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Abstract—While several proposals for the specification and
implementation of various consistency models exist, little is
known about what is the consistency currently offered by
online services with millions of users. Such knowledge is
important, not only because it allows for setting the right
expectations and justifying the behavior observed by users,
but also because it can be used for improving the process
of developing applications that use APIs offered by such
services. To fill this gap, this paper presents a measurement
study of the consistency of the APIs exported by four widely
used Internet services, the Facebook Feed, Facebook Groups,
Blogger, and Google+. To conduct this study, our work (1)
proposes definitions for a set of relevant consistency properties;
(2) develops a simple, yet generic methodology comprising a
small number of tests, which probe these services from a user
perspective, and try to uncover consistency anomalies that are
key to our definitions; and (3) reports on the analysis of the data
obtained from running these tests for a period of several weeks.
Our measurement study shows that some of these services do
exhibit consistency anomalies, including some behaviors that
may appear counter-intuitive for users, such as the lack of
session guarantees for write monotonicity.

I. INTRODUCTION

In recent years, we have seen an explosion in the use
of services where multiple users, spread across the globe,
interact and share content. Examples range from online
social networks to content sharing and messaging services,
and include services such as Twitter, Facebook, Google+,
LinkedIn, or Instagram.

The infrastructure that forms the back-end for these ser-
vices normally makes use of geo-replication for both de-
pendability and good performance [1], [2]. The dependability
motivation stems for the ability to tolerate catastrophic
failures by having data replicated at multiple sites, whereas
the performance gains come from being able to direct users
to nearby copies of the data they want to access.

The price to pay for geo-replication is that the designers
of these infrastructures have to deal with an inherent trade-
off between performance and consistency [3]. If they choose
to provide a strongly consistent access to the service, coordi-
nation among replicas at different sites becomes a necessity,
increasing the latency for request execution. In contrast, if
they choose to provide weak consistency, then operations can
execute by contacting a single replica, but the semantics of
the service will differ from those of a centralized server.

In this paper, we try to understand what is the consistency

that is offered by the APIs of some of these Internet services.
This is important for two main reasons. First, this allows us
to better explain and understand the situations where the
behavior of the service may be counter-intuitive. Second,
this is important to help developers who design applications
that interact and make use of these services, to know what
they can expect when using these APIs. This allows those
programmers to anticipate the effects of using the service on
their applications, and to determine if they need to introduce
additional logic to mask any undesirable behavior.

For understanding the consistency levels of online service
APIs, this paper presents the results of a measurement study
of the consistency of three popular platforms: Facebook,
Google+, and Blogger. Our methodology for conducting this
study started by identifying a set of anomalies that are not
allowed by several consistency definitions. We then designed
two black box tests that probe a given system (through
its API) in search of manifestations of these anomalies.
We implemented these tests and conducted an extensive
consistency measurement experiment in the platforms men-
tioned above, including two variants of the Facebook API:
Facebook Feed and Facebook Group services.

Our study lasted for about a month for each service with
a total of 8183 individual tests being executed. Our main
findings can be summarized as follows. We found a large
prevalence of consistency anomalies in all services with the
exception of Blogger. Furthermore, Google+ and Facebook
Feed exhibited all anomalies we consider, whereas Facebook
Groups exhibited only a subset of them. A large fraction of
these anomalies can be masked with client-side techniques
that do not require blocking user requests waiting for cross-
replica synchronization.

The remainder of the paper is organized as follows. We
survey related work in Section II. We define the anomalies
used by our methodology in Section III, and the tests to
determine their presence in Section IV. We present our mea-
surement study in Section V, and conclude in Section VI

II. RELATED WORK

The most closely related paper is the very recent work
of Lu et al. [4], which studied the consistency of TAO,
Facebook’s graph store. The study was performed by log-
ging information inside the infrastructure of Facebook. In
contrast, our approach uses the Web APIs of the services,



allowing to study the consistency of services, as perceived
by end users, without access to their infrastructure. The other
main distinction is that our methodology allowed us to study
several Internet services, instead of a single one.

