Efficient Middleware for Byzantine
Fault Tolerant Database Replication

Rui Garcia Rodrigo Rodrigues Nuno Preguica
CITI/ Departamento de Informatica, MPI-SWS CITI / Departamento de Informatica,
Faculdade de Ciéncias e Tecnologia, Kaiserslautern and Saarbriicken, Faculdade de Ciéncias e Tecnologia,
Universidade Nova de Lisboa Germany Universidade Nova de Lisboa

Quinta da Torre, Caparica, Portugal
bomgarcia@gmail.com

Abstract

Byzantine fault tolerance (BFT) enhances the reliability and
availability of replicated systems subject to software bugs,
malicious attacks, or other unexpected events. This paper
presents Byzantium, a BFT database replication middleware
that provides snapshot isolation semantics. It is the first BFT
database system that allows for concurrent transaction exe-
cution without relying on a centralized component, which
is essential for having both performance and robustness.
Byzantium builds on an existing BFT library but extends it
with a set of techniques for increasing concurrency in the
execution of operations, for optimistically executing opera-
tions in a single replica, and for striping and load-balancing
read operations across replicas. Experimental results show
that our replication protocols introduce only a modest per-
formance overhead for read-write dominated workloads and
perform better than a non-replicated database system for
read-only workloads.

Categories and Subject Descriptors D.4.5 [Reliability]:
Fault-tolerance; H.2.4 [Systems]: Concurrency

General Terms Design, Performance, Reliability

Keywords Databases, Middleware, Byzantine Fault-tolerance.

1. Introduction

Database systems are a key component of the computer in-
frastructure of most organizations. It is thus crucial to ensure
that database systems work correctly and continuously even
in the presence of a variety of unexpected events. The key to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’11, April 10-13, 2011, Salzburg, Austria.

Copyright © 2011 ACM 978-1-4503-0634-8/11/04. .. $10.00

rodrigo@mpi-sws.org

Quinta da Torre, Caparica, Portugal
nuno.preguica@di.fct.unl.pt

ensuring high availability of database systems is to use repli-
cation. While many methods for database replication have
been proposed [Cecchet 2008], most of these solutions only
tolerate silent crashes of replicas, which occur when the sys-
tem suffers hardware failures, power outages, etc.

While this approach suffices for many types of faults, it
does not tolerate the effects of events such as software bugs
or malicious attacks that can cause databases to fail in ways
other than silently crashing. These types of events are of
growing concern. Recent studies show that the majority of
bugs reported for three commercial database systems would
cause the system to fail in a non-crash manner [Gashi 2007,
Vandiver 2007]; another study found that a significant frac-
tion of concurrency bugs in MySQL led to subtle violations
of database semantics [Fonseca 2010]. Intrusions have also
been reported as being a problem: database systems have be-
come a frequent target of attacks that can result in loss of
data integrity or even permanent data loss [DISA 2004].

A promising approach for increasing the correctness and
availability of systems in the face of these types of events
is through Byzantine fault tolerant (BFT) replication. This
class of replication protocols makes no assumptions about
the behavior of faulty replicas (i.e., assumes a Byzantine
fault model [Lamport 1982]), so it can tolerate arbitrary
failures from a subset of its replicas (typically up to % of
the replicas).

However, the application of BFT techniques to database
systems has been quite limited. Previous proposals either do
not allow transactions to execute concurrently, which inher-
ently limits the performance of the system [Garcia Molina
1986, Gashi 2007], or rely on a trusted coordinator node that
chooses which requests to forward concurrently [Vandiver
2007]. In the latter case, the coordinator becomes a central
point of failure: if the node crashes or is compromised the
entire system becomes vulnerable.

In this paper we present Byzantium, a novel, middleware-
based, Byzantine fault tolerant database replication solu-
tion. Byzantium improves on existing BFT replication for

databases because it allows extensive concurrency with no
centralized components (on whose correctness the integrity
of the system depends), which is essential for achieving good
performance and reliability.

Several design features in Byzantium are interesting in
their own right, and several of them are useful beyond the
scope of database replication. In particular, we highlight the
following set of design choices and techniques that make the
Byzantium design novel.

Snapshot isolation. Unlike previous BFT database sys-
tems, which provide 1-copy serializability [Bernstein 1986],
Byzantium targets snapshot isolation semantics. We show
how we can take advantage of these weaker semantics to
increase concurrency, by restricting the use of a more ex-
pensive serialization protocol to a subset of the operations.
Middleware-based replication. This approach allows us to
use existing database systems without modifying them, and
even allows distinct implementations from different vendors
to be used at different replicas. Such diversity is important
in order to increase resilience against attacks triggered by
software vulnerabilities or deterministic software bugs, but
not having access to the database internals raises the bar for
our protocols to achieve good performance.

Optimistic execution of groups of operations. Our system
design proposes two alternative techniques for optimistically
executing operations in a single replica. Each technique of-
fers distinct advantages: one of them works transparently
with any form of concurrency control, and the other offers
better performance in the presence of Byzantine replicas, but
requires extracting write-sets in databases that use locking.
Furthermore, while optimistic execution takes advantage of
transactional semantics, these techniques may be useful for
replicating other types of systems, namely those that support
some form of speculation [Nightingale 2005].

Striping with BFT replication. We also show how we can
use BFT replication to improve the performance of opera-
tions that do not update the state of the system, by striping
reads from different clients to different subsets of replicas,
while maintaining the desired database semantics.

We implemented Byzantium and evaluated our prototype
using variants of TPC-C. Our experimental results show
that our replicated database has only a modest performance
overhead for read-write dominated workloads and exhibits
performance gains of up to 90% over executing transactions
in a single replica for read-only workloads.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 introduces the sys-
tem model and Section 4 details the system design and pro-
posed algorithms. Section 5 argues the correctness of our
solution. Section 6 discusses implementation issues and Sec-
tion 7 presents an evaluation of our prototype. Section 8 con-
cludes the paper.

2. Related work

We group the set of related proposals into two main areas:
Byzantine fault tolerance and database replication.

Byzantine fault tolerance. Byzantine fault tolerant (BFT)
replication has drawn a lot of attention in the last decade as
a mechanism to mask malicious attacks and software errors.
Over these years, there has been a series of proposals for
replication protocols that tolerate Byzantine faults and claim
to be efficient enough to be practical (e.g., PBFT [Castro
2002], or Zyzzyva [Kotla 2007]). Most such proposals have
centered around building a replicated state machine [Schnei-
der 1990]. These protocols allow the replication of a de-
terministic service that follows an RPC model: clients is-
sue requests, servers maintain the state of the service, and
given a certain request and current state, the servers deter-
ministically issue a reply and move on to the subsequent
state. These protocols have been used to provide Byzantine
fault tolerance to different services, including distributed file
systems and coordination services [Castro 2002, Clement
2009].

While these protocols could also be used to replicate a
database server by executing individual database operations
as operations of the replicated state machine, this would pre-
clude operations from being executed concurrently, thus lim-
iting performance. Furthermore, for database systems using
lock-based concurrency control, an operation that blocked
would prevent any further operations from being executed.

We build on these proposals since our system uses state
machine BFT replication as one of its building blocks. How-
ever, we address these performance limitations by taking ad-
vantage of snapshot isolation semantics and optimistic exe-
cution, which allow us to craft our protocols in a way that
avoids the use of state machine replication when possible,
thus increasing concurrency.

Database replication. There exist several proposals, both
from industry and academia, for replicating database sys-
tems in order to both increase their resilience to faults
and improve their throughput (see [Cecchet 2008] for an
overview of the topic).

