Enhancing the OS against Security Threats in
System Administration

Nuno Santos!, Rodrigo Rodrigues?, and Bryan Ford?

' MPI-SWS
2 CITI / Universidade Nova de Lisboa
% Yale University

Abstract. The consequences of security breaches due to system admin-
istrator errors can be catastrophic. Software systems in general, and OSes
in particular, ultimately depend on a fully trusted administrator whom
is granted superuser privileges that allow him to fully control the system.
Consequently, an administrator acting negligently or unethically can eas-
ily compromise user data in irreversible ways by leaking, modifying, or
deleting data. In this paper we propose a new set of guiding principles for
OS design that we call the broker security model. Our model aims to in-
crease OS security without hindering manageability. This is achieved by
a two-step process that (1) restricts administrator privileges to preclude
inspection and modification of user data, and (2) allows for manage-
ment tasks that are mediated by a layer of trusted programs—brokers—
interposed between the management interface and system objects. We
demonstrate the viability of this approach by building BROKULOS, a
Linux-based OS that suppresses superuser privileges and exposes a nar-
row management interface consisting of a set of tailor-made brokers. Our
evaluation shows that our modifications to Linux add negligible overhead
to applications while preserving system manageability.

1 Introduction

Security threats related to system administrator (“admin”) activity are receiv-
ing increasing attention, fueled by a series of events that highlighted the damage
that such activities can inflict [6,19,22]. Traditionally, system maintenance re-
quires superuser privileges for a range of operations. As a result, admins holding
such privileges can put user data at risk through leakage, corruption, or loss.
These hazards have raised concerns in many organizations [12,13], and become
even more relevant as companies [5] and government agencies [1] outsource IT
management to third parties such as cloud providers. In the space of operating
system design, in particular, these concerns have in part motivated research in
“least-privilege” system designs that reduce the TCB size [16,25,37], offer more
fine-grained protection [11], harden the TCB using formal verification [21], or
use labeling to reason about and control information flow [33,36].

A unifying goal underlying the existing body of work is to build untrusted-
admin systems, i.e., systems that can be used by users who wish to store and

process sensitive data (either locally or “in the cloud”) without requiring trust
in the administrators of either their own systems or the cloud platform. The
focus of this body of work has been on low-level kernel or hypervisor mecha-
nisms, and little attention has been devoted to the higher-level challenges of
building untrusted-admin systems that actually remain administerable. For ex-
ample, in the influential Decentralized Information Flow Control (DIFC) model
exemplified by the HiStar OS [36], building an untrusted-admin system requires
not just the DIFC-enforcing kernel but also a set of user-level processes with
declassification privileges, which users (data owners) must trust to handle their
data appropriately during management activities that by nature must touch or
affect this data. If a cloud system is to offer data backup services, for example,
then the system must include some form of trusted daemon or declassifier that
can read the user’s data and forward it to the backup destination (perhaps after
encryption). However, HiStar did not look into the problem of how to securely
design these trusted daemons or declassifiers so as to cope with the range of
management tasks performed by the admins.

The main challenge in finding a solution to this problem lies in a tension
between security and manageability. In practice, operating systems require a
wide variety of tasks to keep the system operational, some of which may touch
or otherwise impact sensitive user data and processes, e.g., adding and remov-
ing software packages and drivers, loading kernel modules, applying security
patches, managing user accounts, backing up and restoring user data, etc. Any
of these “standard” administrative actions, if not handled carefully, could give
an untrusted admin access to sensitive data either directly (e.g., a compromised
backup daemon or declassifier) or indirectly (e.g., if an admin can “upgrade” a
correct kernel module to an insecure version). Actually designing realistic and
usable mechanisms and tools enabling administrators to do their job of managing
OSes, in an untrusted-admin model, remains a largely unexplored challenge.

To address this challenge, we introduce and explore an untrusted-admin sys-
tem design model that we call the broker security model, which we apply to the
design of operating systems, but is a software system design model that can be
applicable to a range of software systems. Our model is inspired by the central
observation that users must in practice trust admins for resource availability,
even if they do not wish to trust admins for information security. For example,
a malicious or merely negligent admin can always “pull the plug,” drop network
connectivity, or fail to migrate data or virtual machines off of old hardware to be
decommissioned. Such availability failures are typically obvious to users, how-
ever, and leave a clear “accountability trail”; a cloud provider will not survive
as a business if it fails to maintain promised resource availability.

Thus, we aim to create a clean OS design separation between resource avail-
ability mechanisms, over which admins must have control in order to do their
job, and information security mechanisms, over which admins must not have
control. To meet this goal, our model only allows the admin to access and ma-
nipulate system objects in well-formed ways through a set of trusted programs
called brokers. Brokers never concede the admin superuser privileges. Instead,

they only provide him with the specific functionality that is necessary to manage
the system (e.g., create a user account) and control the resources (hence data
availability) while ensuring that users gain control over the confidentiality and
integrity of their data. To enforce this policy, the model defines three security
invariants that the brokers must preserve; insofar as the these invariants are met,
the system designer is free to specify the number and functionality of brokers
that can better assist the admin in managing the system and to devise the most
adequate mechanisms to enforce the model’s security invariants.

To validate the broker security model, we present the design and implemen-
tation of a proof-of-concept OS called Broker Umbrella for Linuz-based OSes
(BROKULOS), which is based on a Debian Linux distribution enhanced with
tailor-made broker extensions. One key design challenge is related to the fact that
the management tasks in Linux are numerous, heterogeneous, and ill-defined.
Since superuser privileges can no longer be granted to the admin, it is not clear
which functions must be implemented to provide full OS manageability and
whether these tasks can be performed without violating the model’s security
constraints. We address these questions by (1) characterizing the broker function-
ality based on a comprehensive survey of the fundamental tasks for maintaining
a vanilla Debian distribution, and (2) specifying how exactly this functionality
must be adapted in order to preserve the invariants of the broker model. We
find that this functionality can be implemented by extending well-known Linux
mechanisms and therefore show that the degree of protection proposed by the
broker model is practical on commodity OSes, and does not require the use of
niche research systems like HiStar (though these systems could also benefit from
adopting our model).