Previous authors have conducted studies on the con-
sistency of data storage services. In particular, Wada et
al. [5] have focused on testing the properties of read-your-
writes, monotonic reads, and monotonic writes on several
cloud storage services, namely Amazon SimpleDB, Amazon
S3, Google App Engine, Microsoft Azure Table, and Blob
Storage. Their study has focused on how the semantics differ
depending on the relative location of readers and writers
(same or different threads, processes, virtual machines, or
geographical regions). Another relevant study in this context
was conducted by Bermbach et al. [6], focusing on the
consistency guarantees of Amazon S3 under a heavy load
of concurrent writes. In contrast to both prior studies, our
measurement study focuses on understanding the consis-
tency properties offered by service APIs (i.e., above the
storage layer), and for the particular case of clients scattered
across different geographic locations. At an even lower layer,
Xu et al. [7] conducted a measurement study of response
times of virtual machines launched at Amazon EC2. This
represents a layer that is even further apart from the one
we are analyzing. Furthermore, that study focuses only on
performance and not on consistency. Finally, our own short
position paper motivates our work and presents a simple
preliminary experiment [8].

Other papers have proposed analytic models to determine
the consistency properties implemented by distributed key-
value stores, based on measurements taken from inside the
system. Anderson et al. [9] infer the consistency properties
offered by key-value stores through the construction of
graphs that capture the operations and their return values,
to detect violations of the consistency levels defined by
Lamport [10]. Zellag et al. [11] follow a similar approach,
building a graph capturing the operations over a system. This
graph is enriched with dependencies among object versions
for detecting particular consistency anomalies. In contrast,
we conduct a measurement study of consistency properties
offered by Internet services, focusing on a more general
mode than key-value stores.

Prior work defined a continuous degree of consistency.
Bailis et al. [12] model the consistency of weak quorums as
a probabilistic bound on staleness. Yu and Vahdat [13] limit
the divergence to the final replica state. Part of our analysis
builds on the idea of quantifying divergence but, in contrast,
our goal is to understand its existence in several APIs.

III. CONSISTENCY ANOMALIES

The goal of this work is to characterize the consistency
offered by online service APIs. A particular challenge in
this context is that there are multiple consistency definitions,
often using different notations. To address this, we define
a number of anomalies that are both precise and intuitive

to understand by programmers and users of online services.
Note that we are not trying to exhaustively define all anoma-
lies that can occur, nor to prove that these are equivalent to
any of the various existing consistency definitions. It is also
important to point out that if an anomaly is not observed
in our tests, this does not imply that the implementation
disallows for its occurrence, since it could have been by
chance that it did not surface during our tests.

In the following description, we consider that users (or
clients) of the service issue a set of requests, which can
be divided into two categories: (1) write requests, which
create an event that is inserted into the service state (e.g.,
posting a new message), and (2) read requests, which return
a sequence of events that have been inserted into the state
(e.g., reading the current sequence of posts). For simplicity,
we assume that read operations return the entire sequence of
writes. In practice, this could be generalized to define that
a read returns a value that is a function of the sequence of
writes according to some service specification, that may not
contain the whole sequence.

Defining consistency anomalies: Based on these write
and read operation categories, we now define the set of
anomalies we consider in this study. We split these into three
categories:

1) Session guarantees: The first set of anomalies corre-
sponds to violations of session guarantees [14].