The proposals that are more closely related to our work
are the various proposals for middleware-based replication
that provide snapshot isolation (SI) [Elnikety 2005, Lin
2005, Plattner 2004]. In particular, one of the two alternative
protocols we present uses an approach that bears similarity
to Ganymed [Plattner 2004], with all read-write transactions
executing first in the same replica responsible for guarantee-
ing SI properties. The execution of read-only transactions
is distributed among the other replicas. The other alterna-
tive protocol we present bears similarity to the approach
proposed by Elnikety et. al. [Elnikety 2005], with read-write
transactions executing first in a single replica (possibly using
different replicas for concurrent transactions) and, at commit
time, transactions being propagated to the other replicas that

detect conflicts according to the SI properties. While Byzan-
tium uses similar techniques, our solution differs in that it
is designed with the assumption of a Byzantine fault model,
instead of assuming that nodes fail only by crashing.

There have also been a few proposals for Byzantine fault
tolerant database replication.

The initial protocols in this area were proposed by
Garcia-Molina et al. [Garcia Molina 1986] and by Gashi et
al. [Gashi 2007]. Their replication protocols serialize all re-
quests and do not allow transactions to execute concurrently.
Consequently, their protocols provide stronger semantics
than ours, but serializing all requests inherently limits the
performance of the system. We improve on these systems by
using weaker semantics and novel protocols to obtain better
performance.

HRDB [Vandiver 2007] provides BFT database replica-
tion using a trusted node to coordinate the replicas. The co-
ordinator chooses which requests to forward concurrently,
in a way that maximizes the amount of parallelism between
concurrent requests. HRDB provides good performance, but
requires trust in the coordinator, which can be problematic
if replication is being used to tolerate attacks. Furthermore,
the coordinator is a single point of failure: if the coordinator
crashes, the availability of the system will be affected un-
til it recovers. Finally, HRDB ensures 1-copy serializability,
whereas our approach provides weaker (yet commonly used)
semantics in order to achieve good performance.

In a prior workshop paper we described a preliminary de-
sign of the multi-master version [Preguica 2008]. This paper
improves on that work in several ways. First, we modified
the design to accommodate changes that were necessary to
obtain good performance (many of which were driven by ob-
serving the performance limitations of the original design in
a real deployment). In particular, we have optimized the ex-
ecution of read-only transactions to allow them to execute in
a small subset of the replicas, and we changed the way we
execute operations so that they are propagated to all replicas
before commit time. Second, we propose a second version
of the system, based on a single-master approach. This ap-
proach requires less support from the underlying database
system. Finally, we present a complete implementation and
an experimental evaluation of our prototype.

3. System model

We assume a Byzantine failure model where faulty nodes
(client or servers) may behave arbitrarily, other than not
being able to break the cryptographic techniques that are
used. We assume at most f replicas are faulty out of a total
of n = 3f + 1 replicas. In our current implementation we do
not employ existing proactive recovery mechanisms [Castro
2002], which implies that we need to ensure that we have no
more than f faulty nodes throughout the system lifetime. If
we were to apply proactive recovery techniques, we would

be able to tolerate at most f faults during a window of
vulnerability.

When the correctness conditions of the system are met,
the safety property ensured by Byzantium is that the repli-
cated database provides ACID semantics, with snapshot iso-
lation (SI) level. In SI, a transaction logically executes in
a database snapshot. A transaction can commit if it has no
write-write conflict with any committed concurrent transac-
tion. Otherwise, it must abort.

SI is an attractive level of isolation for several reasons: it
allows for increased concurrency among transactions when
compared to stronger properties such as 1-copy serializabil-
ity, it is implemented by many commercial database sys-
tems, it provides identical results to 1-copy serializability
for many typical workloads (including the most widely used
database benchmarks, TPC-A, TPC-B, TPC-C, and TPC-
W) [Elnikety 2006], and there exist techniques to transform
a general application program so that its execution under SI
is equivalent to strict serializability [Fekete 2005].

Our system guarantees these safety properties in an asyn-
chronous distributed system: we assume nodes are con-
nected by an unreliable network that may fail to deliver
messages, corrupt them, delay them arbitrarily, or deliver
them out of order. Many database replication protocols make
stronger assumptions about the timely delivery of network
messages, so they can use timeouts to detect replica faults.
This assumption can be problematic because when it is not
met safety violations may occur. To give a simple example,
in a primary-backup scheme, two machines can believe er-
roneously that the other has failed. This could lead to the
existence of two primaries that accept new updates inde-
pendently, leading to state divergence. Furthermore, this as-
sumption can be broken either by deliberate attacks (e.g., by
flooding a correct node) or by other occurrences like longer
than usual garbage collection cycles that lead to increases in
message processing delays [Gribble 2001].

The fact that we are ensuring safety in an asynchronous
network model implies that we need to assume some form
of synchrony for liveness [Fischer 1985]. Thus our system
only guarantees that clients can make progress during peri-
ods when the delay to deliver a message is bounded. This
assumption is referred to as eventual synchrony, and is a
common assumption for liveness in replicated systems that
ensure safety despite asynchrony [Castro 2002].

Note that the goal of Byzantium is to ensure correctness
and high availability of the system despite arbitrary faults,
and not to defend against attacks that try to violate the confi-
dentiality of database contents. There exist, however, exten-
sions to BFT protocols to address the problem of confiden-
tiality [Yin 2003] that we could leverage in our work.

3.1 Database and BFT protocol requirements

Our system employs two components that are used as black
boxes, but are required to provide certain semantics.

The first component is a BFT state machine replication
protocol. This protocol must implement linearizable seman-
tics [Herlihy 1987], which is the case for most BFT state
machine replication proposals [Castro 2002, Kotla 2007]. In
Byzantium, we used a BFT system that requires 3 f 41 repli-
cas, but as future work we would like to modify the imple-
mentation and evaluate the performance change when us-
ing a BFT system that only requires 2 f 4 1 execution repli-
cas [Yin 2003]. This would bring advantages in terms of the
aggregate machine load and the inter-replica communication
costs, but also provide fewer opportunities for using striping
to improve the performance of read-only transactions (which
dominate several common workloads).

The other component is an off-the-shelf database system,
for which we consider a standard model where the state is
modified by applying transactions. A transaction is started
by a BEGIN followed by a sequence of read or write opera-
tions, and ends with a COMMIT or ROLLBACK. When issu-
ing a ROLLBACK, the transaction aborts and has no effect on
the database. When issuing a COMMIT, if the commit suc-
ceeds, the effects of write operations are made permanent in
the database. We require that the off-the-shelf database pro-
vides snapshot isolation semantics and supports savepoints
(both of which are common in database systems).

While we do not place restrictions on the concurrency
control mechanism the databases implement, one of the al-
ternative designs we propose requires support for extracting
write-sets in databases that use locking. As in other (non-
BFT) replicated databases (e.g., [Elnikety 2006]) we extract
write-sets from ongoing transactions using database triggers.

4. System design

In this section we present the design and algorithms used in
the Byzantium system.

4.1 Architecture

Byzantium is built as a middleware system with the architec-
ture depicted in Figure 1. The system is composed of a set
of n = 3f + 1 server replicas and a finite number of clients.

Each replica is composed of a database system and the
Byzantium replica proxy, which is linked with both a com-
munication library and the replica-side BFT library. The
communication library allows for the client to communicate
directly with the replicas without going through the more ex-
pensive serialization provided by the BFT replication proto-
col. The communication library implements a light-weight
retransmission protocol to ensure that messages are deliv-
ered in FIFO order, but, unlike BFT operations, these mes-
sages can reach different replicas in different orders. Each
replica maintains a full copy of the data in an off-the-shelf
database system; i.e., we use a shared-nothing architecture
(to ensure fault isolation with Byzantine nodes) and we do
not partition data. The replica proxy is responsible for han-
dling client requests and controlling the execution of opera-

Bizantium
Client Client

@@ Proxy

3f+1
replicas

Bizantium
Client Client

@@ Proxy

Figure 1. System Architecture.

tions in the database system, guaranteeing that the operations
execute with the desired semantics in all non-faulty replicas,
and that, when the system quiesces, the state of the database
in all non-faulty replicas is the same.

