
Finding the Right Cloud Configuration
for Analytics Clusters

Muhammad Bilal∗
UCLouvain and

IST(ULisboa)/INESC-ID

Marco Canini
KAUST

Rodrigo Rodrigues
IST(ULisboa)/INESC-ID

ABSTRACT
Finding good cloud con�gurations for deploying a single dis-
tributed system is already a challenging task, and it becomes
substantially harder when a data analytics cluster is formed
by multiple distributed systems since the search space be-
comes exponentially larger. In particular, recent proposals
for single system deployments rely on benchmarking runs
that become prohibitively expensive as we shift to joint opti-
mization of multiple systems, as users have to wait until the
end of a long optimization run to start the production run of
their job.
We propose Vanir, an optimization framework designed

to operate in an ecosystem of multiple distributed systems
forming an analytics cluster. To deal with this large search
space, Vanir takes the approach of quickly �nding a good
enough con�guration and then attempts to further optimize
the con�guration during production runs. This is achieved
by combining a series of techniques in a novel way, namely
a metrics-based optimizer for the benchmarking runs, and
a Mondrian forest-based performance model and transfer
learning during production runs. Our results show that Vanir
can �nd deployments that perform comparably to the ones
found by state-of-the-art single-system cloud con�guration
optimizers while spending 2⇥ fewer benchmarking runs.
This leads to an overall search cost that is 1.3-24⇥ lower
compared to the state-of-the-art. Additionally, when transfer
learning can be used, Vanir can minimize the benchmarking
runs even further, and use online optimization to achieve
a performance comparable to the deployments found by
today’s single-system frameworks.
∗Work done in part while author was interning at KAUST.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8137-6/20/10. . . $15.00
https://doi.org/10.1145/3419111.3421305

CCS CONCEPTS
• Computer systems organization ! Cloud comput-
ing; • Social and professional topics ! Management
of computing and information systems.

ACM Reference Format:
Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues. 2020.
Finding the Right Cloud Con�guration for Analytics Clusters. In
ACM Symposium on Cloud Computing (SoCC ’20), October 19–21,
2020, Virtual Event, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3419111.3421305

1 INTRODUCTION
Data analytics is part of the computational ecosystem of
virtually every organization that seeks to extract value from
the data it collects. In such computational infrastructures,
a wide variety of use cases do not execute on a standalone
framework — instead, as depicted in Figure 1, they execute
in an ecosystem of multiple frameworks that connect in a
graph-like structure to form an analytics cluster. The pipeline
depicted in this �gure is very similar to the real-world de-
ployments for Periodic ETL [3], or Lambda architectures for
aggregating clickstream events [11].
A common way to deploy these analytics clusters is to

acquire resources in a cloud environment and do so on de-
mand, whenever (typically recurring) jobs need to execute.
However, when executing jobs in the cloud, ensuring that
the right resources are allocated is paramount, not only due
to cost e�ciency but also to satisfy strict service-level ob-
jectives (SLOs) on job completion times. Thus, deploying
analytics clusters in the cloud requires solving a cloud con-
�guration problem: for each framework, determine (1) how
many instances to use, and (2) which type of instances to use?
Choosing the right con�guration is crucial because, when
such decisions are wrong or sub-optimal, jobs fail to meet
their deadlines and/or execution costs increase several-fold,
as we show in §2.2.
Prior methods for selecting cloud con�gurations [13, 17,

27–29, 42] do not consider the existence of multiple frame-
works in an analytics cluster, but instead focus on con�guring
a single framework, such as Spark or Hadoop. Furthermore,
all possible ways of applying these prior methods in the
multi-framework analytics cluster setting have signi�cant

SoCC ’20, October 19–21, 2020, Virtual Event, USA Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues

HDFS Spark Cassandra

Figure 1: Example data analytics cluster.

limitations. The �rst way is to use these methods to opti-
mize each framework individually. However, as our results
show, the coupling between di�erent frameworks and in-
correct distribution of budget causes this approach to miss
opportunities to improve performance. The second way is to
consider the entire analytics cluster as if it were a “single-
large-system,” simultaneously modifying the con�guration
of all frameworks. This approach enables joint optimization
but increases the size of the con�guration search space expo-
nentially with the number of frameworks. Exploring a larger
space naturally takes longer, causing a costly delay before
users can deploy their clusters in production.
We present Vanir, a system for �nding the right cloud

con�guration for multi-framework data analytics clusters.
Vanir is designed for a setting where a user needs to pro-
vision and set up an on-demand analytics cluster for each
run of a batch processing job. In this scenario, it is often the
case that a large fraction of these deployments are recurring,
as supported by reports that more than 40% of the jobs in
production clusters are recurring computations [12, 24, 39].
After the job executes, the cluster is terminated or scaled
down to avoid any further costs [5]. The main principle that
Vanir adopts to cope with a large con�guration search space
is to �nd a good enough con�guration via a fast benchmark-
ing phase, and optimize that con�guration during production
runs, as the job recurs. A good enough con�guration is one
that satis�es user-de�ned SLO constraints on both cost and
execution time. The design of Vanir combines in a novel way
several techniques needed to jointly optimize the resource
requirements for multi-framework analytics jobs. In particu-
lar, during a preliminary benchmarking phase, Vanir uses a
metrics-based optimizer to quickly determine an initial con-
�guration. In this stage, Vanir also attempts, whenever ap-
plicable, to use transfer learning and similarity between jobs
to reuse knowledge from previous jobs. Then, to tackle the
inherent limitations of a quick benchmarking search within
a large search space, Vanir �ne-tunes the con�guration with
the help of a performance model that is updated continu-
ously with each successive run of a recurrent job. To select
new con�gurations, Vanir employs Mondrian forests [32],
an online random forest approach, aimed at incrementally
improving the con�guration.
We implement a Vanir prototype (which we plan to re-

lease as open-source) and use it to guide the deployment
of nine di�erent jobs on two di�erent pipelines (including
the one in Figure 1) using AWS EC2. We evaluate Vanir
against two baselines corresponding to the above-mentioned

ways of using existing optimization methods to handle multi-
framework analytics clusters. Our results show that Vanir
�nds con�gurations that are comparable to completely of-
�ine methods. More importantly, this is achieved while re-
quiring only half of the benchmarking runs, and with a total
cost of optimization that is 1.3-24⇥ lower than state-of-the-
art methods.

2 ANALYTICS CLUSTERS CONFIG
Analytics clusters arewidely prevalent inmodern data-driven
organizations. A rich ecosystem of software systems gives
organizations the freedom to create sophisticated analytics
clusters composed of a multitude of frameworks such as
Hadoop, Spark, Cassandra, or Flink. We begin by de�ning
the cloud con�guration problem and then motivate our work
by demonstrating the importance of selecting good cloud
con�gurations. We further outline the challenges and discuss
baseline solutions.

2.1 The cloud con�guration problem
We formalize the cloud con�guration problem as the problem
of �nding a con�guration of resources that minimizes job ex-
ecution time. A job is a combination of application (for exam-
ple a random forest application in Spark) and the input data.
Since a cluster comprises of multiple frameworks, we want to
jointly identify both the type and number of instances for each
framework within the cluster. Formally, a cloud con�guration
is denoted as a vectorC = {hN1, I1i, . . . , hNn , Ini} where NF
is the number of instances for framework F 2 {1, . . . ,n} and
IF is the corresponding instance type.
As a validity condition, we require that any valid cloud

con�guration satis�es user-speci�ed constraints on the maxi-
mum execution time and maximum execution cost. In addition,
we consider that the number of instances of each framework
is chosen from a �nite set of possible values. The minimum
and maximum values across all frameworks yield the search
space bounds.
An instance type de�nes the CPU, memory, and storage

capabilities of an instance. Popular cloud providers group
available instance types based on their instance family (e.g.,
general-purpose, compute-optimized) and instance size (e.g.,
large, xlarge). The instance family expresses the class of
hardware speci�cations that may best meet the requirements
of di�erent applications as well as a CPU-memory ratio. The
instance size, in turn, allows for choosing the number of
virtual CPUs, amounts of memory, etc.

