditional cryptographic schemes. Sec-
be a string or a number; both types support the equality tion 6 explains how this impact can be minimized. A
operation, but the numeric type also supports inequali- second cost of using CPABE is key revocation, which is
ties (e.g.,a = x or b > y). CPABE can then create typically difficult in identity- and attribute-based cryp-
an arbitrary number oflecryption keydrom the same  tosystems. Since Excalibur assumes that the TCB of
master key, each of which can embed a set of attributesnodes’ software platforms is secure, any TCB vulner-
specified at creation time. The encrypted data can beability accessible through the administrator’s interface
decrypted only by a decryption key whose attributes sat- will invalidate the guarantees provided by our system.

isfy the policy (e.g., keys embedding the attribute: To handle revocation of decryption keys, our current de-
can decrypt a piece of data encrypted with the precedingsign requires that all sealed data whose original policy
example policy). satisfies the attributes of the compromised keys be re-

Excalibur uses CPABE to encode the runtime config- sealed. This operation can be done efficiently by re-
urations of the cloud nodes into decryption keys. At encrypting only a symmetric key, not the data itself.
setup time, the monitor generates a CPABE encryption . .
and master key pair and secures the master key. When-5'4 Trusting the Monitor
ever it checks the identity and software fingerprint of Since the monitor is managed by the cloud administra-
a cloud node, the monitor sends the appropriate creden-tor, mismanagement threats that affect any cloud node
tials to the node, which include a CPABE decryptionkey could also affect the monitor. Thus, another challenge
embedding the attributes that correspond to the config-is to ensure that the monitor operates correctly and to
uration of the node; the decryption key is created from efficiently convey this guarantee to customers.
the master key and forwarded to all the nodes featuring To meet this challenge, we must first prevent the mon-
the same configuration. Sealing is done by encrypting itor from accepting flawed attribute mappings. For ex-
the data using the encryption key and a policy, and un- ample, a mapping would be flawed if the attribute “lo-
sealing is done by decrypting the sealed data using thecation=DE” were mapped to the identity of a node lo-
decryption key. Policies are expressed in the CPABE cated in the US, or if the attribute “vmm=Xen” were
policy language used to specify the examples in Table 3 mapped to the fingerprint of CloudVisor. To prevent
as well as more elaborate policies. this, the monitor only accepts attribute mappings that

The security of the system then depends on the se-are vouched for by aertificate A certificate is issued
curity of the CPABE keys. The monitor protects the by one or multiplecertifiers which validate the correct-
master key by: 1) ensuring that it cannot be released ness of mappings. For example, a certifier checks the
through the monitor's management interface, and 2) en- location of nodes and the fingerprints of software plat-
crypting it before storing it on disk, as described in forms. This role could be played by the provider itself,
Section 6.3. Additionally, cloud platforms must pro- or by external trusted parties akin to Certification Au-
tect decryption keys. A software platform must pre- thorities.
vent leakage or corruption of key material through its ~ Since anyone can issue certificates, the monitor must
management interface (e.g., by direct memory inspec- let customers know the certifier’s identity so they can
tion of VM memory); it must hold the key in volatile  judge the certifier's trustworthiness and thereby be con-
memory so that key material is destroyed upon reboot. fident that the attribute mappings are correct. Fur-
Moreover, the software platform must force a reboot af- thermore, even if the certifier were judged trustworthy,
ter changing TCB components that get measured duringthe system must nevertheless provide additional guar-
a trusted boot (e.g., subsequent to upgrading the hyper-antees about the authenticity and integrity of the mon-
visor). These properties ensure that the CPABE decryp-itor: only in this case can the customer be sure that
tion keys of cloud nodes remain consistent with their the certificate-based protections and the security proto-



cols implemented by the monitor are correct. To pro- CEsice
vide these guarantees, customers must directly attest the monitoy

location:DE

monitor when first using the system. CAtribute Iocatic)J(n:US CAtiribute
vmm:Xen
. o monitor -CVi monitor
5.5 Monitor Scalability and Fault location:DE vmmevisor || ymm:Xen
Tolerance location:US vmm:CVisor
To improve scalability and make Excalibur resilient to / /

faults, we enable several monitor replica®fes to be

e ’ g Cldentity Cldentity CFingerprint CFingerprint
spawned, and we optimize the monitor attestation pro- | monitor location:DE oo T
tocol - AIK={K,Ko} - AIK={K3,K} - PCR={F mon} - PCR=(Fyen}
) location:US vmm:Cvisor

