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Abstract—Recent storage systems trade strong consistency for
performance, availability, and scalability. However, this makes
it hard to understand the semantics that the storage system
provides, and also makes the design and implementation of
the storage system itself more error-prone. This paper proposes
a comprehensive solution to these problems. In particular, we
propose a specification language named ConSpec, which enables
the formalization of different consistency semantics that a storage
system may provide, using a uniform syntax that is independent
of the design and implementation of the target storage system.
We use ConSpec to revisit several existing models in light of
a common way to define and compare them. Furthermore,
we generalize the CAP theorem, whose original formulation
only considered linearizability, to precisely define the class of
consistency definitions that can and cannot be implemented in a
highly-available, partition-tolerant way. Finally, we present the
design and implementation of a new consistency checker that
takes a trace from a storage system (e.g., the output of a test
suite) and validates whether it meets any consistency semantics
defined using ConSpec. The evaluation of our consistency checker
shows that it is able to verify the correctness of long traces in a
reasonable time.

I. INTRODUCTION

The development of Internet-scale applications and services
led to the increasing adoption of scalable storage systems
that trade performance for semantics. In particular, we have
witnessed a profusion of proposals for systems that fall into the
“NoSQL” category, which are characterized by compromising
consistency semantics in order to scale to a large volume
of data, stored in many nodes across different geographic
locations.

This phenomenon increases the complexity of the design
and implementation not only of the applications, since ap-
plication developers now need to take into account weaker
consistency semantics that are often hard to understand [1],
but also of the storage systems themselves, which have to be
carefully designed and implemented to provide the intended
consistency.

In this paper, we present a comprehensive solution that
addresses two important problems that arise in this setting:
(1) gaining a better understanding of consistency semantics
and its fundamental limitations, and (2) having practical tools
to systematically test if a given consistency level is correctly
implemented.

In particular, we begin by proposing a specification language
called ConSpec: a generic definition for consistency models,

which can be easily parameterized to obtain precise definitions
of a variety of semantics. ConSpec builds on the observation
made by several proposals that it is possible to define weak
consistency semantics in terms of partial orders over the set of
operations that were executed in the system, which comprise
a visibility graph [2, 3, 4]. This allows us to reduce the
configurable part of the consistency definition to a set of
restrictions, written in Linear Temporal Logic (LTL) [5], on
top of a generic partial order. Intuitively, these restrictions
specify the allowed order in which the results of operations
can become visible to a client application.

With this framework in place, we were able to express
several existing consistency definitions in a common language,
and compare them in a precise way. Further, we show the
equivalence between our definitions and their original form.

Based on the same framework, we were also able to revisit
the CAP theorem [6, 7] and restate it in more generic terms.
The original proof for the theorem used linearizability as
synonym for the strong consistency captured by the “C”
property. In our new formulation of this theorem, we are
able to define necessary and sufficient conditions for a given
consistency model to be bound by the impossibility of being
implemented in a highly available, partition-tolerant way.

Finally, we built a tool called ConSpecCheck, which is
available online, to determine whether a client trace from
a storage system satisfies a certain consistency model. This
tool can be used with existing testing frameworks, which are
used for generating test cases, to attempt to expose bugs that
cause storage systems to deviate from the specified consistency
semantics. For example, by coupling our system with a set
of outputs of different thread interleavings that are generated
by a concurrency testing framework like Chess [8], we are
able to systematically attempt to uncover concurrency bugs
that lead to subtle consistency violations. A noteworthy point
is that the ConSpec checker highlights the advantage of
our LTL-based specifications: even though we could specify
consistency models without resorting to LTL, its use allowed
us to seamlessly leverage existing model checking systems in
our design.

We built the ConSpec checker and evaluated it using traces
produced from workloads from the YCSB and TPC-C bench-
marks. Our experimental evaluation shows that the tool is able
to validate traces in a reasonable amount of time, and that the
time to check a trace against ConSpec is comparable to the



time with prior definitions.
The remainder of this paper is organized as follows. Section

II discusses related work. Section III presents the system
model and terminology. Section IV presents a general format
of specifications based on ConSpec. Section V expresses
some example consistency models using ConSpec. Section VI
presents our restatement of the CAP theorem, and proves its
correctness. Section VII discusses how this extension of the
CAP theorem can be used to categorize existing models. In
Section VIII, we present the design of our tool for checking
if a trace obeys a certain consistency model. In Section IX,
we evaluate its performance.

II. RELATED WORK

Consistency definitions restrict the set of valid traces for
the execution of a given system. In broad terms, the gold
standard of consistency definitions are “strong” consistency
levels, which have the characteristic of approximating the
behavior that is obtained when interacting with a system
whose implementation has a centralized server that executes
operations one at a time. There are several examples of such
consistency models [9, 10, 11, 12, 13, 14].

Strong consistency is often forfeited by the algorithms
that implement storage systems, in order to achieve better
performance (e.g., when processors cache possibly stale data
in a multiprocessor) and/or better availability (e.g., when
multiple replicas of the data exist and operations proceed while
contacting only a subset of them) [15, 16, 17, 18, 19, 20].