Read Your Writes: This session guarantee requires that
a read observes all writes previously executed by the same
client. More precisely, say W is the set of write operations
made by a client ¢ at a given instant, and S a sequence (of
effects) of write operations returned in a subsequent read
operation of ¢, a Read Your Writes anomaly happens when:
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Monotonic Writes: This requires that writes issued by
the same client are observed in the order in which they
were issued. More precisely, if W is a sequence of write
operations made by client ¢ up to a given instant, and S is
a sequence of write operations returned in a read operation
by any client, a Monotonic Writes anomaly happens when
the following property holds, where W (x) < W (y) denotes
x precedes y in sequence W:

Jr,y e W:W(z) < W(y)Ay € SA(xz ¢ SVS(y) < S(x))

Monotonic Reads: This session guarantee requires that
all writes reflected in a read are also reflected in all subse-
quent reads performed by the same client. In comparison to
monotonic writes, this has the subtle difference of requiring
that the missing write is first observed (i.e., returned by
a previous read) by the client before disappearing. More
precisely, a Monotonic Reads anomaly happens when a
client c issues two read operations that return sequences Sy
and Sy (in that order) and the following property holds:
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Writes Follows Reads: This session guarantee requires
that the effects of a write observed in a read by a given client
always precede the writes that the same client subsequently
performs. This precludes the situation where a client reacts
to a write issued by itself or some other client (e.g., after
reading a question that was posed) by issuing another write
(e.g., posts a reply), and subsequently some client observes
the second write without observing the first one. More
precisely, if S7 is a sequence returned by a read invoked by
client ¢, w a write performed by c after observing S;, and
S is a sequence returned by a read issued by any client in
the system; a Writes Follows Reads anomaly happens when:
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Note that although this last anomaly has been used to
exemplify causality violations in previous papers [15], [16],
any of the previous anomalies represent a different form of
a causality violation [14].

2) Divergence: The next two anomalies refer to diver-
gence between the state that is returned by read operations
issued by two independent clients.

Content Divergence: A content divergence anomaly cap-
tures the case where two clients issue read operations and
there are at least two writes such that one client sees one but
not the other, and for the other client the opposite is true.
More precisely, a content divergence anomaly happens when
two reads issued by clients, ¢; and cg, return respectively,
sequences S; and S,, and the following property holds:
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Any system relying on weak consistency protocols is
prone to this anomaly, as this is a consequence of the core
property of being able to perform and complete a write
operation by contacting a single replica in the system.

Order Divergence: The order divergence anomaly refers
to writes issued by different clients being seen in reverse or-
ders by different clients. More precisely, an order divergence
anomaly happens when two reads issued by two clients, c;
and co, return sequences S; and S,, containing a pair of
events occurring in a different order at the two sequences:

Jz,y € 51,5 : S1(x) < S1(y) A Sa(y) < Sa(x)

where S(z) < S(y) means that operation x in state .S was
ordered before operation .

3) Quantitative metrics: The anomalies defined so far are
boolean predicates over a trace of the system, i.e., they either
occur in an execution or they do not. In addition to the
presence or absence of these anomalies, we can determine
quantitative aspects of the observed behavior.

Content Divergence Window and Order Divergence
Window: When considering the two divergence anomalies,
it is also relevant to understand how long it takes for the
system to converge back to a single coherent state. As such,
we can define the Content Divergence Window and Order
Divergence Window as follows. When a set of clients issue
a set of write operations, the divergence window is the

amount of time during which the condition that defines the
anomaly (either content or order divergence) remains valid,
as perceived by the various clients.

IV. MEASUREMENT METHODOLOGY

In this section, we describe a methodology for testing
online services that tries to expose the previously defined
anomalies. At a high level, our methodology consists of
deploying agents in different points in the globe, who
perform several black box tests of the online service, by
issuing several reads and writes to the service.

The notion of a read or a write operation is specific to each
service, but should adhere to the specification in Section III.
For the services we analyze, since they are either social
networking or messaging services, we chose operations that
posted a message and listed the current sequence of posts.

Time synchronization: An important aspect of our tests
is that they require the clocks of the machines where agents
are deployed to be loosely synchronized, for two different
reasons. First, we use clock readings to compute divergence
windows between different agents. As such, a clock syn-
chronization error could introduce an additional error in the
computed values for the divergence windows. Second, some
of the tests require the various agents to issue operations as
simultaneously as possible (namely to maximize the chances
of triggering divergence). As such, a synchronization error
would decrease the chances of triggering divergence.