In summary, our contributions are as follows. First, we characterize the im-
portant problem of enhancing the security of software systems in general (and
OSes in particular) against administration threats while retaining system man-
ageability. Second, we propose a principled way to approach this problem by
introducing the broker security model. Third, we comprehensively study OS
platforms and design BROKULOS, a system that demonstrates that enforcing
this model on commodity OS platforms is possible with relatively few changes
to existing Linux mechanisms. Finally, we evaluate our prototype, showing that
BROKULOS preserves manageability, adds modest overhead to the management
operations performed by the admin, and negligible overhead to the system.

2 Goals, Assumptions, and Threat Model

Our main goal is to devise a security model for enhancing the security of software
systems against mismanagement threats. We focus, in particular, on adminis-
tration roles that target the OS and require superuser privileges, e.g., installing
applications, configuring devices, setting up security policies, creating user ac-
counts, etc. We aim to find a sweet spot in the design space that strikes a balance
between limiting the power of the admin and providing the functionality that
is required for maintaining the system. We envision that the principles of our
security model will be applicable to a range of software systems that currently

Users

System User Interface
Data
Admin
Management Resources
Interface

Fig. 1. Software system under the broker security model.

depend on granting superuser privileges in their specific domains (e.g., database
servers or web applications). To demonstrate the feasibility of our model, our
solution should not require deep changes to existing OSes and should mostly
preserve compatibility with legacy applications.

Our model rests upon several assumptions. We consider that the implemen-
tation of the OS trusted computing base (TCB) is correct. Our focus is not
minimizing the TCB size; such goal is complementary to our work and has been
the focus of various other research projects [24,25,34,37]. For this reason, our
design is centered on a monolithic kernel with a large TCB. Nevertheless, we
discuss in Section 8 a possible approach to reducing the TCB size by using an
information flow kernel such as HiStar [36]. Additionally, we assume that the
machine that hosts the system is physically secure, and that the system exposes
a management interface that allows the admin to manage the system remotely.
This situation is common in many organizations that host and process sensitive
data, such as cloud providers [15].

We characterize our threat model. We assume that the admin has access to
the machine through its management interface and uses the operations exposed
by this interface to maintain the system and access user data (either on disk or
memory). In a commodity OS, for example, this interface consists of all opera-
tions that require superuser privileges and therefore need to be performed from
the root account or through a sudo gateway. In particular, if the management
interface allows the admin to reboot the system, which is a necessary capability
in the case of an OS, the admin can bypass the system security protections and
have access to the persistent system state stored on disk. However, the admin
cannot exploit vulnerabilities in the TCB code, for instance, to perform privilege
escalation attacks, nor perform physical attacks on the machine. In addition, we
do not consider side channel attacks.

3 Broker Security Model

The broker security model enhances the security of a software system by weak-
ening the trust requirements relative to the system admin. In particular, it pre-
cludes the admin from compromising the confidentiality and integrity of user
data and computations, while preserving manageability.

Figure 1 shows how the broker security model extends a software system.
The base system (which follows a conventional system design) is modeled as a
collection of objects, each of them containing data and holding a set of hardware

resources. In an OS, for example, these objects include files, processes, user
accounts, etc. The system allows users and admin to access and manage objects
through two interfaces—a user interface and a management interface. In the
base system the management interface gives the admin superuser privileges,
which allow him to fully control all system objects and therefore access user data
without restrictions. Under the broker security model, however, the management
interface no longer grants superuser privileges but only allows the admin to
execute a set of trusted programs called brokers.

Brokers mediate the access to objects in a well-formed manner as to (1) pro-
vide the functionality that is necessary and sufficient to manage objects properly
(e.g., create user accounts) and (2) let the admin retain control over resource
availability while shifting control over user data confidentiality and integrity to
users. To make sure that users retain control over their data security, brokers
must maintain the following three security invariants:

1. Information security. A broker does not allow user data to be output or
modified in ways that violate the confidentiality and integrity of that data. For
example, allowing a debugger to be attached to a user process without the user
being aware of or having authorized this operation violates this property.

2. Identity protection. A broker does not allow user identities and associated
credentials to be hijacked or overridden. Otherwise, the admin could abuse this
privilege to impersonate a user and access his data. For example, allowing the
admin to change user passwords arbitrarily breaks this requirement.

3. System integrity. A broker ensures that the system can only transition between
system states that preserve security invariants 1 and 2. For example, a broker
cannot allow arbitrary kernel modules to be loaded because this feature could
be exploited for privilege escalation: loading a malicious module could subvert
brokers’ security mechanisms.

This simple model can then be applied to enhance the security of software
systems (and OSes in particular) by adopting a two-step methodology. First,
one must specify the broker layer by identifying the functionality that the set
of brokers need to offer while simultaneously obeying the three security invari-
ants prescribed by the model. Second, one needs to devise the mechanisms that
implement brokers’ functionality and enforce the security invariants. We next
apply these steps to an OS.

4 OS Broker Functionality

A natural way to enforce the broker security model in an OS is to start from a
point that is secure by design yet overly restrictive, and then add carefully crafted
brokers to regain manageability. In particular, a natural starting point is a design
that forces the admin to operate from a regular user account, i.e., suppress
the root account and prevent unrestricted execution of privileged commands
through sudo. The challenge then becomes specifying and designing a set of
brokers that (1) do not overlook functionality that is necessary for keeping the
system administrable and yet (2) enforce the security invariants of the broker
model.

To achieve this, we start with a thorough characterization of the set of com-
mands that brokers should support by surveying the most fundamental manage-
ment tasks performed by admins. The tools that support these tasks can then
provide the baseline mechanisms needed to implement the brokers. Since these
tools are likely to violate the broker model invariants, it is necessary to validate
whether and how such violations take place so that we can enhance these tools
to build brokers that satisfy the invariants.