Often, the definitions of these consistency models are vague
and/or underspecified. For instance, the strong consistency
option of Cassandra, a widely used NoSQL storage system,
is stated in terms of the size of the quorums that are used
for read and write operations, leaving unspecified what hap-
pens as the system reconfigures and the set of replicas of
a data item changes [21]. Even when the specification is
more precise, it may suffer from being tied to implementation
details that may not be widely applicable. For instance, some
definitions assume the existence of a centralized server that
keeps monotonically increasing version numbers associated
with the data [22]; others explicitly define consistency in terms
of the state maintained by different replicas of the data [2]; and
other models, namely the well known set of session guarantees
that strengthen the consistency offered by eventually consistent
systems, are defined operationally in terms of the replicas that
are accessed, the operations that these replica process, and the
respective order in which they are processed [23].

In [24], the underlying system is represented as a collection
of one or more state machines, where each state machine mod-
els operations performed in parallel or on different replicas.
Consistency models impose constraints on the total order of
operations performed by a given state machine. Chockler et
al. [25] defined all session guarantees (and some other con-
sistency levels) using first-order logic formulas that constrain
a set of equivalent linear sequences comprising all operations
that are part of a given execution. Similarly, Burckhardt et
al. [26, 27, 28] present the definitions of a broad set of

consistency models, by specifying consistency axioms in the
form of constraints on visibility and arbitration order relations,
which must be satisfied by a valid abstract execution for a
given consistency model. Cerone et al. [29] developed a set of
algebraic definitions of consistency for transactional systems,
which are based on relations similar to those proposed by
Burckhardt et al. to specify conflict resolution policies for
ordering concurrent operations. Weber et al. [30] present
EPTL, an extension of LTL, which they employ to specify
correctness properties in weakly consistent systems. EPTL is
used to capture details of the system internals, such as tech-
niques applied in the resolution of conflict among concurrent
operations. Wickerson et al. developed a framework, based
on the Alloy language, for modeling consistency in shared
memory systems and performing verification of a system
against a given consistency model [31].

Compared to these prior approaches, ConSpec advances the
state of the art by providing a generic way to describe consis-
tency specifications, where each consistency level corresponds
to a different parameterization of our generic definition. Using
this generic framework we generalize the CAP theorem as
proved by Gilbert and Lynch [7]. Another important distin-
guishing feature of our work is that we provide a software
artifact to check whether traces meet a certain consistency
level, leveraging our LTL definitions.

Our definitions are also related to recent proposals for
models that are weakly consistent by default but distinguish
a subset of the operations, and enforce visibility restrictions
only among those [2, 3, 4]. In contrast to these proposals, our
goal is not to propose a new consistency model, but to gain a
deeper understanding of existing ones.

Other authors have explored the CAP theorem beyond its
original formulation and first proof. Mahajan et al. [32] defined
Real Time Causal Consistency, a stronger variant of causal
consistency, and proved that it is the strongest consistency
model that can be provided in a highly available and eventually
consistent implementation. Attiya et al. [33] provided a formal
specification of systems that implement causal consistency,
and proved that Observable Causal Consistency, a stronger
variant of causal consistency, is the strongest consistency
model that can be provided in a highly available, partition
tolerant manner. Their definitions are stated in terms of some
implementation-level concepts, namely a set of replicas con-
nected by a network. They assume a replicated datastore, and
define a consistency model in terms of events (operations)
observed at each individual replica. In contrast, the ConSpec
definitions express consistency models in terms of constraints
on the ordering of the operations observed from the viewpoint
of the client, and the underlying storage system is a black box.
This allows for a more implementation-agnostic generalization
of the CAP theorem.

There have been several research papers on the verifica-
tion of the consistency of protocol implementations [34, 35].
Consistency of a protocol is verified by checking all possible
execution traces that can be generated from the execution of an
implementation of that protocol [36]. In contrast, we are not



tied to a particular implementation nor a particular consistency
definition, but instead we attempt to provide tools that are
generic both in terms of the consistency semantics and the
implementation that generates that traces.

III. BASIC DEFINITIONS

We assume a set of client processes that interface the
storage system by invoking operations. An operation is a pair
comprising an invocation and the respective response. We
denote the set of possible operations on the storage system as
O, and therefore o ∈ O = 〈invocation, response〉. Invocations
(resp. responses) belong to a generic set of possible invocations
I (resp. responses R).

A session trace st is a sequence of operations executed by
the same client, ordered by the time when they were invoked.
In this paper we assume that clients are well-formed, i.e., a
client only invokes an operation after the preceding operation
has returned its response value. As such, session traces can be
modelled as sequences of elements of O.

We define a session invocation trace sit as the sequence of
invocations that are obtained from transforming each element
in a session trace using the projection operator to obtain
only the invocations. We define a session invocation trace to
be compatible with a session trace if the projection of the
invocations in the session trace matches the session invocation
trace (denoted st ./ sit).

The global session trace St (resp. global session invocation
trace Sit) denotes the set of all session traces (resp. session
invocation traces) in a given execution of the system.

A very large class of consistency definitions (namely those
describing the behavior of loads and stores on computer hard-
ware, and get and put operations on key-value stores) assume
that these operations are partitioned into two classes, namely
read operations that do not affect the result of subsequent
operations and write operations that do. Given that many of
the consistency levels we describe require this interface, we
also assume that the interface consists of these two operations.
Note, however, that this does not lose generality, since other
models also distinguish between commands that change versus
those that only read the state of the system. For example,
databases make a similar distinction between queries and
updates, and the state machine replication model distinguishes
between read-only and read-write requests.