To synchronize clocks, one could rely on a service such
as NTP. However, the use of NTP implies releasing the
control over the clock synchronization process, which could
introduce errors in our measurements when the clock is
adjusted. Thus, we disabled NTP and implemented a simple
protocol that estimates the time difference between a local
clock and a reference clock (resembling Cristian’s algorithm
for clock synchronization [17].). In particular, a coordinator
process conducts a series of queries to the different agents
to request a reading of their current local time, and also
measures the RTT to fulfill that query. The clock deltas
are then calculated by assuming the time spent to send the
request and receive the reply are the same, and taking the
average over all the estimates of this delta. The uncertainty
of this computation is half of the RTT values.

Tests: Our goal in designing these tests is twofold:
first, we want the tests to be complete, in the sense that
they allow (and even promote) the possibility of exposing all
listed anomalies; and second, we want to make these simple
and limit the number of different tests required. Guided by
these principles, we designed the following two tests.

4) Test 1: The sequence of events for the first test is
depicted in Figure 1. In this test, each agent performs two
consecutive writes and continuously issues reads in the
background, with a frequency that is determined by the
maximum frequency that is allowed by the rate limit of
the online service. The writes by the different agents are
staggered: agents have sequential ids and the first write by
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Figure 1. Timeline for Test 1 with three agents.
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Figure 2. Timeline for Test 2 with three agents.

agent ¢ is issued when it observes the last write of agent
i— 1. For all operations, we log the time when they occurred
(invocation and response times) and their output.

The output of running this test already allows us to detect
most of the consistency anomalies from the previous section:

e A violation of Read Your Writes occurs, for instance,
when Agent 1 writes M1 (or M2), and in a subsequent read
operation M1 (or M2) is missing. (The same applies to each
message written by the remaining agents.)

e A violation of Monotonic Writes occurs, for instance,
when Agent 1 writes M1 and M2, and afterwards that agent
either observes only the effects of M2 in the output of a read
operation, or observes the effect of both writes in a different
order. (The same applies to each pair of messages written
by the remaining agents.)

e A violation of Monotonic Reads occurs when any agent
observes the effect of a message M and in a subsequent read
by the same agent the effects of M are no longer observed.

e A violation of Writes Follows Reads occurs when any
agent either observes M3 without observing M2 or observes
M5 without observing M4. We only consider these particular
pairs of messages because, in the design of our test, M3 and
M35 are the only write operations that require the observation
of M2 and M4, respectively, as a trigger.

5) Test 2: The timeline for the second test is depicted in
Figure 2. This test attempts to uncover divergence among
the view that different agents have of the system, by having
all agents issue a single write (roughly) simultaneously,
and all agents continuously reading the current state in the
background. This simultaneity could increase the chances
of different writes arriving at different replicas in a different
order, and therefore trigger divergence.

The output of running this test gauges the remaining
questions from the previous section. In particular:

e A violation of Content Divergence occurs, for instance,

when an Agent observes a sequence of writes containing
only M1 and another Agent sees only M2.

e A violation of Order Divergence occurs, for instance, when
an Agent sees the sequence (M2,M1) and another Agent sees
the sequence (M1,M2).

The respective windows are also computed using the
results of this test by ordering all events according to their
absolute time (factoring in the correction for clock deltas as
explained previously), and determining the interval of time
during which the anomaly conditions hold, as determined
by the most recent read. Note that the timeline considering
operations from all agents may lead to the following situa-
tion: agent 1 reads (M1) at time ¢;; agent 1 reads (M1,M2)
at to; agent 2 reads (M2) at ¢3; agent 2 reads (M1,M2) at 4,
with t1 < to < t3 < t4. Although there has been a content
divergence anomaly, the computed window is zero.

V. MEASUREMENT STUDY

In this section, we present the results of our measurement
study of four online service APIs: Google+, Blogger and
two services from Facebook.