Table 1 shows the list of tasks that we surveyed along with an indication of
how the various tasks violate the three security invariants we listed previously.
This list combines the results of two approaches. In a bottom-up approach, we
studied a collection of packages and respective tools available in a basic Debian
distribution, identified the functionality of each tool, and used our judgment
to assess whether its functionality is fundamental for the admin. In a top-down
approach, we studied the system administration literature and identified the high
level tasks that an admin needs to perform. Overall, we manually inspected 902
executables included in 100 packages* and studied three different textbooks [14,
17,35]. We then converged on a single (coarse-grained) task list, which we have
examined with professional system administrators from the host institution of
one of the authors to make sure it reasonably characterizes the management
activity of a typical OS admin.

The tasks that violate the information security (IS) invariant mostly involve
processes, files, and volumes and their primary goal is to manage resources and
user data. For example, to learn about the memory utilization and open files by
user processes, tools like ps and lsof reveal sensitive information that may be
contained, e.g., in command line arguments of the process or in the names of
user files. Similarly, tools for backing up and restoring user data (e.g., tar and
gzip) would allow the admin to inspect and modify user data.

The tasks that breach the identity protection (IP) invariant are mostly related
to user accounts and group management. User account operations include the
ability to arbitrarily set and modify the identity and credentials of a user account
(e.g., changing the password of an account using passwd). Group management
enables adding and removing users from groups with tools like useradd and
usermod. These capabilities would allow the admin to access files and processes
owned by the user, in the first case, or shared within a group, in the second case.

The tasks that compromise the system integrity (SI) invariant are mostly
related to software and system management. Typical OSes allow the admin to
install arbitrary software, which can affect both the TCB (e.g., by upgrading the
kernel, installing OS services, loading kernel modules) as well as shared applica-
tions. With this capability the admin could escalate his privileges to access user
data by tampering with the TCB or by installing backdoors in shared applica-
tions. Admins can also set up devices to compromise the system integrity. For
example, the ability to set the system time can be used to launch replay attacks.

4 These packages were selected from a minimal Debian distribution according to two
criteria: they contain the basic tools (package “Priority” is “Required” or “Impor-
tant”) and provide system administration support (package “Section” is “Admin”).

Category|Management task |IS|IP|SI|

Software |List, install, upgrade, and remove shared applications and libraries X

List, install, upgrade, and remove system services and kernel images

Configure software and diagnose errors

Apply security patches

X | X|[X]|X

Manage local system documentation

Accounts |Create, modify, and delete user accounts X

Disable user accounts temporarily

Modify account credentials X

Force users to modify their credentials

Groups Create, modify and delete user groups X

Processes |[Monitor and limit memory utilization by user processes

Check for runaway processes

Modify process execution priorities

Check for unattended login sessions

X | X|X|[X]|X

Files Perform backup and restore of user data

Set and view disk quotas

X

Check file space utilization

Remove temporary files (in /tmp and in /lost+found)

X

Re-distribute disk space in the filesystem X

Mount and unmount filesystems

Check filesystem integrity and fight fragmentation X
Check disk space X
Create, modify, and format partitions

System Restart the system after panics, crashes, and power failures

Load, list, and unload kernel modules X

Start and stop services X

Automate and schedule system administration tasks with cron

Check and clear system log files X

Configure and modify swap space

Configure init and runlevels X

Configure the network and check open connections X

Setup system clock X

Setup and check the status of the printer

Table 1. Management tasks grouped into categories: Tasks are grouped by
category. For each task we indicate the security invariants they violate: information
security (IS), identity protection (IP), and system integrity (SI).

Note that the purpose of Table 1 is not to enclose all management tasks.
Instead, it comprises only the set of fundamental broker operations, which ad-
mins can then rely upon for more complex tasks. For example, for diagnosing
resource misuse, admins can use various brokers, e.g., for checking runaway pro-
cesses, unattended login sessions, and process memory utilization. In fact, it
is typical to use helper tools to identity the source of such problems. Another
example, for recovering from system bugs, admins can use brokers for securely
installing software and backing up / restoring user data. Indeed, rather than fix-
ing compromised systems, the common practice for system recovery is to make
clean-slate software reinstalls and restore user data from backups; this method
guarantees that the system state is again known and trustworthy.

Ideally, the table should list all the tasks that are necessary and sufficient to
meet all needs of OS admins. In spite of our best efforts and positive feedback

] Ring 3
Service Account UID 20

Sudo Gatewa)

Ring 3
UiD=0

| Core Services and Tools |_

| Hardware |

Fig. 2. Broker-enhanced OS architecture.

from expert system administrators, however, this table is not necessarily com-
plete and may need to be adapted by adding, modifying, or removing entries
depending on the concrete OS, deployment environment, and admin needs.

Now that we have characterized the functionality that should be offered by
the broker layer, we present an OS design that implements it.

5 Broker-enhanced OS Design

We start with an overview of the OS architecture that we propose and then
describe how each security invariant is enforced by the brokers.

5.1 Architecture

Figure 2 illustrates the internals of a broker-enhanced OS. Since it is not our
primary goal to minimize the size of the TCB, we simply extend a vanilla Debian
Linux distribution with a set of components that implement the broker exten-
sions for the system. These components consist of broker commands, dedicated
services, and an LSM kernel module.

In contrast to the vanilla Debian distribution, there is no superuser account
(root) nor any other way that the admin can obtain superuser privileges. Instead,
both users and the admin run their processes in protection domains with UID
> 0. UID 0 is then reserved for the components that need to run in privileged
mode such as OS services (e.g., init, sshd), and broker commands. The space
of unprivileged domains (UID > 0) is split into two parts: UIDs < u;, which are
reserved for services that do not need to run in privileged mode, and UIDs > wuy,
which are reserved for user accounts (where u; is a configurable threshold).

Brokers consist of a well-defined set of trusted programs that run in priv-
ileged mode (UID = 0). Table 2 shows examples of the most representative
brokers, grouped into categories according to their semantics. To allow for in-
voking brokers from a non-privileged account, we rely on the well known sudo
gateway, which also authorizes broker execution based on the role—admin or

user—associated with each account. To bootstrap the creation of admin ac-
counts, the admin role is assigned to the first account to be created; the admin
can then define the role of the subsequent user accounts.

Next, we describe in more detail the mechanisms introduced by the bro-
ker extensions that provide support for the management tasks in Table 1 while
preserving the security invariants required by the model. We structure this pre-
sentation according to the invariants that are to be preserved.