Similarly, many consistency definitions reason about an
interface that exposes the existence of multiple objects (e.g.,
different memory addresses seen by a CPU or different keys in
a key-value store). As such, we assume the interface allows the
programmer to specify an object x associated with reads and
writes. This does not lose generality since we can eliminate
this by restricting the system to a single object.

We denote the set of all objects in a storage system as X .
In our notation, we denote an invocation of a write operation
that writes a value v to an object x, as w(x, v) (with an
empty response). Conversely, a read operation on object x that
outputs a value v′ is denoted r(x)v′. In our formulas, variables
denote operations that occur in a session trace. Instead of

defining predicates over these variables that restrict the type
of operation or the corresponding parameters (e.g., a predicate
isWrite(A) to mean that variable A is a write operation),
we use a shorthand notation W x

st to denote a variable that
refers to a write operation to object x that is part of session
trace st. In turn, the notation Rx

st denotes a read operation
to object x in session trace st. We also use the variable
representation Ox

st to denote a read or write operation over
object x that occurs in session trace st.

We use LTL to describe the necessary restrictions among
operations. In particular, the LTL operator globally � is used
to express a condition that must hold across the entire trace;
and the LTL operator eventually ♦ expresses that a condition
must eventually hold at some point in a given session trace.
For instance the LTL formula

�
(
Rx

st → ♦W x′

st

)
is satisfied by any session trace st where, if a read operation
on object x is issued, then it must be eventually followed by
a write operation on object x′.

Finally, we assume the system has a sequential specification,
corresponding to the output of the operations in a centralized
system that executes operations in a sequence, one at a time.
In the case of the sequential specification of a system whose
interface is comprised of read and write operations, the read
operation to object x must output the value associated with
the most recent write operation to the same object x. For
other types of interfaces (e.g., in state machine replication),
that specification is specific to the service interface. This
assumption implies that we cannot define specifications where
concurrent operations lead to a result that would not be
possible in a sequential execution. This decision has the
advantage of simplifying our definitions.

While our consistency definitions are completely agnostic
of implementation-level concepts, for our proofs regarding the
characteristics of the implementation of a certain consistency
level (namely in our restatement of the CAP theorem), we
need to consider the protocols that implement the consistency
level. As such, in that part of the paper only, we model each
process as a deterministic state machine, whose transitions can
be triggered either by an external input (i.e., an operation
invocation) or by receiving a message from the network,
and where the transition can trigger sending messages and/or
issuing outputs (i.e., an operation response). Processes are
connected by unreliable asynchronous communication chan-
nels. Note that the assumptions in this paragraph are only
used in Section VII, and they are inevitable in this case
since the generalized CAP proof concerns implementation
characteristics. Therefore, this does not contradict our claim
that ConSpec is implementation-agnostic.

IV. CONSPEC

In this section we present our generic ConSpec definition,
which can be parameterized to obtain specifications for com-
monly used consistency models.



ConSpec builds on recent proposals for consistency defi-
nitions that treat a subset of the operations in a given trace
differently (e.g., operations labeled as being “strongly consis-
tent”), since they only enforce visibility among those specific
operations [2, 3, 4]. We can similarly see different consistency
definitions as enforcing different visibility relationships only
among a subset of the system operations, often depending on
their types (e.g., reads versus writes).

As such, the generic definition of ConSpec requires the
existence of a partial order that intuitively forms a “visibility
graph”, i.e., the output of each operation must reflect the
effects of the operations that precede it according to that partial
order. This allows us to see different consistency models as
imposing different restrictive conditions on this precedence.
Such a restrictive condition is then expressed as an LTL
expression Es.

Definition 1: Generalized form of ConSpec: Given a global
session trace St, we say that St satisfies a consistency model
C if there exists a partial order (OSt,4) over the set OSt

comprising operations present in all session traces in St, i.e.,
OSt =

⋃
st∈St{o | o ∈ st}, such that 1) for every operation

o in OSt, its output is equal to the one obtained by executing
the sequential specification of an equivalent re-arrangement
(i.e., permutation) of the operations preceding o in 4, and 2)
(OSt,4) obeys ES

C , which is an LTL expression restricting
(OSt,4).

Condition 1, when applied to a system whose interface
consists only of reads and writes, translates to a requirement
that every read operation in OSt must return the value of the
most recent write according to 4. Note that in the case of
two or more concurrent preceding writes, since any equivalent
re-arrangement of the operations is valid, the system may
arbitrate any order for them. Condition 2, in turn, can be
expressed as ES

C � (OSt,4) , where ES
C is the ConSpec

parameterization for each consistency model C, and � is the
satisfies operator. ES

C can refer to any characteristic of the
global session trace (e.g., impose restrictions based on the
ordering of operations within sessions).

A noteworthy choice that was made when producing the
above definition is that consistency models are expressed in
terms of partial orders among operations, instead of using
more general relations [28]. This choice entails a tradeoff
between generality (by allowing for arbitrary relations) and
simplicity (by producing more concise definitions using partial
orders). We chose to have simpler definitions using partial or-
ders for two main reasons. First, this is aligned with our goals
of enabling a better understanding of consistency through
simpler definitions, and second, the protocols that guarantee
the extra properties required by partial orders (namely tran-
sitivity) are well studied and inexpensive in terms of their
runtime overhead, namely since they do not require cross-
replica synchronization [37, 38].