2.2 Selecting good con�gurations matters
We illustrate the value of picking a good cloud con�guration
by reporting the ratio of maximum to minimum execution
time and execution cost for all the con�gurations that were

Finding the Right Cloud Configuration for Analytics Clusters SoCC ’20, October 19–21, 2020, Virtual Event, USA

Job Max-Min Ratio
Time Cost

Logistic Regression (lr) 2.7⇥ 2.4⇥
Random Forests (rf) 5.7⇥ 8.3⇥
PageRank (pr) 3.4⇥ 3.6⇥
Gradient Boosted Trees (gbt) 8.0⇥ 77.1⇥
Nweight (nw) 3.5⇥ 5.0⇥
Shortest Paths (sp) 5.2⇥ 4.3⇥
Connected Components (cc) 2.3⇥ 9.8⇥
Label Prop. Algorithm (lpa) 2.0⇥ 2.8⇥
Price Predictor (pp) 2.9⇥ 2.7⇥

Table 1: Max to Min ratio for execution time and execution
cost of the tested con�gurations.

used in our evaluation of several optimization methods (§ 7)
and for the 9 jobs mentioned in § 7.1. Table 1 shows that
selecting a good cloud con�guration can drastically decrease
job execution time. In particular, the max to min ratio for
execution time and execution cost is roughly 2-8⇥ and 2.4-
77⇥, respectively. Thus, optimizing cloud con�guration can
be crucial to satisfying time and/or monetary SLOs. Note
that we do not show con�gurations where jobs take longer
than our maximum time constraint (2,400s). Additionally,
we omit results from several con�gurations that lead to job
failures (mainly due to insu�cient memory resources). As
such, the ratios in Table 1 are a conservative report.

2.3 Challenges
While there are a few recent solutions for �nding an appro-
priate con�guration for deploying a single framework in the
cloud [13, 27–29, 42], moving to multi-framework analytics
clusters raises several additional challenges.
Intrinsic performance coupling. The cloud con�gura-
tion problem does not decompose into several isolated, per-
framework optimizations. This is because the end-to-end
system performance depends on the performance of each
framework, which is coupled with the performance of other
interacting frameworks. Moreover, performance coupling
means that one cannot simply optimize the cluster con�g-
uration one framework at a time following a natural, pre-
established sequential order. The baseline method (Baseline
1) described below highlights that not accounting for perfor-
mance coupling leads to sub-optimal con�gurations (§7.2).
Huge con�guration space. Jointly optimizing multiple
frameworks inevitably leads to a large con�guration space,
which increases exponentially with every additional frame-
work. Thus the search for possible con�gurations has inher-
ent scalability problems in this new setting. As such, tradi-
tional solutions that use exclusively o�ine optimization are
not practical with a large con�guration space. Our results in

§7.2 show that the search time and search cost of an exclu-
sively o�ine method can be high, and it may not be practical
to use them.
Uninformative o�line pro�ling. Gathering pro�ling in-
formation o�ine is a typical strategy to enhance the con-
�guration search speed [18, 19, 31, 43]. However, in these
methods, it is necessary to pro�le information for all possi-
ble con�gurations, which becomes untenable in our setting,
since the number of con�gurations grows exponentially with
the number of frameworks. We show that, in our solution,
a short benchmarking phase (combined with transfer learn-
ing where possible) eliminates the need for comprehensive
o�ine pro�ling.

2.4 Baseline solutions
As we outlined, there are two ways of adapting the state-of-
the-art solutions to work with multi-framework analytics
clusters. We will use the following two solutions as baselines
to compare against our method.
Baseline 1. Baseline 1 consists of applying a traditional
black-box algorithm like Bayesian optimization with Gauss-
ian processes (used in Cherrypick [13]), to optimize one
framework at a time. The main issue is that the order in
which each framework is optimized in�uences the optimiza-
tion outcome. Since the best order depends on the application
and the cluster composition under consideration, we follow
the DAG of the analytics cluster as the default order. Note
that, even though the baseline optimizes one framework at-
a-time, they are not optimized in isolation. In other words, to
optimize a given framework, we execute the job in a multi-
framework setting, so that the optimization of that single
framework is done in its actual execution environment. At
a high level, the main limitation of Baseline 1 is that it has
a limited view of the con�guration search space since it de-
termines the best con�guration for only one framework at
a time in the speci�ed sequence. Thus, it only observes a
smaller subset of the full con�guration space and might be
unable to explore better con�gurations.
Baseline 2. For Baseline 2, we also use Bayesian optimiza-
tion with Gaussian processes, except that this baseline treats
the whole cluster as a single black-box system. Thus it con�g-
ures all of the frameworks simultaneously. Unlike Baseline
1, Baseline 2 is capable of exploring the entire con�guration
search space.
Baseline 1 and 2 are o�ine methods that require all op-

timization runs to be executed on a representative input
dataset before the job can be deployed in production.

3 OVERVIEW OF VANIR
Vanir solves the cloud con�guration problem by splitting
the optimization process into two phases. Phase 1: A quick

SoCC ’20, October 19–21, 2020, Virtual Event, USA Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues

Job is
Known

Create Initial
Performance Model

Production Run with
Online Optimizer

Update
Performance Model

Profile Run with
Initial Config

Job is
Similar

Profile Runs with
Offline Optimizer

Yes

No

Yes

No

Bootstrap
Performance Model
via Transfer Learn.

Figure 2: Con�guration optimization work�ow in Vanir.

heuristics-based benchmarking phase that determines a good
enough initial con�guration. Phase 2: A production opti-
mization phase that uses machine learning to progressively
�nd a better con�guration. To further improve the perfor-
mance and scalability of the solution, Vanir adopts a similar-
ity scoring mechanism to bypass the benchmarking phase,
if possible.

The two phases use separate optimizer components. The
benchmarking phase uses the o�ine optimizer (whose runs
are utilized for benchmarking purposes). The production
optimization phase uses the online optimizer (wherein each
run is an actual production run that is used to incrementally
update the performance model for improving the con�gu-
ration for the next job iteration). The online optimization
process concludes after a user-speci�ed number of runs.
We now discuss Vanir’s usage for di�erent high-level

work�ow scenarios. The next sections present each com-
ponent in detail and describe our design rationale.
Work�ow. Figure 2 overviews Vanir’s optimization process.
Whenever a job request arrives, Vanir distinguishes between
three scenarios:
Known: The job is the same as a previously executed job.
Similar : The job is new (i.e., not seen before), yet it is similar
to a previously executed job.
Unknown: The job is new and not su�ciently similar to any
previously executed job.

Vanir handles each of these scenarios as follows:
Known. The request for another run of a recurring job
is passed directly to the online optimizer. The online opti-
mizer uses the performance model for this job to select a
new cloud con�guration to test. Once a production run is
concluded, Vanir updates the performance model for future
optimization.
Similar. When a new job arrives, Vanir executes it on an
initial pro�ling con�guration and scores it based on similar-
ity with previously executed jobs. If the job has a su�cient
degree of similarity to one of the existing jobs, the job is
passed to the online optimizer. The online optimizer loads
the performance model for the most similar job and uses

transfer learning to bootstrap a performance model for the
new job. This performance model is then used as an initial
state for the online optimizer to search for an appropriate
con�guration of the new job.
Unknown. When a new job does not satisfy the similarity
�lter, the job request is passed to the o�ine optimizer. The
optimizer �nds a good enough con�guration that meets the
user constraints and then launches a production run using
that con�guration. Subsequent submissions of the same job
are optimized using the online optimizer.

4 OFFLINE OPTIMIZER
The goal of the o�ine optimizer is to quickly �nd a good
enough con�guration that meets user-provided performance
constraints, even if this comes at the expense of the quality
of the chosen con�guration. Owing to incremental improve-
ments that the online optimizer will apply for subsequent job
submissions, this is a reasonable trade-o� to scale to large
con�guration search spaces.
Our design uses a metrics-based algorithm as the o�ine

optimizer, which uses CPU and memory resource utilization
metrics (monitored during pro�ling runs) to determine the
con�guration of each framework. Note that our aim in this
part of the design is to illustrate the advantages of decom-
posing the con�guration problem into an o�ine and online
phase; one could replace our o�ine optimizer with an al-
ternate one or even a static con�guration based on domain
knowledge.
The algorithm proceeds iteratively and consists of three

phases: Init, Resource Increase and Resource Adjustment. Be-
fore we dive into the details of these phases, let us �rst
develop the intuition behind our o�ine algorithm. Our �rst
goal is to �nd a good enough con�guration that meets the
user-speci�ed constraints. To achieve this, we start by rapidly
increasing the resource allocation so that we swiftly reach a
reasonable set of valid con�gurations (i.e., that satisfy both
execution time and cost constraints), allowing the algorithm
to choose the one with the best execution time. However, if
this phase only �nds one valid con�guration or none,1 then,
at a �ner granularity, the algorithm reduces the execution
cost by decreasing the resources allocated to frameworks
with low resource utilization.