5.2 Enforcing the Information Security Invariant

The information security invariant stipulates that the admin cannot access user
data through the system management interface. This is the model’s most fun-
damental requirement because otherwise user data confidentiality and integrity
could be directly violated. To meet this requirement, the protection domains
of the admin and users should be perfectly isolated from each other. However,
this can be challenging when user domains must be crossed over, particularly for
resource management and data management tasks. We discuss these in turn.

Managing Account Resources The admin must be able to control the re-
sources associated with a user account (e.g., set user quotas for CPU and mem-
ory). This control, however, requires permission to access the resources allocated
to user data. Without the proper protections, however, such access could allow
the admin to access user data, thereby compromising its confidentiality and in-
tegrity. To enforce a clean separation between resources and data, we propose
taking the following steps.

The first step is to conservatively isolate the protection domains of admin
and users. To start, we can use the UID-based protection domains to prevent
direct access to user files and processes that are not explicitly shared by the
users. However, it is also necessary to prevent information leakage through the
/proc filesystem. The Linux kernel exposes extensive information relative to user
processes in a collection of files located under /proc/PID, where PID is the process
number. The kernel generates the content of these files on the fly whenever
they are opened and sets the permissions of many of them to publicly readable.
However, making some of these files public violates the information security
invariant (e.g., files stat or cmdline expose many details about the memory
usage or the command line of processes, respectively). To prevent access to this
information with minimal kernel changes, we simply override the file permissions
to make them private to the process owner and accessible to the system brokers.
We preserve kernel compatibility by adding these changes in an LSM module.

To enable the admin to manage account resources, the second step is to
provide a set of specific brokers for process and file management. These brokers,
however, only let the admin “see” an account as a bundle of CPU, memory, and
storage resources whose utilization he can observe, restrict (by setting quotas),
and deallocate as a whole. For example, brokers for process management only
output aggregate information of resource utilization and always operate on all
processes of an account (e.g., by applying kill and renice to all processes).

[Category[Examples of representative brokers |

list packages (pkg-list), get package (pkg-get), install package (pkg-install), up-
grade package (pkg-upgrade), remove package (pkg-remove), flush package cache
(pkg-flush)

create account (acc-create), disable account (acc-disable), enable account
(acc-enable), force password reset (acc-force), reset password (acc-passwd), delete
account (acc-delete), load user policy (acc-polload)

create group (grp-create), list groups (grp-list), delete group (grp-delete), add
member (grp-addmem), list members (grp-lstmem), remove member (grp-remmem)

list resource utilization (ps-1ist), kill account processes (ps-kill), set account pro-
cess priority (ps-renice)

backup account files (fls-backup), restore account files (fls-restore), list storage
usage (fls-du), move account (fls-move), clean temp (fls-cltmp)

insert module (mod-insert), remove module (mod-remove), list services (svc-list),
start service (svc-start), stop service (svc-stop), reboot (sys-reboot), setup system
clock (dev-clock), setup network card (dev-net)

Packages

Accounts

Groups

Processes

Files

System

Table 2. List of representative brokers grouped into categories: Describes each
broker’s functionality and command name (in parenthesis).

Brokers for file management follow the same approach. As another example,
monitoring the storage consumed by a user and moving user files to another
volume only reveals aggregate disk utilization and displaces all files located in
users’ home directories or in user-approved subdirectories, respectively.

Exporting Account Data The aforementioned techniques allow for resource
management without user data access. However, in certain operations like back-
ing up and restoring user data the admin needs to export user data from the
user account’s protection domain, where the data is secured, to another machine.
To support these operations while preserving information security, the system
encrypts the data and appends integrity checks before the data leaves the pro-
tection domain. However, we need to ensure that, when restoring the data, the
backed up data can only be decrypted (1) on machines booting an untampered
version of BROKULOS and (2) by the original owner of the data. To guarantee
this property, the user data is encrypted and decrypted with a seal key. The
seal key is a unique cryptographic key that the system associates with each
newly created account. To enforce requirement (1), we take advantage of TPM
primitives, which allow us to encrypt (seal) the seal key such that it can only
be decrypted (unsealed) if the machine boots a correct BROKULOS binary. If
the booted system is correct, the system then ensures that the seal key is only
accessible to the owner’s account, thereby ensuring requirement (2). To support
recovering data on a different machine, e.g., because the original one was de-
comissioned, sealing could be extended to allow for unsealing to take place on
any machine with a similar configuration. This extension could be done by cou-
pling BROKULOS with Excalibur [32], a trusted computing system that enforces
access control policies for multi-node environments.

5.3 Enforcing the Identity Protection Invariant

With the protection mechanisms for the enforcement of information security in
place, the admin no longer has direct access to user data. Nevertheless, these

block

create activate
Pending Active pwd ChPwd

delete
deactivate disable enable delete

delete

Disabled Deleted

flush

Fig. 3. State transitions between account states: The user must explicitly accept
that the account is valid before it can be used. In the active state, the admin can
temporarily disable the account or force the user to change authentication credentials.
The resources of a deleted account can be released at a later point in time.

protections could be circumvented if the identity protection invariant is not as-
sured. This invariant requires that the admin cannot control user credentials and
identities, otherwise he could impersonate users and access their data directly.
Thus, ideally, users should be able to control their own identities without hinder-
ing the admin’s ability to control resources. In practice, however, shifting control
to users entails some loss of management flexibility for the admin. Therefore, we
need to design brokers for managing accounts and groups that provide reason-
able manageability without sacrificing the identity protection invariant, as we
describe next.

Managing User Accounts In managing user accounts, we enforce the identity
protection invariant by offering a set of brokers for regulating an account’s life
cycle such that user login credentials are strictly controlled by the user.