Monitor clones can be elastically launched and termi- - AIK={K5,Kg}
nated by the administrator, using the protocol described
in Section 6.7. The cloud provider can then use standard
load balancers to evenly distribute client attestation re- Figure 2: Example certificate tree. The certificates in light
guests from clients among clones. Each clone can servecolored boxes form thenanifestthat validates the monitor’s

requests without communicating with other clones. authenticity and integrity.

. To eliminate cr|tI|c§1I bpttlenecks W-Ithln. a clone, we M denote data, policy, envelope, and manifest; these
introduce two optimizations. The first improves the terms are clarified in Section 6.2.

throughput of clone attestations triggered by customers.
Due to TPM inefficiencies, the maximum throughputof 6.1 Certificate Specification

a monitor clone using a standard attestation protocol is Excalibur uses certificates to validate mappings between

close to one attestation per second, clearly insufficient attributes specific to a trusted cloud service and identi-
even when spawning a reasonable number of clones. We

theref h the attestati tocol with a tech ties, i.e., fingerprints of cloud nodes. Certificates are
ierefore ennhance the atiestation protocol with a tech- ooy poy by the monitor, to check the configuration
nigue based on Merkle trees that can batch a large num-

ber of attestati s int inale TPM : of cloud nodes and attest new monitor clones, and by
Sz::'gor? 55 ation requests Into a single quote (Seethe customer-side client, to attest the monitor. Our cer-

S tificate specification supports multiple certifiers since a

A second optimization improves the throughput of gjngle certifier may not have the expertise to assess all
decryption key requests issued by the cloud nodes. Theine attributes of the cloud service, or simply to increase
algorithm for decryption key generation is also inef- cystomer trust. Therefore, certificates form a hierarchi-
ficient, which could significantly slow down servicing 5| tree. Figure 2 shows how a provider P can use the
keys to the cloud nodes if a new key were to be gener- certificates that correspond to the internal nodes in the
ated per request. Since many machines in the datacentefree 1o delegate the certification of different attributes t
share the same configuration (g.g., machines_that belongyo certifiers, A and B. Additionally, each leaf in the
to the same cluster), the.monltor clone can instead se-¢griificate tree vouches for a mapping between the at-
curely cache the decryption keys and send them to all yjptes that appear in node configurations and low-level
the nodes with the same profile. measurements, namely software fingerprints (PCRs) or
6 Detailed Design hardware identitigs_(A!K keys). _ _

Due to space limitations, we defer a discussion of the

This section presents the design of Excalibur in more details regarding the certification procedure, certificate
detail. We first introduce certificates, which constitute expiration, certificate revocation, and certificate man-
the root-of-trust of the system. We then describe the in- agement to a separate technical report [46].
terfaces offered by Excalibur for building cloud services
and managing the system. Finally, we present the secu—6'2 System Interfaces
rity protocols that enforce policy-sealed data. Excalibur’s interface has two parts:sarvice interface
Notation. For CPABE keys K™, K® and KP denote which supports the implementation of cloud services,
master, encryption, and decryption keys, respectively. and amanagement interfacevhich lets cloud admin-