Another discussion point worth highlighting is the fact
that, when concurrent branches of an execution merge, our
definitions state that the output that is produced by any re-
arrangement of the partial order of prior requests is admissible.

In practice, this corresponds to saying that our merge policy
is to serialize concurrent requests in an arbitrary order and re-
execute them. Again, it would have been straightforward to add
complexity to our definitions in order to allow for other merge
strategies. For example, the “last writer wins” policy [39] is
a special case of our more general definition, and it would be
relatively easy to constrain the definition to always arbitrate
an order that is compatible with LWW. However, since our
goal is to simplify the definitions, we decided to leave this
arbitration out.

V. SPECIFYING EXISTING MODELS

In this section, we present the ConSpec specifications for
a few example common consistency models. We have defined
several other models using ConSpec, but, due to space limi-
tations, we defer their presentation to a longer version of this
document.

A. Causal Consistency

First, we present the following definition for Causal con-
sistency, which is widely used in recent distributed storage
systems.

ES
C = ∀x, y ∈ X , st ∈ St, Ox

st , O
y
st ∈ st :

(� (Ox
st → ♦O

y
st)→ Ox

st 4 Oy
st) ,

(1)

The above expression simply specifies that, for all session
traces in a global session trace St, there must exist a common
valid partial order 4 that orders operations according to
the precedence relation of those operations in the respective
session trace. Note that this definition is simplified by the
fact that the generic ConSpec construction already encodes
an important aspect of Causal consistency, which is the fact
that ConSpec requires the operations to form a partial order.
Given the transitivity property of partial orders, this implies
that if operation b sees the effects of a and operations c sees
the effects of b, then c must also see the effects of a.

From this definition we can also derive the various session
guarantees [40], namely Read Your Writes, Writes Follow
Reads, Monotonic Writes and Monotonic Reads. These are
essentially special cases of the above definition, which restrict
the types of the pairs of operations bound by 4. Again,
we defer a formal presentation to a longer version of this
document.
Examples. To analyze a violation of causal consistency under
the read-write interface, we consider the following global
session trace comprising three session traces:
st1: w(x, 1),
st2: r(x)1, w′(x, 2),
and st3: r′(x)2, r′′(x)1.
The list of valid linear extensions of partial orders, compris-

ing all operations in St, that satisfy Condition 1 in Definition
1 are given as follows.
• 41= W x

st 4 Rx
st 4 R′′xst 4W ′xst 4 R′xst

• 42= W x
st 4 R′′xst 4 Rx

st 4W ′xst 4 R′xst
• 43= W ′xst 4 R′xst 4W x

st 4 Rx
st 4 R′′xst



• 44= W ′xst 4 R′xst 4W x
st 4 R′′xst 4 Rx

st

Since the session trace st1 comprises a single write it vacu-
ously satisfies the Causal consistency condition in Equation
1, given that this condition constrains pairs of operations
in the trace. Next, we consider the session trace st2 in St,
comprising operations r(x)1 and w′(x, 2). st2 only matches
the LTL condition �Ox

st → ♦O ′xst for Ox
st = r(x)1 and O ′xst

= w′(x, 2). From the above list of valid partial orders, only
41 and 42 satisfy the condition Ox

st 4 O ′xst where Ox
st

= r(x)1 and O ′xst = w′(x, 2). Thus, st2 reduces the set of
valid linear extensions of partial orders to the set {41,42}.
Finally, let us consider the session trace st3 in St, comprising
operations w′(x, 2) and r′′(x)1. In this case, st3 matches the
LTL condition �O ′xst → ♦O ′′xst for O ′xst = w′(x, 2) and O ′′xst =
r′′(x)1. From the list above, the only valid orders that satisfy
the condition O ′xst 4 O ′′xst are 43 and 44. Putting together the
previous requirements, we can see that only the orders 41 and
42 meet the condition in Equation 1) for st2, whereas only
43 and 44 meet the same condition for st3. Thus, there does
not exist a single valid partial order that satisfies the causal
consistency condition for all the session traces in St.

As an example that obeys causal consistency – but fails
to meet stronger conditions such as sequential consistency or
linearizability – consider a global session trace comprising the
following session traces:

st ′1: w(x, 1),
st ′2: w′(x, 2),
st ′3: r(x)1, r′(x)2,
and st ′4: r′′(x)2, r′′′(x)1
In this case, the following partial order 4 can be used in

our ConSpec formula.
• W x

st 4 Rx
st

• W ′xst 4 R′xst
• Rx

st 4 R′xst
• W ′xst 4 R′′xst
• W x

st 4 R′′′xst

• R′′xst 4 R′′′xst

Thus the above global session trace satisfies Causal consis-
tency. Note, however, that 4 is not a total order – and in fact
there is no total order that can be used in this case, which,
as we will see, explains why this trace does not meet strong
consistency specifications.