User applications run on client nodes and access our sys-
tem using the JDBC interface. Thus, applications that ac-
cess conventional database systems using a JDBC interface
can use Byzantium without modification. The JDBC driver
we built is responsible for implementing the client side of
the Byzantium protocol. (And thus we refer to it as the
Byzantium client proxy.) Some parts of the client side proto-
col consist of invoking operations that run through the BFT
state machine replication protocol, and therefore this proxy
is linked with the client side of the BFT replication library.

As mentioned, two of the components of the architecture,
namely the database system and the BFT replication library,
are used as black boxes. (In some cases, where write-set
extraction is required, the approach may more accurately be
termed “gray-box”.)

Using an off-the-shelf, black-box database provides sev-
eral advantages: it enables the use of third party databases
that may not support replication and whose source code may
not be accessible, it allows for upgrading the database server
without having to update the replication code, and it allows
for different replicas to run different implementations of the
database server. The latter capability is important for ensur-
ing a lower degree of fault correlation, in particular when
these faults are caused by deterministic software bugs [Ro-
drigues 2001, Vandiver 2007]. Running distinct versions is
facilitated by the fact that replicas use the JDBC interface to
communicate with the database system. Thus we can easily
swap between database servers that implement this interface.
By default, we configured our prototype implementation to
run an instance of PostgreSQL at each replica.

The other black-box component is the BFT replication li-
brary. Byzantium uses an implementation of the PBFT pro-
tocol [Castro 2002]. The PBFT library provides two main in-

terfaces: on the client side, the library offers a “BFT _invoke”
method that issues the request and returns the correspond-
ing reply, implementing the client side of the protocol; on
the server-side, the library executes the replica protocol for
serializing all requests, and once a request is serialized it
invokes a “BFT_execute” upcall, whereby the application-
specific code executes the client request, updates the service
state, and produces the corresponding reply. Note that these
libraries only execute one request at a time, since they must
assume that the state changes performed by a given request
may affect the outcome of the next one. Since we use PBFT
as a black box, we can easily switch this replication library
with a different one, provided it offers the same guarantees
(i.e., state machine replication with linearizable semantics)
and has a similar programming interface.

4.2 Normal case operation

We start by describing the normal case in which clients and
replicas are not Byzantine, and thus all nodes follow the
protocols we present. We address the cases of malicious
behavior in subsequent sections. The code executed by the
client proxy is presented in Figure 2 and the code executed
by the replica proxy is presented in Figure 3. For simplicity,
the code omits some details such as error handling, message
signing and optimizations. This code is used to implement
two versions of the system, termed single-master and multi-
master. The difference between the two versions, as far as the
code in Figure 3 goes, lies only in the selection of replicas to
be contacted, as explained later.

At a high-level, our approach is to only force a total order
among the operations for which doing so is required to en-
sure that all transactions execute against the same snapshot
at all replicas, i.e., the BEGIN and COMMIT/ROLLBACK op-
erations. For these, we rely on the PBFT protocol to enforce
a total order at all replicas despite Byzantine faults. The re-
maining operations (reads and writes) can be executed more
efficiently by propagating them using the unreliable multi-
cast mechanism, and executing them in a single replica, con-
currently with other operations. The main problem then be-
comes how to deal with the case when that replica is Byzan-
tine and returns wrong results. This is handled at commit
time by validating the read and write results at all replicas.

In more detail, the application program starts a transac-
tion by executing a BEGIN call on the database interface
(function db_begin, Figure 2, line 1). The client starts by gen-
erating a unique identifier for the transaction and selecting
one replica to speculatively execute the transaction — we call
this replica the master replica for the transaction. (Note that
it does not need to be the same primary replica that is used by
the PBFT protocol.) Then, the client issues the correspond-
ing PBFT operation that will serialize the transaction be-
gin in all replicas by calling the BFT_invoke(<BEGIN,...>)
method from the PBFT library. The execution of the protocol
will eventually trigger the corresponding BFT _execute upcall
(Figure 3, line 1) at all replicas. At that moment, a database

transaction is started at the replica. Given the properties of
the PBFT system, and since both BEGIN and COMMIT op-
erations execute serially as PBFT operations, the transaction
is started in the same (equivalent) snapshot of the database
in every correct replica.

After executing BEGIN, an application can execute a se-
quence of read and write operations (functions db_read_op
and db_write_op, Figure 2, line 11 and line 24 respectively).
In a write operation, the operation is multicast to all replicas
(by calling mcast, which triggers the corresponding receive
upcall in all replicas, shown in Figure 3, line 33). The op-
eration is received by all replicas but only executed in the
master and its result is returned to the client, who then re-
turns the result to the application. Both the client proxy and
the master replica keep a list of operations and their results.

Read operations can be executed in two different ways. If
the transaction is known to be read-write (i.e., after the first
write operation), the execution of a read operation is similar
to the execution of a write operation. Otherwise, we perform
an optimized read as described in Section 4.4.

The transaction concludes by executing a COMMIT op-
eration (function db_commit, Figure 2, line 32). At commit
time, it is necessary to (1) serialize all commit operations
among themselves and relative to snapshots for beginning
transactions, and (2) perform a series of validations, namely
to confirm the outputs of the read and write operations that
were executed in a single (potentially Byzantine) replica. To
achieve this, the client issues the COMMIT PBFT operation
that includes the digest of the operations that were issued
and their results. This will trigger the BFT_execute upcall at
all replicas (Figure 3, line 9), and the invocation of this up-
call will occur in the same order relative to other BEGIN and
COMMIT operations.

A transaction can also end with a ROLLBACK operation.
A straightforward solution is to simply abort transaction exe-
cution in all replicas. We discuss the problems that arise with
this approach when the master is Byzantine in Section 4.6.

4.3 Optimistic execution and recovery

As we explained, the read and write operations of a trans-
action execute optimistically in a single replica, and their
results need to be subsequently validated at commit time.
We developed two algorithms that differ in how the master
replica is chosen and how operations execute (or not) op-
timistically in non-master replicas. While the single-master
technique performs better for read-write dominated work-
loads, the multi-master version performs better when there
is a large number of read-only transactions. Additionally,
these techniques imply a trade-off between the support re-
quired from the database system and the performance in the
presence of a Byzantine master. We discuss each of these
techniques in turn.

Multi-master optimistic execution. In the multi-master
version, each client can select a different replica as the mas-

03NN kW=

N B PADSEAEDSPEPRSD D WLWLWLWL WL L WLLWLWIERNDNDDNDDNDDNDNDNDNDND = = e
SO XN NHE WD, OOV NEAE WD, OVOVOIANNPE WD, OVOVOOIONUN PR WND R~ OO

function db_begin() : txHandle
uid = generate new uid
(masterRep ,readReps)=select (1 replica ,f+1 replicas)
BFT_invoke(<BEGIN, uid ,(masterRep ,readReps)>)
ops = new Map
readOnly = true
opCount = 0
trxHandle = new trxHandle (uid, masterRep, readReps, opCount, ops, readOnly)
return txHandle

function db_read_op(txHandle, op) : result
opNum = ++txHandle.opCount
mcast(<read (txHandle.uid, opNum, op)>)
recv(<readResult(txHandle . uid ,opNum,HOp, res)> // first result
txHandle . ops . put(opNum,<op,l ,H(res),’ read’ >);
return res
background // additional results
recv(<readResult(txHandle.uid , opNum,HOp, res)>)
<_,count ,HRes, > = txHandle.ops. get (opNum)
if (HRes == H(res)) then
trxHandle . ops. put (opNum,<op, count+1,HRes, ’read ’ >);
endif

function db_write_op (txHandle, op) : result
opNum = ++txHandle.opCount
mcast(<write (txHandle .uid, opNum, op)>)
recv(<writeResult (txHandle.uid ,opNum,HOp, res)>)
txHandle .readOnly = false
txHandle . ops.put(opNum, <op,l . H(res),’ write’ >);
return res

function db_commit(txHandle)
concurrent
if (txHandle.readOnly) then
while LastReadConfirmed (txHandle)<txHandle.opCount
wait
end while
return
endif
with
lastConfirmed=LastReadConfirmed (txHandle)
HOps = H(ListOps (txHandle))
HRes = H(ListRes (txHandle, lastConfirmed))
res = BFT_invoke(<COMMIT, txHandle.uid, lastConfirmed ,HOps, HRes>)

if (res == true) then

return
else

throw ByzantineExecutionException
endif

end concurrent

Figure 2. Byzantium client proxy code.