This simple algorithm does not deal with di�erent instance
families; it sticks with a general-purpose instance and modi-
�es instance size and number of instances. This is intended
to make the benchmarking phase short. The online optimizer
handles di�erent instance types.

1A user could specify execution cost or execution time constraints that are
too stringent for the given search space. If the o�ine optimizer fails to �nd
any valid con�guration, then the constraints should be revised.

Finding the Right Cloud Configuration for Analytics Clusters SoCC ’20, October 19–21, 2020, Virtual Event, USA

4.1 Metrics-based algorithm
Init Phase: The optimizer �rst performs a pro�ling run on
a pre-speci�ed con�guration to obtain an initial performance
sample. We use an initial con�guration with 4 instances of
instance typem5.lar�e for each framework.
Resource Increase Phase: Then, in a sequence of pro�ling
runs, the number of instances NF allocated to each frame-
work F increases according to monitored CPU and memory
utilization as follows:

NF =

(
2 · NF cpuF +memF > µ1

s + NF otherwise
That is, NF doubles as long as the mean utilization of CPU

(cpuF) and memory (memF) cumulatively remain above a
threshold µ1. Otherwise, a lower sum of CPU and memory
utilization indicates that doubling resources would be an
over-allocation. In this case, NF increases by a constant s
with each pro�ling run. We use s = 2 and we discuss how
to set the thresholds in §4.2. Since the search space bounds
impose a limit on the number of instances of a particular
size, if NF reaches this limit, the algorithm shifts to the next
larger instance size.

The resource increase phase applies to all the frameworks
at once until one of two conditions occurs: (1) the execution
time of the current con�guration worsens as compared to the
execution time of the previous con�guration, or (2) the pre-
vious con�guration was valid but the current con�guration
is not.

When either of these two conditions occurs, the optimizer
checks whether it foundmore than one valid con�guration. If
that is the case, it terminates by returning the con�guration
with the best execution time. Otherwise, the optimizer enters
a �ne-grained resource adjustment phase to �nd a better
con�guration.
Resource Adjustment Phase: The optimizer seeks to �nd
valid con�gurations by decreasing resources to decrease the
overall execution cost. During another series of pro�ling
runs, any framework whose CPU and memory utilization
are not above certain thresholds sees its resources decreased.
This terminates when the current con�guration is not valid
while the previous one was. The adjustment in the number
of instances is done as:

NF =

8>>><
>>>:

NF /2 (cpuF < µ2) ^ (memF < µ3)

NF (cpuF � µ2) ^ (memF � µ3)

NF � s otherwise
The rationale behind the way we change NF is that we

want to have the ability to make signi�cant adjustments
(halving or doubling NF) when the utilization metrics are
either too high or too low. Otherwise, we enable �ne-grained
adjustments (increments or decrements to NF) to avoid over-
or under-allocating the resources by a large margin.

4.2 Tuning the o�line optimizer
The resource increase and adjustment phases depend on 3
thresholds that we set empirically. µ1 controls the rate at
which resources are increased w.r.t. resource utilization. A
value of 100 means that the combined utilization of CPU and
memory is 100%. The maximum value of this parameter is
200. Setting the value close to 200 makes the o�ine optimizer
more conservative in increasing resources and likely slower.
Conversely, setting it closer to 0 makes the optimizer more
aggressive, which is likely to double the resources at every
benchmarking run. µ2 and µ3 control the aggressiveness with
which the resource adjustment phase decreases resources.
The possible values range from 0 to 100. A low value for
these parameters means fewer resources taken back from
the frameworks and vice versa. In our experiments, we use
the following threshold values: µ1 = 100, µ2 = 50 and µ3 = 50.
These values strike a balance between aggressiveness and
over-allocation of the resources in the di�erent phases of
the o�ine optimizer. A full analysis of these thresholds is
outside the scope of this paper.

5 ONLINE OPTIMIZER
The online optimizer aims to further re�ne the con�guration
during recurring production runs of the same job. There
are three key capabilities that an online optimizer should
have: (1) a method to model the job performance on di�erent
con�gurations, (2) the ability to update the performance
model at the end of each production run, and (3) a way to
select the next con�guration (i.e., an acquisition method) that
potentially improves performance.
In Vanir, the online optimizer maintains and uses a job-

speci�c performance model M : C ! t to predict the job
execution time t of any given valid con�guration C . Due to
the challenges described in §2.3, generally,M is non-convex
and its derivative is not available. This precludes standard
optimization methods for �nding the best cloud con�gura-
tion. Moreover,M is not necessarily accurate, which requires
exploratory production runs to make the model more accu-
rate. To tackle these challenges, we will use Mondrian forests
as a fundamental building block.

5.1 Mondrian forests
Mondrian forests use Mondrian processes [36] to construct
ensembles of random decision trees. They can be trained in
batch or onlinemode.We useMFs because of three important
features [32]. First, MFs gracefully handle predictions on
data points outside the space seen in the training data. In
the absence of an extensive training dataset, as in our case,
this property is of particular importance. Second, online
training of MFs has higher accuracy than online RFs for the
same amount of training data. Third, online MFs can provide

SoCC ’20, October 19–21, 2020, Virtual Event, USA Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues

Config space

P
re

di
ct

ed
 t

Performance Model

Previous
Configurations

C1 300
C2 250

C3 270
C4 230 ① Centroid selection

C1 300
C2 250

C3 270
C4 230

All previous configurations
{Cx | ET(Cx) within ε of

best previous configuration}

✓
✗

✓
✓

② Candidate set selection

Config space

P
re

di
ct

ed
 t Discarded samples

C
en

tro
id

s Acquired samples Q

③ Configuration selection

Configurations
within distance d from
centroids and instance
type variations

Sample scoring

Next configuration
C ∈ Q chosen at
random from acquired
samples weighted by
normalized rating:
maxX∈Q(t(X)) / t(C)

Figure 3: Acquisition method used by the online optimizer.

prediction accuracy comparable to batch-trained RFs. These
features make MFs more suitable for our case than the online
versions of RFs, such as the one presented in [20, 37].

In Vanir, we use MFs as regressors. Con�guration C is the
vector of input features, and the output prediction is the job
execution time t . Each production run of a con�guration
is used to update the model. We train the initial MF model
M for a job using the data available from the o�ine opti-
mization phase. Except when a new unknown job has high
similarity to other jobs, where we use transfer learning for
bootstrapping the initial model of similar jobs (c.f. §6).

5.2 Acquisition method
The acquisition method picks a new test con�guration that
potentially improves job performance and helps re�ne the
model’s accuracy. However, as discussed, the performance
model is built incrementally and may be inaccurate (espe-
cially in the early stages of a recurring job). Also, due to
the large search space, a brute force evaluation of the per-
formance model is ine�cient. Therefore, our acquisition
method evaluates the performance model on a narrowed
down candidate set of con�gurations before selecting the
next con�guration for a production run.
We start by providing an intuitive idea of how the algo-

rithm works, as illustrated in Figure 3. At a high level, the
acquisition method uses the previously tested con�gurations
as centroids for a neighborhood search. In particular, the
neighboring con�gurations around the centroids are used as
potential candidates fromwhich a better con�guration might
emerge. This potential candidate set is then �ltered using
constraints on the predicted execution time, and a single con-
�guration is selected randomly using a weighted probability.
The job is then executed with this selected con�guration,
and its execution time is used to update the performance
model.

5.2.1 Centroid selection. The algorithm selects previously
executed con�gurations as centroids – all valid con�gura-
tions with execution time within an � factor of the current
lowest execution time – whose neighboring con�gurations
can provide better con�gurations.