B. Sequential Consistency

Our second example definition is Sequential consistency
(SC), which is a strong consistency model that enforces a
global ordering among operations executed from concurrent
client processes. SC requires that a global execution com-
prising operations executed from one or more clients must
be equivalent to the result of executing the operations in a
sequential order, such that the order among operations from
each client in that sequence matches the invocation order of
the operations. Hence, there must exist a valid partial order set
(OSt,4) comprising all operations in a given global session
trace St that satisfies the following condition. The precedence

order among every pair of operations Ox
st and O′yst in 4

must follow the precedence order among Ox
st and O′yst in

each session trace st comprised in St. This condition can be
given as �

(
Ox

st → ♦O
′y
st

)
→ Ox

st 4 O′yst . Additionally, the
result of every pair of operations must be equivalent to that of
performing a sequential execution of the operations, i.e., there
must exist an equivalent total order among all the operations.
Combining the above conditions, SC can be expressed as
follows.

ES
C = ∀x, y ∈ X , st ∈ St, Ox

st , O
′y
st ∈ st :(

�
(
Ox

st → ♦O
′y
st

)
→ Ox

st 4 O′yst ∧
∀O′′, O′′′ ∈ St : O′′ 4 O′′′ ∨O′′′ 4 O′′

)
.

(2)

Examples. Let us consider a global session trace comprising
the following two sessions, each with three operations (two
writes followed by a read).
st

′′

1 : w(x, 1), w′(x, 99), r(y)1, and
st

′′

2 : w(y, 1), w′(y, 99), r(x)1
This global session trace meets Causal consistency but

is not sequentiallly consistent. In particular, for sequential
consistency, the constraints in ES

C require the partial order
to be a total order, which is impossible to achieve while
also obeying the session order and explaining the results
that are observed according to the sequential specification
of a read/write interface. This is because one would have
to serialize both reads before the respective writes of value
99, but that would be impossible to achieve in a total order
that respects the session orders. Therefore, we can conclude
that there does not exist a valid partial order that satisfies
Equation 2 for all write-read pairs in st1, which means that
the SC session guarantee is not upheld.

VI. REWRITING THE CAP THEOREM IN TERMS OF
CONSPEC

The CAP conjecture was initially stated informally as the
impossibility of simultaneously achieving strong Consistency,
Availability, and Partition tolerance in a replicated system [6].
When this was subsequently proven by Gilbert and Lynch [7],
these three properties were stated precisely, and, in this con-
text, strong consistency was defined as atomicity (or lineariz-
ability [10]).

The fact that the original proof of CAP is restricted to
linearizability raises the question of whether CAP holds using
other definitions of consistency models. In this section, we
rewrite the CAP theorem in terms of ConSpec to precisely
define the class of consistency models that can and cannot be
implemented in a highly-available, partition-tolerant way.

To begin with, we need a helper definition to enumerate all
admissible partial orders for a given restriction condition ES

C

and set of operations in a global session invocation trace Sit.
Definition 2 (Partial order enumeration): Given a global

session invocation trace Sit and a restrictive condition ES
C for

a ConSpec definition, we define the partial order enumeration
of this session invocation trace and condition, Π(Sit, ES

C), as
the set of partial orders over the elements of any compatible
global session trace St that are valid under ES

C , i.e.:



Π(Sit, ES
C) ≡ {4: ∃St

(
ES

C � (St,4) ∧ St ./ Sit
)
}

This allows us to define the following necessary and suffi-
cient condition for a consistency model to have an available
and partition tolerant implementation.

Theorem 6.1 (Generalized CAP theorem): In an asyn-
chronous system, it is possible to implement a consistency
model ES

C while simultaneously providing availability and
partition tolerance if and only if, for any global session
invocation trace Sit and all of its partial orderings that are
allowed by ES

C , when you consider the set of maxima of each
partial order, it is always possible to make them depend only
on the previous operation in the same session and still obtain
a valid partial order, i.e., the following holds:
∀Sit ∀ 4∈ Π(Sit, ES

C) ∀o ∈ max(4)
(REMOVEALLEXCEPTSESSION(4, o) ∈ Π(Sit, ES

C))

where we define REMOVEALLEXCEPTSESSION as a partial
order where the maximum o is only directly ordered after prior
operations in the same session, i.e.:
REMOVEALLEXCEPTSESSION(4, o(x)) ≡ 4 \{〈o′(x), o(x)〉
, where 〈o′(x), o(x)〉 belongs to the transitive reduction of 4,
and o′(x) does not belong to the same session as o(x)}.

Proof: We start by proving the implication in the direction
(⇒). Following the proof style of Gilbert et al. [7], we
prove this by contradiction as follows. Let us assume, by
contradiction, that consistency model ES

C is implemented by
an algorithm that is highly available during partitions but does
not meet the condition at the end of the Theorem. Let us
consider initially that there are only two clients, c1 and c2,
with sessions s1 and s2, respectively. The fact that ES

C does
not meet this condition means, given the definition of partial
order enumeration and its use in the extended CAP theorem,
that it is possible to produce an execution corresponding to
a global session trace St with a valid partial order 4 that
has a maximum element os1(x) such that os2(x) 4 os1(x)
(where os1(x), os2(x) belong to s1 and s2), and where it is
not admissible to have a partial order where os2(x) 64 os1(x).