- PCR={Fcyisor

For asymmetric cryptographys and K* denote pri- istrators maintain the system.
vate and public keys, respectively. For symmetric keys, The service interface exported by the client library
we drop the superscript. Notatidn) i indicates data supports three operations, summarized in Table 4. Be-

encrypted with key<, and{y } x indicates datg signed fore the data can be sealed on the customer-aitiest-
with key K. We represent noncesasSession keysand  monitormust be invoked to check the monitor’s authen-
nonces are randomly generated. NotationP, F, and ticity and integrity. It returns the encryption key®



attest-monitor (mon-add)  — (K™, M) or FAIL Monitor Node
seal (K®, P, D) — E = (P,D)K,(K)K" 1. AIKE
unseal (K%, K E) — (D, P) or FAIL node
Table 4: Excalibur service interface. 2.n
needed for sealing and manifest)M, which contains 3. {n, PCRuose, K sessiof AlKnode
the certificates needed to validate the monitor’s identity 4a. OK, (K&, KP)KZ 0ndb. FAIL
and fingerprint (see Figure 2). The manifest is passed
to the customer, who learns from it which attributes can

be used in policies and identifies the provider and cer- Figure 3: Node attestation protocol.
tifier identities needed to decide whether the service is .
trustworthy. Since the client saves the manifest and en- 6.4 Node Attestation Protocol

cryption key for sealing, this operation needs to be per- once the setup is complete, the monitor delivers to each
formed only when the cloud service is first used. cloud node a credential that reflects the boot time config-
The core primitives areealandunseal Seal can be  uration of that node, which will allow the node to unseal

invoked by both cloud nodes and customers; it takes asand re-seal data. The goal of the node attestation proto-
arguments the encryption kéy®, a policy P, and the col is to deliver these credentials securely. Recall that,
dataD and produces an envelofe This envelope is  under our assumptions, when a cloud node reboots, the
passed to unseal, which returns the decrypted Daba credentials kept by the node in volatile memory are lost.
fails if its caller does not satisfy the policy. In additiant  Therefore, this protocol must be executed each time a
the decryption keyk?, unseal receives as an argument cloud node reboots so it can obtain a fresh credential.

the encryption keyk ™, which is required by CPABE The monitor first obtains a quote from the node that is
decryption; the cloud node that invokes unseal must ob- signed by the node’s AIK and contains the current PCRs.
tain this key from the monitor. Unseal also returns the Then, the monitor looks in the certificate database for
original policy P so that a cloud node can re-seal the certificates that match the node’s PCRs and AIK. If any
data with the customer’s policy. The CPABE policy lan-  are found, the monitor obtains the node configuration
guage is used to express policies. by combining all the attributes of the matching certifi-
The management interface lets the cloud administra- cates into a list like that shown in Table 2. Next, the
tor remotely maintain the monitor using a console. Its monitor sends the credentials to the node; these include
main operations permit the administrator to initialize the the encryption and decryption keys embedding these at-

system, manage certificates, and spawn monitor clones.tributes. Since generating a new decryption key is ex-
pensive, the monitor caches these keys in the key store

6.3 System Initialization so they can be resent to nodes with the same configura-
tion.

Before the system can be used, the monitor must be ini-  Figure 3 shows the precise messages exchanged be-
tialized by binding a unique CPABE key pair to the ser- tween the monitor and the customer-side client. The
vice. To do this, the cloud administrator loads the cer- protocol is based on a standard remote attestation in
tificates that validate the service attributes into the mon- which a noncen is sent to the node (message 2), and
itor and instructs the monitor to generate the key pair. the node replies with a quote (message 3); the nonce is
If these certificates form a consistent certificate tree, the used to check the freshness of the attestation request.
monitor creates unique encryption and master keys andMessage 3 includes a session K€ .that is used in
binds them to the tree’s root certificate (see Figure 2). message 4 to securely send credentiéfsand KP to

To permit for system maintenance, the administrator can the node. Since the session key is ephemeral, an adver-
remove or add certificates as long as they form a valid sary could not perform a TOCTOU attack by rebooting
certificate tree. the machine after finishing attestation (message 3) but

The monitor maintains its persistent state ice- before receiving the decryption key (message 4).
tificate store and &ey store. Both stores keep their Note that the node does not need to authenticate the
contents in XML files on a local disk. The certificate monitor to preserve the security of policy-sealed data. In
store contains the certificates loaded into the monitor. the worst case, a node may receive a compromised de-
The key store contains all the CPABE keys. To secure cryption key from an attacker. However, given that cus-
the key material, the key store is sealed using the TPM tomers seal their data with the encryption key obtained
seal primitive, which ensures that the key store can be from the legitimate monitor, unseal would fail in such a
accessed only under a trusted monitor configuration in scenario, and this attack would fail to compromise cus-
case the monitor reboots. tomer data.



and the encryption key® is authentic. The customer
can then seal data securely.