DBTxHandle, masterRep, readReps,

1 |upcall for BFT_exec(<BEGIN, uid ,(masterRep ,readReps)>)

2 DBTxHandle = db.begin ()

3 ops = new Map

4 readOnly = true

5 txSrvHandle = new txSrvHandle (uid,

6 ops, readOnly)

7 openTxs.put(uid, trxSrvHandle)

8

9 |upcall for BFT_exec(<COMMIT, uid, lastConfirmed , cltHOps, cltHRes>) : boolean
10 txSrvHandle = openTxs. get(uid)

11 openTxs.remove (uid)

12 if (NOT ThisIsMasterReplica(txSrvHandle)) then

13 execOK = exec_and_verify (txSrvHandle.DBTxHandle, lastConfirmed ,
14 txSrvHandle .ops, cltHOps, cltHRes)
15 if (NOT execOK) then

16 DBTxHandle. rollback ()

17 return false

18 endif

19 endif

20 return DB _trx_handle.commit ()

21

22 |upcall for recv(<read(uid, opNum, op)>)

23 txSrvHandle = openTxs. get(uid)

24 txSrvHandle . ops. put (opNum, <op,—>)

25 if ((txSrvHandle.readOnly AND ThisIsReadReplica(txSrvHandle))
26 OR(NOT txSrvHandle.readOnly AND

27 ThisIsMasterReplica(txSrvHandle))) then
28 result = txSrvHandle.DBTxHandle.exec (op)

29 txSrvHandle . ops. put (opNum, <op,result >);

30 send_reply(<readResult (uid ,opNum,H(op), result)>)

31 endif

32

33 |upcall for recv(<write (uid, opNum, op)>)

34 txSrvHandle = openTxs. get(uid)

35 txSrvHandle . ops. put (opNum, <op,—>)

36 if (txSrvHandle . masterRep == THIS_REPLICA) then

37 if ((txSrvHandle.readOnly AND NOT ThisIsReadReplica(txSrvHandle)) then
38 ExecReadPrefix (trxHandle.ops)

39 endif

40 result = txSrvHandle.DBTxHandle.exec(op)

41 txSrvHandle . ops. put(opNum, <op,result >)

42 send_reply(<writeResult (uid ,opNum,H(op),result)>)

43 endif

44 txSrvHandle . readOnly = false

Figure 3. Byzantium replica proxy code.

ter. This leads to more flexibility in terms of load balancing,
and good resilience to a Byzantine master.

In this version of the protocol, the master is selected in the
beginning of the transaction either at random or following a
more sophisticated load-balancing scheme [Elnikety 2007].
Subsequent reads and writes are then performed optimisti-

cally at the master replica, which, as we pointed out, may be
Byzantine and return incorrect results. Therefore, when the
transaction attempts to commit there are two validation steps
that need to be performed: ensuring that the results the client
observed were correct, and that the transaction can commit
according to SI.

For the former, all non-master replicas have to execute the
remaining transaction operations and verify that the returned
results match the results previously output by the master
(Figure 3 line 12). (For now we assume that these operations
were received by all replicas, and in Section 4.5.2 we explain
how to handle the case where replicas do not receive them,
either due to message loss or to a Byzantine client.) Since
the transaction executes in the same snapshot in every replica
(due to the fact that both BEGIN and COMMIT operations are
serialized by PBFT), if the master and client were correct, all
other correct replicas should obtain the same results. In case
the results do not match, either the client or the master was
Byzantine and we rollback the transaction.

Additionally, all replicas including the master must guar-
antee that SI properties hold for the committing transaction.
The way this is done depends on the concurrency control
mechanism of the underlying database system.

For database systems with optimistic concurrency con-
trol, guaranteeing SI is immediate. As a transaction executes
in the same snapshot and commits in the same order rela-
tive to other commits in all replicas, the validation performed
by the database system suffices to guarantee that a transac-
tion commit succeeds in all replicas or in none (when a con-
flicting transaction has previously committed). With these
database systems, all operations can be executed optimisti-
cally in all replicas, reducing the work needed at commit.

However, most database systems rely on locks for concur-
rency control, including the main system we used to test our
prototype, PostgreSQL. In such systems, before executing a
write operation, the transaction must obtain a lock on rows
to be written. When a replica is acting as master for some
ongoing transaction, it will obtain locks on rows it changes.
This can block the local execution of a committing trans-
action that has written in the same rows, and ultimately lead
to a deadlock. We address this problem by temporarily undo-
ing all operations of the ongoing transaction. After executing
the committing transaction, if the commit succeeds, the on-
going transaction is rolled back due to a conflict. Otherwise,
we replay the undone operations and the ongoing transaction
execution may proceed.

To achieve this, we rely on the widely available transac-
tion savepoint mechanism. Savepoints enable rolling back
all operations executed inside a running transaction after the
savepoint is established. Thus, when the BEGIN operation
executes, a savepoint is created in the initial database snap-
shot. Later, when we need to undo the operations that were
executed in the transaction but still use the same database
snapshot, we just need to rollback the transaction to the save-
point that was previously created.

To know which local transaction would block a com-
mitting transaction, we use approaches similar to non-BFT
replicated databases with SI semantics [Elnikety 2006] - we
further discuss this issue in Section 6.

Single-master optimistic execution. Unlike in the multi-
master protocol, where we have to extract write-sets in
databases the use locking, in the single-master case we can
avoid this by optimistically executing transactions in the
same single node. This requires that clients and replicas
agree on the single master that should be executing reads
and writes in the course of transactions. This is achieved
by augmenting the service state maintained by the PBFT
service with this information, and augmenting the service
interface with special operations to enable changing the cur-
rent master. The properties of PBFT will then ensure that
all clients and replicas agree on which replica is acting as a
master, and this can be communicated to the client as part of
the output of the BEGIN PBFT operation.

Given this agreement, validating the SI properties can
be done in a straightforward manner just by executing read
and write operations of each transaction when it commits.
In this case, as transactions commit serially in all replicas,
if the transaction can commit in the master, it will be able
to commit in all non-master replicas independently of the
concurrency control mechanism that is used.

This scheme can be extended to allow transactions to also
execute speculatively in non-master replicas before commit
time. In databases using optimistic concurrency control, op-
erations can be broadcast to all replicas, which speculatively
execute them as they are received. However, for this opti-
mization to work in lock-based database systems, we must
guarantee that the same transactions obtain the same set of
locks in all replicas — otherwise, some committing transac-
tion would not be able to obtain the needed locks. Guaran-
teeing this without controlling the internals of the database
system requires guaranteeing that operations are issued in
some given order to the database system. To ensure this,
HRDB [Vandiver 2007] proposes the use of commit barri-
ers controlled by a centralized coordinator for this purpose.
In our system we implement a similar idea of using infor-
mation provided by the master to coordinate other replicas,
guaranteeing that all operations of a transaction but the last
one can execute speculatively in non-master replicas before
commit-time. However, unlike HRDB, if the master is sus-
pected to be faulty, another replica is selected to act as pri-
mary.

In particular, our approach leverages the fact that, for
transactions executing speculatively at non-master replicas,
if an operation completes in the master, it can execute in
other replicas without blocking. This follows from the fact
that any other operation that would require the same locks
would have blocked in the master. Thus, when a non-master
replica receives an operation op,, from ¢1, it knows that it can
execute operation op,,—1 from transaction ¢; (because op,,—1
has not blocked in the master). However, this condition is not
sufficient to avoid blocking when a transaction commits —
e.g. suppose an operation op of ¢, executes at the master after
the master committed ¢;. If a non-master replica executes

op before running some operation of ¢; that requires the
same locks as op, t; would be unable to commit. To address
this problem, we must guarantee that if an operation was
executed after the commit of ¢,, at the master replica, that
same operation will execute in all non-master replicas after
committing ¢,, (this was known as the Transaction-ordering
rule in HRDB). To guarantee this, the message with the
result of a write operation, op,,, includes the number of the
last committed transaction, ¢,,, at the master (serialized by
the PBFT protocol). The message that propagates a read or
write operation op,,1, includes the value received in the
result of the last write operation. Therefore, we can enforce
the necessary order by imposing that operation op,, executes
at non-master replicas only after that replica has executed
the commit of ¢,,,.