For Blogger, we used the API to post blog messages and
to obtain the most recent posts. In this service, each agent
was a different user, and all agents wrote to a single blog.

For Facebook we used the Facebook Graph API to interact
with both the user news feed and group feed services. In the
first case, each user wrote to and reads from his own feed,
which combines writes to the user feed and from the feeds of
all friends. In the second case, all users are associated with
a single group and issued all their write and read operations
over that group. In all tests, each agent was a different user,
and we used test users, which are accounts that are invisible
to real user accounts. We conducted a small number of tests
with regular accounts and results were consistent with those
of test users.

For Google+, we could only find API support for posting
“moments”. We used the API to post a new moment and to
read the most recent moments. In this case, all agents shared
the same account, since there is no notion of a follower for
moments. Unfortunately, there does not seem to exist an
extensive use of the concept of moments, particularly since
these are not easy to use through the Web interface. As such,
we cannot know whether the results we present apply to what
most users observe when they access Google+ services. Note
that the behavior of a service accessed through the API might
differ when using the Web Interface.

Subsequently to the experiments, Google+ disabled its
support for moments, and Facebook removed the ability to
read user news feed from their Graph API.

For each of these services, we ran three agents, which
were deployed on three geographically distant locations
using different “availability zones” of Amazon EC2. In par-
ticular, we used the Oregon (US), Tokyo (Japan), and Ireland
availability zones. Furthermore, we deployed a coordinator



[ [ Google+ | Blogger [ FB Feed | FB Group |

Period between reads 300ms 300ms 300ms 300ms
Number of reads per agent 48 11 14 11
per test (average)
Time between successive tests 34min 20min 5min 5min
Number of tests executed 1036 1028 1020 1027
Table I

CONFIGURATION PARAMETERS FOR TEST 1

[ [ Google+ [ Blogger [ FB Feed | FB Group |

Period between reads 300ms 300ms 300ms 300ms
(14X) (13X) (20X) (20X)
then 1s then 1s then 1s then 1s
Reads per agent per test 17 —-75 20 40 50
Time between successive tests 17min 10min 5min 5min
Number of executed Tests 922 1012 1012 1126
Table II

CONFIGURATION PARAMETERS FOR TEST 2

in another availability zone, in this case North Virginia (US).
The average RTT values measured between the coordinator
and the remaining agents are: 136ms to Oregon; 218ms to
Japan; and 172ms to Ireland. These were employed to derive
the clock deltas, as discussed in the previous section.

For each of the services, we deployed the various agents
for a total period of roughly 30 days per service (for running
both tests). For each service, we alternated between running
each of the two test types roughly every four days: instances
of test 1 ran repeatedly for four days then test 2 for another
four days then back to test 1, and so on. Each instance of
a test ran until completion: for test 1, the test is complete
when all agents see the last message written by Agent3 (M6),
and for test 2, the test completes when all agents perform a
configurable number of reads. Due to rate limits, after a test
instance finishes, we had to wait for a fixed period of time
before starting a new one. Before the start of each iteration
of a test, the clock deltas were computed again.

Tables I and II summarize the parameters we used for
configuring each of the tests for each service. These pa-
rameters were chosen in a way that minimizes the time to
collect the data while taking into consideration rate limits for
each service. For the second test, the period between reads is
adaptive: initially it is short, and then it becomes one second.
This allows for a higher resolution in the period when the
writes are more likely to become visible, while respecting
the rate limits. In total, we ran 1,958 tests comprising
323,943 reads and 8,982 writes on Google+, 2,040 tests
comprising 96,979 reads and 9,204 writes on Blogger,
2,032 tests comprising 195,029 reads and 9, 156 writes on
Facebook Feed and 2,153 tests comprising 169,299 reads
and 9, 540 writes on Facebook Group.