Now let us construct the following execution. First, we run
the system under the exact same conditions that produced
St until client c1 is about to execute os1(x) and client c2
is about to execute os2(x). At this point, a partition occurs
that separates c1 and c2, which persists until the end of the
execution. By the availability and partition-tolerance proper-
ties, the operations os1(x) and os2(x) will eventually complete
and, by our initial assumption in the previous paragraph, the
former operation must see the effects of the latter, i.e., the
partial order that supports that execution must be such that
os2(x) 4 os1(x). Now run the exact same execution, but
where the client c2 crashes right before invoking os2(x). This
execution is indistinguishable from the previous one from
the standpoint of c1. Thus c1 will follow the same sequence
of states and produce the same outputs as in the previous
execution. This would mean that the algorithm would not
meet its ConSpec specification, since os1(x) would reflect
the execution of an operation that was not part of the global
session trace St, namely os2(x). This contradicts the fact that

the employed algorithm meets that specification and the CAP
properties.

The assumption about there being only two clients does not
lose generality because, with more clients, a pair of clients c1,
c2 under the conditions above must also exist. Then the proof
generalizes beyond two clients by partitioning the clients into
two sets, one containing c1 and another containing c2, and
crashing all the clients in the same side of the partition as c2.

Next we focus on the implication in the direction ⇐. Here,
we need to prove that if a consistency model ES

C meets the
condition:
∀Sit ∀ 4∈ Π(Sit, ES

C) ∀o(x) ∈ max(Sit,4)
(REMOVEALLEXCEPTSESSION(4, o(x)) ∈ Π(Sit, ES

C))

then it has an available and partition-tolerant implementation.
Given any global session invocation trace Sit, we prove

this by induction on the length of the execution that produced
Sit. The base case with an empty execution is vacuously true,
since an empty trace meets any consistency condition (no
safety properties are ever violated by an empty trace). For
the induction step, we need to prove that, given an execution
for which an available and partition-tolerant implementation
produced a trace that conforms to ES

C , it is possible for a
client to invoke a new operation and produce an output that is
also consistent. This is true because, even in the case that the
client that invokes the new operation is partitioned from all
or a subset of the remaining processes, the consistency model
allows for the newly invoked operation to depend only on prior
operations from the same session and all the operations that
transitively precede them according to 4. (This is because, if
that was not the case, then this would invalidate the hypothesis
on the right hand side of the equivalence stated in Theorem,
since a valid partial order would not meet the property that
removing all but the edges in the same session would be a
part of the partial order enumeration for ES

C .) Furthermore,
the valid output of this operation can be determined by using
only information that is local to the session, by running
the sequential specification of the system on the graph of
preceding operations. �

VII. ANALYSIS OF CONSISTENCY MODELS WITH
RESPECT TO CAP

The previous section defined necessary and sufficient con-
ditions for a consistency model C to have an available and
partition-tolerant implementation. Now, we analyze the ES

C-
expression for the consistency models that we presented in
Section V, to determine how they fare with respect to Theorem
6.1.

We observe that the definition of Causal consistency only
forces constraints on the partial ordering across operations
from the same session. This implies that these constraints are
compatible with the conditions on the right hand side of the
equivalence of Theorem 6.1. In particular, it is the case that it
is always legal to remove orderings between operations across
sessions, since these are never constrained by the implications
in the ES

C expression. Therefore, we conclude that Causal



mtype = {r, w, x, y} ;
typedef Op {
mtype optype ;
mtype var ;
int val ; }
typedef PO {
Op st [max size ] ;
mtype status ; }
Op st [size] ;
Op po[posize ] ;
ltl cc {� (¬ (po[i].st [j].optype = w

⇒ ♦po[i].st [j].optype = r)) }

Fig. 1: Example ConSpec specification in PROMELA

consistency is not affected by CAP, i.e., it can have a highly
available and partition-tolerant implementation.

In contrast, SC requires that the visibility order 4 among
operations from all the clients in the system forms a total order.
This implies that if an operation is related by the transitive
reduction of 4 to a previous operation from another session,
it is not possible to remove this element of the partial order
and still obtain a valid partial order, since it would violate
the condition in the definition of SC that any two operations
need to be ordered with respect to each other. Thus, this does
not meet the necessary and sufficient condition for a partition-
tolerant, highly available implementation.

VIII. IMPLEMENTATION

We provide ConsSpecCheck, an open source automated
tool for verifying whether a session trace meets a given
consistency model. This tool was built using Spin [41], a
widely used open source software verification framework. The
source code of the ConsSpecCheck tool along with instructions
for running it are publicly available at https://github.com/
ssidhanta/ConSpecTool. A global session trace is supplied to
the tool as input, in the form of a text file containing a
sequence of storage operations as a series of rows of comma
separated strings. The ConSpec definition ES

C of a consistency
model C is expressed as a Spin LTL formula modelled using
the PROMELA meta language. Internally, Spin translates the
PROMELA source file into C code. The Spin driver then runs
the built-in model checker to check for counter-examples for
the above generated C code against the Spin formula for the
definition ES

C .
The snippet in Figure 1 shows an example PROMELA

source file for the RYW consistency model. In the above
snippet, cc is a Spin-style declaration of the ES