6.6 Seal and Unseal Protocols

The use of CPABE lets seal and unseal execute without
contacting the monitor. In implementing these primi-
tives, we take into account two aspects of CPABE re-
lated to performance and functionality. First, since
CPABE is significantly more inefficient than symmetric
encryption, seal encrypts the data with a randomly gen-
erated symmetric key and uses CPABE to encrypt the
symmetric key. Second, given that CPABE decryption
does not return the original policy (which unseal must
return to let cloud nodes re-seal the data), we include in
the envelope the original policy and a digest for integrity
protection (see Table 4).

| tag=00 || tag=01 || tag=10 || tag=11 |

] S(Nnyo) = (tag=10, N4y, hy) ) )
Figure 4: Batch attestation example.The tree is built from
4 nonces. A summary for noneao comprises its tag and the
hashes in the path to the root.

Monitor Customer-side

1.n

2. s(n), AIK o, {R(n), M, K*, PCRnon}AlKmon

6.7 Clone Attestation Protocol

To scale the monitor elastically, the cloud administrator
can create multiple monitor clones. To do so, an existing
monitor instance must share the CPABE master key with
the new clone so the latter can generate and distribute
decryption keys to the cloud nodes. However, this can
be done only if the new clone can be trusted to secure the
key and to comply with the specification of Excalibur
protocols.

To enforce this condition, the existing monitor in-
stance and the clone candidate run a clone attestation
protocol analogous to that shown in Figure 3, but with

The main challenge in designing this protocol is scal- two differences. First, after message 3, the monitor
ablllty If every customer-side client were to run a stan- assesses if the candidate is trustworthy by Checking
dard remote attestation, then the throughput of the mon-\yhether its AIK and PCR values map to the “moni-
itor would be extremely low due to TPM inefficiency.  tor” attribute contained in the manifest; if not, cloning

To overcome this scalability problem, we batch mul- is aborted. Second, if the test passes, the monitor autho-
tiple attestation requests into a single quote operationrizes cloning and sends the master key, the encryption
using a Merkle tree, as shown in Figure 4. The Merkle key, and a digest to the candidate. The digest identifies

Figure 5: Monitor attestation protocol.
6.5 Monitor Attestation Protocol

The monitor attestation protocol is triggered by the
attest-monitoroperation, which lets customers detect if

the monitor is legitimate by checking its authenticity and
integrity. In addition, this protocol obtains: 1) the en-

cryption key, which is used for sealing data, and 2) the
set of certificates that form the manifest, which let the
customer check the identity of certifiers and learn the
attributes that are available. The monitor is legitimate if
its identity and fingerprint are validated by the manifest.

tree lets the monitor quote a batch 8fnoncesn; ex-
pressed as an aggregate hash? ) and send an evi-
dence — summary(n;) — to each customer-side client

the head of the certificate tree associated with the keys.
The new clone refrains from using the keys until the ad-
ministrator uploads the corresponding certificates to it.