The basic life cycle of a user account is shown in Figure 3. An account is
created by the admin; he specifies the initial configuration of the account (e.g.,
user name, home directory) and an initial login credential, which is only going
to be used once. The first time the user logs in with the initial login credential,
he must ensure that he has exclusive access to the account by claiming it. This
process involves running a secure protocol which serves two purposes. First, it
provides a report describing the initial account’s configuration and state. If the
account has been set up with initialization scripts or if somebody has logged
into it before, the user will be able to detect these irregularities and abort the
operation. If, however, the report shows no problems, the user can set up his
authentication credentials (e.g., by uploading the user’s public key) without
admin interference. This process will disable the initial login credential and lock
the user name associated with the account. From this point onwards, only the
user can login to his account and he has full control over its content, but not its
resources. The admin can still adjust the resources associated with the account,
disable user login temporarily (e.g., in the case of a misbehaving user), force a
user to change credentials, and, whenever necessary, delete the account.

Changing credentials is done by users themselves using the credentials they
have uploaded to the system. To address the concern that losing user credentials
would prevent a user from ever logging in, our system supports two override

mechanisms. One is to rely on a trusted third party, either a single entity or a
quorum, to reset the user credentials. Another is to increase redundancy by reg-
istering multiple credentials and using various authentication mechanisms (e.g.,
public key, password, passphrase). Although this approach does not eliminate
the problem entirely, it reduces the likelihood of permanent loss of access.

Managing Group Membership Aside from allowing users to control their
own identities and credentials, user groups’ members need to be properly authen-
ticated. Otherwise, the admin could gain access to group-shared data by creating
fake identities and registering them as legitimate group members. To enforce the
identity protection invariant when managing groups, the BROKULOS admin is
still allowed to create and delete user groups, but adding and removing members
is delegated to users themselves. The approach we use for delegation is to des-
ignate a (per-group) group leader that makes group membership authorization
decisions. The group leader must validate users’ identities before adding them
to a group. Since relying on user names chosen by the admin is insecure for
authentication, the group leader must check users’ credentials (e.g., a certificate
of the user’s public key).

5.4 Enforcing the System Integrity Invariant

The mechanisms we have introduced thus far can effectively enforce both the in-
formation security and identity protection invariants. However, if the admin can
compromise these mechanisms, these assurances can no longer be guaranteed.
Thus we next propose a mechanism for enforcing the system integrity invariant,
taking into account two aspects of the problem: managing TCB components and
shared applications.

Managing TCB Components Managing TCB components involves in-
stalling, upgrading, configuring and removing software components that run in
privileged domains—either in the kernel space (i.e., the kernel itself or kernel
modules) or in the user space with UID 0 (e.g., services, system libraries, system
tools, and brokers)—and configuring devices (e.g., setting up the network and
the system timer). To enforce the integrity of the TCB, all these operations must
be validated, and this is done using special-purpose brokers.

In particular, for installing TCB components, brokers only authorize this op-
eration if the new TCB component is “trusted”. Several definitions of trust could
be used, for example, in an ideal world, the system would automatically verify if
the implementation is correct. BROKULOS uses a simple model where a TCB
component is trusted if its compliance with the broker security model is endorsed
by one or multiple third parties that are mutually trusted by both the admin
and users, referred to as Mutually Trusted Signers or MTSes. (Users’ consent
is necessary otherwise a misbehaved admin could use this mechanism to modify
the TCB.) To enforce this consent, admins set up the initial MTS certificates
in the system and users must approve or reject them whenever they claim their
accounts. MTS certificates can be changed over time—e.g., when renovating or

revoking them, or when adding new MTSes—by either establishing a chain of
trust that only accepts new MTS certificates signed by a preexisting MTS, or
by polling all users before accepting a new MTS certificate. The MTS role can
be performed by any entity mutually approved by admin and users (e.g., certi-
fication organizations, software development companies, specific administration
roles within the organization, or open source communities).

Regarding device configuration, we again only accept configurations that
are vouched for by an MTS. The notion of what is expected from a trusted
configuration is device-specific. Therefore device-specific brokers are expected
to perform the appropriate validations. A particularly interesting case is the
system clock, where the system time should not be set arbitrarily. Therefore,
we restrict time updates to trusted NTP servers sent over secure channels. This
is done by requiring the NTP configuration file (which identifies addresses and
credentials of the NTP servers) to be signed by an MTS. Given the large number
of devices, we did not design brokers for all of them, but new devices could easily
be accommodated by incorporating appropriate brokers.

In addition to enforcing TCB integrity, it is necessary to assure users of its
enforcement. This is because the admin can circumvent the TCB protection
mechanisms by rebooting the machine and tampering with the TCB binaries on
disk. We offer these guarantees by means of a remote attestation protocol, which
users run when they claim their accounts. Our protocol is based on a standard
attestation protocol [30], which transmits the boot time measurements (hash)
of the TCB components signed by the TPM. We then extend it to include the
MTS identities as well as the user account report (see Section 5.3). Thus, when
users claim their accounts they can validate the hashes of the TCB binaries and
the MTS identities, thus assessing the integrity of the TCB.

Managing Shared Applications Finally, another type of software that must
be trusted to correctly manipulate user data are shared applications (e.g.,
MySQL). To give users the flexibility of choosing which applications they trust,
we let them define user policies that express their restrictions. The policy lan-
guage expresses a list of rules, each of them consisting of comparisons among
four attributes we currently support: package maintainer, package name, package
version, and filename.

To enforce these policies, we developed a special purpose LSM kernel module.
The LSM module overrides the standard DAC permissions and enforces the user
policy at runtime: whenever the user runs an external program, the LSM mod-
ule intercepts this operation, evaluates the policy, and aborts the execution if
the policy evaluation fails. To evaluate each policy rule, the LSM module checks
the attribute conditions specified in the policy against a set of extended filesys-
tem attributes featuring the executable. The filesystem attributes are attached
by the broker layer whenever the executable’s package is installed. The broker
responsible for installing the packages obtains the attributes for each program
from a manifest contained in the program’s package. Users load their policies
into the LSM module once they claim their accounts.

6 Implementation

Our BROKULOS prototype is based on the Debian GNU /Linux 6.0 (“Squeeze”)
distribution running Linux 2.6.39.3. Our implementation effort includes the bro-
ker layer, which we implemented in about 4,400 lines of Python code, and the
LSM kernel model, coded in less than 1,000 lines of C code. For convenience,
brokers take advantage of basic tools such as dpkg, gpg, and useradd to perform
the low level changes to the system. These tools are included in the core pack-
ages of BROKULOS, which comprises 77 packages, out of a total of 266 packages.
This package configuration is based on Debian’s minimal setup, which is then
extended with BROKULOS'’s functionality.