C definition
for this particular consistency model. Each operation in a
trace is represented as a tuple Op comprising the following
elements: the operation type optype , the variable name var ,
and the value val . Then, using the statement Op st [size],
a session trace of length size is declared as an array st of
elements belonging to the user-defined datatype Op. A valid
partial order for a given session trace is declared using the
typedef declaration typedef PO ... The list of all possible
valid partial orders for a session trace st is declared as an
array po, which is created by the statement PO po[posize ];

this creates an array of elements belonging to the type PO
with an array-size of posize . Each element in the array po is a
permutation of the elements in the array st . The i’th element
in the list of all possible partial orders po is accessed as po[i],
and the j’th operation in po[i] is accessed as po[i].st [j]. In
the declaration of cc, po[i].st [j].optype denotes the operation
type of the j’th operation in the i’th partial order. � is the
LTL operator globally, ♦ is the LTL operator eventually, ¬
is the negation operator, and ⇒ denotes the implies operator.
Thus, the declaration cc in the above snippet denotes that if
the operation type optype of an operation st[j] in a given
session trace st is write, then the next read operation, which
follows st[j] in the same session trace and reads an object
that was written by st[j], must return the value that was
written by st[j]. The above specification is provided in the pml
file, as a declarative statement, followed by the specification
of the system behavior, namely the semantics of read and
write operations. The pml file is then compiled using the
Spinroot compiler with the above LTL specification as the
spin invariant. This produces a C++ program, whose output
flags if a given input session trace is a case of violation or
satisfies the consistency model specified in the LTL invariant
given in the above snippet.

IX. EVALUATION

In this section, we evaluate how long the ConSpec tool takes
to check the consistency of a session trace, how this validation
time varies depending on the length of the trace, and that
compares to checking traces expressed in other syntaxes. In
our evaluation, we use two sets of traces, where the first one is
generated by executing the Yahoo Cloud Serving Benchmark
(YCSB) benchmark suite (YCSB v 0.1.4) [42] on top of a
Cassandra cluster (Apache Cassandra v 2.1.2) [15], and the
second one is obtained by executing the TPC-C benchmark on
top of a MySQL database. The ConSpec Tool was run over the
above traces on an Apple MacBook Pro, with 8 GB 1600 MHz
DDR3 RAM, 2.9 GHz Intel Core i7 processor, running MacOS
Sierra v10.12.4. The partial order generator component of
the tool was run on Java 1.8.0_121, and the PROMELA
component were compiled and run on Spin v6.4.6. Throughout
the evaluation, by execution time we refer to the time duration
beginning with the preprocessing of the input global session
trace and ending with printing the result of checking the above
trace against the given ConSpec specification.

A. Evaluation with YCSB

In this part of the evaluation, we use YCSB to evaluate the
performance of our verification tool against cloud workloads.
To understand how the execution time of the ConSpec tool
varies with the length of the global session trace, we plot
the total execution time that the tool incurs as a function of
the size of the global session trace measured as the number
of operations in that trace. To generate a series of global
session traces of different lengths, we are able to vary two
configuration parameters of YCSB, namely the thread count
and the execution time. Using the thread count parameter,

https://github.com/ssidhanta/ConSpecTool
https://github.com/ssidhanta/ConSpecTool
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Fig. 2: Staleness in Gamma vs Latency with YCSB.
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Fig. 3: Execution Time of ConSpec Tool Against YCSB
Traces.

we simulated a number of concurrent YCSB client threads
executing the given workload, where the number of clients
corresponds to the value passed to this parameter. Thus, each
execution of the YCSB client with a given value of the
thread parameter generates a global session trace consisting
of multiple session traces, where each session trace comprises
the entire sequence of operations performed from a specific
client thread. To record each trace, we modify the source code
of the YCSB Java client to record the per-operation execution
wall-clock time, the operation type (read or write), the keys
that were accessed and the respective values returned. In this
experiment, we verify the YCSB session trace against the
ConSpec definition of the RYW consistency model, which
is specified as a Spin LTL formula in the corresponding
PROMELA source file. We execute the YCSB client with
50 concurrent client threads; thus, the global session trace
comprises 50 concurrent sessions. Then, to obtain global
session traces of an increasing length, we created several
instances of an execution of the YCSB client, where, for each
execution, we increase the length of the global session trace
by increasing the duration of execution of the client while
keeping the concurrency level fixed at 50 concurrent threads.
Thus, for each execution, the size of the global session trace
(i.e., the total number of operations in that trace) is given by
50 × op, where op is the number of operations executed by
one client thread during that run. We preloaded the YCSB
backend with 1, 000, 000 records. The “request distribution”

parameter is used to indicate to the YCSB client which specific
random distribution to use for the keys, which, in turn, forms
the basis for choosing the records on which a given operation
is to be performed. We ran the client with the “latest” request
distribution of keys, where the latest inserted records comprise
the head of the distribution. The “target” parameter is used
to throttle the target number of operations per second; we
set the value of “target” to 100 operations per second. To
better understand if the original trace was already close to
being linearizable or not, we measured the level of deviation
from strong consistency using a metric called Γ proposed by
Golab et al. [43]. Intuitively this metric captures both the
proportion and severity of stale results. The results of applying
this metric to the data that is produced by our trace are depicted
in Figure 2. This shows that the values of 95th percentile Γ
score range from 0 to 14 ms, which implies that the severity
of observed staleness in our results is small.