4.4 Read-only optimizations

When transactions begin, we assume they are read-only until
the first write operation. While the transaction is flagged as
read-only, we employ the following optimization to improve
the performance of read-only transactions (and of read-only
prefixes of other transactions). Read requests are executed in
f+1replicas (chosen randomly when the transaction begins)
and the result from the first reply is returned to the client,
while the remaining replies are collected in the background
(Figure 2, lines 17-22). When the f additional replies that are
received in the background match the first reply, the result of
the read is considered to be confirmed without the need for
executing the operation in any additional replica.

At commit time, if all returned values were correctly val-
idated by f + 1 replicas, the client immediately returns the
commit successfully. In the case that some reads were not yet
validated, the commit procedure falls back to the original,
unoptimized version, which is run in parallel with trying to
conclude the optimized validation. In the normal case, when
the f+ 1 replicas reply at similar speeds, operations are con-
firmed by the optimized protocol. When a write operation
occurs, the transaction is promoted to read-write, and starts
executing the normal protocol. However, the confirmed read
operations executed prior to the first write will not be in-
cluded in the final commit-time validation.

This scheme enables a form of striping and load-balancing,
since read-only transactions only execute their read opera-
tions in f 4 1 of the 3f + 1 replicas. For providing efficient
load balancing, the selection of the replicas that execute the
reads (Figure 2, line 3) could follow one of the various ex-
isting proposals (e.g., [Elnikety 2007]). In our prototype, the
f+1replicas are selected randomly with the constraint that,
in the multi-master version, the f+ 1 replicas always include
the master. This has the advantage that, when a transaction is
upgraded to read-write, the master replica has already exe-
cuted all previous operations and is ready to proceed with the
execution of the subsequent operations. In the single-master
version, the f + 1 replicas selected to execute read oper-
ations do not include the master (as in Ganymed [Plattner

2004]). The rationale for this approach is to reduce the load
in the master node — otherwise, the master node would have
to execute all transactions. The downside of this approach is
that when a transaction is upgraded to read-write, the master
node needs to execute all operations whose results are not
known to be guaranteed, if any.

4.5 Tolerating Byzantine faults

So far we have mostly assumed that nodes follow the pro-
tocol. In this section we explain how the system handles
Byzantine behavior, starting with the assumption that only
replicas may exhibit Byzantine behavior, and later address-
ing the case of Byzantine clients.

4.5.1 Tolerating a faulty master

A faulty master can return erroneous results or fail to return
any results to the clients. The first situation is addressed by
having all replicas verify at commit time the correctness of
results returned by the master. If the results of executing
the operations in the transaction do not match the results
that the client observed (and whose digests are passed as
an argument to the PBFT COMMIT operation), the replicas
will rollback the transaction and the client will throw an
exception signaling Byzantine behavior. This guarantees that
correct replicas will only commit transactions for which the
master has returned correct results for every operation.

Addressing the case where a master fails to reply to an
operation requires different solutions, depending on whether
a single-master or a multi-master approach is used.

Multi-master In the multi-master version, if the master
fails to reply to an operation, the client selects a new mas-
ter to replace the previous one and starts by re-executing all
previously executed transaction operations in the new mas-
ter. If the obtained results do not match, the client rollbacks
the transaction by executing a ROLLBACK operation and
throws an exception signaling Byzantine behavior. If the re-
sults match, the client proceeds by executing the next opera-
tion in the new master.

Because of this mechanism, there may be situations
where the master is unaware that it did not execute the entire
transaction (e.g., if the client switched to a new master due to
temporary unreachability of the original master). To handle
this, at commit time, a replica that believes itself to be the
master of a transaction must still verify that the sequence of
operations sent by the client is the same as the sequence that
it has itself executed. Thus, if the master that was replaced
is active, it will find out that additional operations exist and
will execute them.

In subsequent transactions, a client will not select as
master a replica that it suspects of exhibiting Byzantine
behavior.

Single-master In this scheme, if the master fails to reply
to an operation, the client will forward the request to all
replicas. Each replica will try to forward the request to the

master on behalf of the client. If the master replies, the
replica will forward the reply to the client. Otherwise, the
replica will suspect the master, and request a master change.

A replica starts a master change by submitting a PBFT
master change operation (as a consequence of a suspicion
of Byzantine behavior). When f + 1 master change oper-
ations from different replicas are executed concerning the
same master, a new master is automatically elected — in our
prototype, replicas are numbered, and the next master replica
is selected in a round-robin fashion. In this case, all ongo-
ing transactions are marked for rollback. When executing
the next operation, the client will be informed that the trans-
action will rollback.

Aside from this situation, a replica will also request a
master change when, during the execution of the commit,
the results observed by the client do not match the local
results. This raises the possibility of Byzantine clients using
this mechanism to cause false positives and trigger constant
master changes. The next section discusses this and other
avenues that Byzantine clients may use to cause the system
to malfunction.

4.5.2 Tolerating Byzantine clients

The system also needs to handle Byzantine clients that might
try to cause the replicated system to deviate from the in-
tended semantics. Note that we are not trying to prevent a
malicious client with legitimate access from writing incor-
rect data, or deleting entries in the database. Such attacks can
only be limited by enforcing security/access control policies
and maintaining database snapshots that can be used for data
recovery [King 2005]. What we are trying to prevent are vi-
olations of database semantics or service availability due to
clients that do not follow the protocol we described.

Since PBFT already ensures that Byzantine clients cannot
affect the system other than by invoking operations through
the service interface, our system only needs to address vio-
lations of the remaining protocols that are used.

An obvious check that replicas need to perform is whether
they are receiving a valid sequence of operations from each
client. These are simple checks, such as verifying that a BE-
GIN is always followed by a COMMIT/ROLLBACK and that
the unique identifiers that are sent are valid.

There are, however, more subtle deviations that could be
exploited by Byzantine clients. One avenue of attack follows
from that fact that during a transaction operations are multi-
cast to all replicas, and, at commit time, the client propagates
a digest of operations and results to all replicas, but not the
operations themselves. A Byzantine client could exploit this
behavior by sending different sets of operations to different
replicas. (A similar possibility is that some of the messages
containing operations are lost and do not reach some of the
replicas by commit time.) The consequence would be that
at commit time, only those replicas that had a sequence that
matched the digests would commit the transaction, leading
to divergent database states at different replicas.

To address this problem, while avoiding a new round
of messages among replicas during correct executions, we
leverage a PBFT protocol mechanism that enables replicas to
agree on non-deterministic choices [Rodrigues 2001]. This
feature was originally used for replicas to agree on things
such as the current clock value. In this mechanism, the pri-
mary proposes a value for the non-deterministic choices and
replicas that disagree with that value can reject it. If there
is no set of 2f + 1 replicas that accept that choice then the
operation is not executed, a primary change will take place,
and the new primary can then propose a different value.

We use this mechanism to allow replicas to vote on
whether they have the sequence of operations that match the
digests sent by the client. If 2 f + 1 replicas agree on the fact
that they hold all the operations, the PBFT operation will
proceed with transaction commitment. Correct replicas that
were not in this set and do not have the correct sequence of
operations must obtain it from other replicas. If the primary
believes it does not have the sequence of operations and
2f + 1 replicas agree on this fact (if the client sent incor-
rect digests, for instance) then the PBFT operation proceeds
with all replicas rolling back the transaction. Otherwise, if
there is no agreement among any set of 2f + 1 nodes, the
PBFT protocol automatically initiates a primary change and
the new primary will repeat the process. In parallel, correct
replicas that have the right sequence of operations will mul-
ticast them to all replicas. This ensures liveness, since either
a correct replica has the set of operations and will eventually
propagate them to all replicas, or the correct replicas will
eventually agree on the fact that they do not have access to
the operations and the transaction will rollback.