The LSM module implements the protection mechanisms for overriding the
DAC permissions of the /proc files and evaluating user policies. To implement
this functionality, it places handlers in two LSM hooks (bprm_check security and
inode_permission). The LSM module provides an interface via VFS under the
mount point /brokulos for loading the user policies into the module.

Our current prototype uses TPMs to support remote attestation and secure
storage. We use TrustedGRUB [3] to measure the integrity of the files of core
packages and extend the PCR registers with these measurements accordingly.
Then, we use the TPM’s quote primitive to generate and sign an attestation
report when requested by the users. This procedure requires setting up an AIK
key so that the TPM can sign the report. The implementation of secure storage
has some limitations: we keep the entire system on an encrypted partition using
LVM, but, as of now, we have not modified LVM so that the encryption keys
are protected using the sealing primitives of the TPM. This technique, however,
poses no particular challenges and is already used in Windows by BitLocker [26].

7 Evaluation

We now evaluate the security, manageability, and compatibility of BROKULOS,
and experimentally gauge its performance overheads.

7.1 Security

BROKULOS improves security in three main aspects. First, it significantly re-
duces the management interface exposed to the admin. Unlike a commodity
Linux distribution where the admin is endowed with superuser privileges, in
BROKULOS the admin can only perform the privileged operations exposed
through the broker layer. The broker layer makes the management interface
explicit, and narrows it to a relatively small numbers of trusted programs. Thus,
provided these programs are correctly implemented, the admin cannot acquire
privileges not contemplated in the broker model.

Second, BROKULOS explicitly restricts the software that can run in a privi-
leged domain, i.e., that belongs to the TCB. In a commodity Linux distribution,
because the admin can install arbitrary software in the privileged protection do-
main, it is not possible to foresee which security properties are guaranteed by the

system. In BROKULOS, however, only the software that is signed by an MTS
can run in the privileged domain. Thus, provided that MTSes are trustworthy,
the system enforces the well-defined security invariants of the broker model.

Finally, BROKULOS allows users to specify the software they trust to process
their data. BROKULOS conservatively prohibits the execution of all shared pro-
grams (i.e., not owned by the user) and allows the user to open exceptions based
on a user policy. This mechanism prevents the user from accidentally running
applications that could compromise the security of his data.

An orthogonal aspect of the system security is shrinking the TCB size to
reduce the likelihood of code vulnerabilities. As we mentioned, this aspect was
not the emphasis of our work and we therefore see it as being complementary
and a follow up to BROKULOS. Nevertheless, we note that while brokers add
code to the TCB, it is only a small additional fraction of much simpler code when
compared to the OS kernel. Furthermore, we expect to make broker programs
trustable by releasing their source code.

7.2 Manageability

The ideal way to evaluate the system manageability would be through the prac-
tical experience of deploying and managing the system in a real setting. Not
having access to such a deployment, our methodology is to validate the whether
BROKULOS provides adequate broker coverage to accommodate all the man-
agement tasks we have surveyed (see Table 1).

Our current prototype provides a set of 41 brokers spanning multiple task
categories. In some cases there is a one-to-one correspondence between the task
and a particular broker (e.g., backing up data is supported by file-backup),
whereas in others a single broker serves multiple tasks (e.g., ps-list lists both
the CPU and memory allocated to an account). Overall, BROKULOS currently
covers the most crucial set of management tasks. We provide only limited sup-
port for tasks related to devices (e.g., managing the printer) and filesystems (e.g.,
format partitions and fight fragmentation). Overall, out of the 33 coarse-grained
tasks of the table, our system fully supports 29. Although devising brokers to
support the remaining tasks constitutes a challenge when compared to the bro-
kers we have built so far, the high fraction of management tasks covered by the
existing brokers shows that our system provides extensive management support.

7.3 Compatibility

Overall, BROKULOS preserves compatibility with existing Linux mechanisms
and applications. Our solution requires no modifications to the Linux kernel
besides plugging in a kernel module to the standard LSM interface. The sys-
tem leaves ABI / APIs unchanged, thereby preserving application compatibility.
However, some popular administration tools are disabled, since they violate the
broker model. This is the case, for example, 1sof, which prints out a list of every
file that is in use in the system. As a result, the admin may have to adapt and
possibly change his scripts to use BROKULOS’s brokers.

10 ¢
Debian
1 3 Brokulos
O
o (RS B B N e ol
E
[b
0.01 F—
0.001 L

% %% Y, %%, Y, e % e % @000, % D Ky 2, ’b 20,08, 25,

@, O o %o,
D, 7. & 2,0, o g, 0 aea ,,o,//,o
0, xS, O o %, %, O P Y oo) ZS %
S 0 S AN @%2

% 7 5 % % % % Y A /zo %

Fig. 4. Performance of brokers when executed by the admin: Covers represen-
tative brokers relative to package, account, group, module, and process management.
The brokers for installing, getting, and removing packages use the hello package, which
suffices for measuring the broker overhead for any package.

7.4 Performance

To evaluate the performance of our prototype, we focused on the places where
BROKULOS introduces overheads to the vanilla Debian distribution: the broker
layer, which affects management operations, and the LSM module, which impacts
the execution latency of all programs in the system. (Recall that the LSM handler
code runs every time the exec system call is executed.)

Our evaluation methodology is as follows. To study the broker layer over-
head we use microbenchmarks. For each broker, we measure its execution time,
measure the execution time of a vanilla Debian operation whose functionality is
comparable to the broker’s (e.g., user account creation), and then compare both
values to analyze the performance penalty incurred by BROKULOS’s manage-
ment tasks. For each experiment, we run 10 trials and report the mean time
and standard deviation. To study the overhead of the LSM module we measure
the impact of policy evaluation on the execution time of a large task, namely
compiling the Linux kernel 2.6.39.3. We measure the overall execution time with
and without policy evaluation, using a policy with 266 rules, where each of them
tests a package installed in the system. We use an Intel Xeon machine with a
2.83GHz 8-core CPU, and 1.6GB of RAM.