The algorithm attempts to select at least l centroids. Given
that fewer than l con�gurations may satisfy the �-factor con-
dition (especially early in the online optimization phase), the
algorithm uses a scoring function to extend the selection to
previously executed con�gurations that meet the execution
time constraint and represent good choices in terms of their
execution cost. Let ETmin be the lowest execution time, and
ECmax be the highest cost across all executed con�gurations.
A con�guration C is scored as follows (higher is better):

score(C) =

(
(1+�)ETmin

ET (C)
EC(C)  ECmax

(1+�)ETmin
ET (C)

+ ECmax
EC(C)

EC(C) > ECmax
Intuitively, this mechanism assigns higher scores to con�g-
urations that satisfy cost constraints and lower scores to
con�gurations that do not, proportionally to the amount by
which they exceed the constraints. This ensures that, within
the con�gurations that meet the time constraint, preference
is given to searching the neighborhood of valid con�gura-
tions (as far as their cost is concerned) with lower execution
times, followed by con�gurations that violate the cost con-
straint with the lowest margin.

5.2.2 Candidate set selection. Based on the set of centroids
O, the algorithm forms a candidate set of promising but
untested con�gurations. This set is the union of con�gura-
tions drawn from the neighborhood of each centroid and
through instance type variations of the currently best con-
�guration. Figure 4 shows an example of this process.
Neighborhood selection. For each centroid, the algorithm
selects every con�guration within distance d from the cen-
troid. We de�ne a distance metric based on the framework-
wise di�erence of CPU and memory capacity. We say that
the capacity capF (C) of a con�guration C w.r.t. framework
F is the vector htotal CPU count, total memoryi, where

Finding the Right Cloud Configuration for Analytics Clusters SoCC ’20, October 19–21, 2020, Virtual Event, USA

C1 {<8, m5.l>, <24, m5.l>, <16, r5.l>}

C2 {<8, m5.l>, <22, m5.l>, <16, r5.l>}

C3 {<8, m5.l>, <18, m5.l>, <16, r5.l>}

C4 {<8, m5.l>, <20, c5.xl>, <16, r5.l>}

✓
✗

✓
✓

Search Space

Cx = {<8, m5.l>, <20, m5.l>, <16, r5.l>} dmax = 20%

CPUs

M
em

or
y

Configuration in
the neighborhood

Configuration based on
instance type change

Figure 4: Example candidate set based on 20%maximum dis-
tance from a centroid (purple cross) for the middle frame-
work (h20, m5.li). The valid con�gurations in the neighbor-
hood are those with a variation of ±10% memory and ±10%
number of CPUs (combined ±20%). A selected con�guration
based on instance type variation doubles the number of
CPUs and maintains the same memory.

total refers to the sum of all NF instances of F . The dis-
tance between two con�gurations X , Y for framework F is
distF (X ,Y) = | |capF (X) � capF (Y)| |1. Therefore, so far the
candidate set is

–
o2O{C | distF (C,o)  d,8F }.

The threshold d is set asmax(ds ,dmax), where ds denotes
the distance of a single step away from centroid. This only
applies when the hyperparameter dmax , which is speci�ed
in relative terms, overly restricts the candidate set. Note that
because of our de�nition of distance, in theory, there could be
con�gurations that di�er from a centroid but their distance
from it is zero. These con�gurations are also included.
Instance type variations. We observe that the above can-
didate set would rarely include an instance family di�erent
from those of the centroids because changing the instance
family (for the same number of instances) can double or
halve CPU and memory resources (we expect dmax to be
smaller than 100%, see §5.3). To allow for instance family
variations, we include in the candidate set con�gurations
more distant than dmax from a centroid. Namely, the algo-
rithm enumerates all possible instance type variations for
the centroid con�guration and includes those that do not
reduce the total available memory. The intuition behind this
is that changes in CPU resources can a�ect the job execution
time, but drastic reductions to memory capacity can cause
job failures. As reference centroid, the algorithm only consid-
ers the current best con�guration, and all framework-wise
instance type variations are considered. Since only the best
con�guration is used for this step, the possible decrease in
the execution time is not severe.

5.2.3 Configuration selection. Using the candidate set Q,
the algorithm selects a con�guration in Q for use in the next
production run. First, the algorithm �lters the candidate set
to discard any con�guration whose predicted execution time
is too high compared to the currently best con�guration and
the best-predicted execution time of the con�gurations in Q.
Namely, C 2 Q is discarded if t(C) > � minX 2Q(ET (X)) or if

t(C) > �ETmin . Here, � and � are hyperparameters whose
tuning we describe in §5.3.
Next, the algorithm could pick from the remaining can-

didates the best con�guration as predicted by the model.
However, given the small number of executed con�gura-
tions in the beginning, the model predictions may not be
very accurate. Instead, the algorithm rates each con�guration
C according to its predicted execution time t(C): rate(C) =
maxX 2Q(t(X))/t(C); then the algorithm randomly picks the
next con�guration with a probability p following its normal-
ized rating: p(C) = rate(C)/

Õ
X 2Q rate(X). This allows for

some diversity while also biasing the choice to con�gurations
with better predicted execution time.

5.3 Tuning the acquisition method
� controls the closeness of the centroids to the best valid
con�guration in terms of the execution time. For instance, a
value of 0.2 means that only points that have 20% higher exe-
cution time than the best-known execution time are chosen
as centroids. l determines the desired number of centroids.
dmax controls neighborhood size around the centroids. � and
� limit the con�gurations that can be selected based on their
predicted execution time w.r.t the best-predicted execution
time in the candidate set and the best-known execution time.
� should be set slightly higher than � to take into account the
model prediction error. � controls how conservatively the
algorithm behaves; e.g., a value of 2 means that the algorithm
will not select a con�guration whose predicted execution
time is twice the best-known execution time.
Higher values for all these hyper-parameters will allow

for more exploration but might also lead to more execution
time constraint violations. For our evaluation, we use the fol-
lowing values: � = 0.2, � = 1.5, � = 2, l = 5 and dmax = 20%.
These values worked well for our scenarios since, with these
settings, the algorithm maintains a conservative approach
in terms of the execution time constraint, while still being
able to explore. A complete hyper-parameter exploration is
left for future work.

6 LEARNING FROM OTHER JOBS
To try to reduce the number of benchmarking runs even
further, Vanir uses the similarity between jobs and transfer
learning to quickly bootstrap a performance model for the
online optimizer, using knowledge from other jobs.

6.1 Telling jobs are similar
Before bootstrapping the performance model for a new job
from a previous one, we need to �rst determine whether jobs
are similar. Inspired by collaborative �ltering algorithms [38],
Vanir uses cosine similarity as a similarity metric applied to
job signatures. We explored several types of signatures and

SoCC ’20, October 19–21, 2020, Virtual Event, USA Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues

we settled on a simple one: a job signature is the pair of CPU
%idle and memory utilization histograms. The histogram is
created from a list of observations of the respective utiliza-
tion metric. Observations from each instance of a framework
are taken continuously and appended to create that list. In
particular, these observations are collected every 5 seconds
during a job run, and the histograms use bins at 10% granu-
larity. Cosine similarity uses the concatenation of these two
histograms in vectorized form.

We say that the pair of a new job and a prior job is similar
when their similarity score is above a threshold (0.85 in our
case). Vanir uses the model of the prior job with the highest
similarity to bootstrap a performance model.
Unlike in [18, 19, 31, 43], we do not use collaborative �l-

tering to get recommendations regarding the con�gurations
based on prior jobs. This is because collaborative �ltering
requires certain sparsity conditions [16, 18, 19, 31], which
might be impractical to achieve. Furthermore, these prior
works rely on extensive o�ine pro�ling, in which a set of
benchmark applications are pro�led on all con�gurations.
This is also impractical in our case, wherein the total number
of possible con�gurations (Table 2) is roughly 900k. How-
ever, collaborative �ltering or machine learning methods
for workload characterization [18, 19, 29, 31, 41, 43] can be
useful once there is a substantial history of a large number
of jobs and job runs.