Another possible consequence of Byzantine clients is that
the master could be forced to discard its previously executed
sequence of operations. This would be the case if the set of
values sent in the commit operation is accepted by 2f + 1
replicas but these values do not correspond to the values sent
to the master before committing. In this case we need to al-
low the master to undo the executed operations and execute
the new sequence in the original snapshot. To this end, we
set up a savepoint when the transaction starts. Later, if the
master finds that the Byzantine client had sent other repli-
cas a different set of values that match the commit digests,
then the transaction is rolled back to the savepoint that was
previously created before executing the new sequence of op-
erations. This ensures that all replicas, including the master,
execute the same operations on the same database snapshot,
guaranteeing the correct behavior of our system.

Another possible point of exploitation arises if a Byzan-
tine client send an incorrect digest for the results, leading all
replicas but the master to rollback the transaction. To address
this case, the master checks the received digest and rollbacks
the transaction if a Byzantine behavior is detected.

Finally, to avoid the aforementioned problem of clients
constantly changing the master due to false accusations in

the single master approach, we can deploy a mechanism
by which replicas suspect a client that causes too many
master changes, and that client is forced to ask for a receipt,
signed by the master replica, of the operation results that
were returned to it before being able to cause a new master
change. The operation to request a receipt can be handled
just like read and write operations.

4.6 Handling rolled back transactions

When a transaction ends with a ROLLBACK operation, a pos-
sible approach is to simply rollback the transaction in all
replicas without verifying if previously returned results were
correct (e.g., this solution is adopted in [Vandiver 2007]).
In our system, this could be easily implemented by execut-
ing a PBFT operation that rollbacks the transaction in each
replica.

This approach does not lead to any inconsistency as the
replicas are not modified. However, in case of a faulty mas-
ter, the application might have received an erroneous result,
leading to the decision to rollback the transaction. For ex-
ample, consider a transaction trying to reserve a seat in a
flight that has seats available. When the transaction queries
the database for available seats, a Byzantine master might in-
correctly return that none is available. As a consequence, the
application program may end the transaction with a ROLL-
BACK. If no verification of the results that were returned was
performed, the client would have made a decision to rollback
the transaction based on an incorrect database state.

To detect this, we decided to include an option to force
the system to verify the correctness of the returned results
even when a transaction ends with a ROLLBACK operation.
When this option is activated, the execution of a rollback
becomes similar to the execution of a commit (with the
obvious difference that the transaction always rollbacks).
If the verification fails, the ROLLBACK operation raises an
exception. Note that a correct program should include the
code to catch all exceptions raised by a database operation
and take appropriate action depending on the content of the
exception.

5. Correctness

In this section we sketch a proof that our design meets safety
and liveness conditions.

The safety part of our correctness conditions states that
transactions that are committed on the replicated database
observe SI semantics. This follows from the linearizable se-
mantics of PBFT [Castro 2002], and the fact that all BEGIN
and COMMIT operations are serialized by PBFT and thus ex-
ecute in the same total order at all non-faulty replicas. This,
coupled with the fact that the output of the commit opera-
tion only depends on the sequence of begin and commit op-
erations that happened previously, which is the same at all
non-faulty replicas, implies that the output of commits will
be the same as the output of the local commit at each non-

faulty replica. Note that the output of commit is independent
of the other operations that are not serialized through PBFT
because commit operations carry as argument the sequence
of values that were read and written by the transaction.

Given this point, the proof that the system obeys SI se-
mantics follows from the fact that each non-faulty replica ap-
plies the begin and commit operations on their local database
that provides SI semantics and forwards the reply from the
database, and that the commit validates all the outputs that
the client received and applies all the updates that the client
issued during the transaction.

Read-only transactions are a special case since the com-
mit does not require invoking a PBFT operation, but these
also conform to SI semantics, since when these transactions
begin they run a PBFT begin operation, hence establishing a
position for this transaction in the serial order of committed
transactions at all non-faulty replicas, as stated above. Since
the values that are read are confirmed by f + 1 replicas, there
is at least one non-faulty replica in that set that will return a
value that is correct according to the SI semantics and the
total order set by the PBFT begin operation.

For liveness, we need to ensure that operations that are
initiated by the client are eventually executed. This requires
the same assumptions that are required for liveness of the
PBFT protocol, which is that after some unknown point in
the execution of the program messages message delays do
not grow superlinearly [Castro 2002].

Given this assumption, and due to PBFT’s liveness condi-
tion, we can guarantee that the BEGIN, COMMIT, and ROLL-
BACK operations are eventually executed. Furthermore, op-
erations that do not go through the PBFT protocol are sim-
ple RPCs which are eventually executed under the same set
of assumptions. The execution of these operations does not
block, by algorithm construction, and thus we can guarantee
that all client operations eventually get executed.

6. Implementation

We implemented a prototype of Byzantium in Java. We de-
veloped a Java-based PBFT implementation, and our proxies
use the JDBC interface to interact with the application and
the underlying database system. We also built a communica-
tion library providing FIFO semantics and message authen-
tication using Message Authentication Codes (MACs).

We use several techniques proposed in other middleware
database replication systems [Cecchet 2008, Elnikety 2006,
Rodrigues 2001, Vandiver 2007] in our system. We make
non-deterministic database operations (e.g. select) determin-
istic by rewriting the operation and/or overwriting the non-
deterministic components of each reply.

We implemented two mechanisms to avoid deadlocking
in our multi-master version: one that relies on the extraction
of write-sets using database triggers, and another that relies
on the analysis of SQL code. These mechanisms work by
maintaining the write-sets of on-going transactions and, be-

fore executing a remote operation, verify if it would conflict
with local transaction. Sometimes it is not possible to verify
this from the write code — in such situations, it is possible to
obtain the additional needed information by relying on the
SELECT ... FOR UPDATE NOWAIT SQL statement. Our ex-
periments have shown that neither approach offers a clear
performance advantage over the other.

Since Byzantium was designed to work with any database
that supports the JDBC interface and provides Snapshot Iso-
lation, we tried it with two different database implementa-
tions: PostgreSQL and HyperSQL!, a Java-based database
system that implements SI. In HyperSQL, the single-master
version worked without changes, but for the multi-master
version it was necessary to develop a workaround to address
an unimplemented method of the JDBC interface. The per-
formance of HyperSQL with the TPC-C benchmark config-
uration we used was much lower than that of PostgreSQL.
Thus, in our evaluation, we only report the performance with
PostgreSQL.

7. Evaluation

In this section, we evaluate the performance of our proto-
type. Our tests were performed with f = 1, leading to
n = 3f+1 = 4replicas. Studies show that this configuration
is sufficient to mask almost all reported database bugs [Gashi
2007]. The tests were run on a cluster of machines, each
one with a single-core 2.6 GHz AMD Opeteron 252 pro-
cessor, 4 GB of memory, a 146 GB Ultra320 SCSI disk and
1 Gigabit ethernet ports. The machines were connected by
a Nortel Ethernet Routing Switch 5520. The machines were
running the Linux operating system, kernel version 2.6.30.
The database used was PostgreSQL version 8.3.4, in syn-
chronous commit mode to guarantee reliability. The JVM
we used was Sun VM version 1.6.0_12.

The evaluation used an open-source implementation of
TPC-C2. We made slight modifications to the benchmark,
namely to include a warm-up phase before starting the per-
formance measurements, and to allow clients to execute on
different machines. An important point is that our bench-
mark does not use database batches, which makes it more
demanding for the communication protocols and leads to
worse performance when compared to the solution using
batches. Our database configuration included 10 warehouses
and an inter-transaction arrival time of 200 ms. The experi-
ments show the average of 5 runs, with the error bars show-
ing the lowest and highest value.