Figure 4 plots the results of the broker layer evaluation. It shows only the
subset of system brokers that (1) require sanitization of standard admin tools to
enforce compliance with the broker model (e.g., reseting the network card is not
shown), and (2) have a direct correspondence with a vanilla Debian operation
(e.g., the backup broker is not shown). There is a significant disparity in the
performance overhead among brokers. Brokers whose Debian counterpart exe-
cute in the order of 10ms undergo a performance penalty of around one order
of magnitude. For execution times above the 0.1s threshold, however, the per-
formance between the two cases is comparable. The high overhead of short-lived
brokers is partly due to the extra functionality, but mostly due to being im-
plemented in Python, whereas their Debian counterparts are implemented more
efficiently in C. If we consider, e.g., the ps-renice broker, which sets the same

priority to all the processes of a user, and its counterpart, which corresponds to
the command renice -u, the 10-fold increase is simply due to Python overhead.
Since the broker functionality is not significantly more complex than that of
pre-existing tools’, we believe that implementing brokers from scratch and in C
should produce comparable performance to the Debian distribution.

Our LSM module study shows that policy evaluation is efficient. The overall
execution times of the kernel compilation in Debian and in BROKULOS show
no differences, which means that the LSM module adds negligible overhead to
long running tasks. These results are expected since the LSM module handlers
perform very little work and only when a program is executed.

8 Discussion

In this section we discuss several issues regarding possible design extensions and
the deployment of the system.

Shrinking the TCB size. Several directions could be taken to reduce
BROKULOS’s TCB size. One direction is to leverage existing sandboxing mecha-
nisms for Linux such as UserFS [20] in order to run some of the trusted programs
(e.g., privileged services) in an unprivileged environment. Thus, exploiting one of
these services would not compromise the entire system. To avoid depending on
the correctness of the large Linux kernel, a second direction is to explore designs
based on microkernels [21] or on DIFC kernels [23,36]. The important thing to
note is that the broker security model is also applicable in these settings, with
the added advantage that brokers can set fine-grained policies; e.g., the ps-1list
broker can be constrained to only be able to read the /proc files. Thus, in the
event of an exploit, the attacker could only leak information from those files and
nothing else, thereby improving security.

Extension to medium- and large-scale deployments. In real deployments,
a machine rarely operates autonomously; it may rely on networked services for
storing data (e.g., NFS), authentication (e.g., LDAP), or upgrading software
(e.g., package repositories), for example. In cloud computing or grid platforms,
each machine is itself a constituent of a larger distributed system. Although in
this paper we have focused on securing a single machine, we believe that the
same principles can be applied to a distributed setting by propagating trust
across components using secure channels and remote attestation mechanisms.
However, we have not yet explored these extensions.

9 Related work

We organize related work into security models, systems that restrict admin priv-
ileges, and security mechanisms for Linux.

Security models. Bell-LaPadula [8] and Biba [9] are well known information
flow security models for multilevel security that can express confidentiality and
integrity policies, respectively. These and other IFC models [28], however, focus
on how information flows in a system and have not looked at expressing the range
of management operations required by admins (e.g., for managing software),

which is the focus of our work. Clark-Wilson (CW) [10] is an informal security
model concerning data integrity, which aims to prevent users from manipulating
data objects arbitrarily. Our broker model shares similarities with CW in that
CW also relies on trusted programs to streamline the way data objects can
change. In contrast, we focus not on users’ access control but on admins’, and
we go beyond CW in prescribing concrete invariants that trusted programs must
adhere to in order to secure the system’s management interface.

Systems that restrict admin privileges. Despite apparent similarities with
some of our design choices, current commodity OSes rely on a fully trusted ad-
min. In particular, although Ubuntu [4] does not have a root account, the admin
can still acquire superuser privileges and perform arbitrary operations through
a trusted program. The Plan9 [31] distributed system was the first OS without
superuser. Plan9 comprises multiple nodes, each of which is managed indepen-
dently by a node’s owner. Although there is no system-wide superuser, the owner
of each node can control not only the node resources, but also compromise the
security of the user data located on the node. More recently, HiStar [36] showed
that the separation between resource management and data management is pos-
sible using DIFC. However, HiStar only provides the DIFC foundations for data
protection and does not consider the high-level manageability issues addressed
in BROKULOS. Similarly, trusted computing systems [25, 33] have focused on
securing user data and computations from the admin by using confinement [25]
and labeling [33] techniques, but without specific concerns for preserving man-
ageability. In the hypervisor world, the work by Murray et al. [27] and more
recently CloudVisor [37] allow for management of VMs without admin interfer-
ence, but address different challenges than BROKULOS’s, which targets OSes
rather than virtualized platforms.

Security mechanisms for Linux. Many mechanisms have been specifically
designed to improve Linux security. A large body of these mechanisms aim to
confine untrusted code to some kind of sandboxing environment, e.g., chroot,
Jails [18], Linux containers [2], and UserFS [20]. Other mechanisms such as
SELinux [29] and AppArmor [7] provide some specific support for MAC in Linux.
Each of these mechanisms cannot per se address the manageability issues that
constitute the focus of our work. Nevertheless, some of these proposals share
similarities with BROKULOS’s user policies. SELinux also allows defining poli-
cies based on specific programs, but it differs from BROKULOS in that SELinux
policies are defined by the admin, whereas BROKULOS'’s policies are defined by
the users. AppArmor allows attaching policies to programs based on file paths,
which BROKULOS also supports. However, in AppArmor, if a program has
no policy associated with it, then it is by default not confined. Thus, contrary
to BROKULOS, it cannot protect users from accidentally executing malicious
programs not covered by the policies. Note, however, that BROKULOS’s key
contribution is not so much in proposing fundamentally new mechanisms, but in
showing that, by putting together and adapting well known Linux mechanisms,
enhancing Linux according to the broker model is possible, adds little impact to
performance, and provides good manageability.