Overall results: We start by analyzing the overall
prevalence of anomalies in both tests. Figure 3 shows, for
each anomaly and each service, the percentage of tests
with anomalies. All types of anomalies were seen in both
Google+ and Facebook Feed, whereas in Facebook Group
no violations of Read Your Writes and Order Divergence
were seen. For the remaining anomalies, the most common
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Figure 3. Percentage of tests with observations of different anomalies in
Google+, Facebook Feed and Facebook Group

Percentage of Tests
Percentage of Tests

1 2 3 4 5 >5 1 2 3 4 5 >5

Number of Observed Anomalies Number of Observed Anomalies

OR =z |E JP m—— OR =z |E JP e

(a) Google+ (b) Facebook Feed

Percentage of Tests

0 L)
OR IE

JP  OR/IEOR/P JP/IE ALL
Location of Agent(s)

Google+ =z Facebook Feed

(¢) Correlation of anomalies
Figure 4. Distribution of read your writes anomalies per test.

Percentage of Tests
Percentage of Tests

3 4 >5 2 5 >5
Number of Observed Anomalies Number of Observed Anomalies

OR 3 |E JP m— OR =3 |E JP —

(a) Google+ (b) Facebook Feed

Percentage of Tests
Percentage of Tests
&

10
LA I
oL ER mE B

OR IE JP  OR/IEOR/JP JP/IE ALL
Location of Agent(s)

1 2 3 4 5 >5
Number of Observed Anomalies

Google+ =xxzxs  Facebook Group mms
Facebook Feed

OR =z |E JP

(d) Correlation of anomalies
Distribution of monotonic writes anomalies per test.

(c) Facebook Group
Figure 5.

in this service was Monotonic Writes. In Blogger we did
not detect any anomalies of any type. Next, we analyze the
occurrence of each anomaly in detail. We omit the results
from the combinations of services and anomaly types where
no anomalies were seen.

Session guarantees: We analyze the prevalence of
anomalies for each session guarantee. For the read your
writes guarantee, Figure 3 shows a high value (99%) for



Facebook Feed and a visible presence of this type of
anomaly (22%) in Google+. Figure 4(a) presents the number
of observations of the anomaly per test for Google+. This
shows that, in the particular case of Google+, more than half
of the tests where this anomaly was detected had several
individual violations of the property. The results also show
that this anomaly is more prevalent on clients in Oregon and
Japan. The results for Facebook Feed, which are reported in
Figure 4(b), show the opposite trend: most occurrences of
this anomaly are in tests where it is only detected once or
twice per agent. In contrast with Google+, Facebook Feed
showed a similar prevalence across client locations.

To determine whether these anomalies are correlated
across locations, Figure 4(c) depicts the percentage of tests
where these anomalies occurred in each agent exclusively
versus across different combinations of the agents. The re-
sults show that this does not tend to be a global phenomenon:
in Google+, the large majority of occurrences are only
perceived by a single agent. However, for Facebook Feed,
all three locations perceived the anomaly in a large fraction
of tests, because this anomaly arises much more frequently.

Next, we analyze the prevalence of violations of the
monotonic writes session guarantee, with Figure 3 showing
a significant prevalence of this type of anomaly both in
Facebook Feed and in Facebook Group, with a 89% and 93%
prevalence, respectively. Google+ shows a fairly low preva-
lence with only 6%. The results in Figure 5, for Google+,
show that this anomaly, when detected in a test, is often
observed several times in that test. Additionally, Oregon and
Japan have an increased incidence of this anomaly occurring
multiple times in a single test, whereas in Ireland, when this
anomaly is detected, it often occurs a single time in each
test. This phenomenon however might be a consequence of
the way that our tests are designed, as in test 1 Ireland is
the last client to issue its sequence of two write operations,
terminating the test as soon as these become visible. Thus, it
has a smaller opportunity window for detecting this anomaly.
This observation is supported by the fact that the same trend
is observed in the results for the Facebook services, and by
additional experiments that we have performed, where we
rotated the location of each agent.