The goal of our experiments is to evaluate the overhead
of providing BFT replication and the efficiency of the two
versions of our protocols. For this, we compare the Byzan-
tium multi-master, Byz-N, and single master, Byz-1, versions
to both a non-replicated proxy-based solution and a full BFT
replicated system where all operations are serialized by exe-

'http://hsqldb.org/
Zhttp://sourceforge.net/projects/benchmarksql/

4000 e —
3500 |
3000 |
2500 |
2000 |
1500 | -
1000 | BT

Proxy —+—
Byz-1 ———-

500 /E/ Byz-N o~ 1

FUullBFT - «-»

5 10 15 20 25 30 35 40 45

Transactions per minute

!

Number of clients

Figure 4. Performance on standard TPC-C workload (with
no batches). Note that Full BFT has only a single data point,
as expected, since concurrency leads to deadlock.

cuting each operation as a PBFT operation. The proxy solu-
tion uses a proxy that relays the connections from all clients
to a single database server using JDBC connections. The
solution is multi-threaded, with each client being handled
concurrently by a dedicated thread. This reflects the perfor-
mance of a non-replicated database server, while only adding
the overhead of implementing a Java-based middleware so-
lution. We use the proxy and full BFT solutions as compar-
ison points, because they represent the best and worst case
of what an implementation using our code base is expected
to achieve, with the former incurring no BFT overhead and
the latter incurring the overhead of running PBFT for every
operation.

In our experiments, we have used the mechanism that
avoids deadlocks without using database triggers. We also
disabled the mechanism to verify the correctness of the exe-
cution of rolled back transactions.

7.1 TPC-C standard: read-write dominated workload

Figure 4 presents the performance results obtained with the
standard TPC-C workload, consisting of 92% read-write
transactions and 8% read-only transactions. The results show
that the performance of our versions is between 20% to 35%
lower than the proxy solution.

There are two main reasons for this overhead. First,
the workload consists mostly of read-write transactions,
for which both read and write operations must execute at
all replicas. (In fail-stop replication, part of this cost is
avoided as it suffices to read from a single replica.) Thus,
this workload introduces overhead associated with the repli-
cation protocols that is not compensated by any form of
load-balancing. This overhead could have been minimized
if transactions had long prefixes of read-only operations, as
explained in section 4.4. However, TPC-C read-write trans-
actions have very small prefixes of read-only operations —
e.g., the new order transaction, which may include over 50

25000

g —— T
2 Byz-1 ———- P

3 20000 f Byz-N --e- 1
= FUll BFT »- +- PR S
8 15000 f T .
2 .

2 10000 t JY S TR 1
Q - N

m Z - - - -

2 e -
g 5000 | ~ 1
= »

10 20 30 40 50 60 70 80 90
Number of clients

6000 ——————————————————

]

2 5000

£

4000 |

(0]

o

2 3000

S

S 2000 f 7 5

< . Byzy - -

g 1000 b 7 ByzN o |
ol ‘ JFUIBFT - o)

5 10 15 20 25 30 35 40 45
Number of clients

Figure 5. Performance on read-only workload, based on
TPC-C transactions with no batches.

operations, has a prefix of two read operations before the
first write operation.

When compared with the full BFT solution, our solution
performs 5% better for a single client. For a larger number
of clients, the full BFT solution always blocked. This was
expected, as we did not include any mechanism to prevent a
PBFT operation from blocking in the database when trying
to acquire a lock that is taken (as we have in Byz-N).

When comparing our two versions, the difference tends
to be about 10% and slightly increasing with the number
of clients, with the single master version performing better.
The reason for this lies in the optimization mechanism of
the single-master version, which speculatively executes op-
erations in all replicas, thus minimizing the execution time
for the commit operation.

Two additional results are important. First, the induced
rollback ratio due to concurrency problems increases with
the number of clients, but it is similar for both Byzantium
versions and the proxy solution (with a difference of less than
3% in all studied scenarios).

The second result worth mentioning is the time to execute
a transaction. In this case, the results vary depending on
the transaction type. Read-only transactions run up to 1.3x
faster in Byzantium versions than in proxy — we will discuss
the reasons for this in more detail in the next section. Read-
write transactions run slower in Byzantium than in proxy by
a factor of 0.7 or better. This is due to the additional stages
introduced by the replication algorithm.

7.2 Read-only workload

Figure 5 presents the performance results obtained with
a modified TPC-C workload consisting of only read-only
transactions, with 50% for each type of read-only transac-
tion (check inventory level and check order status).

The results show that Byz-N improves on the performance
of proxy by up to 10% when the number of clients is smaller
than 32, and this improvement increases up to 90% with
96 clients. The main reason for this is related to the load

Figure 6. Performance on mixed workload, based on TPC-
C transactions with no batches. Full BFT has only a single
data point, as expected, since concurrency leads to deadlock.

of replicas. In the multi-master version, since operations
of read-only transactions tend to execute only in f + 1
replicas, the load of each replica is half of the load when
running proxy. Thus, by load balancing, our solution is able
to achieve close to optimal throughput, almost doubling the
result of proxy.

The performance of Byz-1 is better than proxy and worse
than Byz-N. In the case of the single master protocol, the
load of replicas other than the master is at most % of the load
when running proxy.

As expected, the results show that the full BFT perfor-
mance is the worst of the four setups, and the differences
increase rapidly with the number of clients. This is due to
having to use the PBFT protocol for executing each opera-
tion, and demonstrates the need for minimizing the use of
this protocol, as proposed by our solution.

7.3 Mixed workload

Figure 6 presents the performance results obtained with a
modified TPC-C workload consisting of 50% read transac-
tions (with 25% for both check inventory level and check or-
der status) and 50% write transactions (with 27% for new or-
der, 21% for payment and 2% for delivery, keeping the orig-
inal ratio among write transactions). The results show that
the performance of our versions is between 20% and 30%
lower than the proxy solution with up to 48 clients. This rep-
resents a slightly lower overhead when compared with the
write-dominated workload. In this case, the results for Byz-
N and Byz-1 are very similar, as a result of the improved
performance of the multi-master version for read-only trans-
actions.

7.4 Byzantine behavior

Next, we evaluate the performance of Byzantium in the pres-
ence of Byzantine faults caused by database bugs. To this
end, we have changed the code of the Byzantium replica
proxy to simulate incorrect results from the database. The

3000 —_—
o) T SN
S 2500 f s 1
£ 2000 | P S RIS
@ e i
o "ir/'/'/f
@ 1500 |]
g 1000 f o f 1
1] p
5 F
= 500 Byz-N-Faulty » x|

- .., ByzN .o

0 1 1 1
5 10 15 20 25 30 35 40 45

Number of clients

Figure 7. Performance on the presence of a single Byzan-
tine server, using TPC-C standard workload .

implementation is very simple: for each data item read, it
randomly changes the returned value with a pre-defined
probability. Although this scenario represents a rather be-
nign case of Byzantine behavior, it is one that is probably
more likely to happen in practice, with a replica sending the
same incorrect messages to every other node. In the scenario
of a malicious replica, the performance penalty could be
higher, particularly in the single-master case.

We have measured the throughput of the system with the
standard TPC-C benchmark, a single incorrect replica and an
error probability of 10% in the period after the server starts
exhibiting Byzantine behavior. We only present the results
for our multi-master design — the results with a single master
show a similar pattern.

Figure 7 presents the results, with Byz-N-Faulty repre-
senting the throughput with a Byzantine replica. The lower
throughput was expected for two reasons. First, the load
is divided among a smaller number of replicas. Second, in
all PBFT protocol steps, the messages from the Byzantine
replica cannot be used for obtaining the required conditions,
thus delaying the execution of the protocol.