While cosine similarity between jobs allows bootstrapping
models for unknown jobs, it is not a perfect method and may
lead to false-positive matches. We add a simple test to avoid
the e�ects of false positives: we measure the performance
of the new job on the best and worst con�guration of the
most similar job, and, if the new job performs better on
the best con�guration from the known job compared to the
worst con�guration, then we bootstrap the model; otherwise,
we fall back to the benchmarking phase. Thus, a successful
application of similarity limits the number of benchmarking
runs to a total of 3 (1 for similarity calculation and 2 to avoid
false positives).

6.2 Bootstrapping models
Vanir uses transfer learning to adapt an MF model trained on
a previously seen job and provide better results with fewer
training samples for a new job. However, several challenges
arise when putting this idea into practice. First, to the best of
our knowledge, there is no existing transfer learning method
for Mondrian Forests. Additionally, we want to minimize
the number of samples needed from the new job to perform
transfer learning. Therefore, we propose a simple technique
that uses the di�erence in execution time between the two
jobs (new job and a previously seen job) for the same con�g-
uration to o�set the rest of the predictions of the model.

Parameters Possible Values
Instance Type
(in AWS EC2)

m5.large, m5.xlarge, c5.xlarge,
c5.2xlarge, r5.large, r5.xlarge

No. of Instances
(per framework) [2, 32] - step size of 2

Table 2: Possible values of con�guration parameters.

Assume that job � has the highest similarity with a new job
H . In this case, we want to transfer � ’s performance model
M � to create a performance model MH for H . To this end,
we run H with the best con�guration from model M � and
obtain the execution time ETH . The di�erence ETH � ET�
between this execution time and the execution time obtained
for the same con�guration on � is then used as an o�set
to adjust the execution time predictions (tH (C)) for MH as:
tH (C) = t � (C) + ETH � ET� for all training con�gurations C
used to buildM � .

7 EVALUATION
We evaluate Vanir against Baseline 1 and Baseline 2 (§2.4),
which we implement atop the Spearmint [10] library for
Bayesian optimization. All experiments run in AWS.

Table 2 lists the con�guration search space, which yields
96 con�gurations for a single framework while the total
number of possible con�gurations is 884,736. As such, it is
impractical to search the entire space to determine the best
con�guration of each job as a ground truth.
We limit the optimization budget for each job to 18 runs

in total. Baseline 1 uses 3 initial samples for each framework,
while Baseline 2 uses a total of 6 initial samples (generated
through Spearmint’s default Sobol sampling).

7.1 Applications
We run a total of 9 realistic benchmarks (Table 1), 8 of which
run on the analytics cluster shown in Figure 1. These bench-
marks are adapted from applications included in the HiBench
suite [6] and a few additional GraphX [4] jobs (sp, cc, lpa).
To evaluate Vanir with di�erent pipelines, we further run the
price predictor (pp) job on a second cluster comprising a
DAG of batch jobs. Our benchmarks, con�gs, and datasets
are public at [8].

As for the dimension of input datasets, following the nam-
ing in HiBench, we use “gigantic” for pr, nw and lr; “huge”
for gbt and rf; and “small” for sp, lpa, and cc. These sizes are
chosen so that all jobs run in a reasonable amount of time
(to reduce our costs) on at least a subset of the possible con-
�gurations. The datasets are generated synthetically using
HiBench for each run.

We use the default values for all system parameters except
for parallelism level and memory con�gurations for Spark.

Finding the Right Cloud Configuration for Analytics Clusters SoCC ’20, October 19–21, 2020, Virtual Event, USA

gEW rf lr nw pr cc lpa Vp
WorkloadV

0

500

1000

(T
 o

f E
eV

W c
on

f.(
V) BaVeline 1

BaVeline 2
Vanir

0eWhod
0

6

12

18

Be
nc

hm
ar

ki
ng

 iW
er

aW
io

nV

Figure 5: (a) Best execution time (left). (b) Number of bench-
marking iterations (right).

The parallelism level is set to 2⇥ the number of cores avail-
able in the cluster allocated for Spark. In turn, the amount of
executor memory and driver memory is set to the amount
of available memory in the instances used for Spark.

7.2 Results
We compare Vanir against both baseline methods across:
quality and cost of optimization; the speed of search; and
the contribution of di�erent components of Vanir. We also
discuss the best con�gurations selected by Vanir and both
baselines. We discuss the e�ects of the bounded search lim-
itations of the baseline methods. Lastly, we generalize our
results by looking at a di�erent pipeline and variations in
input dataset size.

7.2.1 �ality of optimization. We analyze the best con�g-
uration found by an optimization algorithm within a given
search budget. In our case, this represents the best execution
time found while satisfying the constraints.
Figure 5a shows the execution time of the best con�gu-

ration found by each optimization method. We repeat the
job with the best con�guration for each method 5 times, and
the error bars indicate the standard deviation. For all jobs,
Vanir �nds con�gurations that perform comparably to those
by Baseline 2. Baseline 1, in turn, performs comparably to
Vanir and Baseline 2 for 6 of the 8 jobs. The two jobs where
Baseline 1 is outperformed are rf and lr. For these jobs, the
best execution time found by Baseline 1 is 2-2.5⇥ higher
than Baseline 2 and Vanir. This is due to the limited view
of the con�guration space that Baseline 1 explores, since it
optimizes one framework at a time, and decides on the best
con�guration for a given framework before advancing to
optimizing the next one.
Figure 5b shows the number of benchmarking iterations

required by each algorithm. For Vanir, that is simply the
number of iterations of the o�ine optimizer. For Baseline
1 and 2, this is the number of runs to reach the best found
con�guration within the optimization budget. In practice,
there is no way to know if an algorithm has yet reached
the best con�guration it will �nd. We, therefore, assume an

gbW rf lr nw pr cc lpa Vp
WorNload

0

10

20

30

1
or

m
. o

pW
. c

oV
W BaVeline 1

BaVeline 2
Vanir

Figure 6: Cost of optimization. Baseline 1 and 2 are generally
1.5-6 times more expensive than Vanir.

oracle that predicts if the baselines have reached their best
con�guration. Therefore, this result shows the best-case sce-
nario for the baselines. The results show that Vanir uses an
average of 6 benchmarking iterations. In turn, Baseline 1 and
2 use 14 and 12 benchmarking iterations, respectively – thus,
on average, requiring to wait at least 2 times as long before
starting production runs. Using only 1/2 benchmarking iter-
ations, Vanir �nds con�gurations comparable to Baseline 2,
thanks to online optimization in production runs.

7.2.2 Cost of optimization. It is important to consider the
monetary cost of the (benchmarking) optimization phase
since this consists of running an o�ine optimization algo-
rithm, which costs money (and time) without doing any
useful work. Ideally, this should be kept to a minimum.

Figure 6 shows the cost of optimization, normalized by the
cost of the benchmarking phase of Vanir. The bars for Base-
line 1 and 2 represent the total cost of the optimization over
the budget of 18 iterations compared to the benchmarking
phase of Vanir. Vanir (Full) includes both benchmarking and
production phases. The cost of the production phase is only
the extra cost for each iteration of the production phase com-
pared to what would cost if one were to simply run Vanir’s
best found con�guration.2 The results show that Vanir incurs
in substantially lower optimization costs, due to its virtuous
combination of techniques, namely a quick estimate of a
good con�guration in the benchmarking phase followed by
gradually improving the con�guration at production time.
Using only the benchmarking phase of Vanir, the cost is

up to 60% lower than running both the benchmarking and
production optimization phases. However, that reduction in
optimization cost comes at the expense of decreased quality
of optimization, as shown later in this section. On the other
hand, Baseline 1 and 2 are roughly 1.3-4.6⇥ and 1.6-5.9⇥
more expensive than Vanir (Full), respectively, for 7 out of
8 jobs. The exception is gbt, where Baseline 1 costs 5.9⇥,
and Baseline 2 costs 24⇥ more than Vanir. This is primarily

2As if an oracle revealed the best con�guration that Vanir will �nd.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues

250

500

750

1000
gEt rI lr nw

6 12 18

250

500

750

1000
pr

6 12 18

cc

6 12 18

lpa

6 12 18

Vp
BaVeline 1
BaVeline 2
Vanir

Be
Vt

 (
xe

cu
tio

n
tim

e
(V

)

Iteration numEer

Figure 7: Progression of optimization for target jobs.