10 Conclusion

This paper introduced the broker security model, a general security model aimed
at protecting the confidentiality and integrity of user data from system admin-
istration errors. By only trusting admins for resource availability and not for
information security, this model improves data protection with little impact on
system manageability. It achieves this property by relying on a layer of brokers—
trusted programs that mediate access to system objects. We showed that this
model is practical for OSes by implementing and evaluating BROKULOS, our
proof-of-concept broker-compliant OS. The broker model lays out important
principles in the design of untrusted-admin systems. We envision applying it to
other software systems (e.g., databases and web applications) and improving the
mechanisms necessary to enforce this model (e.g., by reducing the TCB size).
Acknowledgements. We would like to thank Carina Schmitt and Joérg Her-
rmann for sharing with us their experience as professional system admins. We
are also grateful to the anonymous reviewers for their feedback. This work was
partly supported by the National Science Foundation under grant CNS-1149936.
The research of Rodrigo Rodrigues is supported by an ERC starting grant.

References

—

Federal Government’s Cloud Plans: A $20 Billion Shift, http://www.cio.com/

article/671013/Federal_Government_s_Cloud_Plans_A_20_Billion_Shift

Lxc Linux Containers, http://1xc.sourceforge.net

Trusted GRUB, http://trousers.sourceforge.net/grub.html

Ubuntu, http://www.ubuntu.com/

Verizon to Put Medical Records in the Cloud, http://www.networkcomputing.

com/cloud-computing/229501444

6. Insecurity of Privileged Users: Global Survey of I'T Practitioners. Tech. rep., Ponem
Institute and HP (2011), http://h30507.www3.hp.com/hpblogs/attachments/
hpblogs/666/62/1/HP}20Privileged’,20User’20Study%20FINALY%20December?,
202011 .pdf

7. AppArmor, http://wuw.novell.com/linux/security/apparmor

8. Bell, E.D., La Padula, J.L.: Secure computer system: Unified exposition and Mul-
tics interpretation. Tech. rep., MITRE Corp. (1976)

9. Biba, K.J.: Integrity considerations for secure computer systems. Tech. rep.,
MITRE Corp. (1977)

10. Clark, D.D., Wilson, D.R.: A Comparison of Commercial and Military Computer
Security Policies. In: IEEE Symposium on Security and Privacy (1987)

11. Colp, P., Nanavati, M., Zhu, J., Aiello, W., Coker, G., Deegan, T., Loscocco, P.,
Warfield, A.: Breaking up is hard to do: security and functionality in a commodity
hypervisor. In: SOSP (2011)

12. ENISA: Cloud Computing - SME Survey (2009), http://www.enisa.europa.eu/
act/rm/files/deliverables/cloud-computing-sme-survey/

13. ENISA: Cloud Computing Risk Assessment (2009), http://www.enisa.europa.
eu/act/rm/files/deliverables/cloud-computing-risk-assessment

14. GBdirect: Linux System Administration (2004), http://training.gbdirect.co.

uk

Grs W

15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

Hamilton, J.: An Architecture for Modular Data Centers. In: CIDR (2007)
Hértig, H., Hohmuth, M., Feske, N., Helmuth, C., Lackorzynski, A., Mehnert, F.,
Peter, M.: The Nizza Secure-system Architecture. CollaborateCom (2005)

Josep Esteve and Remo Boldrito: GNU /Linux Advanced Administration (2007)
Kamp, P., Watson, R.N.M.: Jails: Confining the omnipotent root. In: SANE’00
(2000)

Keeney, M.: Insider Threat Study: Computer System Sabotage in Critical In-
frastructure Sectors. Tech. rep., U.S. Secret Service and CMU (2005), http:
//wwu.secretservice.gov/ntac/its_report_050516.pdf

Kim, T., Zeldovich, N.: Making Linux Protection Mechanisms Egalitarian with
UserFS. In: USENIX Security Symposium’10 (2010)

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. In: SOSP (2009)

Kowalski, E.: Insider Threat Study: Illicit Cyber Activity in the Information Tech-
nology and Telecommunications Sector. Tech. rep., U.S. Secret Service and CMU
(2008), http://www.secretservice.gov/ntac/final_it_sector_2008_0109.pdf
Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,
R.: Information Flow Control for Standard OS Abstractions. In: SOSP (2007)
McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V.D., Perrig, A.:
TrustVisor: Efficient TCB Reduction and Attestation. In: IEEE Symposium on
Security and Privacy (2010)

McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An Exe-
cution Infrastructure for TCB Minimization. In: EuroSys (2008)

Microsoft: BitLocker Drive Encryption, http://www.microsoft.com/whdc/
system/platform/hwsecurity/default.mspx

Murray, D.G., Milos, G., Hand, S.: Improving Xen Security Through Disaggrega-
tion. In: VEE (2008)

Myers, A.C., Liskov, B.: A Decentralized Model for Information Flow Control. In:
SOSP (1997)

NSA: Security-Enhanced Linux (SELinux) (2001), http://www.nsa.gov/selinux
Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Commodity Com-
puters. In: IEEE Symposium on Security and Privacy (2010)

Russ Cox and Eric Grosse and Rob Pike and Dave Presotto and Sean Quinlan:
Security in Plan 9. In: USENIX Security Symposium’02 (2002)

Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-Sealed Data: A New
Abstraction for Building Trusted Cloud Services. In: USENIX Security (2012)
Sirer, E.G., de Bruijn, W., Reynold, P., Shieh, A., Walsh, K., Williams, D., Schnei-
der, F.B.: Logical Attestation: An Authorization Architecture for Trustworthy
Computing. In: SOSP (2011)

Steinberg, U., Kauer, B.: NOVA: A Microhypervisor-Based Secure Virtualization
Architecture. In: Eurosys (2010)

Wirzenius, L., Oja, J., Stafford, S., Weeks, A.: The Linux System Administrator’s
Guide (1993-2004), http://tldp.org/LDP/sag

Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Maziéres, D.: Making Information
Flow Explicit in HiStar. In: OSDI (2006)

Zhang, F., Chen, J., Chen, H., Zang, B.: CloudVisor: Retrofitting Protection of
Virtual Machines in Multi-tenant Cloud with Nested Virtualization. In: SOSP
(2011)