that its noncen; is included in the aggregate hash in a .
network-efficient manner (i.e., instead of sendinghéll 7 Implementation
nonces, it sends just a summary of sizgog(N))). We implemented Excalibur in about 22,000 lines of C.
The detailed monitor attestation protocol is shown in This included the monitor, a client-side library provid-
Figure 5. In the first message, the customer-side clienting the service interface, a client-side daemon for se-
sends nonce for freshness and then uses the informa- curing the CPABE decryption key on the cloud nodes, a
tion returned in message 2 to validate the monitor in two management console, and a certificate toolkit for issuing
steps. First, it checks in the manifest for the certifi- certificates. The console communicates with the moni-
cates with attribute “monitor”; it uses them to authen- tor over SSL, and all other protocols used UDP mes-
ticate the monitor keyAIKX' ., and to validate the fin-  sages. We used the OpenSSL crypto library [37] and
gerprint of the monitor’s software platforRCRyon (sSee the CPABE toolkit [8] for all cryptographic operations,
Figure 2). Second, to validate the freshness of the re-and we used the Trousers software stack and its related
ceived messages, it compares non@nd the summary  tools [51] to interact with TPMs.
s(n) against the aggregate hastn) produced by batch We extended a cloud service so it could use Excalibur
attestation. If all tests pass, the monitor is trustworthy, to help us understand the effort needed to adapt services



1324 sock.send( "receive\n") ministrator from invoking any VM operations other than

iggg sock.recv(80) the four noted above, and (2) using a TPM-aware boot-
1327 pipe = subprocess.Popen(  "/xen—/bin/seal”, loader [5] to measure software integrity and to extend a
1328 stdin=subprocess.PIPE, TPM register with the Xen configuration fingerprint.

1329 stdout=sock.fileno())

1330 fd_pipe = pipe.stdin.fileno() i

1331 8 Evaluation

1332 XendCheckpoint.save(fd_pipe, dominfo, True,

1333 live, dst) This section evaluates the correctness of Excalibur pro-
1334 os.close(fd_pipe) tocols using an automated tool. We also assess the per-
1335 sock.close() formance of Excalibur and our example service.

Figure 6: Hook to intercept migration (from file XendDo-

main.py) We redirect the state of the VM through a pro- 8.1 Protocol Verification

cess that seals the data before it proceeds to the destinatio We verified the correctness of our protocols using an au-
on sockesock(lines 1327-1330). tomated theorem prover. We used a state-of-the-art tool,
f ProVerif [12], which supports the specification of secu-
rity protocols for distributed systems in concurrent pro-
cess calculus (pi-calculus).

To use the tool, we specified all protocols used by our
system, which included all cryptographic operations (in-
cluding CPABE operations), a simplified model of the
TPM identity and fingerprint, the format of all certificate
types in the system, the monitor protocols, and seal and
unseal operations. In total, the specification contained
approximately 250 lines of code in pi-calculus.

ProVerif proved the semantics of policy-sealed data
in the presence of an attacker with unrestricted network
access. The attacker could listen to messages, shuffle

Our implementation modified Xen to invoke seal and them, decompose them, and inject new messages into

) the network; this model covers, for example, eavesdrop-
unseal when the customer’'s VM was created on a new _. . : !
. ping, replay, and man-in-the-middle attacks. ProVerif
node, migrated from one node to another, or suspended
proved that whenever a customer sealed data, the result-
on one node and resumed on another. An attempt to:
. . e ; ing envelope could be unsealed only by a node whose
migrate the VM to a node outside the specified locations . . . .
. ., configuration matched the policy. We provide the spec-
would fail because the node would lack the credentials ... " ;
; ification and proof online [35].
to unseal the policy-sealed VM.

Implementing these changes was straightforward. In- 8.2 Performance Evaluation

tegration with Excalibur required modifications to Xen, 14 eyajuate Excalibur's performance, we first evaluated
in particular to a Xen daemon calle@nd which man- 6 monjtor's scalability by measuring its performance
ages guest VMs on the machine and communicates with 5yerhead as well as its throughput for its three main ac-
the hypervisor through the OS kernel of Domain 0. In yjjties: generating CPABE decryption keys, delivering
particular, the VM operationsreate save restorg and  haqe keys to nodes, and serving monitor attestation re-

migrate sealed or unsealed the VM memory footprint 4 e5ts. We then measured the performance overhead of
whenever the VM was unloaded from or loaded to phys- ¢a5| and unseal on the client side.