A more interesting and surprising result is related to the
number of rolled back transactions, which increased to about
5% of all executed transactions. This result seemed to sug-
gest that our mechanism to change the master replica worked
very slowly. However, after analyzing the experiments, we
discovered that a large number of transactions with incorrect
results were rolled back by the benchmark code and not due
to the detection of Byzantine behavior by our algorithms.
The reason for this is that the transaction code often uses
the results from a previous operation as a parameter in the
subsequent operations. When the previous returned result is
incorrect, the subsequent operation fails and the benchmark
ends up rolling back the transaction. These results also show
the importance of the mechanism to verify the execution of
rolled back transactions introduced in Section 4.6.

8. Conclusions

We presented Byzantium, the first proposal for middleware-
based BFT replication of database systems that allows for
concurrent execution of database operations and does not
rely on centralized components. Byzantium shows that it
is possible to obtain the strong assurances that derive from
using a Byzantine fault model, while paying only a modest
penalty in terms of performance overhead. We showed how
to minimize the use of the expensive BFT operations using
two different techniques for optimistic execution, and how
to optimize the execution of read-only transactions.

We evaluated Byzantium and our results show that repli-
cation introduces only a modest performance overhead for
read-write dominated workloads and we perform up to 90%
better than a non-replicated database system for read-only
workloads. Our single-master version performs better in
read-write dominated workloads while the multi-master ver-
sion performs better with a large number of read-only trans-
actions.

In the future, we intend to deploy different database sys-
tems in different replicas, and to explore the use of other
BFT protocols as their implementations become available.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Ozalp Babaoglu, for the time they dedicated to
providing valuable feedback on earlier versions of this paper.
This work was partially supported by CITI and FCT/MCTES
project # PTDC/EIA/74325/2006.

References

[Bernstein 1986] Philip A. Bernstein, Vassos Hadzilacos, and
Nathan Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1986. ISBN 0-201-10715-5.

[Castro 2002] Miguel Castro and Barbara Liskov. Practical Byzan-
tine Fault Tolerance and Proactive Recovery. ACM Trans. Com-
put. Syst., 20:398-461, November 2002.

[Cecchet 2008] Emmanuel Cecchet, George Candea, and Anastasia
Ailamaki. Middleware-based Database Replication: The Gaps
Between Theory and Practice. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data,
SIGMOD 08, pages 739-752. ACM, 2008.

[Clement 2009] Allen Clement, Manos Kapritsos, Sangmin Lee,
Yang Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor Riche.
Upright Cluster Services. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP ’09,
pages 277-290. ACM, 2009.

[DISA 2004] Defense Information Systems Agency DISA.
Database security technical implementation guide - version 7,
release 1. White paper available at databasesecurity.com, Octo-
ber 2004.

[Elnikety 2006] Sameh Elnikety, Steven Dropsho, and Fernando
Pedone. Tashkent: Uniting Durability With Transaction Order-

ing for High-performance Scalable Database Replication. In
Proceedings of the 1st ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems 2006, EuroSys 06, pages 117-130.
ACM, 2006.

[Elnikety 2007] Sameh Elnikety, Steven Dropsho, and Willy
Zwaenepoel. Tashkent+: Memory-aware Load Balancing and
Update Filtering in Replicated Databases. In Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2007, EuroSys ’07, pages 399-412, New York,
NY, USA, 2007. ACM.

[Elnikety 2005] Sameh Elnikety, Willy Zwaenepoel, and Fernando
Pedone. Database Replication Using Generalized Snapshot Iso-
lation. In Proceedings of the 24th IEEE Symposium on Reli-
able Distributed Systems, pages 73—-84. IEEE Computer Society,
2005.

[Fekete 2005] Alan Fekete, Dimitrios Liarokapis, Elizabeth
O’Neil, Patrick O’Neil, and Dennis Shasha. Making Snapshot
Isolation Serializable. ACM Trans. Database Syst., 30:492-528,
June 2005.

[Fischer 1985] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of Distributed Consensus with One
Faulty Process. J. ACM, 32:374-382, April 1985.

[Fonseca 2010] Pedro Fonseca, Cheng Li, Vishal Singhal, and
Rodrigo Rodrigues. A Study of the Internal and External Effects
of Concurrency Bugs. In Proceedings of the 40th IEEE/IFIP
International Conference on Dependable Systems and Networks,
DSN 2010. IEEE, July 2010.

[Garcia Molina 1986] Hector Garcia Molina, Frank Pittelli, and Su-
san Davidson. Applications of byzantine agreement in database
systems. ACM Trans. Database Syst., 11:27-47, March 1986.

[Gashi 2007] Ilir Gashi, Peter Popov, and Lorenzo Strigini. Fault
Tolerance via Diversity for Off-the-Shelf Products: A Study
with SQL Database Servers. IEEE Trans. Dependable Secur.
Comput., 4:280-294, October 2007.

[Gribble 2001] Steven D. Gribble. Robustness in Complex Sys-
tems. In Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, pages 21-26. IEEE Computer Society, 2001.

[Herlihy 1987] M. P. Herlihy and J. M. Wing. Axioms for Con-
current Objects. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL *87, pages 13-26. ACM, 1987.

[King 2005] Samuel T. King and Peter M. Chen. Backtracking
Intrusions. ACM Trans. Comput. Syst., 23:51-76, February
2005.

[Kotla 2007] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin,
Allen Clement, and Edmund Wong. Zyzzyva: Speculative
Byzantine Fault Tolerance. In Proceedings of twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 45-58. ACM, 2007.

[Lamport 1982] Leslie Lamport, Robert Shostak, and Marshall
Pease. The Byzantine Generals Problem. ACM Trans. Program.
Lang. Syst., 4:382-401, July 1982.

[Lin 2005] Yi Lin, Kem Bettina, Marta Patifio Martinez, and Ri-
cardo Jiménez-Peris. Middleware Based Data Replication Pro-
viding Snapshot Isolation. In Proceedings of the 2005 ACM SIG-

MOD International Conference on Management of Data, SIG-
MOD ’05, pages 419-430. ACM, 2005.

[Nightingale 2005] Edmund B. Nightingale, Peter M. Chen, and
Jason Flinn. Speculative Execution in a Distributed File System.
In Proceedings of the twentieth ACM Symposium on Operating
Systems Principles, SOSP °05, pages 191-205. ACM, 2005.

[Plattner 2004] Christian Plattner and Gustavo Alonso. Ganymed:
Scalable Replication for Transactional Web Applications. In
Proceedings of the 5th ACM/IFIP/USENIX International Con-
ference on Middleware, Middleware ’04, pages 155-174.
Springer-Verlag New York, Inc., 2004.

[Preguica 2008] Nuno Preguica, Rodrigo Rodrigues, Cristévao
Honorato, and Jodao Lourenco. Byzantium: Byzantine-fault-
tolerant Database Replication Providing Snapshot Isolation. In
Proceedings of the Fourth conference on Hot Topics in System
Dependability, HotDep’08, pages 9-9. USENIX Association,
2008.

[Rodrigues 2001] Rodrigo Rodrigues, Miguel Castro, and Barbara
Liskov. BASE: Using Abstraction to Improve Fault Tolerance.
In Proceedings of the eighteenth ACM Symposium on Operating
Systems Principles, SOSP *01, pages 15-28. ACM, 2001.

[Schneider 1990] Fred B. Schneider. Implementing Fault-tolerant
Services Using the State Machine Approach: A Tutorial. ACM
Comput. Surv., 22:299-319, December 1990.

[Vandiver 2007] Ben Vandiver, Hari Balakrishnan, Barbara Liskov,
and Sam Madden. Tolerating Byzantine Faults in Transaction
Processing Systems Using Commit Barrier Scheduling. In Pro-
ceedings of twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP *07, pages 59-72. ACM, 2007.

[Yin 2003] Jian Yin, Jean-Philippe Martin, Arun Venkataramani,
Lorenzo Alvisi, and Mike Dahlin. Separating Agreement From
Execution for Byzantine Fault Tolerant Services. In Proceed-
ings of the nineteenth ACM Symposium on Operating Systems
Principles, SOSP 03, pages 253-267. ACM, 2003.