Figure 3 depicts the variation of the execution time of
ConSpec on global session traces collected from YCSB, as we
vary the length of the traces, i.e., the number of operations
performed, which is plotted along the x axis. We repeated
the verification of each global session trace 5 times, and
in each case we report the average and, as error bars, the
standard deviation of the execution times observed in the 5
runs. The execution time remains within 1 second for global
session traces of size up to 100K, i.e., comprising up to
100, 000 operations. Furthermore, the straight line appearance
of the plot indicates that the performance of ConSpec scales
approximately linearly with the size of the global session trace.

This linear scalability was somewhat surprising, since the
preprocessing step in ConSpec for generating all possible legal
serializations for a given session trace has a complexity O(l !),
where l is the length of the session trace. To understand this
performance trend, we note that the ConSpec tool performs
the verification of a given session trace with the Spin model
checker, which reduces the verification problem into a graph
reachability problem; it internally constructs a graph of all
possible states and subsequently determines reachable states
in the graph [44]. Next, the Spin model checker employs
the nested depth first search algorithm [45] to search for
accepting states within the state space comprising all possible
reachable states [46]. While performing the above task, the
Spin model checker applies partial order reduction techniques
[47], which result in reduction of the search space of reachable
states explored during the nested depth first search. In [44],
Holzmann et al. provide a complexity analysis of the Spin
tool in performing verification of the well known leader
election algorithm. Holzmann et al. observe a linear growth
in the number of reachable states explored by the Spin model
checking algorithm instead of an expected exponential growth.
They also report a similar linear growth with other typical
use cases of the model checker. As such, this is a plausible
explaination for the results we obtained.
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Fig. 4: Execution Time of ConSpec Tool Against TPCC Trace
With ConSpec Definitions vs Burckhardt’s Definitions.

B. Evaluation with TPC-C

Analogously to the previous set of experiments, we also
ran the TPC-C benchmark for runs of increasing length, and
collected global session traces from each run of the TPC-
C client. We used an open source java implementation of
the TPC-C benchmark [48], and modified the code to record
the type of operation (insert and update queries were marked
as write operations, and select queries were marked as read
operations), database column, and updated values for each
TPC-C operation. We ran the TPC-C client on a single
machine with a single node MySQL server in the backend.
We configured TPC-C with a connection pool of size 30,
ramp up time of 30 seconds, and a single warehouse. Before
running the TPC-C “run” commands, we loaded the TPC-C
database tables by running the TPC-C “load” command for a
period of 60 seconds. Subsequently, during each experiment,
the TPC-C “run” command was executed repeatedly, with a
duration of 60 seconds for each command, and the global
session trace for each experiment was recorded into the TPC-
C log files. The size of the log files was gradually increased
by increasing the execution time of the TPC-C run command,
which, in turn, increased size of the global session trace. We
ran the ConSpec tool against the global session traces that
were extracted from the TPC-C log files, where the number of
operations performed and the execution time is plotted along
the x and y axes, respectively. TPC-C disallows serialization
anomalies and therefore we ran the ConSpec tool with strict
serializability. The red points in Figure 4 depict the execution
time averaged over the five runs, with the red error bars
indicating the standard deviations. The results show that the
performance variations of the tool with the size of the trace
follows a pattern that is very similar to the one obtained using
YCSB. This suggests that the performance is not very sensitive
to the the application and the workloads it generates.

C. Comparison to other definitions

In the final part of the evaluation, we compare ConSpec
against a baseline. Since ConSpec is a new language for
defining consistency models, we compared it to an existing

definition running exactly the same underlying verification
system. The definition we chose was based on the work of
Burckhardt [49], which we directly encoded in Promela so
that we could verify global session traces against this definition
using Spin. Then we compared the time it takes to verify the
same traces against these prior definitions from Burckhardt and
against the corresponding ConSpec definition. For both cases,
we chose the RYW definition (referred to as read my writes
in Burckhardt et al. [28]). For this comparison, we reused
the global session traces collected from TPC-C benchmark
experiments in Section IX-B.

Figure 4 shows the results of this comparison, where the
results again correspond to the average of 5 runs, and the error
bars represent one standard deviation. From Figure 4, we can
observe the verification time is slightly slower with ConSpec
than with the previous definition. Furthermore, the verification
time shows comparable scalability with both definitions. We
conclude that, with ConSpec definitions, the tool performs
comparably with respect to other existing definition, and that
the scalability seems close to linear in both cases.

X. CONCLUSIONS

In this paper, we presented a generic framework called
ConSpec for defining consistency. ConSpec enables definitions
that are precise, follow a generic structure, and are independent
of implementation details. We used ConSpec to derive several
concrete definitions of existing consistency levels. Further-
more, ConSpec also enabled a generic version of the CAP
theorem, where the “C” property is no longer tied to a specific
strong consistency definition. Instead, we define necessary and
sufficient conditions for a consistency level to be within the
scope of CAP, i.e., for the existence or not of a partition
tolerant and available implementation. Finally, we developed
and evaluated an automated tool for verifying whether a given
session trace satisfies a consistency model.

ConSpec opens several interesting avenues for future work.
First, we intend to apply ConSpec to a wider range of
consistency models. Second, we intend to extend it to support
isolation levels of transactional systems, where the visibility of
individual operations within a transaction must be constrained.
Finally, we intend to further develop our automatic verification
tool and promote its adoption by the developer community.
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