ical memory, respectively. To streamline this imple-
mentation, we took advantage of the fact tkandal- 8.2.1 Setup and Methodology
ways transfers VM state between memory and the disk We used two different experimental setups. The first
or the network in a uniform manner using file descrip- used a two-node testbed; one node acted as a moni-
tors. Therefore, we located the relevant file descriptors tor, and the other acted as a regular cloud node mak-
and redirected their operations through an OS processing requests to the monitor. The second setup was used
that sealed or unsealed according to the transfer direc-to evaluate the monitor throughput for attesting cloud
tion. Figure 6 shows a snippet &éndthat illustrates nodes and serving customer attestation requests. For at-
this technique applied to migration. Overall, our code testing cloud nodes, we simulated 1,000 nodes by using
changes were minimal: we added/modified 52 lines of one machine acting as the monitor and five machines
Python code txend acting as cloud nodes, all running parallel instances of
The other two changes we made included: (1) hard- the node attestation protocol. For monitor attestations,
ening the software interfaces to prevent the system ad-we used a single machine acting as customers running

for Excalibur and to estimate the performance impact o
Excalibur on cloud services.

The example cloud service we adapted is an elastic
VM service where customer VMs can be deployed in
compute clusters in multiple locations, similar to Ama-
zon’s EC2 service. Our extension used Excalibur to bet-
ter assure customers that their VMs would not be acci-
dentally or intentionally moved outside of a cluster in a
certain area (e.g., the EU).

Our base platform was Eucalyptus [36], an open
source system that provides an elastic VM service with
an EC2-compatible interface. Eucalyptus supports vari-
ous VMMs; we used Xen [9] because it is open source.
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Figure 7: Performance of decryption key generation.Time Figure 8: Performance overhead of sealing and unsealing

to generate key as we vary the number of attributes (left), an data as a function of the complexity of the policy, with in-
throughput for 10 attributes as we vary the number of cores Put data of constant size (1K bytes).

(right). Most of the work required by this protocol is car-
parallel instances of the monitor attestation protocol. ried out by cloud nodes. Therefore, the attestation la-
This number of nodes was sufficient to exhaust moni- tency should not represent a bottleneck to the coordina-
tor resources and ensure that there were no bottleneckgor. To confirm this, we evaluated the monitor’s through-
in the client nodes. put when running multiple parallel instances of this pro-
Both setups used Intel Xeon machines, each onetocol. Results showed that the monitor could deliver up
equipped with 2.83GHz 8-core CPUs, 1.6GB of RAM, t0 632.91 keys per second, which is efficient and would
and TPM version 1.2 manufactured by Winbond. All allow a single monitor machine to scale to serve a large
machines ran Linux 2.6.29 and were connected to a humber of nodes.
10Gbps network. We repeated each experiment teng 5 4 Monitor Attestation

times and reported median results; the standard devia- .
tion was negligible. We measured the performance of the monitor attesta-

tion protocol. This protocol had a latency of 1.21 sec-
onds and a throughput of approx. 4800 reqgs/sec on a
The overhead of generating a CPABE decryption key single node. The quote operation performed by the
depends on the number of attributes embedded in themonitor's local TPM accounted for the bulk of the la-
key. We measured the time to generate a decryption keytency (0.82 seconds), and the remaining time was due to
stemming from the same master key, in which we var- cryptographic operations and network latency. The high
ied the number of attributes from one to 50. This range peak throughput we observed was enabled by batch at-
seemed reasonable to characterize a node configurationtestation. When we disabled batching, the throughput
Figure 7 shows the results, which confirm two rele- dropped sharply to 0.82 regs/sec. Thus, this technique
vant findings of the original authors of CPABE. First, is crucial to the scalability of the monitor and delivered
the overhead of generating keys grows linearly with the @ throughput speedup of over 5000x.
number of attributes present in the key. Second, gener-
ating CPABE keys is expensive, e.g., a key with ten at-
tributes took 0.12 seconds to create, which correspondsThe performance overhead of the seal and unseal opera-
to a maximum rate of 8.33 keys/sec on a single core. tions performed by Excalibur clients was dominated by
Although CPABE key generation is inherently inef- the two cryptographic primitives: CPABE and symmet-
ficient, we consider that its performance is acceptable "iC cryptography (which uses AES with a 256-bit key
when throughput pressure on the monitor is relatively SiZ€)- We study their effects in turn.
low because large groups of machines are likely to have T understand the overall performance overhead of
the same configuration. The latency to generate a key CPABE, we set the input data to a small, constant size.
is experienced only by the first node that reboots with Figure 8 shows the performance overhead of sealing and
a configuration new to the monitor. Since the key is Unsealing 1KB of data as a function of policy complex-