2 4 6 8 10 12 14 16 18
Iteration numEer

0.25

0.50

0.75

1.00

Fr
aF

tio
n

oI
 E

eV
t E

7

BaVeline 1
BaVeline 2
Vanir

Figure 8: Speed of optimization. On average, Vanir takes
only half the number of iterations compared to Baseline 2
to reach within 15% of the best execution time found.

because gbt does not require a lot of resources; in fact, big-
ger cluster sizes worsen its performance. Vanir’s systematic
approach with its benchmarking phase quickly determines
that characteristic. Therefore, it avoids selecting larger con-
�gurations while the baselines often explore those regions
of search space, thus incurring high optimization costs.

7.2.3 Speed of search. Another way to compare optimiza-
tion algorithms is to evaluate which method is the fastest to
reach a good con�guration for a given search budget.
Figure 8 shows that on average, across the 8 jobs, how

quickly each algorithm can get close to the best execution
time found by any optimization method. The results show
that Vanir is the fastest. On average, Baseline 2 takes 2⇥
longer to get to a con�guration within 15% of the best one,
compared to Vanir. Because Vanir uses ametrics-basedmethod
as an o�ine optimizer, it keeps the benchmarking phase
short by systematically changing the resources assigned to
di�erent frameworks instead of blindly generating initial
samples, as it is the case for completely black-box methods.
Vanir quickly �nds a good con�guration to start the produc-
tion runs of the recurring job. Subsequent runs of the job
can bene�t from the production optimization phase.

Figure 7 shows the progression of the best-found execution
time for each job separately. Vanir is fastest for 6 of the 8

jobs; except for rf and pr, whereby Baseline 2 by chance �nds
a valid con�guration during initial sampling.

7.2.4 Constraint violations. Since Vanir performs optimiza-
tion during production runs, it is worth evaluating the num-
ber of violations experienced (for time or cost constraints).
Vanir assumes that cost constraint violations are tolerable
during the production optimization phase. However, execu-
tion time constraint violations are more severe in production
environments, and therefore an online optimizer should limit
them. Any unsuccessful run of a job due to failure (e.g., mem-
ory exhaustion) is a violation.
Figure 9 shows the progression of execution time, and

execution cost as Vanir optimizes the con�guration for each
job. The green circle indicates the best valid con�guration
found. The blue vertical line is the iteration number at which
the benchmarking phase ends, and the production runs start.
The black horizontal line is the cost constraint (associated
with the right y-axis). Optimization runs that fail to execute
or take longer than the execution time constraint are shown
as iterations with zero execution time.

In our experiments, the online phase of Vanir leads to only
one failure due to a lack of resources (for the iteration 11 of
rf). However, if such an error occurs, the online optimizer
quickly learns to avoid that region of the search space. It is
clear that during the production phase, Vanir tests con�gura-
tions that lead to cost constraint violations. This design is by
choice, since making Vanir too conservative would hamper
the quality of con�gurations it �nds.

7.2.5 Contribution of di�erent optimizers. To understand
the contribution of Vanir’s components to the overall opti-
mization process, we break down the best execution time
achieved by using di�erent components. Figure 10 shows
that the o�ine optimizer reaches performance close to the
best con�guration found by Vanir (Full), in 3 of the 8 jobs
(sp, rf, and lr). In these cases, the online optimizer improves
execution time by 0%, 1%, and 6%, respectively. In contrast,

Finding the Right Cloud Configuration for Analytics Clusters SoCC ’20, October 19–21, 2020, Virtual Event, USA

250
500
750

1000
rI lr gEt pr

6 12 18

250
500
750

1000
nw

6 12 18

cc

6 12 18

lpa

6 12 18

sp

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

(x
ec

ut
io

n
tim

e
(s

)

(x
ec

ut
io

n
co

st
 ($

)

Iteration numEer

(xecution time
(xecution cost

Figure 9: Progression of Vanir optimization across eight jobs. Only one ET constraint violation occurred in online phase.

Figure 10: Contribution of di�erent components of Vanir.
Compared to o�line-only optimization, the online phase
lowers execution time by up to 36%.

the online phase improves execution time by 12-36% for the
other 5 jobs.

7.2.6 Contribution of similarity and transfer learning. We
now use a model learned on a job to optimize the con�g-
uration of another job. For a job � , using the best-known
con�guration from the most similar job leads to an execution
time that is close to � ’s best-known execution time. Figure 10
shows that by using similarity (Sim), Vanir �nds a con�gura-
tion with an execution time that is at worst only 55% higher
than the best-known con�guration. However, these con�gu-
rations do not always satisfy the execution cost constraints,
a task handled by the production optimization phase that
follows model bootstrapping.
Using transfer learning, we bootstrap a model for each

job. Then we run the production optimization phase on the
bootstrapped model to further improve performance. This is
shown as Vanir (TL) in Figure 10. The improvement in execu-
tion time after running a production optimization phase on
the bootstrapped model is 3.4%, 7.7%, 11%, and 35% for pr, rf,
cc, and lr, respectively. There is no improvement in the case
of nw. For sp and lpa, the execution time is worse than the
one shown for Sim; that is because the con�guration found
using similarity did not satisfy the cost constraint, and so the
con�guration found after the production run phase in Vanir

(TL) that satis�es the cost constraint has higher execution
time. Interestingly, Vanir (TL) provides a trade-o� between
lowering the number of benchmarking runs and the quality
of optimization. In 4 of the 7 cases, given the limited budget
of 18 iterations, Vanir (TL) �nds a con�guration that is up
to 20% slower than the one found by Vanir (Full). Hence,
shortening the benchmarking phase is not always the right
choice when the optimization quality is more important.

7.2.7 Unbounded search. Bayesian optimization, as used in
Cherrypick [13] and Arrow [28], requires users to de�ne the
bounds of the optimization search space; speci�cally, the
minimum and the maximum number of instances as well
as possible instance types. While de�ning instance types is
straightforward, de�ning the bounds on the number of in-
stances is not easy without prior knowledge. While Bayesian
optimization with Gaussian processes is limited to bounded
search spaces, Vanir is not. This can be a useful property of
our design, since de�ning a bound on the search space can
be di�cult. In particular, when de�ning this bound, there is a
trade-o� between the size of the search space and the cost of
the optimization: a larger search space would likely require a
larger budget and vice versa. Given that a user would likely
not know about a job’s performance pro�le across di�erent
con�gurations, it is easy to make mistakes when de�ning
bounds on the search space.

Until now, we have been comparing both baselinemethods
with Vanir using a bounded search space, for a fair compar-
ison. However, now we want to gauge the potential gains
from an unbounded search; we keep the same bounds as in
Table 2 for Baseline 2, while we set no upper limit for the
number of instances of Vanir. Since the type and size of the
instances would, in practice, be limited to a small number,
we still keep the bounds on them. In this experiment, we use
sp with the same dataset size used in previous experiments
but with an execution cost constraint of $1.5 instead of $0.8
as used before.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues

2 4 6 8 10 12 14 16 18
IteUation numEeU

0

200

400

600

800

1000

(x
ec

ut
io

n
tim

e
(V

)

8nEounded VaniU
BaVeline 2

Figure 11: Comparing Vanir’s performance on unbounded
search space vs. Baseline 2 using sp. Vanir automatically de-
termines the right upper resource limits and avoids incor-
rect user-de�ned search space bounds.

Figure 11 shows the performance of the con�gurations
that both methods �nd. The results show that Vanir �nds
a valid con�guration with an execution time of 185s, while
Baseline 2 only �nds a con�guration with an execution time
of 272s. This is because Vanir explores beyond the bounds
that Baseline 2 is limited to. In particular, it tests con�gu-
rations with 64 instances allocated to Spark and then also
with 128 instances, and automatically �nds that while 64
instances still provide a speedup, ⇠128 instances worsen the
performance. Thus, unbounded search allows Vanir to �nd a
con�guration that is 32% faster than Baseline 2, for the same
constraints and the same optimization budget.