Figure 5(d) presents the correlation of the location of
agents across the tests that observed the anomaly. The figure
shows that this tends to be a local occurrence in Google+,
where the anomaly is visible in only one of the locations,
whereas in Facebook Feed and Group this anomaly tends to
be global with a larger prevalence in Japan.

The large occurrence of these anomalies in the Facebook
services motivated us to inspect more carefully these phe-
nomena across these services. We noticed that in Facebook
Feed, messages are often reordered across different read
operations executed by each agent. However, for the partic-
ular case of Facebook Group, the reordering of messages
occurred mostly in messages issued by the same agent,
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Figure 6. Distribution of monotonic reads anomalies per test.

and that all agents observed this reordering of operations
consistently. Upon further inspection, we noticed that each
event in Facebook Group is tagged with a timestamp that
has a precision of one second, and that whenever two write
operations were issued by an agent within that interval
(causing them to be tagged with the same timestamp) the
effects of those operations would always be observed in
reverse order. This suggests that, in this service, this anomaly
is produced by a deterministic ordering scheme for breaking
ties in the creation timestamp.

The experiment for monotonic reads, as shown in Fig-
ure 3, indicates that 46% of the tests are exhibiting this type
of occurrence on Facebook Feed and 25% in Google+. This
anomaly was detected in Facebook Group in a single test.
Figure 6(a) shows a long tail in the number of observations
per test in Google+. Although the anomaly is much more
prevalent in Facebook Feed, the results show that it is mostly
detected a single time per agent per test. Figure 6(c) indicates
a mostly local phenomenon in both services.

The last session guarantee, writes follow reads, is more
frequent in Facebook Feed. As depicted in Figure 3, this
anomaly only occurs in Facebook Group twice. Figure 7
shows that, although this is a somewhat frequent anomaly,
it does not occur recurrently, with only a few observations
occurring per agent in each test for Facebook Feed. In
contrast, for Google+ we verify the opposite. Figure 7(c)
depicts the set of agents that observe the lack of causality in
each test. This indicates a mostly local phenomenon in both
services, particularly located in Oregon for Facebook Feed.

Divergence: We now check the presence of divergence
events in the collected data. We start by looking at content
divergence. Figure 8 shows the percentage of tests with
divergence between the state observed by pairs of agents.

These results show that content divergence occurs very
frequently in Google+ and in Facebook Feed, which in-
dicates the likely use of weakly consistent replication that
privileges performance over strong consistency. In particular,
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the percentage of tests that show any content divergence
in Google+ is up to 85%, being less pronounced between
Oregon and Japan than between the remaining pairs of
agents. This might suggest that the Oregon and the Japan
agents are connecting to the same data center, whereas the
other pairs of agents are not. In the case of Facebook Feed,
this occurrence is more uniform across all pairs of agents,
and the prevalence is also high (above 50% across all pairs).
In the case of Facebook Group the prevalence is extremely
low with a total of 15 occurrences of this anomaly, 9 of
which happened across a sequence of tests, where the Tokyo
agent was unable to observe the operations of other agents.
This suggests the agent in Tokyo connects to a different data
center than the other agents, hence these anomalies might
be caused by a transient fault or network partition.

In terms of the presence of order divergence, Figure 3
shows that this phenomenon occurs in Google+ and in Face-
book Feed, with a prevalence that is less pronounced than
content divergence in Google+. Similarly to the previously
reported results, we observed that this anomaly is much
less frequent between Oregon and Japan (below 1%) than
between the remaining pairs of agents (around 14%). In
Facebook Feed, the prevalence is near 100% at all locations.

While the results for Facebook Feed may seem surprising,
they are explained by the semantics of the service. This is
because the reply to a read contains a subset of the writes,
which are not the most recent ones, but a selection of writes
based on a criteria that depends on the expected interest of
these writes for the user issuing the read operation.