cached, it is reused in future identical requests without ity- On the leftis the cost of a seal operation as a func-
additional costs. tion of the number of tests contained in the policy. For

_ instance, policyA=x and (B=y or B=z)contains three
8.2.3 Node Attestation comparisons. Our findings show that the sealing cost
The latency of the node attestation protocol took 0.82 grows linearly with the number of attributes. The cost
seconds. The bulk of the attestation cost (96%) was dueof sealing for a policy with 10 attributes was about 128
to the node’s performing a TPM quote operation neces- milliseconds.
sary for remote attestation. This result is not surprising  On the right, Figure 8 shows the cost of an unseal op-
since such operations are known to be inefficient [31]. eration. Unlike encryption, CPABE decryption depends

8.2.2 Decryption Key Generation

8.2.5 Sealing and Unsealing

11
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Figure 10: CPABE fraction in the performance overhead

of unsealing, varying the size of the input data.

CPABE time fract

on the number of attributes in the decryption key that
are used to satisfy the policy. For example, consider a
decryption key with attribute8:x andB:y, and policies

P, : A=x, and P, : A=x and B=y. Policy P; uses one
attribute, wherea$» uses two. As before, the perfor-
mance overhead of unseal grows linearly with the size
of the policy. The time required to unseal a policy with
10 attributes was 51 milliseconds.

To study the relative effect of CPABE on the overall
performance of Excalibur primitives, we varied the size
of the input data. Figures 9 and 10 show the fraction
of overhead due to CPABE, and Table 5 lists the abso-
lute operation times. Our findings show that CPABE ac-
counts for the most significant fraction of performance
overhead. Sealing 1 MB of data with a policy contain-
ing 10 leaf nodes took 134 milliseconds, and 87% of
the total cost of sealing was due to CPABE encryption.
For unsealing, the fraction of CPABE was slightly lower
than for sealing, but it was still very significant. Unseal-
ing 1 MB of data with a policy satisfying 10 attributes
of the private key took 68 milliseconds, where 68% of
the latency was due to CPABE.

In summary, our evaluation of Excalibur showed

Data Latency (ms)
(bytes) Sealing Unsealing
1K 120 50
10K 120 49
100K 121 51

M 134 68
10M 264 243
100M 1522 1765

Table 5: Performance overhead of sealing and unsealing
data, varying the size of the input data.
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Figure 11: Latency of VM operations in Xen. Encrypting
the VM state accounts for the largest fraction of the ovedhea
while the execution time of CPABE is relatively small. En-
cryption runs AES with 256-bit key size.

Latency (s)

N

8.3 Cloud Compute Service

We now evaluate the performance overhead that the
changes to Xen incur on its VM management opera-
tions, namelycreate save restore and migrate We
measured the time to complete each operation using an
example VM for 10 trials. The example VM ran a De-
bian Lenny distribution, with Linux-xen 2.6.26, used a
4GB disk image, and its memory footprint was 128MB.

Figure 11 shows the results of our experiments. The
performance impact is noticeable, especially for the
save restore andmigrate operations, where the com-
pletion time roughly doubled. The overhead, however,
came from encrypting the VM'’s entire memory foot-
print; using Excalibur to secure or recover the encryp-
tion key added a small delay. Unlike the other opera-
tions, createexperienced a small overhead increase of
only 4%. This is because the system only decrypted
the kernel image, which occupied 4.6MB, instead of the
larger VM footprint as it did for the other operations.