7.2.8 In-depth look at the best configurations. We now want
to reason about why one optimization algorithm performs
better than another by taking a look at the best con�gura-
tions found by each optimization algorithm. Answering this
question can also help us understand the ine�ciencies in
each optimization algorithm. We will only discuss select few
cases here.
Generally, HDFS and Cassandra are allocated fewer re-

sources than Spark due to cost constraints. We also ob-
serve di�erent best con�gurations across di�erent work-
loads. HDFS and Cassandra are generally allocated a similar
amount of resources except for the rfworkload, where HDFS
is given 2⇥ resources compared to Cassandra (in the best
con�guration).

We �nd that Baseline 1 generally ends up only assigning
more resources to Spark. In contrast, the best con�gurations
found by both Vanir and Baseline 2 assign more resources
to other frameworks as well. Thus, Baseline 1 misses the
opportunities that the other two methods explore (since they
perform joint optimization). This is particularly important
for rf and lr, and that is why Baseline 1 performs poorly
compared to the other two methods for those jobs.
In addition, we �nd that di�erent instance types matter.

Speci�cally, Vanir’s best con�gurations for pr and gbt jobs

4 8 12 16
Iteration numEer

0

500

1000

1500

2000

(x
ec

ut
io

n
tim

e
(V

)

0.00

0.25

0.50

0.75

1.00

1.25

(x
ec

ut
io

n
Co

Vt
 ($

)

(7(Vanir)
(7(BaVeline 2)

(C(Vanir)
(C(BaVeline 2)

Figure 12: Comparing Vanir’s performance on pipeline of
batch jobs (pp) vs. Baseline 2. Performance is comparable;
Vanir spends just 6 runs in benchmarking phase.

use c5.2xlarge and c5.xlarge instances, respectively. These
changes improve the execution time by 18% and 30% (com-
pared to using m5 instances) for gbt and pr, respectively.
Interestingly, none of the best con�gurations use the maxi-
mum allowed resources for every framework because: (1) the
execution cost constraint means that even if higher resources
decrease the execution time, they might incur a high execu-
tion cost, and (2) in some cases, assigning more resources
can degrade execution time; e.g., in case of gbt.

7.2.9 Generalizing to a pipeline of batch jobs. To validate
that Vanir’s approach applies to other types of data analytics
pipelines, we use a pipeline of batch processing jobs. This
kind of pipelines is common in industry use case [2, 5, 9],
enabled by tools such as Apache Air�ow [1] and Luigi [7],
which have been designed to facilitate data pipelines in the
form of a DAG of batch jobs. In our case, the pipeline consists
of a linear DAG of three Spark jobs [8] wherein the results
of one job serve as input to the next.

Figure 12 shows the comparison between Vanir and Base-
line 2 for this data pipeline. Both methods eventually �nd
the best con�gurations (highlighted with green circles) that
perform comparably. However, Vanir does not have signif-
icant performance variations during the production runs
(beyond the vertical blue line) and thus it is more suitable
for optimization using production runs. In contrast, Baseline
2 only reaches its best con�guration at the end of its o�ine
optimization budget (18 iterations). For this scenario, Vanir
determines that the Update stage requires more resources
than the other two stages.

7.2.10 Handling input data size changes. Since Vanir per-
forms part of the optimization using production runs, one
could expect that variations in the input data size for di�er-
ent job invocations a�ect performance. Vanir handles these
changes (whenever input data size changes signi�cantly,
say at least a 10% change) by adapting the job’s performance
model to di�erent input data sizes, treating the latter as an ex-
tra model feature. The initial con�guration used is a linearly

Finding the Right Cloud Configuration for Analytics Clusters SoCC ’20, October 19–21, 2020, Virtual Event, USA

2 4 6 8 10
Iteration numEer

0

100

200

300

400

500

600

(x
ec

ut
io

n
tim

e
(s

)

1.0

1.5

2.0

(x
ec

ut
io

n
Co

st
 ($

)

(T(10%)
(T(50%)

(C(10%)
(C(50%)

Figure 13: Handling changes in input data size for cc. Vanir
improves the execution time by 30% within 10 optimization
runs for input data size increase of 10% and 50%.

and proportionally-scaled version of the best con�guration
for the original input size.

Figure 13 shows the progression of optimization of cc over
10 iterations when the data size is 10% and 50% higher than
the data size on which the original cc model was created.
Vanir �nds con�gurations (highlighted with green circles)
that provide 170s and 200s execution time for input data with
10% and 50% higher data size, respectively. This represents
an improvement of 30% over the initial (proportionally larger
con�guration).

8 RELATEDWORK
Cloud con�guration optimization. Ernest [42] adopts
an analytical model to predict the execution time of Spark
jobs, mainly targeting ML applications. The model is limited
to Spark and is not applicable for the performance prediction
of multi-framework analytics clusters. Elastisizer [26] uses
a mix of black-box and white-box models to optimize cloud
con�gurations as well as job-level con�gurations for map-
reduce jobs. However, several of the models used are limited
to the map-reduce style of jobs.

Cherrypick [13], Arrow [28], Micky [27] and Lynceus [17]
treat the data analytics framework as a black box, and per-
form cloud con�guration optimization using o�ine methods.
These initial proposals targeted a single framework and there-
fore only had to consider a con�guration search space on
the order of tens of con�gurations. We build on that line
of research but consider a much larger search space, where
a completely o�ine method becomes impractical. Instead,
Vanir splits the optimization into o�ine and online phases.

Scout [29], Selecta [31] and PARIS [43] use historical data
to quickly choose cloud con�gurations for new jobs. Selecta
incorporates di�erent storage options into the cloud con�g-
uration search space. Lessons learned from Selecta can be
incorporated into Vanir’s o�ine optimizer. The increased size
of the search space as a result of including storage options
would make Vanir even more attractive. However, these were

designed for and evaluated in single system deployments,
and the amount of historical data required for handling clus-
ters withmultiple systemsmight be impractical. Additionally,
given their di�erent target deployment, Scout and PARIS did
not need to improve the con�guration suggested by historical
data at deployment time, which Vanir does through online
optimization.
System con�guration optimization. Research works in
con�guration optimization tackle an orthogonal problem
of optimizing system con�gurations such as parameter tun-
ing for Hadoop [14, 25], Spark [21, 23], Storm [15, 40] or
databases [22, 34] or general-purpose frameworks like Best-
Con�g [44]. Tools such as LearnConf [33] can be used to
determine themost important system parameters that impact
the performance and guide the tuning.
Resource allocation in data centers. Paragon [18] is a
data center heterogeneity and interference-aware scheduler.
It uses collaborative �ltering to classify an unknown incom-
ing job to assign resources to it. Quasar [19] is a follow-up
work on Paragon, which also uses collaborative �ltering
for unknown workload classi�cation. Despite this being a
di�erent problem scenario, we note that a downside of col-
laborative �ltering requires an o�ine training set that is
impractical to obtain when the con�guration space is large.
DejaVu [41] is another work that tackles the problem of allo-
cating resources to workloads in a datacenter setting. Their
method of creating workload signatures might be a comple-
mentary alternative to the simple similarity metric used by
Vanir when there is a large set of jobs and performance data.
Morpheus [30] is designed to provide high cluster utiliza-
tion and predictable performance for enterprise clusters. It
extracts SLOs implicitly and performs job placement and
dynamic re-provisioning to achieve the SLO. In contrast to
Vanir, Morpheus is designed for a data center environment,
where there are no cost constraints or considerations of het-
erogeneous types of machines. Perforator [35] introduces a
methodology to perform resource optimization for Hive. Sev-
eral analytical models are designed and used in that work, but
they are not applicable in our setting with multi-frameworks.

9 CONCLUSION
Vanir performs automatic cloud con�guration optimization
by splitting the optimization task into benchmarking and
production phases. This allows Vanir to handle large con�g-
uration search spaces without requiring long o�ine bench-
marking or optimization. Vanir �nds con�gurations com-
parable to benchmarking based o�ine methods despite a
3⇥ shorter benchmarking phase. Vanir has 1.3-24⇥ lower
optimization search cost, and it is 2⇥ faster to reach within
15% of the execution time of the best con�guration found.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues

ACKNOWLEDGMENTS
Muhammad Bilal was supported by a fellowship from the
Erasmus Mundus Joint Doctorate in Distributed Computing
(EMJD-DC) program funded by the European Commission
(EACEA) (FPA 2012-0030). This research was supported by
Fundação para a Ciência e a Tecnologia (FCT), under projects
UIDB/50021/2020, CMUP-ERI/TIC/0046/2014, and POCI-01-
0247-FEDER-045915.