Quantitative metrics: Next, we analyze several quanti-
tative measurements. Figure 9 shows the CDF of the content
divergence window. This distribution is shown for each
pair of agents and each service (only considering the largest
divergence window for each pair of agents in each test).
The results show a smooth distribution of this window,
with Google+ taking substantially longer than the remaining
services for all agents to regain a consistent view of the
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Figure 8. Percentage of tests with content divergence anomalies.

system state (on the order of seconds in Google+ versus
hundreds of milliseconds in Facebook Feed and most of the
content divergence instances observed in Facebook Group).
Figure 9(a) shows that the Oregon and Japan agents have
a convergence time that is much faster than the remaining
pairs of agents, and that the other two pairs exhibit similar
convergence times. This suggests that writes issued from
Oregon and Japan may be processed by the same replica.

The results shown in Figure 9(b) show that content
divergence occurs in Facebook Feed across all agents and
all pairs of agents, and takes approximately the same time
to converge to a consistent view of the service state (on the
order of a few seconds). Again, the semantics of reads in
this service may explain these results.

Finally, Figure 9(c) depicts the results for Facebook
Group, showing that content divergence between the agent
in Japan and the two remaining agents takes longer to be
resolved. This indicates that the agent in Japan may be
contacting a different replica than the remaining agents.

The last set of measurements refer to the order diver-
gence window. This anomaly was only observed in Google+
and Facebook Feed. For Google+, Figure 10(a) shows that
a coherent order is more quickly re-established between the
Oregon and Japan agents than the remaining pairs, which can
take over ten seconds to achieve this. The reason behind the
steps in the curve is that, after the first 12—14 reads, which
are more frequent, our agents perform reads with a period
of one second, due to rate limiting. As such, the detection of
the end of a window is done at the resolution of one second,
and in a synchronized way, as shown in the CDF. For the
Facebook Feed service we observe that a coherent order is
established among the several pairs of agents faster. These
results exclude runs where convergence was not reached
during the test. The fraction of tests where this occurred
was 81% for divergence between Oregon and Tokyo, 94%
for Oregon and Ireland, and 89% for Tokyo and Ireland.
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Figure 9. Cumulative distribution of content divergence windows.

Discussion of Results: Some of these results can be
seen as a somewhat natural and even expected consequence
of choosing performance over stronger consistency models
such as serializability. In particular, when the designers of
replication protocols choose to provide a fast response to
the clients of the service after contacting only one or a
small subset of replicas, the implication of this choice is that
the consistency model offered by the service has to provide
some form of weak consistency, namely one where content
divergence is possible, since two writes that were processed
by two different replicas may have executed without being
aware of each other. We note that our results show an
exception to this design principle in the Blogger system,
which appears to be offering a form of strong consistency.
This can be seen as a sensible design choice considering
the write rate and user base size in Blogger. Overall, one
of the most surprising results of our study was to find
several types of anomalies that are not inevitable, even when
choosing performance over consistency. This is the case of
session guarantees, which previous work has shown how to
implement, even under weak consistency [14].

Given that some of these services may not provide session
guarantees, the relevant question is what provisions can
applications make in order to handle this fact, especially if
they are interested in providing these guarantees. It turns out
that most of the session guarantees can be easily enforced at
the application level by simply identifying requests with a
session id and a sequence number within a session, and using
a combination of caching and replaying previous values that
were read and written, and delaying or omitting the delivery
of messages. In contrast, the writes follows reads session
guarantee is a bit more complicated to enforce.The details
of such schemes are left as future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a measurement study of the
consistency offered by the APIs of four online services. Our
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Figure 10. Cumulative distribution of order divergence windows.
study shows the relatively frequent occurrence of most of the
anomalies across all services except Blogger. This highlights
the need for application writers to consider whether the
intended semantics for their applications is compatible with
these behaviors, and if not, to possibly write programs
in a way that masks these anomalies. In the future, we
would like to extend this methodology to other services,
also considering white-box testing, so it can be applied to
large-scale storage systems.
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