As the results show, seal and unseal introduced no-
ticeable overhead to the VM operations due to the sym-
metric encryption of the VM image. However, given

these results: the costs of generating decryption keysthat these operations occur infrequently, and consider-
and the node attestation protocol were reasonable whening the additional benefits to data security, we argue that
taking into account how infrequently they are required; these results reflect an acceptable trade-off between se-
the monitor scaled well with the number of cloud cus- curity and performance.

tomers that used the service for the first time and with

the number of cloud nodes that were attested upon re—9 Related Work

boot; the monitor could be further scaled up using Over the past several years, there has been considerable
cloning, and the latency of seal and unseal was reason-work on trusted computing [38]. Most of this work tar-
able and dominated by the cost of symmetric key en- gets single computers with the goal of enforcing appli-
cryption for large data items. cation runtime protection [16, 20, 26,30, 31], virtualigin
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trusted computing hardware [10], and devising remote  Multiple software systems have been proposed to in-
attestation solutions based on both software [18,48] and crease the security of sensitive data. At the OS layer,
hardware [13, 21, 42-44, 49]. Other work, focusing on hypervisors and OSes can protect the confidentiality and
distributed environments, provides integrity protection integrity of data using isolation [24, 30, 39, 53] or in-
on shared testbeds [14] or distributed mandatory accessformation flow control [52] techniques. At the middle-
control [29]. More recently, trusted computing primi- ware layer, frameworks that build Web services to of-
tives have been adapted to mobile scenarios to providefer their users strict control over their data hosted at the
increased assurances about the authenticity of data genprovider site [22] enable controlled sharing of sensitive
erated by sensor-equipped smartphones [27]. Our workdata using differential privacy [41] or provide general-
concentrates on the specific challenges of cloud comput-purpose encapsulation mechanisms for data [28]. These
ing environments, which fall outside the scope of these proposals are complementary to our work: despite their
prior efforts. potential to increase security and control over data in
Excalibur shares some ideas with property-based at-the cloud, these proposals lack a scalable mechanism
testation [42], whose goal is to make hash-based soft- for bootstrapping trust in the multi-node cloud environ-
ware fingerprints more meaningful to humans. Like Ex- ment. By combining these platforms with Excalibur,
calibur, property-based attestation maps low-level fin- cloud providers could build new trusted cloud services.
gerprints to high level attributes (properties) and relies .
on a monitor (controller) to perform this mapping. How- 10 Conclusion

ever, this prior work offers an abstract model without ;s paper presented Excalibur, a system that imple-
an associated system. Moreover, Excalibur extends this ants policy-sealed data. This new abstraction ad-
work by proposing new trusted computing primitives.  gresses the limitations of trusted computing when used
Nexus [50], a new operation system for trustworthy in the cloud and enables the design of trusted cloud ser-
computing, introduces active attestation, which allows vyices. Excalibur leverages TPMs, a novel architecture
attesting a program’s application-specific runtime prop- with a set of associated protocols, and CPABE to offer
erties and supports access control policies per applica-developers two new primitives, seal and unseal, for con-
tion. Both Nexus policies and policy-sealed data can structing cloud services with stronger protection over
bind data based on attributes. However, the two systemshow data is managed. We demonstrated the simplicity
target complementary problems: Nexus policies focus and flexibility of policy-sealed data by using Excalibur
on nodes running Nexus and restrict the applications thatg puild an elastic VM cloud computing service based
can access the data; Excalibur policies focus on multi- gn Xen and Eucalyptus, which accesses customer’s data

node Settings and restrict the cloud nodes that can accesgrﬂy on Customer-approved p|atform Conﬁgurations_
the data, supporting multiple software platforms. Thus,

Nexus would be a good candidate to use as an attributeAcknowledgements: We would like to thank Peter
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