REFERENCES
[1] Apache Air�ow. https://air�ow.apache.org. [Online; accessed

25/05/2020].
[2] Build a Concurrent Data Orchestration Pipeline Using Amazon EMR

and Apache Livy. https://aws.amazon.com/blogs/big-data/build-a-
concurrent-data-orchestration-pipeline-using-amazon-emr-and-
apache-livy/. [Online; accessed 25/05/2020].

[3] Flink Use cases. https://�ink.apache.org/usecases.html. [Online; ac-
cessed 01/03/2020].

[4] GraphX lib github. https://github.com/apache/spark/tree/master/
graphx/src/main/scala/org/apache/spark/graphx/lib.

[5] HowVerizonMedia Groupmigrated from on-premises ApacheHadoop
and Spark to Amazon EMR. https://aws.amazon.com/blogs/big-
data/how-verizon-media-group-migrated-from-on-premises-
apache-hadoop-and-spark-to-amazon-emr/. [Online; accessed
25/05/2020].

[6] Intel’s HiBench benchmark. https://github.com/intel-hadoop/
HiBench.

[7] Luigi. https://github.com/spotify/luigi. [Online; accessed 25/05/2020].
[8] Modi�ed version of Intel’s HiBench benchmark. https://github.com/

MBtech/HiBench.
[9] Quoble Pipeline. https://www.qubole.com/developers/spark-getting-

started-guide/work�ow/. [Online; accessed 25/05/2020].
[10] Spearmint Github repo. https://github.com/HIPS/Spearmint.
[11] Walmart Labs: Lambda Architecture. https://medium.com/

walmartlabs/how-we-built-a-data-pipeline-with-lambda-
architecture-using-spark-spark-streaming-9d3b4b4555d3. [Online;
accessed 01/03/2020].

[12] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou.
Re-optimizing data-parallel computing. In NSDI, pages 21–21. USENIX
Association, 2012.

[13] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang. CherryPick: Adaptively Unearthing the Best Cloud Con�g-
urations for Big Data Analytics. In NSDI, 2017.

[14] S. Babu. Towards Automatic Optimization of MapReduce Programs.
In SoCC, pages 137–142. ACM, 2010.

[15] M. Bilal and M. Canini. Towards automatic parameter tuning of stream
processing systems. In SoCC, pages 189–200. ACM, 2017.

[16] F. Cacheda, V. Carneiro, D. Fernández, and V. Formoso. Comparison
of collaborative �ltering algorithms: Limitations of current techniques
and proposals for scalable, high-performance recommender systems.
ACM Transactions on the Web (TWEB), 5(1):2, 2011.

[17] M. Casimiro, D. Didona, P. Romano, L. Rodrigues, W. Zwanepoel, and
D. Garlan. Lynceus: Cost-e�cient tuning and provisioning of data
analytic jobs. arXiv preprint arXiv:1905.02119, 2019.

[18] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware Scheduling for
Heterogeneous Datacenters. In ASPLOS, pages 77–88. ACM, 2013.

[19] C. Delimitrou and C. Kozyrakis. Quasar: Resource-e�cient and QoS-
aware Cluster Management. In ASPLOS, pages 127–144. ACM, 2014.

[20] M. Denil, D. Matheson, and N. Freitas. Consistency of online random
forests. In ICML, pages 1256–1264, 2013.

[21] H. Du, P. Han, W. Chen, Y. Wang, and C. Zhang. Otterman: A novel
approach of spark auto-tuning by a hybrid strategy. In ICSAI, pages
478–483, 2018.

[22] S. Duan, V. Thummala, and S. Babu. Tuning Database Con�guration Pa-
rameters with iTuned. In PVLDB, pages 1246–1257. VLDB Endowment,
2009.

[23] A. Fekry, L. Carata, T. Pasquier, A. Rice, and A. Hopper. Tuneful: An
online signi�cance-aware con�guration tuner for big data analytics.
arXiv preprint arXiv:2001.08002, 2020.

[24] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey:
guaranteed job latency in data parallel clusters. In EuroSys, pages
99–112. ACM, 2012.

[25] H. Herodotou and S. Babu. Pro�ling, what-if analysis, and cost-based
optimization of mapreduce programs. In PVLDB, pages 1111–1122.
VLDB Endowment, 2011.

[26] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size �ts all:
automatic cluster sizing for data-intensive analytics. In SoCC, page 18.
ACM, 2011.

[27] C. Hsu, V. Nair, T. Menzies, and V. Freeh. Micky: A cheaper alternative
for selecting cloud instances. In CLOUD, volume 00, pages 409–416.
IEEE, 2018.

[28] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies. Arrow: Low-Level
Augmented Bayesian Optimization for Finding the Best Cloud VM. In
ICDCS, pages 660–670. IEEE, 2018.

[29] C.-J. Hsu, V. Nair, T. Menzies, and V. W. Freeh. Scout: An expe-
rienced guide to �nd the best cloud con�guration. arXiv preprint
arXiv:1803.01296, 2018.

[30] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov,
J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, et al. Morpheus:
Towards automated slos for enterprise clusters. InOSDI, pages 117–134.
USENIX Association, 2016.

[31] A. Klimovic, H. Litz, and C. Kozyrakis. Selecta: Heterogeneous cloud
storage con�guration for data analytics. In USENIX ATC, pages 759–
773, 2018.

[32] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Mondrian forests:
E�cient online random forests. In NIPS, pages 3140–3148, 2014.

[33] C. Li, S.Wang, H. Ho�mann, and S. Lu. Statically inferring performance
properties of software con�gurations. In EuroSys, pages 1–16, 2020.

[34] A. Mahgoub, P. Wood, S. Ganesh, S. Mitra, W. Gerlach, T. Harrison,
F. Meyer, A. Grama, S. Bagchi, and S. Chaterji. Ra�ki: a middleware
for parameter tuning of NoSQL datastores for dynamic metagenomics
workloads. In Middleware, pages 28–40, 2017.

[35] K. Rajan, D. Kakadia, C. Curino, and S. Krishnan. PerfOrator: Eloquent
Performance Models for Resource Optimization. In SoCC, pages 415–
427. ACM, 2016.

[36] D. M. Roy, Y. W. Teh, et al. The mondrian process. In NIPS, pages
1377–1384, 2008.

[37] A. Sa�ari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line
random forests. In ICCV, pages 1393–1400. IEEE, 2009.

[38] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al. Item-based col-
laborative �ltering recommendation algorithms. In WWW, volume 1,
pages 285–295, 2001.

[39] L. Shao, Y. Zhu, S. Liu, A. Eswaran, K. Lieber, J. Mahajan, M. Thigpen,
S. Darbha, S. Krishnan, S. Srinivasan, C. Curino, and K. Karanasos.
Gri�on: Reasoning about Job Anomalies with Unlabeled Data in Cloud-
Based Platforms. In SoCC, pages 441—-452. ACM, 2019.

[40] M. Trotter, T. Wood, and J. Hwang. Forecasting a Storm: Divining
Optimal Con�gurations using Genetic Algorithms and Supervised
Learning. In ICAC, pages 136–146. IEEE, 2019.

[41] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini. De-
javu: accelerating resource allocation in virtualized environments. In
ASPLOS, pages 423–436. ACM, 2012.

Finding the Right Cloud Configuration for Analytics Clusters SoCC ’20, October 19–21, 2020, Virtual Event, USA

[42] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica. Ernest:
E�cient Performance Prediction for Large-Scale Advanced Analytics.
In NSDI, pages 363–378. USENIX Association, 2016.

[43] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz.
Selecting the Best VM Across Multiple Public Clouds: A Data-driven

Performance Modeling Approach. In SoCC, pages 452–465. ACM, 2017.
[44] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang.

Bestcon�g: tapping the performance potential of systems via automatic
con�guration tuning. In SoCC, pages 338–350, 2017.

